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Abstract—We design a binary convolution operation circuit 

(BCOC) using a single-flux-quantum circuit for high-speed and en-

ergy-efficient neural network. The proposed circuit is used for bi-
nary convolution operations using a convolution kernel size of 3×3, 
which accelerates the forward propagation process of a binary neu-

ral network (BNN). We analyze the binary convolution process and 
propose a bisection method for optimization. The BCOC is designed 
with a gate-level pipeline architecture and uses the bisection method 

for reduced number of pipeline stages. Thus, the circuit area of the 
BCOC is reduced by approximately 50% compared with that of a 
BCOC without the bisection method. We design the BCOC with 

3270 Josephson junctions using a 10 kA/cm2 Nb process. The 
measurement results show that the BCOC can perform binary 
convolution operations with a kernel size of 3×3. Compared to a 

CMOS circuit, BCOC increases the power efficiency by 3.9 times. 
In future research, we will build up a library of BNNs based on 
SFQ circuits to simulate various BNN structures. 
  

Index Terms—Single-flux-quantum (SFQ) circuit, binary convo-
lution, superconducting integrated circuit. 

I. INTRODUCTION 

SINGLE-flux-quantum (SFQ) circuit is a superconduct-

ing integrated circuit that uses flux quanta to transmit 

binary information; it has ultrafast speeds and very low power 

characteristics [1][2]. Therefore, SFQ circuit technology is con-

sidered as a promising solution for the post-Moore era. Several 

computing units [3, 4], processors [5, 6], and architectures [7] 

have been proposed based on SFQ circuit technology. Accord-

ingly, we summarize some of the unique characteristics of the 

SFQ circuit technology as follows. 

• Gate-level pipelining: Almost all commonly used SFQ 

logic gates are clock-driven. This means that each logic 

gate itself includes computational and delay-flip-flop 

(DFF) parts. Therefore, architects can naturally apply 

gate-level pipelining without any overheads. Ultrahigh 

throughput processing is thus possible using gate-level 

pipelining.  

• Lack of memory technology: During the design of 

SFQ circuits, shift-register (SR) memory are used for 

data storage. Currently, there are no mature random-
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access memory (RAM) or off-chip memory technolo-

gies. This renders SFQ circuits inadequate for applica-

tions that require large amounts of storage. 

• Difficulty in achieving multibit parallel computing: 

Owing to the current low integration levels of supercon-

ductor circuit fabrication processes, it is difficult for 

SFQ circuits to perform parallel calculations. SFQ cir-

cuits use Josephson transmission lines (JTLs) for data 

transmission. The area of every four JTLs is approxi-

mately equal to that of one logic gate. Therefore, an in-

crease in the number of parallel bits increases the circuit 

area. 

 

Owing to these characteristics, not all circuits are suitable for 

implementation using SFQ technology. Therefore, we focus on 

binary convolutional neural networks (BNNs). BNNs were 

originally proposed to solve the processing speed and memory 

consumption problems caused by the use of large numbers of 

floating-point operations. The original intent for the BNN was 

to compress a convolutional neural network (CNN) such that it 

could be operated on resource-constrained hardware [8]. As a 

neural network model, a BNN is suited for implementation with 

gate-level pipeline structures. In BNNs, all data are binarized to 

"1" and "-1,” so there is no need to perform floating decimal 

operations [9]. Therefore, we believe that using SFQ circuit 

technology to design BNNs can improve performance for very 

high operating frequency and very low power consumption 

while fully utilizing the available features of the SFQ circuits. 

BNN usually consists of buffer parts, convolutional parts, 

pooling parts and fully connected parts, as shown in Figure .1. 

The convolution part is one of the most important assembly 

parts, which directly affects the performance and operation 

speed of the BNNs. In this paper, we first investigate the action 

principle of binary convolution circuit which is one of the basic 

operational units for implementing a convolutional layer in a 

BNN. We design a binary convolution operator circuit (BCOC) 

and propose the bisection method to optimize the circuit, which 

can perform binary convolution operations with a 3×3 kernel at 
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an operating frequency of 50 GHz. This demonstrates that we 

can perform binary convolution operations at a very high oper-

ating frequency, which can be used for accelerates the forward 

propagation process of a binary neural network (BNN). In future 

research, we will complete the circuit design for the other part 

of the BNNs. we will build up a library of BNNs based on SFQ 

circuits to simulate various BNN structures which includes dif-

ferent types of circuit parts for BNNs and find the most suitable 

BNN architecture for SFQ circuits. 

II. BINARY CONVOLUTIONAL HARDWARE DESIGN 

A.  Binary Convolution 

Given any two signals 𝑓1(𝑡) and  𝑓2(𝑡), the convolution op-

eration is defined as 

𝑓(𝑡) = ∫ 𝑓1(𝜏)𝑓2(𝑡 − 𝜏) 𝑑𝜏
∞

−∞

. (1) 

From (1), convolution is a special type of integration over time 

𝜏 [10]. For a signal, this means decomposition into a sum of 

infinitely many impulse signals. When processing an image us-

ing convolution, the input signal is a digital image, which is a 

two-dimensional discrete signal; hence, it is processed using 

two-dimensional convolution.  

A single convolution operation is performed by multiplying 

and accumulating a convolution kernel of a certain size over a 

region of corresponding size in the feature map. The binary con-

volution operation is performed after binarizing the elements of 

the convolution kernel and input feature map using a specific 

function. The binarization value B(x) for the analog input x is 

represented as 

𝐵(𝑥) = {
−1, 𝑥 ≤ 0
+1, 𝑥 > 0

. (2) 

A single convolution operation between the kernel K of size 

𝑛 × 𝑛 and feature map F can be represented as 

𝐶 = ∑∑𝐹[𝑖][𝑗] × 𝐾[𝑖][𝑗],

𝑛−1

𝑗

𝑛−1

𝑖

(3) 

where 𝐶 is the convolution operation result, and 𝑖 and 𝑗 are the 

horizontal and vertical coordinates of the convolution kernel 

and feature map, respectively.  

In hardware circuits, we usually use "0" to represent "-1" 

such that (2) can be written as 

𝐵ℎ(𝑥) = {
0, 𝑥 ≤ 0
+1, 𝑥 > 0

. (4) 

Meanwhile, binarization multiplication can be performed using 

an exclusive-NOR (XNOR) gate [11]. Then, (3) becomes  

𝑌1 = ∑∑𝐵ℎ(𝐹[𝑖][𝑗]) ⊙ 𝐵ℎ(𝐾[𝑖][𝑗]),

𝑛−1

𝑗

𝑛−1

𝑖

(5) 

where 𝑌1 is not the result of a single convolution operation but 

only the number of "1"s after the XNOR operation. The single 

convolution operation can thus be calculated as 

𝐶 = 𝑌1 − 𝑌0, (6) 
where 𝑌0 is the number of "0"s after XNOR operation and is 

represented as 

𝑌0 = 𝑛2 − 𝑌1. (7) 
From (6) and (7), we get  

𝐶 = 2𝑌1 − 𝑛2. (8) 

 
(a) 

 
(b) 

Fig. 2.  Schematic of the single convolution operation (a) without and (b) with the 
bisection method. 

 

 
(a) Five-input gate-level pipeline counter 

 
(b) Four-input gate-level pipeline counter 
 

Fig. 3.  Block diagram of the (a) five-input and (b) four-input gate-level pipeline 
counters, where “D” is the delay-flip-flop (DFF). When the number of input par-
allel bits increases from 4 to 5, the number of stages increases from 4 to 6 and 
number of logic gates required increases from 15 to 27. Here, we ignore the num-
ber of transmission lines 

 
Fig. 1.  Overview of the BNN. In this paper, we focus on the convolutional circuits 

 

 
 



 

 

3 

B. Binary Convolutional Hardware Design  

As shown in (8), the main task of binary convolution is to 

process the results of the XNOR operation. The general method 

of handling this is to use a gate-level pipeline counter to count 

the number of "1"s in the result of the XNOR operation to re-

place the accumulation process, as shown in Fig. 2(a). Then, (8) 

is calculated using the shift and gate-level pipeline adders.  

As described in the introduction, the area and number of 

stages of the gate-level pipeline circuitry increase with the num-

ber of parallel bits, which is shown in Fig. 3. Thus, we can re-

duce the number of gates required and increase the operational 

speed by reducing the number of parallel bits. For this purpose, 

we use the bisection method to process the results of the XNOR 

operations, which in turn reduce the number of parallel bits of 

the counter and adder. 

The bisection method shown in Fig. 2(b) splits the results of 

the XNOR operation into two parts as "𝑎" and "𝑏". Because the 

number of elements in the convolution kernel is mostly odd 

(commonly used convolution kernel sizes are 3×3, 5×5, and 

7×7), we add a "0" to the XNOR operation result to make it 

even, which is placed in part "𝑏". Through this step, the number 

of elements in the two parts are equalized, which means that 

𝑌𝑎𝑚𝑎𝑥 and 𝑌𝑏𝑚𝑎𝑥 are represented as 

𝑌𝑎𝑚𝑎𝑥 = 𝑌𝑏𝑚𝑎𝑥 =
𝑛2 + 1

2
. (9) 

Then, we use 

𝑌𝑎 = 𝑌𝑎1 − (𝑌𝑎𝑚𝑎𝑥 − 𝑌𝑎1), (10) 
and 

𝑌𝑏 = −𝑌𝑏0 + (𝑌𝑎𝑚𝑎𝑥 − 𝑌𝑎1), (11) 
to calculate the results of the two parts, where 𝑌𝑎 is the result of 

part "𝑎" and 𝑌𝑏 is the result of part "𝑏". Here, 𝑌𝑎1 is the number 

of "1"s after the XNOR operation in part "𝑎", and 𝑌𝑏0  is the 

number of "0"s after the XNOR operation in part "𝑏". Further, 

the single convolution operation result can be calculated by 

𝐶 = 𝑌𝑎 + 𝑌𝑏 = 2(𝑌𝑎1 − 𝑌𝑏0). (12) 
When not using the bisection method, we need to use an 𝑛2-

input counter to count the number of "1"s after the XNOR op-

eration. When using the bisection method, we need to count the 

number of "1"s in part 𝑌𝑎  after the XNOR operation using a 
𝑛2+1

2
-input and count the number of "0"s in part 𝑌𝑏  after the 

XNOR operation using a (
𝑛2+1

2
− 1)-input counter. A compari-

son of the two methods is presented in Table I. This shows that 

using the bisection method can be effective at reducing the re-

quired hardware resources and number of pipeline stages. We 

believe that this method is applicable to any BNN convolution 

operation circuit. 

TABLE I 

COMPARISON OF THE TWO METHODS FOR A 3×3 CONVOLUTION KERNEL  

Methods 

Number of 

gates in 

counter 

Number of 

gates in ad-

der 

Pipeline 

stages in 

counter 

Pipeline 

stages in 

adder 

Without 

bisection 
method 

67 51 9 6 

With 
bisection 

method 

42 21 6 4 

 

 

 
Fig. 4.  Layout of the BCOC. The four-input counter in the upper part is used to 
calculate the number of "0"s in part "𝑏". The five-input counter in the lower part 
is used to calculate the number of "1"s in part "𝑎". 

 
Fig. 5.  Simulated dependence of the bias voltage margin on the input frequency; 
the designed bias voltage is 2.5 mV 
 
 

 
Fig. 6.  Measurement results of the BCOC with low frequency (100 kHz). We 
input "111110101" and "111110100" to obtain the output (00111)2 = 7. Here 
inSR_clk is the clock signal that writes data to the SR. SRtomain is the clock 
signal that reads data from the SR to the BCOC. BCOC_clk is the main clock 
signal for the BCOC circuit. Each BCOC_clk signal can perform one convolu-
tion operation.  
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III. MEASUREMENT AND COMPARISON 

We designed a binary convolution operation circuit (BCOC) 

using an SFQ circuit and the bisection method. This BCOC was 

used to perform binary convolutional operations with a kernel 

of size 3×3. All circuit components were designed using the Na-

tional Institute of Advanced Industrial Science and Technology 

10 kA/cm2 Nb advanced process 2 (ADP2) [12, 13] and its cell 

library [14, 15]. 

The circuit used for measurement of the BCOC is shown in 

Fig. 4. The number of Josephson junctions in the BCOC is 3270. 

Because the result of the XOR gate is the opposite of the XNOR 

gate, we use the XOR gate instead of the XNOR gate in part 𝑌𝑏 . 

Thus, "1" is used to represent "0" in the counting circuit of part 

𝑌𝑏. The result of part b is calculated by taking the complement 

before addition operation. 

    Fig. 5. shows the simulated dependence of the bias voltage 

margin on the input frequency. Through simulation, we have 

successfully verified that the BCOC circuit can perform binary 

convolution operations at an operating frequency of 50 GHz. 

The measurement results with a low operation frequency are 

presented in Fig. 6. We input "111110101" and "111110100" as 

the convolution kernel and the feature input. Here "1" indicates 

"+1" and "0" represents "-1" in (2). We obtain the results 

(00111)2, which is "7". The test results prove the correct opera-

tion of the circuit. Because of a design error in the outSR, the 

results of the high-speed test could not be read out. We will 

continue with the high-speed measurements of this circuit in fu-

ture studies. 

    Table 2 shows the power consumption and scalability of the 

BCOC circuit. the power consumption of SFQ circuits typically 

includes static power consumption, dynamic power consump-

tion. Methods to further reduce power consumption include the 

use of PTL for data transfer and the use of new techniques such 

as ERSFQ [17]. Table 3 shows the energy efficiency of the cir-

cuit. Compared to CMOS technology (CPU [18], GPU [18], 

FPGA [19]), our BCOC circuit is 3.9 times higher power effi-

ciency. Even taking into account the lack of random storage in 

SFQ, a 1.6x improvement can be reached. 

IV. CONCLUSION 

We analyze the mechanism principle of binary convolution 

and prove that the binary convolution circuit can be optimized 

using the bisection method. Further, we designed and simulated 

a BCOC consisting of 3270 Josephson junctions. The BCOC 

was used to perform binary convolution operations at an oper-

ating frequency of 50 GHz. We have completed a low-speed 

test of the circuit and analyzed the scalability of the circuit. 

Compared to the CMOS circuit, the designed SFQ BCOC in-

creases the power efficiency by 3.9 times. This is the most basic 

operational unit of the BNN and is the first step in our design of 

the SFQ-BNN. In future research, we intend to test and opti-

mize the proposed circuit and as well as design the convolution 

layer of the SFQ-BNN based on the BCOC circuit. We will 

build up a library of BNNs based on SFQ circuits, in which 

BCOC is the first circuit unit. 
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