Supporting Information of

Rocksalt and Layered Metal Sulfides for Li Storage Applications: $LiMe_{0.5}Ti_{0.5}S_2$ ($Me = Fe^{2+}$, Mn^{2+} , and Mg^{2+})

Miyuki Shinoda,¹ Hongahally Basappa Rajendra,² and Naoaki Yabuuchi^{1-3*}

¹Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan

²Advanced Chemical Energy Research Center, Institute of Advanced Sciences, Yokohama National

University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan

³Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, f1-30 Goryo-

Ohara, Nishikyo-ku, Kyoto 615-8245, Japan

*corresponding author, e-mail: <u>yabuuchi-naoaki-pw@ynu.ac.jp</u>

Supporting Figures

Figure S1. (a) SEM images of cation-disordered rocksalt and cation-ordered layered $LiMe_{0.5}Ti_{0.5}S_2$ ($Me = Fe^{2+}$,

 Mn^{2+} , and Mg^{2+}). (b) Results of BET specific surface area measurement for rocksalt and layered $Li_{1-x}Mn_{0.5}Ti_{0.5}S_2$ samples.

Figure S2. (a) Selected charge/discharge curves and (b) capacity retention of cation-disordered rocksalt and cationordered layered $\text{Li}Me_{0.5}\text{Ti}_{0.5}\text{S}_2$ ($Me = \text{Fe}^{2+}$, Mn^{2+} , and Mg^{2+}) at a rate of 10 mA g⁻¹. Rocksalt $\text{Li}\text{Fe}_{0.5}\text{Ti}_{0.5}\text{S}_2$ shows better cyclability among the tested samples. (c) SEM/EDX spectra of the electrolyte soaked with fully charged Li_{1-} $_x\text{Mn}_{0.5}\text{Ti}_{0.5}\text{S}_2$ at 50 °C for 48 h. Detailed processes for the dissolution test are found in reference 23.

Figure S3. (a) Comparison of impedance measured at an open-circuit voltage (OCV) condition without electrochemical cycle for $LiMn_{0.5}Ti_{0.5}S_2$ and $LiMg_{0.5}Ti_{0.5}S_2$ with the rocksalt structure, and (b) impedance of rocksalt and layered $LiMn_{0.5}Ti_{0.5}S_2$ measured at OCV and 25% state of charge (SOC).

Figure S4. Charge/discharge curves of layered $LiMn_{0.5}Ti_{0.5}S_2$ at 50 °C at a rate of 10 mA g⁻¹.

Figure S5. Structural changes of rocksalt $Li_{1-x}Fe_{0.5}Ti_{0.5}S_2$ measured by *ex-situ* XRD study. Changes in Fe K-edge

XAS spectra of rocksalt Li_{1-x}Mn_{0.5}Ti_{0.5}S₂ on electrochemical cycles are also shown.

Figure S6. Structural changes of rocksalt $Li_{1-x}Mg_{0.5}Ti_{0.5}S_2$ measured by *ex-situ* XRD study. Similar to $Li_{1-x}Mn_{0.5}Ti_{0.5}S_2$, a quite small change in the unit cell volume is observed on charge/discharge cycles.