A MEAN CONVERGENCE THEOREM FINDING A COMMON ATTRACTIVE POINT OF TWO NONLINEAR MAPPINGS

By
Takanori Ibaraki and Yukio Takeuchi

(Received June 21, 2019; Revised February 27, 2020)

Abstract

In this article, we present a mean convergence theorem finding a common attractive point of commutative nonlinear self-mappings S and T on a bounded subset of a Hilbert apace, where S is λ-hybrid and T is μ-hybrid with real numbers λ, μ.

1. Introduction

In this article, N and N_{0} denote the sets of all positive integers and all nonnegative integers, respectively. $N(i, j)$ denotes the set $\left\{k \in N_{0}: i \leq k \leq j\right\}$ for all $i, j \in N_{0}$ with $i \leq j$. R denotes the set of all real numbers. Unless otherwise noted, H always denotes a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$ derived from $\langle\cdot, \cdot\rangle$, and C always denotes a non-empty subset of H.

Let T be a mapping from C into H. Then, T^{0} denotes the identity mapping on C, and $F(T)$ denotes the set of all fixed points of T, that is, $F(T)=\{x \in$ $C: x=T x\}$. T is called nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in C$. P_{C} denotes the metric projection from H onto C when C is closed and convex.

In 1963, DeMarr [9] proved a common fixed point theorem for a family of commuting nonexpansive self-mappings in a Banach space; for an elementary proof, see Kubota and Takeuchi [16]. After DeMarr, many researchers studied for common fixed points of families of nonexpansive mappings; see Linhart [18], Bruck [7, 8], Ishikawa [11], Kuhfittig [17], Shimoji and Takahashi [20], Suzuki [22], and so on. On the other hand, in 1975, Baillon [6] proved the following mean convergence theorem which is well-known as the first nonlinear ergodic theorem in a Hilbert space.

THEOREM B. Let C be a bounded closed and convex subset of a Hilbert space H and let T be a nonexpansive self-mapping on C. Let $\left\{b_{n}\right\}$ be the sequence in

Key words and phrases: Attractive point, λ-hybrid mappings, mean convergence theorem.
C defined by

$$
v_{1} \in C, \quad v_{n+1}=T v_{n}, \quad b_{n}=\frac{1}{n} \sum_{k=1}^{n} v_{k} \quad \text { for } \quad \text { each } n \in N .
$$

Then, the sequence $\left\{b_{n}\right\}$ converges weakly to a fixed point of T.
After Baillon, many mean convergence theorems appeared.
Recently, some wide classes of nonlinear mappings were introduced. Aoyama and co-authors [2] introduced the class of λ-hybrid mappings for $\lambda \in R$. Kocourek and co-authors [12] introduced the class of generalized hybrid mappings. In a different direction, Aoyama [1] and Kohsaka [13] presented convergence theorems for quasi-nonexpansive type mappings. In 2010, Takahashi and Takeuchi [25] introduced the notion of an attractive point of a mapping T. They denote by $A(T)$ the set of all attractive points of T. Then, they proved the following mean convergence theorem finding an attractive point of a generalized hybrid mapping without closedness and convexity of its domain.

ThEOREM TT. Let C be a subset of a Hilbert space H and T be a generalized hybrid self-mapping on C. Let $\left\{v_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences defined by

$$
v_{1} \in C, \quad v_{n+1}=T v_{n}, \quad b_{n}=\frac{1}{n} \sum_{k=1}^{n} v_{k} \quad \text { for } \quad \text { each } n \in N .
$$

Suppose $\left\{v_{n}\right\}$ is bounded. Then the following hold:
(1) $A(T)$ is non-empty, closed and convex.
(2) $\left\{b_{n}\right\}$ converges weakly to $u \in A(T)$, where $u=\lim _{n} P_{A(T)} v_{n}$.

Remark. In the case when C is closed and convex, $u \in F(T)$ holds.
In 1997, Shimizu and Takahashi [19] considered for common fixed points of a finite family of commutative nonexpansive mappings. Then, they introduced an iteration scheme combined Halpern type and Baillon type, and proved a strong convergence theorem in Hilbert spaces. In 1998, Atsushiba and Takahashi [4] considered common fixed points of commutative two nonexpansive mappings. They introduced an iteration scheme combined Mann type and Baillon type, and proved a weak convergence theorem in uniformly convex Banach spaces. Motivated by [4], Suzuki [21] presented a result in general Banach spaces; also see Takeuchi [26]. Atsushiba and Takahashi [5] presented a mean convergence theorem finding a common attractive point of commutative two nonexpansive mappings in Hilbert spaces; also see Ibaraki and Takeuchi [10].

Very recently, Kohsaka [14] presented some extensions of main results in [19] and [4], in Hilbert spaces. Kohsaka [14] also presented the following theorem.

THEOREM K. Let C be a bounded closed and convex subset of a Hilbert space H. Let S be a λ-hybrid self-mapping and T be a μ-hybrid self-mapping on C with $\lambda, \mu \in R$. Let $F=F(S) \cap F(T)$. Assume $S T=T S$. Let $\left\{x_{n}\right\}$ be the sequence defined by

$$
x_{1} \in C, \quad x_{n+1}=\frac{1}{(n+1)^{2}} \sum_{i=0}^{n} \sum_{j=0}^{n} S^{i} T^{j} x_{1} \quad \text { for each } \quad n \in N .
$$

Then the following hold:
(1) $\left\{P_{F} S^{i} T^{j} x_{1}\right\}_{(i, j) \in N_{0}^{2}}$ converges strongly to an element u of F.
(2) $\left\{x_{n}\right\}$ converges weakly to $u \in F$.

Remark. Of course, we can replace the boundedness of C by $F \neq \varnothing$.
Motivated by the works as above, we present a mean convergence theorem finding a common attractive point of commutative nonlinear mappings S and T on a bounded subset of a Hilbert apace, where S is λ-hybrid and T is μ-hybrid with $\lambda, \mu \in R$.

2. Preliminaries

Let H be a Hilbert space. Then, we know the following:
(1) A bounded closed and convex subset C of H is weakly compact. A bounded sequence in H has a weakly convergent subsequence.
(2) Let $\left\{u_{n}\right\}$ be a sequence in H and z be a point in H. Then $\left\{u_{n}\right\}$ converges weakly to $z \in H$ if every weak cluster point of $\left\{u_{n}\right\}$ and z are the same.
(3) Let C be a closed and convex subset of H. Then, for each $x \in H$, there is a unique point z_{x} of C satisfying $\left\|x-z_{x}\right\|=\inf \{\|x-z\|: z \in C\} . z_{x}$ is called the unique nearest point of C to x. Define a mapping P_{C} by $P_{C} x=z_{x}$ for $x \in H$. P_{C} is called the metric projection from H onto C. For each $x \in H$ and $y \in C$, the following holds:

$$
0 \leq\left\langle x-P_{C} x, P_{C} x-y\right\rangle \quad \text { and } \quad\left\|x-P_{C} x\right\|^{2}+\left\|P_{C} x-y\right\|^{2} \leq\|x-y\|^{2}
$$

Of course, $P_{C} x=x$ for all $x \in C$. It is known that P_{C} is nonexpansive. We presented some basic facts needed in the sequel; for details, see Takahashi [23].

Let C be a subset of H and T be a mapping from C into $H . A(T)$ denotes the set of all attractive points of T, that is, $A(T)=\{x \in H:\|T y-x\| \leq$ $\|x-y\|$ for all $y \in C\}$; see Takahashi and Takeuchi [25]. T is called quasinonexpansive if $F(T) \neq \varnothing$ and $\|T x-y\| \leq\|x-y\|$ for all $x \in C$ and $y \in F(T)$, that is, $\varnothing \neq F(T) \subset A(T)$. Then T is quasi-nonexpansive if T is nonexpansive and $F(T) \neq \varnothing$.

Here, we show an example in Atsushiba and co-authors [3] which represents properties of the sets of attractive points for two typical nonexpansive mappings.

EXAMPLE 2.1. Let D be the bounded subset $\left\{\left(x_{1}, x_{2}\right) \in R^{2}: 1<x_{1}^{2}+x_{2}^{2}<4\right\}$ of the $2-$ dimensional Euclidean space R^{2}. Then D is neither closed nor convex. Let $\alpha \in(0,2 \pi)$. Let S and T be nonexpansive self-mappings on D such that, for each
$\left(x_{1}, x_{2}\right) \in D$,

$$
S\left(x_{1}, x_{2}\right)=\left(-x_{1}, x_{2}\right), \quad T\left(x_{1}, x_{2}\right)=\left(x_{1} \cos \alpha-x_{2} \sin \alpha, x_{1} \sin \alpha+x_{2} \cos \alpha\right) .
$$

Then, we can easily see

$$
\begin{array}{ll}
F(S)=\left\{\left(x_{1}, x_{2}\right) \in R^{2}: x_{1}=0,1<\left|x_{2}\right|<2\right\}, & F(T)=\varnothing \\
A(S)=\left\{\left(x_{1}, x_{2}\right) \in R^{2}: x_{1}=0\right\}, & A(T)=\{(0,0)\}
\end{array}
$$

So, $F(S)$ consists of two line segments and $F(T)=\emptyset$. On the other hand, $A(S)$ is the symmetric axis of this transformation S and $A(T)$ is the center of this rotation T.

Consider sequences $\left\{v_{n}\right\},\left\{u_{n}\right\}$ in C, and $\left\{b_{n}\right\},\left\{c_{n}\right\}$ in H as below:

$$
\begin{aligned}
& v_{1}=\left(y_{1}, y_{2}\right), u_{1}=\left(y_{1}^{\prime}, y_{2}^{\prime}\right) \in D, \\
& v_{n+1}=S^{n} v_{n}, \quad b_{n}=\frac{1}{n} \sum_{i=1}^{n} v_{n}, \quad u_{n+1}=T^{n} u_{n}, \quad c_{n}=\frac{1}{n} \sum_{i=1}^{n} u_{n} \quad \text { for all } n \in N .
\end{aligned}
$$

By simple calculations, we see that $\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ converge strongly to $v=$ $\left(0, y_{2}\right) \in A(S)$ and $u=(0,0) \in A(T)$, respectively. Obviously, $v=\left(0, y_{2}\right)$ is not always a point in $F(S)$. Also, $u=(0,0)$ is not in D, that is, $u=(0,0) \notin F(T)$.

Aoyama and co-authors [2] introduced the class of λ-hybrid mappings for $\lambda \in R$. Let $\lambda \in R$. Then T is called λ-hybrid if

$$
\left(\lambda_{h}\right) \quad\|T x-T y\|^{2} \leq\|x-y\|^{2}+2(1-\lambda)\langle x-T x, y-T y\rangle \quad \text { for all } x, y \in C .
$$

For example, Kohsaka [14] use the following expression: Let S be a λ-hybrid self-mapping on C and T be a μ-hybrid self-mapping on C. However, to avoid confusion, we call $T(\lambda)$-hybrid if there is $\lambda \in R$ satisfying $\left(\lambda_{h}\right)$. Then the expression becomes as below: Let S and T be (λ)-hybrid self-mappings on C with λ and μ. It is easy to confirm that a (λ)-hybrid mapping T is quasinonexpansive if $F(T) \neq \varnothing$.

Also, Kocourek and co-authors [12] introduced the class of generalized hybrid mappings. T is called generalized hybrid if there exist $\alpha, \beta \in R$ such that
$\alpha\|T x-T y\|^{2}+(1-\alpha)\|x-T y\|^{2} \leq \beta\|T x-y\|^{2}+(1-\beta)\|x-y\|^{2}$ for all $x, y \in C$.

The class of generalized hybrid mappings is wider than the class of (λ)-hybrid mappings. Nevertheless, the class of (λ)-hybrid mappings contains some important classes of nonlinear mappings. For example, a nonexpansive mapping is 1 -hybrid, that is, (λ)-hybrid. Also, a nonspreading mapping is 0 -hybrid and a hybrid mapping is $1 / 2$-hybrid; the class of nonspreading mappings was introduced by Kohsaka and Takahashi [15], and the class of hybrid mappings was introduced by Takahashi [24]. Furthermore, since the last term in $\left(\lambda_{h}\right)$ is written by inner product, it is easy to deal with. From these reasons, in this article, we mainly consider (λ)-hybrid mappings.

3. Lemmas

The following lemmas are due to Takahashi and Takeuchi [25].
Lemma 3.1. Let C be a subset of H and T be a mapping from C into H. Then, $A(T)$ is a closed and convex subset of H.

Lemma 3.2. Let C be a subset of H and T be a self mapping on C. Suppose x is a point in $A(T)$ and z_{x} is the unique nearest point of C to x. Then $z_{x} \in F(T)$. In particular, $A(T) \cap C \subset F(T)$. Furthermore, $A(T) \cap C=F(T)$ holds if $F(T) \subset A(T)$.

Maybe the following lemma is well-known.
LEMMA 3.3. Let x, v, w be points in H. Then, the following equality holds:

$$
\langle(x-v)+(x-w), v-w\rangle=\|x-w\|^{2}-\|x-v\|^{2} .
$$

Proof. Fix any $x, v, w \in H$. Then we easily have

$$
\begin{aligned}
\langle(x-v) & +(x-w), v-w\rangle=\langle(x-v)+(x-w),(v-x)+(x-w)\rangle \\
& =\|x-w\|^{2}-\|x-v\|^{2}+\langle x-v, x-w\rangle+\langle x-w, v-x\rangle \\
& =\|x-w\|^{2}-\|x-v\|^{2}
\end{aligned}
$$

REMARK 3.4. Let $\left\{z_{i}\right\}$ be a sequence in H and set $s_{n}=\frac{1}{n} \sum_{i=1}^{n} z_{i}$ for each $n \in N$. Then, for each $n \in N$, the following equality follows immediately from Lemma 3.3:

$$
\left\langle\left(s_{n}-v\right)+\left(s_{n}-w\right), v-w\right\rangle=\frac{1}{n} \sum_{i=1}^{n}\left\|z_{i}-w\right\|^{2}-\frac{1}{n} \sum_{i=1}^{n}\left\|z_{i}-v\right\|^{2} .
$$

The following lemma is essentially due to Takahashi and Takeuchi [25].

LEMMA 3.5. Let C be a subset of H and T be a mapping from C into H. Let $\left\{u_{n}\right\}$ be a sequence in H which satisfies

$$
\lim \sup _{n} \sup _{y \in C}\left\langle\left(u_{n}-y\right)+\left(u_{n}-T y\right), y-T y\right\rangle \leq 0 .
$$

Suppose $\left\{u_{n}\right\}$ converges weakly to some point $u \in H$. Then, $u \in A(T)$.
Proof. Since $\left\{u_{n}\right\}$ converges weakly to $u \in H$, by Lemma 3.3, we have

$$
\begin{aligned}
\|u-T x\|^{2} & -\|u-x\|^{2}=\langle(u-x)+(u-T x), x-T x\rangle \\
& =\limsup _{n}\left\langle\left(u_{n}-x\right)+\left(u_{n}-T x\right), x-T x\right\rangle \\
& \leq \lim \sup _{n} \sup _{y \in C}\left\langle\left(u_{n}-y\right)+\left(u_{n}-T y\right), y-T y\right\rangle \leq 0
\end{aligned}
$$

for every $x \in C$. This implies $u \in A(T)$.

4. A mean convergence theorem

We need some lemmas to gain our end. Lemma 4.2 is a half of the proof of our main result; Lemma 4.5 is another half. We prepare Lemma 4.1 to prove Lemma 4.2.

LEMMA 4.1. Let C be a bounded subset of H. Set $L=\sup \{\|x-y\|: x, y \in C\}$. Let S be a (λ)-hybrid self-mapping on C with λ. Let T be a self-mapping on C. For each $n \in N$, define a mapping S_{n} from C into H by

$$
S_{n}=\frac{1}{n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} S^{i} T^{j} .
$$

Then, for each $n \in N$, the following holds:

$$
\sup _{x, y \in C}\left\langle\left(S_{n} x-y\right)+\left(S_{n} x-S y\right), y-S y\right\rangle \leq \frac{1+2|1-\lambda|}{n} L^{2} .
$$

Proof. Fix any $x, y \in C$ and $n \in N$. We easily have

$$
\begin{gathered}
\left|\sum_{i=1}^{n-1}\left\langle S^{i-1} x-S^{i} x, y-S y\right\rangle\right|=\left|\left\langle x-S^{n-1} x, y-S y\right\rangle\right| \\
\leq\left\|x-S^{n-1} x\right\|\|y-S y\| \leq L^{2} .
\end{gathered}
$$

Since S is (λ)-hybrid with λ, we have

$$
\begin{align*}
& \frac{1}{n} \sum_{i=0}^{n-1}\left\|S^{i} x-S y\right\|^{2}=\frac{1}{n}\|x-S y\|^{2}+\frac{1}{n} \sum_{i=1}^{n-1}\left\|S^{i} x-S y\right\|^{2} \tag{4.1}\\
& \quad \leq \frac{1}{n} L^{2}+\frac{1}{n} \sum_{i=0}^{n-2}\left\|S^{i} x-y\right\|^{2}+\frac{2(1-\lambda)}{n} \sum_{i=1}^{n-1}\left\langle S^{i-1} x-S^{i} x, y-S y\right\rangle \\
& \quad \leq \frac{1}{n} L^{2}+\frac{2|1-\lambda|}{n} \times L^{2}+\frac{1}{n} \sum_{i=0}^{n-1}\left\|S^{i} x-y\right\|^{2} .
\end{align*}
$$

In Remark 3.4, set $z_{i}=S^{i-1} x \in C, w=S y$ and $v=y$. Then, by (4.1), we have

$$
\begin{align*}
&\left\langle\left(\frac{1}{n} \sum_{i=0}^{n-1} S^{i} x-y\right)+\left(\frac{1}{n} \sum_{i=0}^{n-1} S^{i} x-S y\right), y-S y\right\rangle \tag{4.2}\\
&=\frac{1}{n} \sum_{i=0}^{n-1}\left\|S^{i} x-S y\right\|^{2}-\frac{1}{n} \sum_{i=0}^{n-1}\left\|S^{i} x-y\right\|^{2} \leq \frac{1+2|1-\lambda|}{n} L^{2} .
\end{align*}
$$

Fix any $j \in N(0, n-1)$ and replace x by $T^{j} x$ in (4.2). Then we have

$$
\begin{equation*}
\left\langle\left(\frac{1}{n} \sum_{i=0}^{n-1} S^{i} T^{j} x-y\right)+\left(\frac{1}{n} \sum_{i=0}^{n-1} S^{i} T^{j} x-S y\right), y-S y\right\rangle \leq \frac{1+2|1-\lambda|}{n} L^{2} . \tag{4.3}
\end{equation*}
$$

Also, we know the following: $\frac{1}{n} \sum_{j=0}^{n-1}\left(\frac{1}{n} \sum_{i=0}^{n-1} S^{i} T^{j} x\right)=\frac{1}{n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} S^{i} T^{j} x=$ $S_{n} x$. Then, since (4.3) holds for any $j \in(0, n-1)$, we have

$$
\left\langle\left(S_{n} x-y\right)+\left(S_{n} x-S y\right), y-S y\right\rangle \leq \frac{1+2|1-\lambda|}{n} L^{2} .
$$

Finally, since x, y, n are arbitrary, we see that, for each $n \in N$,

$$
\sup _{x, y \in C}\left\langle\left(S_{n} x-y\right)+\left(S_{n} x-S y\right), y-S y\right\rangle \leq \frac{1+2|1-\lambda|}{n} L^{2} .
$$

Lemma 4.2. Let C be a bounded subset of H. Let S and T be self-mappings on C. For each $n \in N$, define a mapping S_{n} from C into H by

$$
S_{n}=\frac{1}{n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} S^{i} T^{j} .
$$

Let x_{1} be a point in C. Then the sequence $\left\{S_{n} x_{1}\right\}$ is bounded. Suppose further that S is (λ)-hybrid with λ. Then, the following hold:
(1) $\lim \sup _{n} \sup _{x, y \in C}\left\langle\left(S_{n} x-y\right)+\left(S_{n} x-S y\right), y-S y\right\rangle \leq 0$.
(2) $A(S)$ is non-empty closed and convex.

Every weak cluster point of $\left\{S_{n} x_{1}\right\}$ is a point in $A(S)$.
Furthermore, in the case when C is closed and convex, the following holds:
(3) $F(S)$ is non-empty closed and convex.

Every weak cluster point of $\left\{S_{n} x_{1}\right\}$ is a point in $F(S)$.
Proof. Set $L=\sup \{\|x-y\|: x, y \in C\}$. Consider the sequence $\left\{S_{n} x_{1}\right\}$. Fix any $y \in C$ and $n \in N$. By $S^{i} T^{j} x_{1} \in C$ for $i, j \in N(0, n-1)$, we see that

$$
\left\|S_{n} x_{1}-y\right\| \leq \frac{1}{n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1}\left\|S^{i} T^{j} x_{1}-y\right\| \leq \frac{1}{n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} L=L
$$

Then $\left\{S_{n} x_{1}\right\}$ is bounded. We show (1). By $\lim \sup _{n} \frac{1+2|1-\lambda|}{n} L^{2}=0$ and Lemma 4.1, we immediately have the result. We show (2). We know that $\left\{S_{n} x_{1}\right\}$
has a weakly convergent subsequence. Let $\left\{S_{n_{k}} x_{1}\right\}$ be a subsequence of $\left\{S_{n} x_{1}\right\}$ which converges weakly to some $u \in H$. By (1), we know

$$
\limsup _{k} \sup _{y \in C}\left\langle\left(S_{n_{k}} x_{1}-y\right)+\left(S_{n_{k}} x_{1}-S y\right), y-S y\right\rangle \leq 0 .
$$

By Lemma 3.5, we see $u \in A(S) ; A(S) \neq \emptyset$. By Lemma 3.1, $A(S)$ is closed and convex. We show (3). We know that $A(S)$ is closed and convex. Let $\left\{S_{n_{k}} x_{1}\right\}$ be a subsequence of $\left\{S_{n} x_{1}\right\}$ which converges weakly to some $u \in H$. We also know $u \in A(S)$. Since C is closed and convex, C is weakly closed and $\left\{S_{n} x_{1}\right\}$ is a sequence in C. Then, we see $u \in A(S) \cap C ; A(S) \cap C \neq \emptyset$. By Lemma 3.2, we know $A(S) \cap C \subset F(S)$. Since S is (λ)-hybrid, we also know $F(S) \subset A(S)$. So, $A(S) \cap C=F(S)$. Since $A(S)$ and C are closed and convex, we see that (3) holds.

We know that $N_{0}^{2}=\left\{(i, j): i, j \in N_{0}\right\}$ is a directed set by the binary relation:

$$
(k, l) \leq(i, j) \quad \text { if } \quad k \leq i \quad \text { and } \quad l \leq j .
$$

Let C be a subset of H and $x_{1} \in C$. Let S and T be self-mappings on C. For example, $\left\{S^{i} T^{j} x_{1}\right\}_{(i, j) \in N_{0}^{2}}$ is a net in C; we denote $\left\{S^{i} T^{j} x_{1}\right\}_{(i, j) \in N_{0}^{2}}$ by $\left\{S^{i} T^{j} x_{1}\right\}$.

REMARK 4.3. In Lemma 4.2, $\left\{S_{n} x_{1}\right\}$ is bounded if $\left\{S^{i} T^{j} x_{1}\right\}$ is bounded.
The proof of Lemma 4.4 is referred to Kohsaka [14]; also refer to Aoyama [1].
Lemma 4.4. Let C be a subset of H and x_{1} be a point in C. Let S and T be self-mappings on C. For each $n \in N$, define a mapping S_{n} from C into H by $S_{n}=\frac{1}{n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} S^{i} T^{j}$. Suppose $A=A(S) \cap A(T) \neq \varnothing$ and every weak cluster point of the sequence $\left\{S_{n} x_{1}\right\}$ is a point in A. For simplicity, we denote $S^{i} T^{j} x_{1}$ by $u_{i, j}$ for all $(i, j) \in N_{0}^{2}$. Then the following hold:
(1) There is $c \in[0, \infty)$ satisfying $\lim _{(i, j)}\left\|P_{A} u_{i, j}-u_{i, j}\right\|=c$.
(2) There is an $M \in[0, \infty)$ such that $\left\|P_{A} u_{i, j}-u_{i, j}\right\| \leq M$ for all $(i, j) \in N_{0}^{2}$.
(3) There is $u_{0} \in A$ satisfying $\lim _{(i, j)}\left\|P_{A} u_{i, j}-u_{0}\right\|=0$ and

$$
\left\langle w-u_{0}, u_{i, j}-P_{A} u_{i, j}\right\rangle \leq\left\|P_{A} u_{i, j}-u_{0}\right\| M \quad \text { for all }(i, j) \in N_{0}^{2} \text { and } w \in A .
$$

(4) $\lim _{n} \frac{1}{n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1}\left\|P_{A} u_{i, j}-u_{0}\right\|=0$.
(5) $\left\{\frac{1}{n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} P_{A} u_{i, j}\right\}$ converges strongly to $u_{0} \in A$.
(6) $\left\{S_{n} x_{1}\right\}$ converges weakly to $u_{0} \in A$.
(7) In the case when C is closed and convex, $u_{0} \in F=F(S) \cap F(T)$.

Proof. It is obvious that $\left\{u_{i, j}\right\}$ is a net in C satisfying

$$
\begin{equation*}
\left\|u_{i, j}-u\right\| \leq\left\|u_{k, l}-u\right\| \quad \text { whenever } \quad u \in A, \quad(k, l) \leq(i, j) . \tag{4.4}
\end{equation*}
$$

Since A is closed and convex, we can consider the metric projection P_{A} from H onto A. Recall properties of P_{A}. Reconfirm the following: For each $x \in H$ and $y \in A$,

$$
\left\langle x-P_{A} x, y-P_{A} x\right\rangle \leq 0 \quad \text { and } \quad\left\|P_{A} x-y\right\|^{2} \leq\|x-y\|^{2}-\left\|x-P_{A} x\right\|^{2} .
$$

We show (1). Fix any $(i, j),(k, l) \in N_{0}^{2}$ with $(k, l) \leq(i, j)$. By $P_{A} u_{i, j}, P_{A} u_{k, l} \in$ A, the definition of P_{A} and (4.4), we have

$$
\begin{equation*}
\left\|P_{A} u_{i, j}-u_{i, j}\right\| \leq\left\|P_{A} u_{k, l}-u_{i, j}\right\| \leq\left\|P_{A} u_{k, l}-u_{k, l}\right\| . \tag{4.5}
\end{equation*}
$$

From this, $\left\{\left\|P_{A} u_{i, j}-u_{i, j}\right\|\right\}$ converges. Then, there is a real number $c \in[0, \infty)$ satisfying $\lim _{(i, j)}\left\|P_{A} u_{i, j}-u_{i, j}\right\|=c$. We show (2). Fix any $(i, j) \in N_{0}^{2}$ and $u \in A$. By (4.4), we know $\left\|u_{i, j}-u\right\| \leq\left\|u_{0,0}-u\right\|$. Set $M=2\left\|u_{0,0}-u\right\|$. Then we have

$$
\left\|P_{A} u_{i, j}-u_{i, j}\right\| \leq\left\|P_{A} u_{i, j}-P_{A} u\right\|+\left\|u-u_{i, j}\right\| \leq 2\left\|u_{i, j}-u\right\| \leq M
$$

We show (3). Fix any $(i, j),(k, l) \in N_{0}^{2}$ with $(k, l) \leq(i, j)$. By $u_{i, j} \in H$, $P_{A} u_{k, l} \in A$ and properties of P_{A}, we know

$$
\left\|P_{A} u_{i, j}-P_{A} u_{k, l}\right\|^{2} \leq\left\|u_{i, j}-P_{A} u_{k, l}\right\|^{2}-\left\|u_{i, j}-P_{A} u_{i, j}\right\|^{2} .
$$

By (4.5), we have

$$
\left\|P_{A} u_{i, j}-P_{A} u_{k, l}\right\|^{2} \leq\left\|u_{k, l}-P_{A} u_{k, l}\right\|^{2}-\left\|u_{i, j}-P_{A} u_{i, j}\right\|^{2} .
$$

Then, by $\lim _{(i, j)}\left\|P_{A} u_{i, j}-u_{i, j}\right\|=c$, we see that $\left\{P_{A} u_{i, j}\right\}$ is a Cauchy net in A. Since A is closed, there is $u_{0} \in A$ satisfying $\lim _{(i, j)}\left\|P_{A} u_{i, j}-u_{0}\right\|=0$.

Fix any $w \in A$. By (2) and $\left\langle w-P_{A} u_{i, j}, u_{i, j}-P_{A} u_{i, j}\right\rangle \leq 0$, we have

$$
\begin{aligned}
\langle w & \left.-u_{0}, u_{i, j}-P_{A} u_{i, j}\right\rangle \\
& =\left\langle w-P_{A} u_{i, j}, u_{i, j}-P_{A} u_{i, j}\right\rangle+\left\langle P_{A} u_{i, j}-u_{0}, u_{i, j}-P_{A} u_{i, j}\right\rangle \\
& \leq\left\langle P_{A} u_{i, j}-u_{0}, u_{i, j}-P_{A} u_{i, j}\right\rangle \leq\left\|P_{A} u_{i, j}-u_{0}\right\|\left\|u_{i, j}-P_{A} u_{i, j}\right\| \\
& \leq\left\|P_{A} u_{i, j}-u_{0}\right\| M .
\end{aligned}
$$

We show (4). Fix any $\varepsilon>0$. By (3), there is a $(k, l) \in N_{0}^{2}$ satisfying $\| P_{A} u_{i, j}-$ $u_{0} \|<\varepsilon / 2$ for all $(i, j) \in N_{0}^{2}$ with $(k, l) \leq(i, j)$. For each $n \in N$ satisfying $(k, l)<(n, n)$, set

$$
\begin{array}{ll}
B_{n}=\left\{(i, j) \in N_{0}^{2}: i, j \in N(0, n-1)\right\}, & B_{(k, l) \leq}=\left\{(i, j) \in B_{n}:(k, l) \leq(i, j)\right\}, \\
B_{<k}=\left\{(i, j) \in B_{n}: i \in N(0, k-1)\right\}, & B_{<l}=\left\{(i, j) \in B_{n}: j \in N(0, l-1)\right\}
\end{array}
$$

Then, it is obvious that

$$
\begin{aligned}
& \frac{1}{n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1}\left\|P_{A} u_{i, j}-u_{0}\right\| \\
& \quad \leq \frac{1}{n^{2}}\left(\sum_{B_{(k, l)} \leq}\left\|P_{A} u_{i, j}-u_{0}\right\|+\sum_{B_{<k}}\left\|P_{A} u_{i, j}-u_{0}\right\|+\sum_{B_{<l}}\left\|P_{A} u_{i, j}-u_{0}\right\|\right) \\
& \quad<\frac{\varepsilon}{2}+\frac{n k}{n^{2}}\left\|u_{0,0}-u_{0}\right\|+\frac{n l}{n^{2}}\left\|u_{0,0}-u_{0}\right\| .
\end{aligned}
$$

For sufficiently large $n \in N$, we know $\frac{k}{n}\left\|u_{0,0}-u_{0}\right\|+\frac{l}{n}\left\|u_{0,0}-u_{0}\right\|<\varepsilon / 2$, that is,

$$
0 \leq \frac{1}{n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1}\left\|P_{A} u_{i, j}-u_{0}\right\|<\varepsilon
$$

We show (5). It is obvious that the following holds:

$$
\left\|\frac{1}{n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} P_{A} u_{i, j}-u_{0}\right\| \leq \frac{1}{n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1}\left\|P_{A} u_{i, j}-u_{0}\right\|
$$

Then, by (4), we have the result.
We show (6). In the proof of (2), we already know that $\left\{u_{i, j}\right\}$ is bounded. Then, by Remark 4.3, $\left\{S_{n} x_{1}\right\}$ is bounded and has a weakly convergent subsequence.

Let $\left\{S_{n_{k}} x_{1}\right\}$ be a subsequence of $\left\{S_{n} x_{1}\right\}$ converging weakly to some $w^{\prime} \in H$. By our assumptions, $w^{\prime} \in A$ holds. Then, by (3), we see that, for each $k \in N$,

$$
\begin{aligned}
\left\langle w^{\prime}\right. & \left.-u_{0}, S_{n_{k}} x_{1}-\frac{1}{n_{k}^{2}} \sum_{i=0}^{n_{k}-1} \sum_{j=0}^{n_{k}-1} P_{A} u_{i, j}\right\rangle \\
& =\left\langle w^{\prime}-u_{0}, \frac{1}{n_{k}^{2}} \sum_{i=0}^{n_{k}-1} \sum_{j=0}^{n_{k}-1} u_{i, j}-\frac{1}{n_{k}^{2}} \sum_{i=0}^{n_{k}-1} \sum_{j=0}^{n_{k}-1} P_{A} u_{i, j}\right\rangle \\
& =\frac{1}{n_{k}^{2}} \sum_{i=0}^{n_{k}-1} \sum_{j=0}^{n_{k}-1}\left\langle w^{\prime}-u_{0}, u_{i, j}-P_{A} u_{i, j}\right\rangle \\
& \leq \frac{1}{n_{k}^{2}} \sum_{i=0}^{n_{k}-1} \sum_{j=0}^{n_{k}-1}\left\|P_{A} u_{i, j}-u_{0}\right\| M .
\end{aligned}
$$

Since $\left\{S_{n_{k}} x_{1}\right\}$ converges weakly to w^{\prime}, by (4) and (5), this inequality asserts

$$
\left\|w^{\prime}-u_{0}\right\|^{2}=\lim _{k}\left\langle w^{\prime}-u_{0}, S_{n_{k}} x_{1}-\frac{1}{n_{k}^{2}} \sum_{i=0}^{n_{k}-1} \sum_{j=0}^{n_{k}-1} P_{A} u_{i, j}\right\rangle \leq 0 .
$$

Thus we see that every weak cluster point of $\left\{S_{n} x_{1}\right\}$ and u_{0} are the same. This implies that $\left\{S_{n} x_{1}\right\}$ itself converges weakly to $u_{0} \in A$.

We show (7). Since C is closed and convex, C is weakly closed and $S_{n} x_{1} \in C$ for all $n \in N$. Then, $u_{0} \in A(S) \cap A(T) \cap C$. By Lemma 3.2, we see $u_{0} \in$ $F(S) \cap F(T)=F$.

Lemma 4.5 is an abstract of Lemma 4.4.
LEMMA 4.5. Let C be a subset of H and x_{1} be a point in C. Let S and T be self-mappings on C. For each $n \in N$, define a mapping S_{n} from C into H by $S_{n}=\frac{1}{n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} S^{i} T^{j}$. Suppose $A=A(S) \cap A(T) \neq \varnothing$ and every weak cluster point of $\left\{S_{n} x_{1}\right\}$ is a point in A. Then $\left\{S_{n} x_{1}\right\}$ converges weakly to $u_{0} \in A$, where $u_{0}=\lim _{(i, j)} P_{A} S^{i} T^{j} x_{1}$. When C is closed and convex, $u_{0} \in F=$ $F(S) \cap F(T)$ holds.

The following is our main result.
THEOREM 4.6. Let C be a bounded subset of H and x_{1} be a point in C. Let S and T be (λ)-hybrid self-mappings on C with λ and μ which satisfy $S T=T S$. For each $n \in N$, define a mapping S_{n} by $S_{n}=\frac{1}{n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} S^{i} T^{j}$. Then, the following hold:
(1) $A=A(S) \cap A(T)$ is non-empty, closed and convex.
(2) $\left\{S_{n} x_{1}\right\}$ converges weakly to $u_{0} \in A$, where $u_{0}=\lim _{(i, j)} P_{A} S^{i} T^{j} x_{1}$.
(3) In the case when C is closed and convex, $u_{0} \in F=F(S) \cap F(T)$.

Remark. In (2), $u_{0} \in F=F(S) \cap F(T)$ holds if $u_{0} \in C$.
Proof. By $S T=T S$, we know $S_{n}=\frac{1}{n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} S^{i} T^{j}=\frac{1}{n^{2}} \sum_{j=0}^{n-1} \sum_{i=0}^{n-1}$ $T^{j} S^{i}$ for all $n \in N$. By Lemma 4.2, $\left\{S_{n} x_{1}\right\}$ is bounded. Let $\left\{S_{n_{k}} x_{1}\right\}$ be a subsequence of $\left\{S_{n} x_{1}\right\}$ which converges weakly to some $w \in H$. By $S T=T S$, Lemma 4.2 (2) asserts $w \in A=A(S) \cap A(T)$. So, A is non-empty, closed and convex. Lemma 4.2 (2) also asserts that every weak cluster point of $\left\{S_{n} x_{1}\right\}$ is a point in A.

Thus, by Lemma 4.5, we have the desired results. In (2), despite of the absence of closedness and convexity of $C, u_{0} \in F$ is guaranteed if $u_{0} \in C$. Because, by Lemma 3.2, we know $A \cap C=(A(S) \cap A(T)) \cap C \subset F(S) \cap F(T)=F$.

Theorem 4.6 is an existence and weak convergence theorem. In section 1, we presented Theorem K due to Kohsaka [14] and Theorem TT due to Takahashi and Takeuchi [25]. We may regard Theorem 4.6 as an extension of Theorem K. However, we do not know whether Theorem 4.6 (3) and Theorem K are exactly the same. Because $u_{0}=\lim _{(i, j)} P_{A} S^{i} T^{j} x_{1}$ does not automatically mean $u_{0}=\lim _{(i, j)} P_{F} S^{i} T^{j} x_{1}$. In Theorem 4.6, let T be the identity mapping. Then, we have a mean convergence theorem for a (λ)-hybrid self-mapping S on C. We know that Theorem TT does not follow from this theorem. So, Theorem 4.6 is not an extension of Theorem TT. Nevertheless, the class of (λ)-hybrid mappings also contains some important classes of nonlinear mappings.

5. Examples

In this section, we present some examples to support the main issue. In advance, recall the following: a nonexpansive mapping, a nonspreading mapping, and a hybrid mapping are (λ)-hybrid, in the Hilbert space setting. We note that the class of nonspreading mappings was first defined in a smooth, strictly convex
and reflexive Banach space.
Let C be a subset of a Hilbert space H and U be a mapping from C into H. Then, from Kohsaka and Takahashi [15], U is called nonspreading if

$$
\begin{equation*}
2\|U x-U y\|^{2} \leq\|U x-y\|^{2}+\|U y-x\|^{2} \quad \text { for all } \quad x, y \in C . \tag{5.1}
\end{equation*}
$$

Also, from Takahashi [24], U is called hybrid if

$$
\begin{equation*}
3\|U x-U y\|^{2} \leq\|x-y\|^{2}+\|U x-y\|^{2}+\|U y-x\|^{2} \quad \text { for all } x, y \in C . \tag{5.2}
\end{equation*}
$$

EXAMPLE 5.1.

Let C be the bounded subset $\left\{\left(x_{1}, x_{2}\right) \in R^{2}:\left|x_{1}\right| \in\left[0, \frac{1}{2}\right),\left|x_{2}\right| \in\left[0, \frac{1}{4}\left|x_{1}\right|+\right.\right.$ $\left.\left.\frac{3}{8}\right)\right\}$ of the Euclidean space R^{2}. Then, C is neither closed nor convex.

Let S and T be self-mappings on C such that, for each $\left(x_{1}, x_{2}\right) \in C$,

$$
S\left(x_{1}, x_{2}\right)=\left(-x_{1}, x_{2}\right), \quad T\left(x_{1}, x_{2}\right)=\left(-x_{1},-x_{2}\right) .
$$

It is easy to see that S and T are nonexpansive. We confirm that S and T are neither nonspreading nor hybrid. Let $x=(0.2,0.1), y=(-0.2,0.1), \bar{x}=$ $(0.2,-0.1)$ and $\bar{y}=(-0.2,-0.1)$. Then, $x, \bar{x}, y, \bar{y} \in C, S x=y, S y=x, T x=\bar{y}$ and $T y=\bar{x}$. We see

$$
\begin{aligned}
\|S x-S y\|^{2} & =\|x-y\|^{2}=\|(0.4,0)\|^{2}=0.16 \\
\|S x-y\|^{2} & =\|y-y\|^{2}=0=\|x-x\|^{2}=\|S y-x\|^{2} \\
\|T x-T y\|^{2} & =\|\bar{y}-\bar{x}\|=\|(-0.4,0)\|^{2}=0.16=\|(0.4,0)\|^{2}=\|x-y\|^{2} \\
\|T x-y\|^{2} & =\|\bar{y}-y\|^{2}=\|(0,-0.2)\|^{2}=0.04=\|\bar{x}-x\|^{2}=\|T y-x\|^{2} .
\end{aligned}
$$

These imply that S and T satisfy neither (5.1) nor (5.2).
Consider the self-mapping U on C such that, for each $\left(x_{1}, x_{2}\right) \in C$,

$$
U\left(x_{1}, x_{2}\right)=\left(x_{1},\left|x_{1}\right| x_{2}\right) .
$$

Obviously, U is not nonexpansive, $S U=U S$ and $T U=U T$. Also, we see

$$
\begin{array}{ll}
A(S)=\left\{\left(x_{1}, x_{2}\right) \in R^{2}: x_{1}=0\right\}, & F(S)=\left\{\left(x_{1}, x_{2}\right) \in C: x_{1}=0\right\}, \\
A(T)=\{(0,0)\}, & F(T)=\{(0,0)\}, \\
A(U)=\left\{\left(x_{1}, x_{2}\right) \in R^{2}: x_{2}=0\right\}, & F(U)=\left\{\left(x_{1}, x_{2}\right) \in C: x_{2}=0\right\} .
\end{array}
$$

We confirm that U is nonspreading; we are not interested in whether U is hybrid here. Let $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ be points in C. In the case of $x_{2} y_{2}<0$, by considering the positional relation of $x, y, U x$ and $U y$, obviously
(5.1) holds. There remains the case of $x_{2} y_{2} \geq 0$. Assume $x_{2} y_{2} \geq 0$. By $U x=$ $\left(x_{1},\left|x_{1}\right| x_{2}\right)$ and $U y=\left(y_{1},\left|y_{1}\right| y_{2}\right)$, we have

$$
\begin{aligned}
\|U x-U y\|^{2} & =\left\|\left(x_{1}-y_{1},\left|x_{1}\right| x_{2}-\left|y_{1}\right| y_{2}\right)\right\|^{2}=\left(x_{1}-y_{1}\right)^{2}+\left(\left|x_{1}\right| x_{2}-\left|y_{1}\right| y_{2}\right)^{2}, \\
\|U x-y\|^{2} & =\left\|\left(x_{1}-y_{1},\left|x_{1}\right| x_{2}-y_{2}\right)\right\|^{2}=\left(x_{1}-y_{1}\right)^{2}+\left(\left|x_{1}\right| x_{2}-y_{2}\right)^{2} \\
\|U y-x\|^{2} & =\left\|\left(y_{1}-x_{1},\left|y_{1}\right| y_{2}-x_{2}\right)\right\|^{2}=\left(y_{1}-x_{1}\right)^{2}+\left(\left|y_{1}\right| y_{2}-x_{2}\right)^{2} .
\end{aligned}
$$

Set $k, l, m \in R$ as below:

$$
\begin{aligned}
k & =\left(\left|x_{1}\right| x_{2}-\left|y_{1}\right| y_{2}\right)^{2}=x_{1}^{2} x_{2}^{2}+y_{1}^{2} y_{2}^{2}-2\left|x_{1}\right|\left|y_{1}\right| x_{2} y_{2}, \\
l & =\left(\left|x_{1}\right| x_{2}-y_{2}\right)^{2}=y_{2}^{2}+x_{1}^{2} x_{2}^{2}-2\left|x_{1}\right| x_{2} y_{2} \\
m & =\left(\left|y_{1}\right| y_{2}-x_{2}\right)^{2}=x_{2}^{2}+y_{1}^{2} y_{2}^{2}-2\left|y_{1}\right| x_{2} y_{2}
\end{aligned}
$$

Recall $\left|x_{1}\right|,\left|y_{1}\right| \in[0,1 / 2)$. Then, we see $\left|x_{1}\right|+\left|y_{1}\right|-2\left|x_{1}\right|\left|y_{1}\right|<1 / 2$ by

$$
\begin{aligned}
\left|x_{1}\right|+\left|y_{1}\right| & -2\left|x_{1}\right|\left|y_{1}\right|-\frac{1}{2} \\
& =\frac{1}{2}\left(2\left|x_{1}\right|-1\right)+\left|y_{1}\right|\left(1-2\left|x_{1}\right|\right)=\left(1-2\left|x_{1}\right|\right)\left(\left|y_{1}\right|-\frac{1}{2}\right)<0 .
\end{aligned}
$$

Thus, by $x_{1}^{2}, y_{1}^{2}<1 / 4<1 / 2$ and $0 \leq x_{2} y_{2}$, we see that U satisfies (5.1):

$$
\begin{aligned}
& l+m-2 k \\
& \quad=x_{2}^{2}+y_{2}^{2}-x_{1}^{2} x_{2}^{2}-y_{1}^{2} y_{2}^{2}-2 x_{2} y_{2}\left(\left|x_{1}\right|+\left|y_{1}\right|-2\left|x_{1}\right|\left|y_{1}\right|\right) \\
& \quad \geq x_{2}^{2}+y_{2}^{2}-\frac{1}{2} x_{2}^{2}-\frac{1}{2} y_{2}^{2}-x_{2} y_{2}=\frac{1}{2} x_{2}^{2}+\frac{1}{2} y_{2}^{2}-x_{2} y_{2}=\frac{1}{2}\left(x_{2}-y_{2}\right)^{2} \geq 0 \\
& 2\|U x-y\|^{2} \\
& \quad=2\left(x_{1}-y_{1}\right)^{2}+2 k \leq 2\left(x_{1}-y_{1}\right)^{2}+l+m=\|U x-y\|^{2}+\|U y-x\|^{2} .
\end{aligned}
$$

Let x be a point in C. We know the following:

$$
\begin{aligned}
& \text { - } F(S) \cap F(U)=A(S) \cap A(U)=\{(0,0)\} \subset C \text {. } \\
& \text { - } F(T) \cap F(U)=A(T) \cap A(U)=\{(0,0)\} \subset C \text {. }
\end{aligned}
$$

Then, from the argument so far, Theorem 4.6 asserts the following:

- $\left\{\frac{1}{n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} S^{i} U^{j} x\right\}$ converges strongly to $u_{0}=(0,0) \in F(S) \cap F(U)$.
- $\left\{\frac{1}{n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} T^{i} U^{j} x\right\}$ converges strongly to $v_{0}=(0,0) \in F(T) \cap F(U)$.

Note that the strong topology and the weak topology are coincide in our setting.

EXAMPLE 5.2.

Let D be the bounded subset $\left\{\left(x_{1}, x_{2}\right) \in R^{2}: 1 \leq \max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}<2\right\}$ of the Euclidean space R^{2}. Define subsets D_{1}, D_{2}, D_{3} of D by

$$
\begin{aligned}
& D_{1}=\left\{\left(x_{1}, x_{2}\right) \in D:\left|x_{1}\right|<1\right\}, \quad D_{2}=\left\{\left(x_{1}, x_{2}\right) \in D:\left|x_{2}\right|<1\right\}, \\
& D_{3}=\left\{\left(x_{1}, x_{2}\right) \in D:\left|x_{1}\right| \geq 1,\left|x_{2}\right| \geq 1\right\} .
\end{aligned}
$$

D is neither closed nor convex. D and the disjoint union of $\left\{D_{1}, D_{2}, D_{3}\right\}$ are coincide.

Let S and T be self-mappings on D such that, for each $\left(x_{1}, x_{2}\right) \in D$,

$$
S\left(x_{1}, x_{2}\right)=\left(-x_{1}, x_{2}\right), \quad T\left(x_{1}, x_{2}\right)=\left(-x_{1},-x_{2}\right) .
$$

It is easy to see that S and T are nonexpansive, and

$$
\begin{array}{ll}
A(S)=\left\{\left(x_{1}, x_{2}\right) \in R^{2}: x_{1}=0\right\}, & A(T)=\{(0,0)\} \\
F(S)=\left\{\left(x_{1}, x_{2}\right) \in D: x_{1}=0,1 \leq\left|x_{2}\right|<2\right\}, & F(T)=\varnothing
\end{array}
$$

Consider the following self-mapping U on D :

$$
\begin{array}{ll}
U\left(x_{1}, x_{2}\right)=\left(x_{1}, \frac{x_{2}}{2}+\frac{x_{2}}{2\left|x_{2}\right|}\right) & \text { when }\left(x_{1}, x_{2}\right) \in D_{1}, \\
U\left(x_{1}, x_{2}\right)=\left(\frac{x_{1}}{2}+\frac{x_{1}}{2\left|x_{1}\right|}, x_{2}\right) & \text { when }\left(x_{1}, x_{2}\right) \in D_{2}, \\
U\left(x_{1}, x_{2}\right)=\left(\frac{x_{1}}{\left|x_{1}\right|}, \frac{x_{2}}{\left|x_{2}\right|}\right) & \text { when }\left(x_{1}, x_{2}\right) \in D_{3} .
\end{array}
$$

Then, we can easily confirm

$$
\begin{aligned}
& A(U)=\left\{\left(x_{1}, x_{2}\right) \in R^{2}: \max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\} \leq 1\right\}, \\
& F(U)=\left\{\left(x_{1}, x_{2}\right) \in D: \max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}=1\right\} .
\end{aligned}
$$

It is also easy to see that $S U=U S, T U=U T$ and the following:

$$
\begin{array}{ll}
A(S) \cap A(U)=\left\{\left(x_{1}, x_{2}\right) \in R^{2}: x_{1}=0,\left|x_{2}\right| \leq 1\right\}, & A(T) \cap A(U)=\{(0,0)\}, \\
F(S) \cap F(U)=\{(0,1),(0,-1)\}, & F(T) \cap F(U)=\emptyset .
\end{array}
$$

We confirm that U is nonspreading. Let $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ be points in D. By considering the positional relation of $x, y, U x$ and $U y$, it is obvious that U satisfies (5.1) in the following cases: $x, y \in D_{1} \cup D_{2}, x, y \in D_{3}$, $x \in D_{1}$ and $y \in D_{3}$ with $x_{2} y_{2}<0, x \in D_{2}$ and $y \in D_{3}$ with $x_{1} y_{1}<0$. Then, there remain the following cases: $x \in D_{1}$ and $y \in D_{3}$ with $x_{2} y_{2} \geq 0, x \in D_{2}$ and $y \in D_{3}$ with $x_{1} y_{1} \geq 0$.

A little thought will tell us that we may consider only the case of $x \in D_{1}$ with $x_{2} \geq 1$ and $y \in D_{3}$ with $y_{1}, y_{2} \geq 1$. In this case, by $U x=\left(x_{1}, \frac{1}{2} x_{2}+\frac{1}{2}\right)$, $U y=(1,1)$, and $y_{1}-x_{1} \geq 1-x_{1}$, we see that U satisfies (5.1):

$$
\begin{aligned}
\|U x-U y\|^{2} & =\left\|\left(x_{1}-1, \frac{1}{2} x_{2}-\frac{1}{2}\right)\right\|^{2}=\left(x_{1}-1\right)^{2}+\left(\frac{1}{2}\right)^{2}\left(x_{2}-1\right)^{2} \\
\|U x-y\|^{2} & =\left\|\left(x_{1}-y_{1}, \frac{1}{2} x_{2}+\frac{1}{2}-y_{2}\right)\right\|^{2} \\
& =\left(x_{1}-y_{1}\right)^{2}+\left(\frac{1}{2} x_{2}+\frac{1}{2}-y_{2}\right)^{2} \geq\left(x_{1}-y_{1}\right)^{2} \geq\left(x_{1}-1\right)^{2}, \\
\|U y-x\|^{2} & =\left\|\left(1-x_{1}, 1-x_{2}\right)\right\|^{2}=\left(1-x_{1}\right)^{2}+\left(1-x_{2}\right)^{2} \\
2\|U x-U y\|^{2} & =2\left(x_{1}-1\right)^{2}+\frac{1}{2}\left(x_{2}-1\right)^{2} \\
& \leq 2\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2} \leq\|U x-y\|^{2}+\|U y-x\|^{2} .
\end{aligned}
$$

We confirm that U is not nonexpansive. Let $y=(1,1.8) \in D_{3}$. Let $\left\{a_{n}\right\}$ be a sequence in $(0,1)$ converging to 1 . For each $n \in N$, set $z_{n}=\left(a_{n}, 1.8\right) \in D_{1}$. It is obvious that $\left\{z_{n}\right\}$ converges strongly to y. On the other hand, we see the following:

$$
\left\|U z_{n}-U y\right\|^{2}=\left(a_{n}-1\right)^{2}+(1.4-1)^{2} \geq(0.4)^{2} \quad \text { for all } n \in N
$$

Then, U is not continuous. So, we see that U is not nonexpansive. Furthermore, we confirmed that a nonspreading mapping need not be continuous.

Let x be a point in D. From the argument so far, Theorem 4.6 asserts the following:

- $\left\{\frac{1}{n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} S^{i} U^{j} x\right\}$ converges strongly to some $u_{0} \in A(S) \cap A(U)$.
- $\left\{\frac{1}{n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} T^{i} U^{j} x\right\}$ converges strongly to $(0,0) \in A(T) \cap A(U)$.

However, by the absence of closedness and convexity of D, we do not know whether $u_{0} \in F(S) \cap F(U)$, even if we know $\varnothing \neq F(S) \cap F(U) \subset A(S) \cap A(U)$.

Acknowledgements. The authors are grateful to the referees for their helpful reviews and suggestions.

This work was supported by JSPS KAKENHI Grant Number JP19K03632.

References

[1] K. Aoyama, Halpern's iteration for a sequence of quasinonexpansive type mappings, In Non-linear Mathematics for Uncertainly and its Applications, Springer-Verlag, Berlin Heidelberg, 2011, 387-394.
[2] K. Aoyama, S. Iemoto, F. Kohsaka and W. Takahashi, Fixed point and ergodic theorems for λ-hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal. 11 (2010), 335-343.
[3] S. Atsushiba, S. Iemoto, R. Kubota and Y. Takeuchi, Convergence theorems for some classes of nonlinear mappings in Hilbert spaces, Linear and Nonlinear Anal. 2 (2016), 125-153.
[4] S. Atsushiba and W. Takahashi, Approximating common fixed points of two nonexpansive mappings in Banach spaces, Bull. Austral. Math. Soc. 57 (1998), 117-127.
[5] S. Atsushiba and W. Takahashi, Nonlinear ergodic theorems without convexity for nonexpansive semigroups in Hilbert spaces, J. Nonlinear and Convex Anal. 14 (2013), 209-219.
[6] J.-B. Baillon, Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert, C. R. Acad. Sci. Paris Ser. A-B 280 (1975), 1511-1514.
[7] R. E. Bruck, A common fixed point theorem for a commuting family of nonexpansive mappings, Pacific J. Math. 53 (1974), 59-71.
[8] R. E. Bruck, On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces, Israel J. Math. 38 (1981), 304-314.
[9] R. DeMarr, Common fixed points for commuting contraction mappings, Pacific J. Math. 13 (1963), 1139-1141.
[10] T. Ibaraki and Y. Takeuchi, New convergence theorems for common fixed points of a wide range of nonlinear mappings, J. Nonlinear Anal. and Optim. 9 (2018), 95-114.
[11] S. Ishikawa, Common fixed points and iteration of commuting nonexpansive mappings, Pacific J. Math. 80 (1979), 493-501.
[12] P. Kocourek, W. Takahashi and J.-C. Yao, Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math. 14 (2010), 2497-2511.
[13] F. Kohsaka, Weak convergence theorem for a sequence of quasinonexpansive type mappings, Nonlinear analysis and Convex Analysis (Hirosaki, 2013), Yokohama Publishers, 2015, 289-300.
[14] F. Kohsaka, Existence and approximation of common fixed points of two hybrid mappings in Hilbert spaces, J. Nonlinear and Convex Anal. 16 (2015), 2193-2205.
[15] F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. 91 (2008), 166177.
[16] R. Kubota and Y. Takeuchi, On DeMarr's common fixed point theorem, Nonlinear Analysis and Convex Analysis (Chiang Rai, 2015), Yokohama Publishers, 2016, 207-209.
[17] P. K. F. Kuhfittig, Common fixed points of nonexpansive mappings by iteration, Pacific J. Math. 97 (1981), 137-139.
[18] J. Linhart, Beiträge zur Fixpunkttheorie nichtexpandierender Operatoren, Monatsh. Math. 76 (1972), 239-249 (German).
[19] T. Shimizu and W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997), 71-83.
[20] K. Shimoji and W. Takahashi, Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math. 5 (2001), 387-404.
[21] T. Suzuki, Strong convergence theorem to common fixed points of two nonexpansive mappings in general Banach spaces, J. Nonlinear Convex Anal. 3 (2002), 381-391.
[22] T. Suzuki, Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory and Applications (2005), 103-123.
[23] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
[24] W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal. 11 (2010), 79-88.
[25] W. Takahashi and Y. Takeuchi, Nonlinear ergodic theorem without convexity for generalized hybrid mappings in a Hilbert space, J. Nonlinear Convex Anal. 12 (2011), 399-406.
[26] Y. Takeuchi, An iteration scheme finding a common fixed point of commuting two nonexpansive mappings in general Banach spaces, Linear and Nonlinear Anal. 2 (2016), 317-327.

Takanori Ibaraki
Department of Mathematics Education, Yokohama National University, 79-2 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
E-mail: ibaraki@ynu.ac.jp
Yukio Takeuchi
Takahashi Institute for Nonlinear Analysis 1-11-11 Nakazato, Minami, Yokohama 232-0063, Japan
E-mail: aho314159@yahoo.co.jp

