
Yokohama Mathematical
Journal Vol. 66, 2020

A MEAN CONVERGENCE THEOREM FINDING

A COMMON ATTRACTIVE POINT OF TWO

NONLINEAR MAPPINGS

By

Takanori Ibaraki and Yukio Takeuchi

(Received June 21, 2019; Revised February 27, 2020)

Abstract. In this article, we present a mean convergence theorem finding a
common attractive point of commutative nonlinear self–mappings S and T on a
bounded subset of a Hilbert apace, where S is λ–hybrid and T is µ–hybrid with
real numbers λ, µ.

1. Introduction

In this article, N and N0 denote the sets of all positive integers and all non–

negative integers, respectively. N(i, j) denotes the set {k ∈ N0 : i ≤ k ≤ j} for

all i, j ∈ N0 with i ≤ j. R denotes the set of all real numbers. Unless otherwise

noted, H always denotes a real Hilbert space with inner product ⟨·, ·⟩ and norm

∥ · ∥ derived from ⟨·, ·⟩, and C always denotes a non–empty subset of H.

Let T be a mapping from C into H. Then, T 0 denotes the identity mapping

on C, and F (T ) denotes the set of all fixed points of T , that is, F (T ) = {x ∈
C : x = Tx}. T is called nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ C.

PC denotes the metric projection from H onto C when C is closed and convex.

In 1963, DeMarr [9] proved a common fixed point theorem for a family of

commuting nonexpansive self–mappings in a Banach space; for an elementary

proof, see Kubota and Takeuchi [16]. After DeMarr, many researchers studied

for common fixed points of families of nonexpansive mappings; see Linhart [18],

Bruck [7, 8], Ishikawa [11], Kuhfittig [17], Shimoji and Takahashi [20], Suzuki [22],

and so on. On the other hand, in 1975, Baillon [6] proved the following mean

convergence theorem which is well–known as the first nonlinear ergodic theorem

in a Hilbert space.

THEOREM B. Let C be a bounded closed and convex subset of a Hilbert space

H and let T be a nonexpansive self–mapping on C. Let {bn} be the sequence in
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C defined by

v1 ∈ C, vn+1 = Tvn, bn = 1
n

∑n
k=1 vk for each n ∈ N.

Then, the sequence {bn} converges weakly to a fixed point of T .

After Baillon, many mean convergence theorems appeared.

Recently, some wide classes of nonlinear mappings were introduced. Aoyama

and co–authors [2] introduced the class of λ–hybrid mappings for λ ∈ R. Ko-

courek and co–authors [12] introduced the class of generalized hybrid map-

pings. In a different direction, Aoyama [1] and Kohsaka [13] presented con-

vergence theorems for quasi–nonexpansive type mappings. In 2010, Takahashi

and Takeuchi [25] introduced the notion of an attractive point of a mapping T .

They denote by A(T ) the set of all attractive points of T . Then, they proved the

following mean convergence theorem finding an attractive point of a generalized

hybrid mapping without closedness and convexity of its domain.

THEOREM TT. Let C be a subset of a Hilbert space H and T be a generalized

hybrid self–mapping on C. Let {vn} and {bn} be sequences defined by

v1 ∈ C, vn+1 = Tvn, bn = 1
n

∑n
k=1 vk for each n ∈ N.

Suppose {vn} is bounded. Then the following hold:

(1) A(T ) is non-empty, closed and convex.

(2) {bn} converges weakly to u ∈ A(T ), where u = limn PA(T )vn.

Remark. In the case when C is closed and convex, u ∈ F (T ) holds.

In 1997, Shimizu and Takahashi [19] considered for common fixed points of a

finite family of commutative nonexpansive mappings. Then, they introduced an

iteration scheme combined Halpern type and Baillon type, and proved a strong

convergence theorem in Hilbert spaces. In 1998, Atsushiba and Takahashi [4]

considered common fixed points of commutative two nonexpansive mappings.

They introduced an iteration scheme combined Mann type and Baillon type,

and proved a weak convergence theorem in uniformly convex Banach spaces.

Motivated by [4], Suzuki [21] presented a result in general Banach spaces; also

see Takeuchi [26]. Atsushiba and Takahashi [5] presented a mean convergence

theorem finding a common attractive point of commutative two nonexpansive

mappings in Hilbert spaces; also see Ibaraki and Takeuchi [10].

Very recently, Kohsaka [14] presented some extensions of main results in [19]

and [4], in Hilbert spaces. Kohsaka [14] also presented the following theorem.
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THEOREM K. Let C be a bounded closed and convex subset of a Hilbert space

H. Let S be a λ–hybrid self–mapping and T be a µ–hybrid self–mapping on C

with λ, µ ∈ R. Let F = F (S) ∩ F (T ). Assume ST = TS. Let {xn} be the

sequence defined by

x1 ∈ C, xn+1 =
1

(n+1)2

∑n
i=0

∑n
j=0 S

iT jx1 for each n ∈ N.

Then the following hold:

(1) {PFS
iT jx1}(i,j)∈N2

0
converges strongly to an element u of F .

(2) {xn} converges weakly to u ∈ F .

Remark. Of course, we can replace the boundedness of C by F ̸= ø.

Motivated by the works as above, we present a mean convergence theorem

finding a common attractive point of commutative nonlinear mappings S and T

on a bounded subset of a Hilbert apace, where S is λ–hybrid and T is µ–hybrid

with λ, µ ∈ R.

2. Preliminaries

Let H be a Hilbert space. Then, we know the following:

(1) A bounded closed and convex subset C of H is weakly compact. A

bounded sequence in H has a weakly convergent subsequence.

(2) Let {un} be a sequence in H and z be a point in H. Then {un} converges

weakly to z ∈ H if every weak cluster point of {un} and z are the same.

(3) Let C be a closed and convex subset of H. Then, for each x ∈ H, there is

a unique point zx of C satisfying ∥x−zx∥ = inf{∥x−z∥ : z ∈ C}. zx is called the

unique nearest point of C to x. Define a mapping PC by PCx = zx for x ∈ H.

PC is called the metric projection from H onto C. For each x ∈ H and y ∈ C,

the following holds:

0 ≤ ⟨x− PCx, PCx− y⟩ and ∥x− PCx∥2 + ∥PCx− y∥2 ≤ ∥x− y∥2.

Of course, PCx = x for all x ∈ C. It is known that PC is nonexpansive. We

presented some basic facts needed in the sequel; for details, see Takahashi [23].

Let C be a subset of H and T be a mapping from C into H. A(T ) denotes

the set of all attractive points of T , that is, A(T ) = {x ∈ H : ∥Ty − x∥ ≤
∥x − y∥ for all y ∈ C}; see Takahashi and Takeuchi [25]. T is called quasi-

nonexpansive if F (T ) ̸= ø and ∥Tx− y∥ ≤ ∥x− y∥ for all x ∈ C and y ∈ F (T ),

that is, ø ̸= F (T ) ⊂ A(T ). Then T is quasi-nonexpansive if T is nonexpansive

and F (T ) ̸= ø.
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Here, we show an example in Atsushiba and co–authors [3] which represents

properties of the sets of attractive points for two typical nonexpansive mappings.

EXAMPLE 2.1. Let D be the bounded subset {(x1, x2) ∈ R2 : 1 < x2
1+x2

2 < 4}
of the 2–dimensional Euclidean space R2. Then D is neither closed nor convex.

Let α ∈ (0, 2π). Let S and T be nonexpansive self–mappings on D such that, for

each

(x1, x2) ∈ D,

S(x1, x2) = (−x1, x2), T (x1, x2) = (x1 cosα− x2 sinα, x1 sinα + x2 cosα).

Then, we can easily see

F (S) = {(x1, x2) ∈ R2 : x1 = 0, 1 < |x2| < 2}, F (T ) = ø,

A(S) = {(x1, x2) ∈ R2 : x1 = 0}, A(T ) = {(0, 0)}.

So, F (S) consists of two line segments and F (T ) = ø. On the other hand, A(S)

is the symmetric axis of this transformation S and A(T ) is the center of this

rotation T .

Consider sequences {vn}, {un} in C, and {bn}, {cn} in H as below:

v1 = (y1, y2), u1 = (y′1, y
′
2) ∈ D,

vn+1 = Snvn, bn = 1
n

∑n
i=1 vn, un+1 = T nun, cn = 1

n

∑n
i=1 un for all n ∈ N.

By simple calculations, we see that {bn} and {cn} converge strongly to v =

(0, y2) ∈ A(S) and u = (0, 0) ∈ A(T ), respectively. Obviously, v = (0, y2) is not

always a point in F (S). Also, u = (0, 0) is not in D, that is, u = (0, 0) ̸∈ F (T ).

Aoyama and co–authors [2] introduced the class of λ–hybrid mappings for

λ ∈ R. Let λ ∈ R. Then T is called λ–hybrid if

(λh) ∥Tx− Ty∥2 ≤ ∥x− y∥2 + 2(1− λ)⟨x− Tx, y − Ty⟩ for all x, y ∈ C.

For example, Kohsaka [14] use the following expression: Let S be a λ–hybrid

self–mapping on C and T be a µ–hybrid self–mapping on C. However, to avoid

confusion, we call T (λ)–hybrid if there is λ ∈ R satisfying (λh). Then the

expression becomes as below: Let S and T be (λ)–hybrid self–mappings on C

with λ and µ. It is easy to confirm that a (λ)–hybrid mapping T is quasi–

nonexpansive if F (T ) ̸= ø.

Also, Kocourek and co–authors [12] introduced the class of generalized hybrid

mappings. T is called generalized hybrid if there exist α, β ∈ R such that

α∥Tx−Ty∥2+(1−α)∥x−Ty∥2 ≤ β∥Tx−y∥2+(1−β)∥x−y∥2 for all x, y ∈ C.
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The class of generalized hybrid mappings is wider than the class of (λ)–hybrid

mappings. Nevertheless, the class of (λ)–hybrid mappings contains some impor-

tant classes of nonlinear mappings. For example, a nonexpansive mapping is

1–hybrid, that is, (λ)–hybrid. Also, a nonspreading mapping is 0–hybrid and

a hybrid mapping is 1/2–hybrid; the class of nonspreading mappings was intro-

duced by Kohsaka and Takahashi [15], and the class of hybrid mappings was

introduced by Takahashi [24]. Furthermore, since the last term in (λh) is written

by inner product, it is easy to deal with. From these reasons, in this article, we

mainly consider (λ)–hybrid mappings.

3. Lemmas

The following lemmas are due to Takahashi and Takeuchi [25].

LEMMA 3.1. Let C be a subset of H and T be a mapping from C into H. Then,

A(T ) is a closed and convex subset of H.

LEMMA 3.2. Let C be a subset of H and T be a self mapping on C. Suppose x

is a point in A(T ) and zx is the unique nearest point of C to x. Then zx ∈ F (T ).

In particular, A(T ) ∩ C ⊂ F (T ). Furthermore, A(T ) ∩ C = F (T ) holds if

F (T ) ⊂ A(T ).

Maybe the following lemma is well–known.

LEMMA 3.3. Let x, v, w be points in H. Then, the following equality holds:

⟨(x− v) + (x− w), v − w⟩ = ∥x− w∥2 − ∥x− v∥2.

Proof. Fix any x, v, w ∈ H. Then we easily have

⟨(x− v) + (x− w), v − w⟩ = ⟨(x− v) + (x− w), (v − x) + (x− w)⟩
= ∥x− w∥2 − ∥x− v∥2 + ⟨x− v, x− w⟩+ ⟨x− w, v − x⟩
= ∥x− w∥2 − ∥x− v∥2.

REMARK 3.4. Let {zi} be a sequence in H and set sn = 1
n

∑n
i=1 zi for each

n ∈ N . Then, for each n ∈ N , the following equality follows immediately from

Lemma 3.3:

⟨(sn − v) + (sn − w), v − w⟩ = 1
n

∑n
i=1 ∥zi − w∥2 − 1

n

∑n
i=1 ∥zi − v∥2.

The following lemma is essentially due to Takahashi and Takeuchi [25].
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LEMMA 3.5. Let C be a subset of H and T be a mapping from C into H. Let

{un} be a sequence in H which satisfies

lim supn supy∈C⟨(un − y) + (un − Ty), y − Ty⟩ ≤ 0.

Suppose {un} converges weakly to some point u ∈ H. Then, u ∈ A(T ).

Proof. Since {un} converges weakly to u ∈ H, by Lemma 3.3, we have

∥u− Tx∥2 − ∥u− x∥2 = ⟨(u− x) + (u− Tx), x− Tx⟩
= lim supn⟨(un − x) + (un − Tx), x− Tx⟩
≤ lim supn supy∈C⟨(un − y) + (un − Ty), y − Ty⟩ ≤ 0

for every x ∈ C. This implies u ∈ A(T ).

4. A mean convergence theorem

We need some lemmas to gain our end. Lemma 4.2 is a half of the proof of

our main result; Lemma 4.5 is another half. We prepare Lemma 4.1 to prove

Lemma 4.2.

LEMMA 4.1. Let C be a bounded subset of H. Set L = sup{∥x−y∥ : x, y ∈ C}.
Let S be a (λ)–hybrid self–mapping on C with λ. Let T be a self–mapping on C.

For each n ∈ N , define a mapping Sn from C into H by

Sn = 1
n2

∑n−1
i=0

∑n−1
j=0 S

iT j.

Then, for each n ∈ N , the following holds:

supx,y∈C⟨(Snx− y) + (Snx− Sy), y − Sy⟩ ≤ 1+2|1−λ|
n

L2.

Proof. Fix any x, y ∈ C and n ∈ N . We easily have

|
∑n−1

i=1 ⟨Si−1x− Six, y − Sy⟩| = |⟨x− Sn−1x, y − Sy⟩|
≤ ∥x− Sn−1x∥∥y − Sy∥ ≤ L2.

Since S is (λ)–hybrid with λ, we have

1
n

∑n−1
i=0 ∥Six− Sy∥2 = 1

n
∥x− Sy∥2 + 1

n

∑n−1
i=1 ∥Six− Sy∥2(4.1)

≤ 1
n
L2 + 1

n

∑n−2
i=0 ∥Six− y∥2 + 2(1−λ)

n

∑n−1
i=1 ⟨Si−1x− Six, y − Sy⟩

≤ 1
n
L2 + 2|1−λ|

n
× L2 + 1

n

∑n−1
i=0 ∥Six− y∥2.
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In Remark 3.4, set zi = Si−1x ∈ C, w = Sy and v = y. Then, by (4.1), we have

⟨( 1
n

∑n−1
i=0 Six− y) + ( 1

n

∑n−1
i=0 Six− Sy), y − Sy⟩(4.2)

= 1
n

∑n−1
i=0 ∥Six− Sy∥2 − 1

n

∑n−1
i=0 ∥Six− y∥2 ≤ 1+2|1−λ|

n
L2.

Fix any j ∈ N(0, n− 1) and replace x by T jx in (4.2). Then we have

⟨( 1
n

∑n−1
i=0 SiT jx− y) + ( 1

n

∑n−1
i=0 SiT jx− Sy), y − Sy⟩ ≤ 1+2|1−λ|

n
L2.(4.3)

Also, we know the following: 1
n

∑n−1
j=0 (

1
n

∑n−1
i=0 SiT jx) = 1

n2

∑n−1
i=0

∑n−1
j=0 S

iT jx =

Snx. Then, since (4.3) holds for any j ∈ (0, n− 1), we have

⟨(Snx− y) + (Snx− Sy), y − Sy⟩ ≤ 1+2|1−λ|
n

L2.

Finally, since x, y, n are arbitrary, we see that, for each n ∈ N ,

supx,y∈C⟨(Snx− y) + (Snx− Sy), y − Sy⟩ ≤ 1+2|1−λ|
n

L2.

LEMMA 4.2. Let C be a bounded subset of H. Let S and T be self–mappings

on C. For each n ∈ N , define a mapping Sn from C into H by

Sn = 1
n2

∑n−1
i=0

∑n−1
j=0 S

iT j.

Let x1 be a point in C. Then the sequence {Snx1} is bounded. Suppose further

that S is (λ)–hybrid with λ. Then, the following hold:

(1) lim supn supx,y∈C⟨(Snx− y) + (Snx− Sy), y − Sy⟩ ≤ 0.

(2) A(S) is non–empty closed and convex.

Every weak cluster point of {Snx1} is a point in A(S).

Furthermore, in the case when C is closed and convex, the following holds:

(3) F (S) is non–empty closed and convex.

Every weak cluster point of {Snx1} is a point in F (S).

Proof. Set L = sup{∥x− y∥ : x, y ∈ C}. Consider the sequence {Snx1}. Fix any

y ∈ C and n ∈ N . By SiT jx1 ∈ C for i, j ∈ N(0, n− 1), we see that

∥Snx1 − y∥ ≤ 1
n2

∑n−1
i=0

∑n−1
j=0 ∥SiT jx1 − y∥ ≤ 1

n2

∑n−1
i=0

∑n−1
j=0 L = L.

Then {Snx1} is bounded. We show (1). By lim supn
1+2|1−λ|

n
L2 = 0 and

Lemma 4.1, we immediately have the result. We show (2). We know that {Snx1}
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has a weakly convergent subsequence. Let {Snk
x1} be a subsequence of {Snx1}

which converges weakly to some u ∈ H. By (1), we know

lim supk supy∈C⟨(Snk
x1 − y) + (Snk

x1 − Sy), y − Sy⟩ ≤ 0.

By Lemma 3.5, we see u ∈ A(S); A(S) ̸= ø. By Lemma 3.1, A(S) is closed and

convex. We show (3). We know that A(S) is closed and convex. Let {Snk
x1}

be a subsequence of {Snx1} which converges weakly to some u ∈ H. We also

know u ∈ A(S). Since C is closed and convex, C is weakly closed and {Snx1} is

a sequence in C. Then, we see u ∈ A(S) ∩ C; A(S) ∩ C ̸= ø. By Lemma 3.2,

we know A(S) ∩ C ⊂ F (S). Since S is (λ)–hybrid, we also know F (S) ⊂ A(S).

So, A(S) ∩ C = F (S). Since A(S) and C are closed and convex, we see that (3)

holds.

We know that N2
0 = {(i, j) : i, j ∈ N0} is a directed set by the binary relation:

(k, l) ≤ (i, j) if k ≤ i and l ≤ j.

Let C be a subset of H and x1 ∈ C. Let S and T be self–mappings on C. For

example, {SiT jx1}(i,j)∈N2
0
is a net in C; we denote {SiT jx1}(i,j)∈N2

0
by {SiT jx1}.

REMARK 4.3. In Lemma 4.2, {Snx1} is bounded if {SiT jx1} is bounded.

The proof of Lemma 4.4 is referred to Kohsaka [14]; also refer to Aoyama [1].

LEMMA 4.4. Let C be a subset of H and x1 be a point in C. Let S and T

be self–mappings on C. For each n ∈ N , define a mapping Sn from C into H

by Sn = 1
n2

∑n−1
i=0

∑n−1
j=0 S

iT j. Suppose A = A(S) ∩ A(T ) ̸= ø and every weak

cluster point of the sequence {Snx1} is a point in A. For simplicity, we denote

SiT jx1 by ui,j for all (i, j) ∈ N2
0 . Then the following hold:

(1) There is c ∈ [0,∞) satisfying lim(i,j) ∥PAui,j − ui,j∥ = c.

(2) There is an M ∈ [0,∞) such that ∥PAui,j − ui,j∥ ≤ M for all (i, j) ∈ N2
0 .

(3) There is u0 ∈ A satisfying lim(i,j) ∥PAui,j − u0∥ = 0 and

⟨w − u0, ui,j − PAui,j ⟩ ≤ ∥PAui,j − u0∥M for all (i, j) ∈ N2
0 and w ∈ A.

(4) limn
1
n2

∑n−1
i=0

∑n−1
j=0 ∥PAui,j − u0∥ = 0.

(5) { 1
n2

∑n−1
i=0

∑n−1
j=0 PAui,j} converges strongly to u0 ∈ A.

(6) {Snx1} converges weakly to u0 ∈ A.

(7) In the case when C is closed and convex, u0 ∈ F = F (S) ∩ F (T ).

Proof. It is obvious that {ui,j} is a net in C satisfying

(4.4) ∥ui,j − u∥ ≤ ∥uk,l − u∥ whenever u ∈ A, (k, l) ≤ (i, j).
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Since A is closed and convex, we can consider the metric projection PA from H

onto A. Recall properties of PA. Reconfirm the following: For each x ∈ H and

y ∈ A,

⟨x− PAx, y − PAx⟩ ≤ 0 and ∥PAx− y∥2 ≤ ∥x− y∥2 − ∥x− PAx∥2.

We show (1). Fix any (i, j), (k, l) ∈ N2
0 with (k, l) ≤ (i, j). By PAui,j, PAuk,l ∈

A, the definition of PA and (4.4), we have

(4.5) ∥PAui,j − ui,j∥ ≤ ∥PAuk,l − ui,j∥ ≤ ∥PAuk,l − uk,l∥.

From this, {∥PAui,j − ui,j∥} converges. Then, there is a real number c ∈ [0,∞)

satisfying lim(i,j) ∥PAui,j − ui,j∥ = c. We show (2). Fix any (i, j) ∈ N2
0 and

u ∈ A. By (4.4), we know ∥ui,j − u∥ ≤ ∥u0,0 − u∥. Set M = 2∥u0,0 − u∥. Then

we have

∥PAui,j − ui,j∥ ≤ ∥PAui,j − PAu∥+ ∥u− ui,j∥ ≤ 2∥ui,j − u∥ ≤ M.

We show (3). Fix any (i, j), (k, l) ∈ N2
0 with (k, l) ≤ (i, j). By ui,j ∈ H,

PAuk,l ∈ A and properties of PA, we know

∥PAui,j − PAuk,l∥2 ≤ ∥ui,j − PAuk,l∥2 − ∥ui,j − PAui,j∥2.

By (4.5), we have

∥PAui,j − PAuk,l∥2 ≤ ∥uk,l − PAuk,l∥2 − ∥ui,j − PAui,j∥2.

Then, by lim(i,j) ∥PAui,j − ui,j∥ = c, we see that {PAui,j} is a Cauchy net in A.

Since A is closed, there is u0 ∈ A satisfying lim(i,j) ∥PAui,j − u0∥ = 0.

Fix any w ∈ A. By (2) and ⟨w − PAui,j, ui,j − PAui,j ⟩ ≤ 0, we have

⟨w − u0, ui,j − PAui,j ⟩
= ⟨w − PAui,j, ui,j − PAui,j ⟩+ ⟨PAui,j − u0, ui,j − PAui,j⟩
≤ ⟨PAui,j − u0, ui,j − PAui,j⟩ ≤ ∥PAui,j − u0∥∥ui,j − PAui,j∥
≤ ∥PAui,j − u0∥M.

We show (4). Fix any ε > 0. By (3), there is a (k, l) ∈ N2
0 satisfying ∥PAui,j −

u0∥ < ε/2 for all (i, j) ∈ N2
0 with (k, l) ≤ (i, j). For each n ∈ N satisfying

(k, l) < (n, n), set

Bn = {(i, j) ∈ N2
0 : i, j ∈ N(0, n− 1)}, B(k,l)≤ = {(i, j) ∈ Bn : (k, l) ≤ (i, j)},

B<k = {(i, j) ∈ Bn : i ∈ N(0, k − 1)}, B<l = {(i, j) ∈ Bn : j ∈ N(0, l − 1)}.
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Then, it is obvious that

1
n2

∑n−1
i=0

∑n−1
j=0 ∥PAui,j − u0∥

≤ 1
n2 (

∑
B(k,l)≤

∥PAui,j − u0∥+
∑

B<k
∥PAui,j − u0∥+

∑
B<l

∥PAui,j − u0∥)

< ε
2
+ nk

n2 ∥u0,0 − u0∥+ nl
n2 ∥u0,0 − u0∥.

For sufficiently large n ∈ N , we know k
n
∥u0,0 − u0∥+ l

n
∥u0,0 − u0∥ < ε/2, that is,

0 ≤ 1
n2

∑n−1
i=0

∑n−1
j=0 ∥PAui,j − u0∥ < ε.

We show (5). It is obvious that the following holds:

∥ 1
n2

∑n−1
i=0

∑n−1
j=0 PAui,j − u0∥ ≤ 1

n2

∑n−1
i=0

∑n−1
j=0 ∥PAui,j − u0∥.

Then, by (4), we have the result.

We show (6). In the proof of (2), we already know that {ui,j} is bounded.

Then, by Remark 4.3, {Snx1} is bounded and has a weakly convergent subse-

quence.

Let {Snk
x1} be a subsequence of {Snx1} converging weakly to some w′ ∈ H.

By our assumptions, w′ ∈ A holds. Then, by (3), we see that, for each k ∈ N ,

⟨w′ − u0, Snk
x1 − 1

n2
k

∑nk−1
i=0

∑nk−1
j=0 PAui,j ⟩

=
⟨
w′ − u0,

1
n2
k

∑nk−1
i=0

∑nk−1
j=0 ui,j − 1

n2
k

∑nk−1
i=0

∑nk−1
j=0 PAui,j

⟩
= 1

n2
k

∑nk−1
i=0

∑nk−1
j=0 ⟨w′ − u0, ui,j − PAui,j ⟩

≤ 1
n2
k

∑nk−1
i=0

∑nk−1
j=0 ∥PAui,j − u0∥M.

Since {Snk
x1} converges weakly to w′, by (4) and (5), this inequality asserts

∥w′ − u0∥2 = limk⟨w′ − u0, Snk
x1 − 1

n2
k

∑nk−1
i=0

∑nk−1
j=0 PAui,j ⟩ ≤ 0.

Thus we see that every weak cluster point of {Snx1} and u0 are the same. This

implies that {Snx1} itself converges weakly to u0 ∈ A.

We show (7). Since C is closed and convex, C is weakly closed and Snx1 ∈ C

for all n ∈ N . Then, u0 ∈ A(S) ∩ A(T ) ∩ C. By Lemma 3.2, we see u0 ∈
F (S) ∩ F (T ) = F .

Lemma 4.5 is an abstract of Lemma 4.4.

LEMMA 4.5. Let C be a subset of H and x1 be a point in C. Let S and T

be self–mappings on C. For each n ∈ N , define a mapping Sn from C into

H by Sn = 1
n2

∑n−1
i=0

∑n−1
j=0 S

iT j. Suppose A = A(S) ∩ A(T ) ̸= ø and every

weak cluster point of {Snx1} is a point in A. Then {Snx1} converges weakly to

u0 ∈ A, where u0 = lim(i,j) PAS
iT jx1. When C is closed and convex, u0 ∈ F =

F (S) ∩ F (T ) holds.
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The following is our main result.

THEOREM 4.6. Let C be a bounded subset of H and x1 be a point in C. Let S

and T be (λ)–hybrid self–mappings on C with λ and µ which satisfy ST = TS.

For each n ∈ N , define a mapping Sn by Sn = 1
n2

∑n−1
i=0

∑n−1
j=0 S

iT j. Then, the

following hold:

(1) A = A(S) ∩ A(T ) is non–empty, closed and convex.

(2) {Snx1} converges weakly to u0 ∈ A, where u0 = lim(i,j) PAS
iT jx1.

(3) In the case when C is closed and convex, u0 ∈ F = F (S) ∩ F (T ).

Remark. In (2), u0 ∈ F = F (S) ∩ F (T ) holds if u0 ∈ C.

Proof. By ST = TS, we know Sn = 1
n2

∑n−1
i=0

∑n−1
j=0 S

iT j = 1
n2

∑n−1
j=0

∑n−1
i=0

T jSi for all n ∈ N . By Lemma 4.2, {Snx1} is bounded. Let {Snk
x1} be a

subsequence of {Snx1} which converges weakly to some w ∈ H. By ST = TS,

Lemma 4.2 (2) asserts w ∈ A = A(S) ∩ A(T ). So, A is non–empty, closed and

convex. Lemma 4.2 (2) also asserts that every weak cluster point of {Snx1} is a

point in A.

Thus, by Lemma 4.5, we have the desired results. In (2), despite of the

absence of closedness and convexity of C, u0 ∈ F is guaranteed if u0 ∈ C.

Because, by Lemma 3.2, we know A∩C = (A(S)∩A(T ))∩C ⊂ F (S)∩F (T ) = F .

Theorem 4.6 is an existence and weak convergence theorem. In section 1, we

presented Theorem K due to Kohsaka [14] and Theorem TT due to Takahashi

and Takeuchi [25]. We may regard Theorem 4.6 as an extension of Theorem

K. However, we do not know whether Theorem 4.6 (3) and Theorem K are

exactly the same. Because u0 = lim(i,j) PAS
iT jx1 does not automatically mean

u0 = lim(i,j) PFS
iT jx1. In Theorem 4.6, let T be the identity mapping. Then,

we have a mean convergence theorem for a (λ)–hybrid self–mapping S on C. We

know that Theorem TT does not follow from this theorem. So, Theorem 4.6 is

not an extension of Theorem TT. Nevertheless, the class of (λ)–hybrid mappings

also contains some important classes of nonlinear mappings.

5. Examples

In this section, we present some examples to support the main issue. In

advance, recall the following: a nonexpansive mapping, a nonspreading mapping,

and a hybrid mapping are (λ)–hybrid, in the Hilbert space setting. We note that

the class of nonspreading mappings was first defined in a smooth, strictly convex
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and reflexive Banach space.

Let C be a subset of a Hilbert space H and U be a mapping from C into H.

Then, from Kohsaka and Takahashi [15], U is called nonspreading if

2∥Ux− Uy∥2 ≤ ∥Ux− y∥2 + ∥Uy − x∥2 for all x, y ∈ C.(5.1)

Also, from Takahashi [24], U is called hybrid if

3∥Ux− Uy∥2 ≤ ∥x− y∥2 + ∥Ux− y∥2 + ∥Uy − x∥2 for all x, y ∈ C.(5.2)

EXAMPLE 5.1.

Let C be the bounded subset {(x1, x2) ∈ R2 : |x1| ∈ [0, 1
2
), |x2| ∈ [0, 1

4
|x1| +

3
8
)} of the Euclidean space R2. Then, C is neither closed nor convex.

Let S and T be self–mappings on C such that, for each (x1, x2) ∈ C,

S(x1, x2) = (−x1, x2), T (x1, x2) = (−x1,−x2).

It is easy to see that S and T are nonexpansive. We confirm that S and T

are neither nonspreading nor hybrid. Let x = (0.2, 0.1), y = (−0.2, 0.1), x =

(0.2,−0.1) and y = (−0.2,−0.1). Then, x, x, y, y ∈ C, Sx = y, Sy = x, Tx = y

and Ty = x. We see

∥Sx− Sy∥2 = ∥x− y∥2 = ∥(0.4, 0)∥2 = 0.16,

∥Sx− y∥2 = ∥y − y∥2 = 0 = ∥x− x∥2 = ∥Sy − x∥2,
∥Tx− Ty∥2 = ∥y − x∥ = ∥(−0.4, 0)∥2 = 0.16 = ∥(0.4, 0)∥2 = ∥x− y∥2,
∥Tx− y∥2 = ∥y − y∥2 = ∥(0,−0.2)∥2 = 0.04 = ∥x− x∥2 = ∥Ty − x∥2.

These imply that S and T satisfy neither (5.1) nor (5.2).

Consider the self–mapping U on C such that, for each (x1, x2) ∈ C,

U(x1, x2) = (x1, |x1|x2).

Obviously, U is not nonexpansive, SU = US and TU = UT . Also, we see

A(S) = {(x1, x2) ∈ R2 : x1 = 0}, F (S) = {(x1, x2) ∈ C : x1 = 0},
A(T ) = {(0, 0)}, F (T ) = {(0, 0)},
A(U) = {(x1, x2) ∈ R2 : x2 = 0}, F (U) = {(x1, x2) ∈ C : x2 = 0}.

We confirm that U is nonspreading; we are not interested in whether U is

hybrid here. Let x = (x1, x2) and y = (y1, y2) be points in C. In the case of

x2y2 < 0, by considering the positional relation of x, y, Ux and Uy, obviously
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(5.1) holds. There remains the case of x2y2 ≥ 0. Assume x2y2 ≥ 0. By Ux =

(x1, |x1|x2) and Uy = (y1, |y1|y2), we have

∥Ux− Uy∥2 = ∥(x1 − y1, |x1|x2 − |y1|y2)∥2 = (x1 − y1)
2 + (|x1|x2 − |y1|y2)2,

∥Ux− y∥2 = ∥(x1 − y1, |x1|x2 − y2)∥2 = (x1 − y1)
2 + (|x1|x2 − y2)

2,

∥Uy − x∥2 = ∥(y1 − x1, |y1|y2 − x2)∥2 = (y1 − x1)
2 + (|y1|y2 − x2)

2.

Set k, l,m ∈ R as below:

k = (|x1|x2 − |y1|y2)2 = x2
1x

2
2 + y21y

2
2 − 2|x1||y1|x2y2,

l = (|x1|x2 − y2)
2 = y22 + x2

1x
2
2 − 2|x1|x2y2,

m = (|y1|y2 − x2)
2 = x2

2 + y21y
2
2 − 2|y1|x2y2.

Recall |x1|, |y1| ∈ [0, 1/2). Then, we see |x1|+ |y1| − 2|x1||y1| < 1/2 by

|x1|+ |y1| − 2|x1||y1| − 1
2

= 1
2
(2|x1| − 1) + |y1|(1− 2|x1|) = (1− 2|x1|)(|y1| − 1

2
) < 0.

Thus, by x2
1, y

2
1 < 1/4 < 1/2 and 0 ≤ x2y2, we see that U satisfies (5.1):

l +m− 2k

= x2
2 + y22 − x2

1x
2
2 − y21y

2
2 − 2x2y2(|x1|+ |y1| − 2|x1||y1|)

≥ x2
2 + y22 − 1

2
x2
2 − 1

2
y22 − x2y2 =

1
2
x2
2 +

1
2
y22 − x2y2 =

1
2
(x2 − y2)

2 ≥ 0,

2∥Ux− y∥2

= 2(x1 − y1)
2 + 2k ≤ 2(x1 − y1)

2 + l +m = ∥Ux− y∥2 + ∥Uy − x∥2.

Let x be a point in C. We know the following:

◦ F (S) ∩ F (U) = A(S) ∩ A(U) = {(0, 0)} ⊂ C.

◦ F (T ) ∩ F (U) = A(T ) ∩ A(U) = {(0, 0)} ⊂ C.

Then, from the argument so far, Theorem 4.6 asserts the following:

◦ { 1
n2

∑n−1
i=0

∑n−1
j=0 S

iU jx} converges strongly to u0 = (0, 0) ∈ F (S) ∩ F (U).

◦ { 1
n2

∑n−1
i=0

∑n−1
j=0 T

iU jx} converges strongly to v0 = (0, 0) ∈ F (T ) ∩ F (U).

Note that the strong topology and the weak topology are coincide in our setting.
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EXAMPLE 5.2.

Let D be the bounded subset {(x1, x2) ∈ R2 : 1 ≤ max{|x1|, |x2|} < 2} of the

Euclidean space R2. Define subsets D1, D2, D3 of D by

D1 = {(x1, x2) ∈ D : |x1| < 1}, D2 = {(x1, x2) ∈ D : |x2| < 1},
D3 = {(x1, x2) ∈ D : |x1| ≥ 1, |x2| ≥ 1}.

D is neither closed nor convex. D and the disjoint union of {D1, D2, D3} are

coincide.

Let S and T be self–mappings on D such that, for each (x1, x2) ∈ D,

S(x1, x2) = (−x1, x2), T (x1, x2) = (−x1,−x2).

It is easy to see that S and T are nonexpansive, and

A(S) = {(x1, x2) ∈ R2 : x1 = 0}, A(T ) = {(0, 0)},
F (S) = {(x1, x2) ∈ D : x1 = 0, 1 ≤ |x2| < 2}, F (T ) = ø.

Consider the following self–mapping U on D:

U(x1, x2) = (x1,
x2

2
+ x2

2|x2|) when (x1, x2) ∈ D1,

U(x1, x2) = (x1

2
+ x1

2|x1| , x2) when (x1, x2) ∈ D2,

U(x1, x2) = ( x1

|x1| ,
x2

|x2|) when (x1, x2) ∈ D3.

Then, we can easily confirm

A(U) = {(x1, x2) ∈ R2 : max{|x1|, |x2|} ≤ 1},
F (U) = {(x1, x2) ∈ D : max{|x1|, |x2|} = 1}.

It is also easy to see that SU = US, TU = UT and the following:

A(S) ∩ A(U) = {(x1, x2) ∈ R2 : x1 = 0, |x2| ≤ 1}, A(T ) ∩ A(U) = {(0, 0)},
F (S) ∩ F (U) = {(0, 1), (0,−1)}, F (T ) ∩ F (U) = ø.

We confirm that U is nonspreading. Let x = (x1, x2) and y = (y1, y2) be

points in D. By considering the positional relation of x, y, Ux and Uy, it is

obvious that U satisfies (5.1) in the following cases: x, y ∈ D1 ∪ D2, x, y ∈ D3,

x ∈ D1 and y ∈ D3 with x2y2 < 0, x ∈ D2 and y ∈ D3 with x1y1 < 0. Then,

there remain the following cases: x ∈ D1 and y ∈ D3 with x2y2 ≥ 0, x ∈ D2 and

y ∈ D3 with x1y1 ≥ 0.
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A little thought will tell us that we may consider only the case of x ∈ D1

with x2 ≥ 1 and y ∈ D3 with y1, y2 ≥ 1. In this case, by Ux = (x1,
1
2
x2 +

1
2
),

Uy = (1, 1), and y1 − x1 ≥ 1− x1, we see that U satisfies (5.1):

∥Ux− Uy∥2 = ∥(x1 − 1, 1
2
x2 − 1

2
)∥2 = (x1 − 1)2 + (1

2
)2(x2 − 1)2,

∥Ux− y∥2 = ∥(x1 − y1,
1
2
x2 +

1
2
− y2)∥2

= (x1 − y1)
2 + (1

2
x2 +

1
2
− y2)

2 ≥ (x1 − y1)
2 ≥ (x1 − 1)2,

∥Uy − x∥2 = ∥(1− x1, 1− x2)∥2 = (1− x1)
2 + (1− x2)

2,

2∥Ux− Uy∥2 = 2(x1 − 1)2 + 1
2
(x2 − 1)2

≤ 2(x1 − 1)2 + (x2 − 1)2 ≤ ∥Ux− y∥2 + ∥Uy − x∥2.

We confirm that U is not nonexpansive. Let y = (1, 1.8) ∈ D3. Let {an} be

a sequence in (0, 1) converging to 1. For each n ∈ N , set zn = (an, 1.8) ∈ D1.

It is obvious that {zn} converges strongly to y. On the other hand, we see the

following:

∥Uzn − Uy∥2 = (an − 1)2 + (1.4− 1)2 ≥ (0.4)2 for all n ∈ N.

Then, U is not continuous. So, we see that U is not nonexpansive. Furthermore,

we confirmed that a nonspreading mapping need not be continuous.

Let x be a point in D. From the argument so far, Theorem 4.6 asserts the

following:

◦ { 1
n2

∑n−1
i=0

∑n−1
j=0 S

iU jx} converges strongly to some u0 ∈ A(S) ∩ A(U).

◦ { 1
n2

∑n−1
i=0

∑n−1
j=0 T

iU jx} converges strongly to (0, 0) ∈ A(T ) ∩ A(U).

However, by the absence of closedness and convexity of D, we do not know

whether u0 ∈ F (S) ∩ F (U), even if we know ø ̸= F (S) ∩ F (U) ⊂ A(S) ∩ A(U).
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