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Abstract
Fully kinetic simulations of magnetic nozzle acceleration were conducted to investigate the axial

momentum gains of ions and electrons with electrostatic and Lorentz forces. The axial momentum
gains per ion and electron are directly calculated from the kinetics of charged particles, indicating that
electrons in the magnetic nozzle obtain the net axial momentum by the Lorentz force, even though
they are decelerated by the electrostatic force. Whereas ions are also accelerated by the electrostatic
force, the axial momentum gain of electrons increases significantly with increasing magnetic field
strength and becomes dominant in the magnetic nozzle. In addition, it is clearly shown that the axial
momentum gain of electrons is due to the electron momentum conversion from the radial to the axial
direction, resulting in a significant increase in the thrust and exhaust velocity.

1 Introduction
Electric propulsion systems are recognised as important devices for performing space missions

because of their high specific impulse [1–4]. In electric propulsion systems, ion and Hall thrusters
have been successfully operated in space [5–7]. However, their lifetime is limited by the wear of the
cathodes and neutralizers because they are damaged by ion sputtering [8,9]. To overcome the problem
of electrode wear and extend the lifetime of electric propulsion systems, researchers have vigorously
developed electrodeless plasma thrusters, which do not require cathodes and neutralizers, e.g. variable
specific impulse magnetoplasma rockets [10], helicon double layer thrusters [11], and magnetic nozzle
radiofrequency (rf) plasma thrusters [12]. In particular, the performance of the magnetic nozzle rf
plasma thruster has increased significantly in recent years [13].

The physics of the magnetic nozzle acceleration has been investigated through experiments, ana-
lytical models, and numerical simulations [12,14–17]. Previous studies have shown that a diamagnetic
effect induces an azimuthal drift current in the magnetic nozzle, which produces the Lorentz force and
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gives thrust to the thruster system [18–22]. More recently, the effects of drift currents on the magnetic
nozzle were analysed using a fully kinetic simulation, indicating that the main drift that produced the
Lorentz force was the diamagnetic effect with a strong magnetic field strength [23].

The forces exerted on ions f i and electrons f e in the electromagnetic propulsion system are
generally written as

f i = @=iK, (1)

f e = −4=eK + je × H, (2)

where @ is the charge of the ions; 4 is the elementary charge; =i and =e are the ion and electron number
densities, respectively; je is the electron current density; K is the electric field; and H is the magnetic
field [1]. Here, the Lorentz force exerted on ions can be neglected because the ion current density is
small and the Lorentz force is sufficiently smaller than the electrostatic force [22].

In the case of Hall thrusters, the electron current density je that generates the Lorentz force is due
to the K × H effect, i.e. the Hall current [1]. The electrostatic and Lorentz forces exerted on electrons
are balanced, and the net force exerted on electrons f e is theoretically equal to zero. Therefore, the
electrons in the Hall thrusters do not obtain the net momentum. Instead of electrons, only ions are
accelerated by the electrostatic force and obtain the net axial momentum directed downstream.

In the magnetic nozzle rf plasma thrusters, the Lorentz force is also exerted on electrons like in
Hall thrusters. However, the electron current density that produces the Lorentz force is due to the
diamagnetic effect, as reported in [19–23]. As a result, the force exerted on electrons in the magnetic
nozzle is generally not zero because the electrostatic force −4=eK is not parallel to the Lorentz force
je × H and these forces are not cancelled out. Therefore, electrons in the magnetic nozzle can obtain
the net momentum by the electrostatic and Lorentz forces.

Previous studies have shown that the Lorentz force in themagnetic nozzle increases with increasing
magnetic field strength [22,23]. When the magnetic field strength is sufficiently strong and the Lorentz
force exceeds the electrostatic one (| je × H | > |4=eK |), electrons in the magnetic nozzle would obtain
the net momentum in the downstream direction by the Lorentz force, while the electrostatic force
decelerates the electrons. In this situation, both ions and electrons can obtain the net momentum
in the downstream direction. Previous thruster models have shown that the thrust corresponding to
the total axial momentum of the ions and the electrons increases along the magnetic nozzle [19, 24].
However, it has not been clearly revealed as to which particles (ions or electrons) gain the main axial
momentum.

Previous studies have shown that a spontaneous electrostatic force does not impart the net momen-
tum to the plasma and only converts the electron pressure to the ion momentum [24, 25]. However, it
was also reported that the Lorentz force exerted on electrons in the magnetic nozzle imparted the net
axial momentum to the plasma [21]. Although the detailed spatial measurement of the momentum
change has been investigated in an experiment [26], it is still unclear how the momentums of ions and
electrons are affected by the Lorentz force.

To investigate the ion and electron momentums in the magnetic nozzle, we need to obtain the
electrostatic and Lorentz forces independently and analyse the momentum gains of ions and electrons
given by these forces. In this study, we conducted particle-in-cell simulations of the magnetic
nozzle acceleration with Monte Carlo collisions (PIC-MCCs), which treat the kinetics of both ions
and electrons and the electrostatic field generated by these particles. Here, PIC-MCC simulations
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Figure 1: A schematic of the calculation area and a magnetic field strength produced by the solenoid
at �� = 2.0 kA. Solid black lines show the magnetic field lines. Figure 8 and subsequent figures are
shown within a red-dotted rectangle area to focus on the magnetic nozzle acceleration, although the
entire calculation area is 2.5 cm × 0.56 cm.

can investigate the momentum gains of ions and electrons independently, whereas the previous model
treated the electromagnetic thrust as the sumof the ion and electronmomentums [19]. The distributions
of the electrostatic and Lorentz forces and the momentum gains per ion and electron are shown in
section 3. We clarify the dominant force in the magnetic nozzle and determine whether it is ions or
electrons that mainly obtain the net axial momentum.

2 Numerical model
We employ a two-dimensional and symmetric calculation model of a magnetic nozzle rf plasma

thruster to avoid the central anomaly and reduce the calculation cost. This symmetric model simulates
the bidirectional thruster, which is expected to be used for space debris removal [27]. Although the
thrust balance differs between the normal unidirectional and bidirectional thrusters employed in this
study, the essential plasma dynamics in the magnetic nozzle acceleration are not affected by such a
symmetric configuration. Note that the two-dimensional model neglects the effect of the centrifugal
force reported in [28].

Figure 1 shows a schematic of the calculation area employed in the PIC-MCC simulation. The
calculation area is 2.5 cm × 0.56 cm including the dielectric. The calculation model is roughly
one-sixth the size of the experiment and consists of an rf antenna, a dielectric, and a solenoid [27].
The calculation model is symmetric with respect to G = 0 and H = 0 and has an infinite length in the
I-direction. The magnetic nozzle is generated by the solenoid and accelerates the plasma generated
by the inductively coupled mode. The electrostatic field Kes and the Lorentz force je × H are exerted
on the plasma in the magnetic nozzle. Figure 8 and subsequent figures are shown within a red-dotted
rectangle area in figure 1 to focus on the magnetic nozzle acceleration.

The PIC-MCC simulation consists of the kinetics of the charged particles, an electrostatic field
Kes, the electromagnetic field induced by the rf antenna Kem, and the magnetostatic field produced
by the solenoid H. The details of the PIC-MCC simulation were described in our previous papers;
therefore, we only briefly describe the numerical model in this paper [23, 29, 30]. Our previous study
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showed that the PIC-MCC model reproduced well the plasma profiles and the diamagnetic effect
measured in previous experiments [23]. The equations of motion of charged particles are solved using
the Boris method [31]. Particles are specularly reflected on the G- and H-axes because of the symmetric
configuration, whereas they are simply eliminated at G = 2.5 cm and H = 0.56 cm. In addition, particles
colliding with the dielectric wall are eliminated from the simulation and accumulated as a surface
charge, which are used in the calculation of the electrostatic field. In this PIC-MCC simulation, we
calculated the elastic, excitation, and ionisation collisions using the null-collision method [32]. The
electrostatic field Kes is obtained from the Poisson equation by using fast Fourier transformation with
the Dirichlet boundary condition of q = 0 at G = 2.5 cm and H = 0.56 cm and the Neumann boundary
conditions of mq/mG = 0 at G = 0 and mq/mH = 0 at H = 0, where q is the potential. When solving
the Poisson equation, we consider the charged particles in the bulk region, the surface charge density
on the dielectric wall, and the polarisation charge on the dielectric wall as the charge density. When
solving the electromagnetic field induced by the rf antenna �em, the calculation area is set to 1.5 cm
× 0.5 cm. �em is obtained from Maxwell’s equations by using fast Fourier transformation with the
Dirichlet boundary condition of �em = 0 at H = 0 and the Neumann boundary condition of m�em/mG =
0 at G = 0. �em on the dielectric wall at H = 0.5 cm and the right boundary at G = 1.5 cm are calculated
from the plasma current and the rf current using the Biot-Savart law. The Biot-Savart law for the
complex electric field �̃em and the complex current �̃ is written as

�̃em = −
8l`0 �̃

4c

∫
3 l

|r | . (3)

where 8 is the imaginary unit, l is the rf angluar frequency, `0 is the vacuum permittivity, l is the
length of the current element, and r is the position. In the two-dimensional model, equation (3) can
be analytically solved, and �̃em(G, H) on the dielectric can be written as

�̃em(G, H) =
8l`0 �̃ (-,. )

4c
log

(
(G − -)2 + (. − H)2
(G − -)2 + (. + H)2

)
. (4)

where - and . are the position of the current �. Equation (4) is calculated for all current components
defined at each grid, and the sum of �̃em is obtained by integrating them. The solenoid magnetic field
H is obtained fromMaxwell’s equations by using fast Fourier transformation in a calculation area that
is 10 times larger. Here, the solenoid current is set to 0, 0.4, and 2.0 kA to investigate the dependence
of the magnetic field strength. Note that a solenoid current of 0 kA indicates no magnetic field in
comparison with the magnetic nozzle acceleration. Figure 1 also shows the solenoid magnetic field
strength for the solenoid current of 2.0 kA as a colour map and the magnetic field lines as solid black
lines.

Table 1 shows a summary of the calculation conditions employed in our PIC-MCC simulation. The
calculation area is divided into 50 `m × 50 `m cells. The cell size is determined by the Debye length
and the Larmor radius. The Debye length becomes approximately 52.6 `m for the plasma density of
1017 m−3 and the electron temperature of 5 eV. In addition, the Larmor radius becomes approximately
85 `m for the magnetic field strength of 100 mT (the 2.0-kA case) and the electron temperature of 5
eV. To apply a smaller cell size than the Debye length and the Larmor radius, we chose 50 `m in the
simulations. We put a hundred ions and electrons per cell as the initial particles. The rf is set to 80
MHz, and the rf current is controlled to ensure that the power absorption by the charged particle is 3.5
W/m. We treat singly charged xenon ions Xe+ and electrons e− as charged particles. The time step of
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Table 1: Calculation conditions.
Cell size 50 `m
rf frequency 80 MHz
Power absorption 3.5 W/m
Particle Xe+ and e−
Time step for ions 0.125 ns (1/100 of the rf period)
Time step for electrons 3.57 ps (1/35 the time step for ions)
Neutral density 2.0 × 1019 m−3
Neutral temperature 300 K
Electron-neutral collisions Elastic, excitation, and ionisation

the ions is set to 0.125 ns (1/100 of the rf period), and that of the electrons is set to 3.57 ps (1/35 of
the time step of the ions). Neutrals are set to constant spatiotemporally as the neutral density of 2.0 ×
1019 m−3 and the neutral temperature of 300 K. For the above-mentioned numerical configurations,
the radial (H) profile of the plasma density is bimodal for the strong magnetic field case, as observed in
an earlier simulation [23] and in an experiment [33], whereas it has a central peak for a weak magnetic
field.

The electrostatic force 5E,G and the Lorentz force 5L,G exerted on an electron in the G-direction can
be respectively written as

5E,G = −4�es,G , (5)

5L,G = 4�H

∑
: Ee,:,I

#
, (6)

where : is the index of the particles, # is the number of particles in a cell, and Ee,:,I is the velocity of
electron : in the I-direction, which is equivalent to the azimuthal direction in a cylindrical coordinate.
Here, the electrostatic force exerted on a singly charged ion is written as − 5E,G = 4�es,G because the
Lorentz force exerted on ions can be negligible, as mentioned in section 1.

The momentums of the charged particles in the magnetic nozzle are changed by the electrostatic
and Lorentz forces in equations (5) and (6). Here, we respectively define the momentum gains per
particle in the G-direction Δ ¤"G and H-direction Δ ¤"H as

Δ ¤"G =

∑
)

∑
: Δ(<:E:,G)
#)

, (7)

Δ ¤"H =

∑
)

∑
: Δ(<:E:,H)
#)

, (8)

where ) is the time span and Δ(<:E:,G) and Δ(<:E:,H) are the momentum gains of particle : in the
G- and H-directions, respectively, for the time step ΔC. The subsequent results were averaged over 30
`s, i.e. ) = 30 `s for both ions and electrons. Note that the momentum gains in equations (7) and (8)
do not include the momentum loss due to the electron-neutral collisions in the simulations because
this study focuses on the momentum gain by the electrostatic and Lorentz forces. In addition, we
respectively define the net momentum gains per particle in the G-direction Δ ¤"net,G and the H-direction
Δ ¤"net,H as
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Δ ¤"net,G = Δ ¤"i,G + Δ ¤"e,G , (9)

Δ ¤"net,H = Δ ¤"i,H + Δ ¤"e,H, (10)

where Δ ¤"i,G and Δ ¤"e,G are the momentum gains per ion and electron in the G-direction, respectively,
and Δ ¤"i,H and Δ ¤"e,H are those in the H-direction, respectively, as calculated from equations (7) and
(8), respectively.

3 Results and discussion
Figure 2 shows the G-H profiles of the electron number density for the three solenoid currents of

0, 0.4, and 2.0 kA. The electron number density increases with increasing solenoid current because
the electrons are well confined by the magnetic field and are less likely to be lost to the dielectric wall
and calculation boundaries. In addition, the H-profile of the electron number density for the solenoid
current of 2.0 kA shows the bimodal shape, which was measured in previous experiments [33–37].
The ionization often occurs in the high electron density region, as shown in figure 3. Here, it is implied
that the plasma profiles depend on the boundary conditions at the exit surface [38, 39]. However, the
simulations in [38, 39] solved only the downstream region and some plasma inlet conditions were
assumed, whereas both the plasma source and the downstream region were solved in this study. The
bimodal plasma shape is expected to be generated independent of the boundary conditions at the exit
surface.

Figure 4 shows the G-H profiles of the potential q for the three solenoid currents of 0, 0.4, and
2.0 kA. The potential increases with increasing solenoid current and electron number density, and it
is expected that the ions are more accelerated by the potential gradient. Figure 5 also shows the G-H
profiles of the ion flow velocity in the G-direction D8,G for the three solenoid currents of 0, 0.4, and
2.0 kA. It can be seen in the figure that the axial ion flow velocity increases with increasing solenoid
current, especially at the centre of the nozzle.

The simulation results are compared with experimental results. Figure 6 shows Ĥ profiles of the
normalized electron number density =̂e and the normalized potential q̂, respectively, for the solenoid
current of 2.0 kA. Note that the coordinates H and the measured number density =4 and potential q
are normalized by their maximum values. =̂e and q̂ are roughly consistent between the simulation
and the experiment within −0.5 < Ĥ < 0.5, whereas there are relatively large differences in | Ĥ | > 0.5
because the simulation assumes the q = 0 at Ĥ = ±1.0. Therefore, the plasma dynamics is expected
to be reproduced in core region of the magnetic nozzle, although the plasma near the calculation
boundary is not consistent with the experiment. The electron pressure around central axis (G-axis in
this paper) is estimated to be small compared with cylindrical setup in the experiment, as written in
our previous paper [23]. Note that the small pressure around the central axis increases the pressure
gradient, overestimating the Lorentz force in the magnetic nozzle.

Figure 7 shows the G-H profiles of the electrostatic field in the G-direction �es,G for the three solenoid
currents of 0, 0.4, and 2.0 kA. The electrostatic field in the G-direction �es,G is positive in almost the
entire region because the plasma expands through the magnetic nozzle and the potential decreases in
the downstream direction. It should be noted that the negative electrostatic field is observed at the
peripheral region at G = 1.7–2.3 cm and H = ±(0.3–0.56) cm and decreases with increasing solenoid
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Figure 2: G-H profiles of the electron number density =4 for the three solenoid currents of (a) 0, (b)
0.4, and (c) 2.0 kA. Solid black lines show the magnetic field lines produced by the solenoid.
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Figure 3: G-H profiles of the ionization rate �8I for the three solenoid currents of (a) 0, (b) 0.4, and (c)
2.0 kA. Solid black lines show the magnetic field lines produced by the solenoid.
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Figure 4: G-H profiles of the potential q for the three solenoid currents of (a) 0, (b) 0.4, and (c) 2.0 kA.
Solid black lines show the magnetic field lines produced by the solenoid.
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(a) 0, (b) 0.4, and (c) 2.0 kA. Solid black lines show the magnetic field lines produced by the solenoid.
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position Hmax as Ĥ = H/Hmax, the electron number density =e is normalized by the maximum pressure
=e,max as =̂e = =e/=e,max, and the potential q is normalized by the maximum potential qmax as
q̂ = q/qmax. The simulation result is a cross-section of G = 2.0 cm for the 2.0 kA case, and the
experimental result is a cross-section of I = 5 cm for the 12 A case in Ref. 22.

11



1.5 2.0 2.5
x (cm)

−0.50

−0.25

0.00

0.25

0.50

y (
cm

)

(a) 0 kA

1.5 2.0 2.5
x (cm)

−0.50

−0.25

0.00

0.25

0.50

y (
cm

)

(b) 0.4 kA

1.5 2.0 2.5
x (cm)

−0.50

−0.25

0.00

0.25

0.50

y (
cm

)

(c) 2.0 kA

−36
−24
−12

0
12
24
36

Ees, x (V/cm)

Figure 7: G-H profiles of the electrostatic field in the G-direction �es,G for the three solenoid currents of
(a) 0, (b) 0.4, and (c) 2.0 kA. Solid black lines show the magnetic field lines produced by the solenoid.

1.5 2.0 2.5
x (cm)

−0.50

−0.25

0.00

0.25

0.50

y (
cm

)

(a) 0 kA

1.5 2.0 2.5
x (cm)

−0.50

−0.25

0.00

0.25

0.50

y (
cm

)

(b) 0.4 kA

1.5 2.0 2.5
x (cm)

−0.50

−0.25

0.00

0.25

0.50

y (
cm

)

(c) 2.0 kA

−4.5
−3.0
−1.5

0.0
1.5
3.0
4.5

fx (10−16 N)

Figure 8: G-H profiles of the electrostatic force 5E,G (upper half) and the Lorentz force 5L,G (lower half)
exerted on an electron in the G-direction for the three solenoid currents of (a) 0, (b) 0.4, and (c) 2.0
kA. Solid black lines show the magnetic field lines produced by the solenoid.

12



current, especially for the case of the 2.0-kA solenoid current. This negative electrostatic field implies
that the high potential is formed in the plasma core flowing along the divergent magnetic field lines.
The electron number density at approximately |H | > 0.3 cm decreases in the negative G-direction,
as shown in figures 2(b) and 2(c), resulting in the potential gradient being directed to the positive
G-direction and the negative electrostatic field.

Figure 8 shows the G-H profiles of the electrostatic force 5E,G (upper half) and the Lorentz force
5L,G (lower half) exerted on an electron in the G-direction for the three solenoid currents of 0, 0.4, and
2.0 kA. It should be noted that the sheath is generated at G = 2.3–2.5 cm and H = ±(0.4–0.56) cm
because the electrostatic field Kes is solved with the Dirichlet boundary condition as q = 0. Here, the
Lorentz force for the solenoid current of 0 kA is zero, as seen in figure 8(a), because of the absence
of the magnetic field.

The electrostatic force exerted on an electron 5E,G is negative in almost the entire region, and its
magnitude is not significantly changed by the solenoid current. As a result, the electrostatic force 5E,G
decelerates the electrons expanding through the magnetic nozzle and, instead, accelerates the ions in
the downstream direction. The Lorentz force exerted on an electron 5L,G increases dramatically with
increasing solenoid current, clearly exceeding the electrostatic force 5E,G for the solenoid current of 2.0
kA. A negative Lorentz force also exists at the centre of the magnetic nozzle in figure 8(c), which is
due to the bimodal plasma shape in figure 2(c), as reported in [23]. The bimodal plasma shape forms
a hollow region within the maximum electron number density and around H = 0 cm. In this hollow
region, diamagnetic drift currents are induced, whose directions are +I at G > 0 cm and −I at G < 0
cm. These currents also induce a negative Lorentz force with the solenoid magnetic field, as shown in
figure 2(c). The positive Lorentz force accelerates the electrons in the downstream direction, whereas
the electrostatic force decelerates them.

Figure 9 shows the G-H profiles of the axial momentum gains per ion Δ ¤"i,G and electron Δ ¤"e,G
for the solenoid current of 0 kA, which are directly calculated from the velocities of the ions and the
electrons, as described in equation (7). The net axial momentum gain per particle Δ ¤"net,G is also
calculated, which is the sum of Δ ¤"i,G and Δ ¤"e,G , as shown in equation (9). It should be noted that the
magnitudes of the axial momentum gains per ion and electron are large at G = 2.3–2.5 cm because of
the sheath. The axial momentum gain per ion Δ ¤"i,G is positive in almost the entire region, indicating
that ions obtain the momentum in the G-direction and are accelerated in the downstream direction by
the electrostatic field. However, the axial momentum gain per electron Δ ¤"e,G is negative in almost all
regions. Whereas low-energy electrons are reflected by the sheath, energetic electrons are decelerated
by the electrostatic field and lose the momentum at the boundary. The net axial momentum gain per
particle Δ ¤"net,G is almost zero, as shown in figure 9(c); therefore, the axial momentum gains per ion
and electron cancel each other out. This result is consistent with the analytical prediction in [24] and
with the experiment results in [40, 41]. Figure 10 shows the H profile of the axial momentum gains
per particle for the solenoid current of 0 kA at G = 1.8 cm. The axial momentum gains per ion and
electron are symmetric, and the net axial momentum gain per particle Δ ¤"net,G is completely zero.
Therefore, the results of our PIC-MCC simulation shows that the plasma without the magnetic field
does not obtain the net momentum, as reported in [24].

Figures 11 and 12 show the G-H profiles of the axial momentum gains per ion Δ ¤"i,G and electron
Δ ¤"e,G for the two solenoid currents of 0.4 and 2.0 kA, respectively. The net axial momentum gain per
particle Δ ¤"net,G is also calculated, which is the sum of Δ ¤"i,G and Δ ¤"e,G , as shown in equation (9). It
should be noted that the region at G = 2.3–2.5 cm and H = ±(0.4–0.56) cm contains the effect of the
sheath near the boundaries. The axial momentum gain per ion Δ ¤"i,G is positive in almost the entire
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Figure 9: G-H profiles of the axial momentum gains per (a) ion Δ ¤"i,G and (b) electron Δ ¤"e,G for the
solenoid current of 0 kA. The net momentum gain per particle Δ ¤"net,G is also shown in (c), which is
the sum of Δ ¤"i,G and Δ ¤"e,G .

−0.4 −0.2 0.0 0.2 0.4
y (cm)

−0.5

0.0

0.5

ΔṀ
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Figure 10: H profile of the axial momentum gain per ion Δ ¤"i,G (a dashed blue line) and electron Δ ¤"e,G
(a dashed-dotted orange line) for the solenoid current of 0 kA at G = 1.8 cm. The net momentum gain
per particle Δ ¤"net,G (a solid green line) is also plotted, which is the sum of Δ ¤"i,G and Δ ¤"e,G . The data
for |H | > 0.4 cm are eliminated because they are affected by the sheath due to the finite calculation
area.
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Figure 11: G-H profiles of the axial momentum gains per (a) ion Δ ¤"i,G and (b) electron Δ ¤"e,G for the
solenoid current of 0.4 kA. The net axial momentum gain per particle Δ ¤"net,G is also shown in (c),
which is the sum of Δ ¤"i,G and Δ ¤"e,G . Solid black lines show the magnetic field lines produced by the
solenoid.
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Figure 12: G-H profiles of the axial momentum gains per (a) ion Δ ¤"i,G and (b) electron Δ ¤"e,G for the
solenoid current of 2.0 kA. The net axial momentum gain per particle Δ ¤"net,G is also shown in (c),
which is the sum of Δ ¤"i,G and Δ ¤"e,G . Solid black lines show the magnetic field lines produced by the
solenoid.

16



region regardless of the two solenoid currents, as shown in figures 11(a) and 12(a); therefore, ions
obtain the axial momentum and are accelerated by the electrostatic force. The axial momentum gain
per electron Δ ¤"e,G is almost negative for the solenoid current of 0.4 kA, whereas the positive axial
momentum gain per electron also exists on the magnetic field line passing through G = 1.5 cm and H
= ±0.35 cm, indicating that the electron momentum increases by the Lorentz force and exceeds the
electrostatic force around there. For the solenoid current of 2.0 kA, the positive axial momentum gain
per electron clearly exists on the magnetic field line passing through G = 1.5 cm and H = ±0.25 cm,
whereas the negative axial momentum gain per electron also exists at the centre of the magnetic nozzle.
Regions where the positive axial momentum gain per electron exists are consistent with the locations
where the Lorentz force in the G-direction is exerted on electrons, as shown in figure 8(c). In this
region, the Lorentz force exceeds the electrostatic one and accelerates the electrons in the downstream
direction, even though the electrostatic force decelerates them. At the centre of the magnetic nozzle,
the negative axial momentum gain per electron exists for the solenoid current of 2.0 kA because both
the electrostatic and Lorentz forces exerted on electrons are negative, as shown in figure 8(c). In this
region, electrons are decelerated by both the electrostatic and Lorentz forces.

As shown in figures 11(c) and 12(c), the net axial momentum gain per particle Δ ¤"net,G is not
zero, unlike in the case without the magnetic field shown in figure 9(c). This is consistent with the
results of a previous study [21] where the magnetic nozzle imparts the net momentum to the plasma.
In this situation, the plasma momentum is converted not only by the spontaneous electric field but
also by the Lorentz force with the magnetic field. For the solenoid current of 0.4 kA, the net axial
momentum gain per particle is positive because the axial momentum gain per electron increases by
the Lorentz force and that per ion becomes dominant. For the solenoid current of 2.0 kA, however, the
axial momentum gain per electron increases significantly by the Lorentz force and becomes dominant
instead of the ions. These results indicate that the electronmomentum imparted by the strongmagnetic
field exceeds the ion momentum imparted by the electrostatic field. Here, it is still unclear whether the
net axial momentum gain per particle near the right boundary at G = 2.5 cm is large, where the sheath
is generated because of the boundary condition. One of the possible reasons could be the generation
of the K × H drift current due to the presence of the strong electric field in the sheath, and thus,
further verification will be required to fully understand it. Because the present study focuses on the
momentum gain in the core region (not in the sheath), this is beyond the scope of the present study.

Figure 13 shows the H profile of the axial momentum gains per particle for the solenoid current
of 2.0 kA at G = 1.8 cm. Note that the axial momentum gains per particle at |H | > 0.4 cm are
eliminated because they are affected by the sheath. The axial momentum gain per ion is positive and
uniform at approximately 1.0 × 10−16 N within −0.3 cm < H < 0.3 cm. The axial momentum gain per
electron Δ ¤"e,G is larger than that per ion in the outer regions of |H | > 0.2 cm, where the electrons are
mainly accelerated by the Lorentz force in the downstream direction instead of the ions. However, the
electrostatic force exceeds the Lorentz force in the inner region of |H | < 0.2 cm and mainly accelerates
the ions in the downstream direction instead of the electrons. Here, the net axial momentum gain per
particle is dominated by the axial momentum gain per electron in the outer regions of |H | > 0.2 cm at
the strong magnetic field.

The positive axial momentum gain per electron in figure 12(b) implies that the electron energy in
the G-direction increases with the magnetic nozzle. However, the magnetostatic field produced by the
solenoid does not provide energy to the electrons. Therefore, the increase in the electron energy in
the G-direction must be due to the energy conversion from the H- and I-directions to the G-direction.

The spontaneous electrostatic field converts the electron pressure in the G-direction to the ion
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Figure 13: H profile of the axial momentum gain per ion Δ ¤"i,G (a dashed blue line) and electron
Δ ¤"e,G (a dashed-dotted orange line) for the solenoid current of 2.0 kA at G = 1.8 cm. The net axial
momentum gain per particle Δ ¤"net,G (a solid green line) is also plotted, which is the sum of Δ ¤"i,G
and Δ ¤"e,G . The data for |H | > 0.4 cm are eliminated because they are affected by the sheath due to the
finite calculation area.

momentum in the G-direction, as reported in [24]. However, the spontaneous electrostatic field does
not convert the electron pressure in the H- and I-directions to the ion momentum in the G-direction.
To increase the axial electron momentum without any external work, we need to convert the energy
corresponding to the electron pressure in the H- and I-directions to the G-direction through the Lorentz
force.

Figure 14 shows the G-H profiles of the net momentum gain per particle in the H-direction Δ ¤"net,H
for the solenoid currents of 0, 0.4, and 2.0 kA. Comparing figure 14 with figures 9(c), 11(c), and 12(c),
we can see that the regions where the net momentum gain per particle in the H-direction increases or
decreases correspond to those where the net momentum gain per particle in the G-direction decreases or
increases, respectively. Here, the net momentum gain is calculated as the sum of the ion and electron
momentums, and the effect of the electrostatic field is cancelled out, indicating the momentum
conversion by the Lorentz force. Thus, the role of the magnetic nozzle is to convert the electron
momentum in the H-direction to that in the G-direction to utilize the electron energy efficiently. Note
that the net momentum gain per particle in the I-direction is confirmed to be neglected because it is
calculated to be approximately two orders of magnitude smaller than those in the G- and H-directions.

The positive axial momentum gain per electron given by the Lorentz force means that electrons are
accelerated in the downstream direction and are more likely to be lost to the downstream boundary.
In this situation, the plasma potential would increase to prevent the loss of electrons. Figure 15
shows the G profile of the potential for the three solenoid currents of 0, 0.4, and 2.0 kA at H = 0 cm.
The plasma potential on the left-hand side of figure 15 increases with increasing solenoid current,
indicating that the plasma prevents the loss of electrons spontaneously. In addition, the increase in the
plasma potential further accelerates the ions by the electrostatic field, resulting in an increase in the
exhaust velocity.

To investigate the net thrust obtained by the magnetic nozzle, we calculated the total axial mo-
mentum gain by integrating the ion and electron momentum gains in the G-direction within 1.5 cm
< G < 2.3 cm and −0.35 cm < H < 0.35 cm to eliminate the sheath effect. Table 2 shows the total
axial momentum gain in the magnetic nozzle. For the solenoid current of 0 kA, the magnitudes of
the axial momentum gains of ions and electrons are almost the same, indicating that the net axial
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Figure 14: G-H profiles of the net momentum gain per particle in the H-direction Δ ¤"net,H for the
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Table 2: Total axial momentum gains in the magnetic nozzle, which are calculated by integrating
the axial momentum gains per particle within 1.5 cm < G < 2.3 cm and −0.35 cm < H < 0.35 cm to
eliminate the sheath effect.

Solenoid current (kA) Axial momentum gain (`N/m)
Ion Electron Net (Ion + Electron)

0 16.8 −17.9 −1.13
0.4 37.1 −9.64 27.5
2.0 34.6 47.1 81.7

momentum gain becomes small. For the solenoid current of 0.4 kA, the axial momentum gains of
ions and electrons increase and the net axial momentum gain also increases. For the solenoid current
of 2.0 kA, the axial momentum gain of electrons increases dramatically, whereas the axial momentum
gain of ions remains almost unchanged. As a result, the axial momentum gain of electrons becomes
positive and exceeds that of the ions. The net axial momentum gain also increases significantly, even
though a negative net axial momentum gain exists in the centre of the magnetic nozzle, as shown in
figure 12(c).

These results are different from the phenomena in Hall thrusters, where the axial momentum gain
per electron is theoretically zero. In the magnetic nozzle, the axial momentum gain per electron is
not zero because of the Lorentz force due to the diamagnetic effect, and electrons obtain the net axial
momentum, contributing to the increase in the thrust and the exhaust velocity. The magnetic nozzle
has a mechanism to obtain the thrust by accelerating the electrons, where the electron momentum in
the H-direction is converted to that in the G-direction.

4 Conclusion
We conducted particle-in-cell simulations of a bidirectional magnetic nozzle rf plasma thruster

with Monte Carlo collisions to investigate the axial momentum gains of ions and electrons in the
magnetic nozzle. The axial momentum gains per ion and electron were calculated directly from the
particle velocities, and the results are discussed with the calculated electrostatic and Lorentz forces,
which are exerted on ions and electrons and impart the momentum to the plasma. The Lorentz force
in the G-direction increases with increasing solenoid current and exceeds the electrostatic force in the
G-direction at a strong magnetic field strength. The axial momentum gain per electron is also increased
dramatically by the Lorentz force and becomes dominant in the magnetic nozzle instead of ions. It is
clearly shown that the increase in the electron momentum in the G-direction is due to the momentum
conversion of electrons from the H- to the G-direction by the Lorentz force. The plasma potential
also increases because of the loss of electrons, resulting in an increase in the exhaust velocity of the
ions. Therefore, the magnetic nozzle obtains the thrust by mainly imparting the net momentum in the
G-direction to the electrons.
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