	01	
8	Ĩ	1
7	9	2
6	↓10	3
5	Ĭ	¥
	Ö2	

Compound	Substituents	Compound	Substituents
1	2-NMe ₂	7	1-OH
2	1-NMe ₂	8	1,5-diOH
3	1,5-diNH ₂	9	1,8-diOH
4	1,4-diNH ₂	10	1,2-diOH
5	1,4-diNHEt	11	1,2-diOMe
6	1-NPhMe	12	1,4-diOH

FIGURE 1 Chemical structures of anthraquinones

FIGURE 2 Comparison between experimental and theoretical absorption wavelength for AQ dyes. The theoretical values are obtained from TD-DFT, PM5/RPA and ZINDO using X-ray structure

FIGURE 3 Comparison between experimental and theoretical absorption wavelength for AQ dyes. The theoretical values are obtained from PM5/RPA, PCM(EtOH)/TD-B3LYP/6-31g(d,p), PCM(EtOH)/TD-CAM-B3LYP/6-31g(d,p), PCM(EtOH)/TD-PBE0/6-31g(d,p) methods using X-ray structure

FIGURE 4 Comparison of HOMO and LUMO of 1,4-diNH₂AQ by ZINDO/CI, PM5/RPA, TD-DFT/B3LYP/6-31G(d,p) methods and differences in gross populations of p_z orbitals; $|p_z|$ is the absolute value. The isosurface values are 0.06 (ZINDO/CI, PM5/RPA) a.u. and 0.02 (TD-DFT) a.u., respectively

FIGURE 5 PM5/RPA-calculated torsion angle and oscillator strength of 1-NH₂AQ, 1-NMe₂AQ and 1-NPhMeAQ dyes

FIGURE 6 PM5/RPA-calculated Np_z and torsion angle of 1-NH₂AQ, 1-NMe₂AQ and 1-NPhMeAQ dyes