
> REPLACE THIS TEXT WITH YOUR PAPER ID NUMBER, e.g., 1MOrA-01 (double-click here to edit the header) <

Template version 8.0d, 22 August 2017. IEEE will put copyright information in this area

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1

Design of Discrete Hopfield Neural
Network Using a Single Flux Quantum Circuit

H. He, Y. Yamanashi, Member, IEEE, N. Yoshikawa, Senior Member, IEEE

Abstract—The superconductor single flux quantum (SFQ) logic

family has been recognized as a promising candidate to resolve the

energy consumption crisis in the post-Moore era, owing to its high
switching speed and low power consumption. In the field of machine
learning, where technology and computational requirements are

growing rapidly (e.g., image recognition and natural language pro-
cessing), there is great potential for the implementation of SFQ cir-
cuits. In this study, we investigate and implement a discrete Hopfield

neural network (DHNN) using SFQ circuits. A DHNN is a binary
neural network with less information than a standard full precision
neural network; it also provides a higher processing speed. It is

mainly used for pattern recognition and recovery. We designed the
DHNN circuit with two patterns, each with eight elements. The cir-
cuit operates at the clock frequency of more than 50 GHz.

Index Terms—Hopfield neural networks, Discrete Hopfield
neural network (DHNN), Single flux quantum (SFQ), Neural com-
putation, Simulation.

I. INTRODUCTION

S a type of machine learning, neural networks have

achieved impressive success in a wide range of fields, in-

cluding image recognition/classification, language translation,

and speech recognition [1]. A majority of the current neural net-

works are based on software implementations that utilize the

conventional complementary metal oxide semiconductor

(CMOS) processor. Therefore, their performance is limited by

the inherent serial nature of the software algorithm that requires

a large amount of computational power. In this era, we no

longer have compelling options to improve the performance of

computer systems while maintaining their power and tempera-

ture budgets. The development of computationally efficient,

low-energy consumption hardware (accelerator) for neural

computation has been a long-standing and challenging topic.

Therefore, this is the right time to exploit emerging device tech-

nologies with great potential and apply them to practical appli-

cations.

Among the several candidates for neural network accelera-

tors, the superconductor single flux quantum (SFQ) logic fam-

ily [2,3] is a promising solution owing to its ultra-fast speed and

low power consumption.

Manuscript receipt and acceptance dates will be inserted here. This work was
supported in part by JSPS KAKENHI under Grant JP19H01945 and JP 19H05614.
(Corresponding author: Yuki Yamanashi.)

H. He, Y. Yamanashi, and N. Yoshikawa are with Department of Electrical and
Computer Engineering, Yokohama National University, Yokohama, Kanagawa
240-8501, Japan (e-mail: yamanashi-yuki-kr@ynu.ac.jp)

SFQ technology implements a low-level voltage pulse-

driven switching that allows extremely fast switching (~10-12 s)

and low energy consumption (~10-19 J per switching). Therefore,

using this technology, the clock frequency of the device can be

increased by one order of magnitude (i.e., tens of GHz [4, 5])

compared to that of the conventional CMOS circuit. We believe

that using the ultra-low power consumption and high-frequency

switching characteristics of the SFQ circuits can execute a more

efficient accelerator for neural computation (especially for ma-

trix computation).

Numerous studies have used SFQ circuits to implement neu-

ral computation. For example, at the circuit element level, mag-

netic Josephson junction (MJJ)-based synaptic circuits have

been proposed [6]. Hardware and algorithm optimization of

ANN implementation proposed SC-based DNN using AQFP

can achieve up to 6.8 × 104 times higher energy efficiency

compared to CMOS-based implementation [7]. At the computer

architecture level, SuperNPU, an SFQ-based neural processing

unit (NPU) architecture, has been investigated [8]. However,

although the former study has demonstrated the low energy

characteristics, implementing large-scale circuits has not been

reported. The latter study illustrates the potential of SFQ cir-

cuits that rivals CMOS circuits in neural computation point

paths; however, the computational volume and circuit area are

still considered major drawbacks.

In addition to employing hardware design efforts to improve

the computational efficiency of neural computing circuits, opti-

mizing the neural computing algorithms at the software (algo-

rithm) level is an extremely important approach. There have

been extensive studies on neural network compression and ac-

celeration, such as quantization. In this study, we selected the

most representative binary neural network, wherein both the

A

Fig. 1. Hopfield neural network with three neurons.

2

weights and activations are represented by one bit [9]. Binary

neural networks utilize approximately 1/32 of the computa-

tional units and memory capacity used by a full precision neural

network that uses floating-point numbers. Therefore, we de-

signed a binary neural network, the discrete Hopfield neural

network (DHNN) [10,11] using SFQ logic circuits. In addition,

we combined the use of a systolic processing array that has the

potential to scale up to large-scale networks. We designed a

DHNN circuit with two patterns, each with eight pixels.

II. DISCRETE HOPFIELD NEURAL NETWORK

In 1982, John Hopfield, together with David Tank, proposed

an asynchronous, fully connected neural network model called

the Hopfield neural network (HNN). Fig. 1 illustrates a three-

neuron HNN. The n-neuron HNN consists of n fully connected

neurons with no self-connections. The HNN has two update

methods: synchronous and asynchronous. The synchronous up-

date method updates all the weights stored. In contrast, the

asynchronous method updates one weight randomly at a time.

Neurons in the HNN are also available in both continuous-val-

ued representation (analog value) and discrete-valued represen-

tation (binary value). Experimental results have confirmed that

the performance of a discrete HNN (DHNN), using asynchro-

nous updates and discrete-valued representations, is superior to

that of other HNNs [12,13].

The DHNN contains two information sets, a storage pattern

for storing information—that is, the state of the neuron—and a

retrieve pattern for recovery. In the n-neuron DHNN, each neu-

ron carries binary information of the storage pattern that is con-

nected to every other neuron through a symmetric weight ma-

trix 𝐖; 𝐖 indicates the connection between the neurons. Each

neuron is connected to all other n-1 neurons except itself. The

weights wij are the interconnections between the i-th and j-th

neurons. The network has symmetric weights. The absence of

self-connection avoids permanent feedback of its own value.

Storage patterns Xu are n-dimension vectors 𝐗𝐮 =
{𝑥1

𝑢 , … , 𝑥𝑛
𝑢}, where 𝑥𝑖

𝑢 ∈ {−1, 1}. Retrieve patterns are binary

vectors of n dimensions 𝐘 = {𝑦1, … , 𝑦n}, 𝑦𝑖 ∈ {−1, 1}. 𝐖 rep-

resents the product between each neuron of the storage pattern,

that is, the connection between each neuron. The i-th row and

j-th column element of the u-th weight matrix 𝐖 is expressed

as

Wij
u = 𝑥𝑖

𝑢 ∗ 𝑥𝑗
𝑢. (1)

If there are many storage patterns, then the total weight is the

sum of the weights calculated for each storage pattern, and it is

represented as

𝐖𝐢 = 𝐖1 + 𝐖2 + ⋯ + 𝐖n. (2)

The retrieve pattern updates the state by interacting with the

weights based on Hebb's rule [14]. The update steps are as fol-

lows:

1. Randomly select an element of retrieve pattern 𝑦𝑖

2. Compute the inner product hi of the retrieve pattern

and the i-th row of the weight Wi

ℎ𝑖 = 𝐘 ∗ 𝐖i (3)

3. Calculate the sign function sign() of hi and update

𝑦𝑖 to 𝑦𝑖
′; 𝑦𝑖

′ is updated to 1 if ℎ𝑖 ≥ 0; else, it is updated

to −1

𝑦𝑖
′ = sign(ℎ𝑖) (4)

4. Repeat steps 1–3 until the retrieve pattern converges

to a stable value

∀𝑦𝑖
′ = ∀𝑦𝑖 (5)

III. DESIGNED DHNN SYSTEM

Fig. 2 displays an overview of the designed DHNN system

that primarily consists of the following blocks:

⚫ A decoder composed of a non-destructive read-out flip-

flop with a complementary output (NDROC) tree

⚫ 𝐘 memory that stores the retrieve pattern 𝐘

⚫ 𝑦𝑖 register

⚫ Processing element (PE) to compute 𝐘 ∗ 𝐖i for generat-

ing ℎ𝑖

⚫ A sign function circuit composed of a bit count circuit con-

sisting of toggle flip-flops (TFFs) connected in series to

calculate the sign of ℎ𝑖

The steps to update 𝑦𝑖 once using the DHNN system are as

follows:

⚫ The decoder is used to read out 𝑦𝑖 from the Y memory,

save yi to the y register, and reset 𝑦𝑖

⚫ The partial product of ℎ𝑖 is calculated using multiple PEs

and input into the sign function to obtain the result

TABLE I
TRUTH TABLE FOR COMPUTING ℎ𝑖

𝑥𝑖 𝑌 ⋅ 𝑋 ℎ𝑖

0 0 1
0 1 0
1 0 0
1 1 1

Fig. 2. Overview of the designed DHNN system.

3

⚫ This result is input back into the 𝐘 register

⚫ If the result is obtained as 1, 𝑦𝑖 is updated to 1; otherwise,

𝑦𝑖 keeps the state reset in step 1, wherein it is updated to 0

(this system uses 0 to represent −1)

In Section 2, we introduced the algorithm that determines the

updated hi, the inner product of 𝐘, and the i-th column of 𝐖.

The n-th storage pattern requires at least n2 clock signals and n

gates to operate. In addition, the circuit requires a control circuit

for the readout and an 𝑚 × n2 weight matrix memory for the m

storage patterns. We optimized the algorithm to calculate hi ef-

ficiently using the following equation:

ℎ𝑖 = Y ∗ Wi = Y ∗ (𝑥𝑖 ∗ {𝑥1, … , 𝑥𝑛}) = 𝑥𝑖(Y ∗ X). (6)

Using Eq. 6, instead of the weight matrices, each storage pattern

can be saved to calculate ℎ𝑖. Therefore, the number of registers

used for calculating hi is reduced from 𝑚 × 𝑛2 to 𝑚 × 𝑛. The

drawback of Eq. (6) is that calculating hi requires 𝑥𝑖 to be cop-

ied n times to compute with Y ∗ X; this is computed convention-

ally by a clock generator, thereby causing a large delay. How-

ever, this drawback can be resolved by employing an NDROC

gate. An NDROC is a non-destructive read-out flip-flop with a

complementary output gate. By inputting 𝑥𝑖 to the set port of

the NDROC, ℎ𝑖 can be computed by inputting Y ∗ X into the clk

port. The truth table for computing ℎ𝑖 is displayed in Table I,

and the designed circuit is illustrated in Fig. 3.

After optimizing the algorithm to compute ℎ𝑖, the circuit area

of the DHNN system is proportional to the number of elements

in the storage patterns (i.e., the number of neurons), which, in

turn, is proportional to the memory size of the retrieve patterns.

Each retrieve pattern occupies 1/5 of the circuit area of the

DHNN system, and the circuit area of the system increases by

1/5 for each additional retrieve pattern. The layout of the de-

signed DHNN system is illustrated in Fig. 4. The designed

DHNN system has 2 storage patterns, and each pattern has eight

elements (4×2 matrix). We designed the test circuit assuming

the use of the AIST 10 kA/cm2 Nb advanced process 2 (AIST-

ADP2) [15] and the CONNECT cell library for the AIST-ADP2

[16, 17]. The area of the circuit is 6.5 mm × 2.3 mm. The num-

ber of Josephson junctions in the designed DHNN system is

5426.

We used NC-Verilog to verify the operation of the designed

DHNN circuit. One example of the simulation results is pre-

sented in Fig. 5. The first element of the retrieve pattern 𝑌 is

different from that of the storage pattern 𝑋2. The first element

𝑦1 is selected for updating, and after one update step, the re-

trieve pattern is updated to storage pattern 𝑋2. Fig. 6 illustrates

the simulated dependence of the bias margin on the clock fre-

quency. The designed circuit was numerically simulated at up

to 50 GHz clock frequencies at the bias voltage of 3.125 mV.

We estimated the dynamic and static power consumption of

the designed SFQ DHNN system. Dynamic dissipation is cal-

culated as 𝑃𝐷 = 𝛼𝑛𝐼bΦ0𝑓, where is the switching probabil-

ity of the Josephson junction (JJ) when the clock is input (we

assumed = 0.2), n is the number of JJs in the circuit, 𝐼b is the

average dc bias current for one JJ (we use Ib ~ 100 A), 0 is

the flux quantum, and 𝑓 is the clock frequency. Static power

dissipation is calculated as 𝑃𝑆 = 𝐼𝑏_𝑡𝑜𝑡𝑎𝑙𝑉𝑏, where 𝐼𝑏_𝑡𝑜𝑡𝑎𝑙 and

Fig. 4. Layout of the designed DHNN system.

Fig. 3. Gates used to calculate ℎ𝑖 in PE.

Fig. 6. Characteristics of the bias margin and frequency. The bias is normalized

by 2.5 mV, which is the designed bias voltage of the cell library we used [17,
18].

Fig. 5 Simulation result of the designed DHNN circuit. The retrieve pattern Y
is converged to the storage pattern 2.

4

𝑉𝑏 are the total bias current and the dc supply voltage (Vb of 2.5

mV is used in our cell library [16, 17]), respectively. Dynamic

power dissipation at the frequency of 50 GHz and static power

dissipation of the whole designed circuit is 11.2 W and 1.46

mW, respectively.

According to the digital simulation results, computation time

of the whole system for two storage patterns with 8 pixels is

746.1 ps. The time to calculate the hi per storage pattern is 238.0

ps and the time to calculate each pixel is 29.8 ps. Computation

time of the whole system is proportional to the number of pixels

and storage patterns.

The designed DHNN circuit could not operate ℎ𝑖 in parallel,

because the ℎ𝑖 values are calculated by the PEs sequentially. To

resolve this, the bit count circuit used a trigger flip-flop (TFF)

cell (T1 cell) that can accumulate the binary stream of infor-

mation and read and store the state. The result of the accumula-

tion is passed to the register and the next PE; as a result, ℎ𝑖 is

calculated in parallel, as illustrated in Fig. 7. The new architec-

ture reduces latency by a factor of number of storage pattern

over the original architecture.

IV. CONCLUSION

We investigated the hardware architecture for the SFQ

DHNN system that realizes designing the circuit with a small

footprint. We added registers to PE to parallelize the algorithm.

Digital circuit simulations indicates that the retrieve pattern is

converged to the storage pattern. This means the designed SFQ

DHNN system can be applied to image recognition. We de-

signed the DHNN circuit with two storage patterns and eight el-

ements. The circuit area was 6.5 mm × 2.3 mm and the circuit

was numerically simulated at up to 50 GHz clock frequencies,

assuming the use of the AIST-ADP2.

REFERENCES

[1] D.A. et al., “Deep Speech 2: End-to-End Speech Recognition in English

and Mandarin,” Proc. 33rd Int’l Conf. Machine Learning, 2016, pp. 173–
182.

[2] K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: a new

Josephson-junction technology for sub-terahertz-clock-frequency digital
systems,” IEEE Trans. Appl. Supercond., vol. 1, no. 1, pp. 3–28,

Mar.1991.

[3] D. E. Kirichenko, S. Sarwana and A. F. Kirichenko, “Zero static power
dissipation biasing of RSFQ circuits, ” IEEE Trans. Appl. Supercond., vol.

21, no. 3, pp. 776–779, Jun.2011.

[4] I. Nagaoka, M. Tanaka, K. Inoue, and A. Fujimaki, “A 48GHz 5.6mW
gate-level-pipelined multiplier using single-flux quantum logic,” in IEEE

International Solid- State Circuits Conference (ISSCC) 2019, pp. 460–

462.
[5] I. Nagaoka, M. Tanaka, K. Sano, T. Yamashita, A. Fujimaki, and K. In-

oue, “Demonstration of an energy-efficient, gate-level-pipelined 100

TOPS/W arithmetic logic unit based on low-voltage rapid single-flux-
quantum logic,” in IEEE International Superconductive Electronics Con-

ference (ISEC) 2019.

[6] Schneider, M.L., Donnelly, C.A., Haygood, I.W. et al. “Synaptic
weighting in single flux quantum neuromorphic computing,” Sci Rep., vol.

10, 934, Jan. 2020.

[7] R. Cai, A. Ren, O. Chen, N. Liu, C. Ding, X. Qian, J. Han, W. Luo, N.
Yoshikawa, and Y. Wang, “A stochastic-computing based deep learning

framework using adiabatic quantum-flux-parametron superconducting
technology,” In Proceedings of the 46th International Symposium on

Computer Architecture (ISCA '19). New York, NY, USA, pp. 567–578,

2019.
[8] K. Ishida et al., "SuperNPU: An Extremely Fast Neural Processing Unit

Using Superconducting Logic Devices," in 53rd Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO) 2020, pp. 58-
72, doi: 10.1109/MICRO50266.2020.00018.

[9] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:

Imagenet classification using binary convolutional neural networks,” in
European conference on computer vision, pp. 525–542. 2016.

[10] J. J. Hopfield and D. W. Tank, “Computing with neural circuits- A model.”

Science, vol. 233, no. 4764, pp. 625–633, Aug. 1986.
[11] D. W. Tank and J. J. Hopfield, “Collective computation in neuronlike

circuits,” Scientific American, vol. 257, no. 6 , pp. 104–114, Dec. 1987.

[12] N. Singh and A. Kapoor, “Cloud Hopfield neural network: Analysis and
simulation,” in International Conference on Advances in Computing,

Communications and Informatics (ICACCI) 2015, pp. 203-209, doi:

10.1109/ICACCI.2015.7275610.
[13] N. Soni, N. Singh, A. Kapoor and E. K. Sharma, “Face recognition using

cloud Hopfield neural network,” in International Conference on Wireless

Communications, Signal Processing and Networking (WiSPNET) 2016,
pp. 416-419, doi: 10.1109/WiSPNET.2016.7566167.

[14] S. Haykin, “Neural Network: A comprehensive foundation,” Prentice

Hall ,1998.
[15] S. Nagasawa, K. Hinode, T. Satoh, M. Hidaka, H. Akaike, A. Fujimaki,

N. Yoshikawa, K. Takagi, and N. Takagi, “Nb 9-layer fabrication process

for superconducting large-scale SFQ circuits and its process evaluation,”
IEICE Trans. Electron., vol. E97-C, no. 3, pp. 132–140, Mar. 2014

[16] Yorozu S, Kameda Y, Terai H, Fujimaki A, Yamada T and Tahara, “A

single flux quantum standard logic cell library,” Physica C, Vol. 378–381,
no. 2, pp. 1471–1474, Oct. 2002

[17] H. Akaike et al., “Design of single flux quantum cells for a 10-Nb-layer

process,” Physica C, vol. 469, no. 15–20, pp. 1670–1673, Oct. 2009.
[18] Y. Yamanashi et al., “100 GHz Demonstrations Based on the Single-Flux

Quantum Cell Library for the 10 kA/cm2 Nb Multi-Layer Process,” IEICE

Trans. Electron., vol. E93-C, no. 4, pp. 440–444, Apr. 2010.

Fig. 7. Improved DHNN system.

