ON THE SUPPORT OF THE GROVER WALK ON HIGHER-DIMENSIONAL LATTICES

By

NORIO KONNO AND SARATO TAKAHASHI

(Received January 28, 2020; Revised January 4, 2021)

Abstract. This paper presents the minimum supports of states for stationary measures of the Grover walk on the d-dimensional lattice by solving the corresponding eigenvalue problem. The numbers of the minimum supports for moving and flip-flop shifts are 2^d ($d \ge 1$) and 4 ($d \ge 2$), respectively.

1. Introduction

The quantum walk was introduced by Aharonov et al. [1] as a generalization of the random walk on graphs. On the one-dimensional lattice \mathbb{Z} , where \mathbb{Z} is the set of integers, the properties of quantum walks are well studied, see Konno [6], for example. There are some results on the Grover walk on \mathbb{Z}^2 , such as weak limit theorem by Watabe et al. [8] (moving shift case) and Higuchi et al. [2] (flip-flop shift case), and localization shown by Inui et al. [3] (moving shift case) and Higuchi et al. [2] (flip-flop shift case).

In this paper, we present the minimum support of states for the stationary measures of the Grover walk on \mathbb{Z}^d by solving the corresponding eigenvlaue problem. As for the number of the support of the Grover walk on \mathbb{Z}^d with moving shift, 2^2 (\mathbb{Z}^2 case) and 3^d (\mathbb{Z}^d case with $d \geq 2$) were given in Stefanak et al. [7] and Komatsu and Konno [4] by the Fourier analysis, respectively. Compared with the above-mentioned previous results, the number of our minimum support for \mathbb{Z}^d case with $d \geq 1$ is 2^d (Theorem 1). Moreover, concerning the number of the support of the Grover walk on \mathbb{Z}^d ($d \geq 2$) with flip-flop shift, 4 was obtained in Higuchi et al. [2] by the spectral mapping theorem, which coincides with our result (Theorem 2). Remark that any finite support does not exist for \mathbb{Z} case.

The rest of the paper is as follows. Section 2 is devoted to the definition of the discrete-time quantum walk on \mathbb{Z}^d . Section 3 deals with the stationary measure of the Grover walk on \mathbb{Z}^d . We give main results on minimum support for the Grover walk on \mathbb{Z}^d with moving shift (Theorem 1) in Section 4 and flip-flop shift

(Theorem 2) in Section 5, respectively. Section 6 summarizes our paper.

2. Discrete-time quantum walks on \mathbb{Z}^d

In this section, we give the definition of 2d-state discrete-time quantum walks on \mathbb{Z}^d . The quantum walk is defined by using a shift operator and a unitary matrix. Let \mathbb{C} be the set of complex numbers. For $i \in \{1, 2, ..., d\}$, the shift operator τ_i is given by

$$(\tau_i f)(\boldsymbol{x}) = f(\boldsymbol{x} - \boldsymbol{e}_i) \quad (f : \mathbb{Z}^d \longrightarrow \mathbb{C}^{2d}, \ \boldsymbol{x} \in \mathbb{Z}^d),$$

where $\{e_1, e_2, \ldots, e_d\}$ denotes the standard basis of \mathbb{Z}^d . Let $A = (a_{ij})_{i,j=1,2,\ldots,2d}$ be a $2d \times 2d$ unitary matrix. We call this unitary matrix the coin matrix. To describe the time evolution of the quantum walk, decompose the unitary matrix A as

$$A = \sum_{i=1}^{2d} P_i A,$$

where P_i denotes an orthogonal projection onto the one-dimensional subspace $\mathbb{C}\eta_i$ in \mathbb{C}^{2d} . Here $\{\eta_1, \eta_2, \dots, \eta_{2d}\}$ denotes the standard basis on \mathbb{C}^{2d} . The walk associated with the coin matrix A for moving and flip-flop shifts are given by

$$U_{A} = \sum_{i=1}^{d} \left(P_{2i-1} A \tau_{i}^{-1} + P_{2i} A \tau_{i} \right),$$

$$U_{A} = \sum_{i=1}^{d} \left(P_{2i} A \tau_{i}^{-1} + P_{2i-1} A \tau_{i} \right),$$
(2.1)

respectively.

Let $\mathbb{Z}_{\geq} = \{0, 1, 2, \ldots\}$. The state at time $n \in \mathbb{Z}_{\geq}$ and location $\boldsymbol{x} \in \mathbb{Z}^d$ can be expressed by a 2d-dimensional vector:

$$\Psi_n(oldsymbol{x}) = {}^T \left[\Psi_n^1(oldsymbol{x}), \Psi_n^2(oldsymbol{x}), \cdots, \Psi_n^{2d}(oldsymbol{x})
ight] \in \mathbb{C}^{2d},$$

where T denotes a transposed operator. For $\Psi_n : \mathbb{Z}^d \longrightarrow \mathbb{C}^{2d}$ $(n \in \mathbb{Z}_{\geq})$, it follows from Eq. (2.1) that

$$\Psi_{n+1}(\boldsymbol{x}) \equiv (U_A \Psi_n)(\boldsymbol{x}) = \sum_{i=1}^d \Big(P_{2i-1} A \Psi_n(\boldsymbol{x} + \boldsymbol{e}_i) + P_{2i} A \Psi_n(\boldsymbol{x} - \boldsymbol{e}_i) \Big),$$

with moving shift case and

$$\Psi_{n+1}(\boldsymbol{x}) \equiv (U_A \Psi_n)(\boldsymbol{x}) = \sum_{i=1}^d \Big(P_{2i} A \Psi_n(\boldsymbol{x} + \boldsymbol{e}_i) + P_{2i-1} A \Psi_n(\boldsymbol{x} - \boldsymbol{e}_i) \Big),$$

with flip-flop shift case. This equation means that, moving shift case for example, the particle moves at each step one unit to the x_i -axis direction with matrix $P_{2i}A$ or one unit to the $-x_i$ -axis direction with matrix $P_{2i-1}A$. For time $n \in \mathbb{Z}_{\geq}$ and location $\boldsymbol{x} \in \mathbb{Z}^d$, we define the measure $\mu_n(\boldsymbol{x})$ by

$$\mu_n(\boldsymbol{x}) = \|\Psi_n(\boldsymbol{x})\|_{\mathbb{C}^{2d}}^2,$$

where $\|\cdot\|_{\mathbb{C}^{2d}}$ denotes the standard norm on \mathbb{C}^{2d} . Let $\mathbb{R}_{\geq} = [0, \infty)$. Here we introduce a map $\phi: (\mathbb{C}^{2d})^{\mathbb{Z}^d} \longrightarrow (\mathbb{R}_{\geq})^{\mathbb{Z}^d}$ such that if $\Psi_n: \mathbb{Z}^d \longrightarrow \mathbb{C}^{2d}$ and $\boldsymbol{x} \in \mathbb{Z}^d$, thus we get

$$\phi(\Psi_n)({m x}) = \sum_{j=1}^{2d} |\Psi_n^j({m x})|^2 = \mu_n({m x}),$$

namely this map ϕ has a role to transform from amplitudes to measures.

3. Stationary measure of the Grover walk on \mathbb{Z}^d

In this section, we give the definition of the stationary measure for the quantum walk. We define a set of measures, $\mathcal{M}_s(U_A)$, by

$$\mathcal{M}_s(U_A) = \Big\{ \mu \in [0, \infty)^{\mathbb{Z}^d} \setminus \{\mathbf{0}\}; \text{ there exists } \Psi_0 \in (\mathbb{C}^{2d})^{\mathbb{Z}^d} \\ \text{such that } \phi(U_A^n \Psi_0) = \mu \ (n \in \mathbb{Z}_{\geq}) \Big\},$$

where $\mathbf{0}$ is the zero vector. Here U_A is the time evolution operator of quantum walk associated with a unitary matrix A. We call this measure $\mu \in \mathcal{M}_s(U_A)$ the stationary measure for the quantum walk defined by the unitary operator U_A . If $\mu \in \mathcal{M}_s(U_A)$, then $\mu_n = \mu$ for $n \in \mathbb{Z}_{\geq}$, where μ_n is the measure of quantum walk given by U_A at time n.

Next we consider the following eigenvalue problem of the quantum walk determined by U_A :

$$U_A \Psi = \lambda \Psi \quad (\lambda \in \mathbb{C}, \ |\lambda| = 1).$$
 (3.1)

We introduce the set of solutions of Eq. (3.1) for $\lambda \in \mathbb{C}$ with $|\lambda| = 1$ as follows.

$$W(\lambda) = \{ \Psi \neq \mathbf{0} : U_A \Psi = \lambda \Psi \}.$$

Then for $\Psi \in W(\lambda)$, we see that $\phi(\Psi) \in \mathcal{M}_s(U_A)$. If the function Ψ satisfied with $\lambda = 1$ in Eq. (3.1), then Ψ is called the *stationary amplitude*. From now on, we focus on the Grover Walk on \mathbb{Z}^d which is defined by the following $2d \times 2d$ coin matrix $G = (g_{ij})_{i,j=1,2,\ldots,2d}$ with

$$g_{ij} = \frac{1}{d} - \delta_{ij}.$$

Our purpose of this paper is to investigate the support of the 2d-state Grover walk on \mathbb{Z}^d .

4. Grover walk on \mathbb{Z}^d with moving shift

In this section, we present our main results on the support of the Grover walk on \mathbb{Z}^d with moving shift. Remark that Komatsu and Tate [5] showed that the eigenvalue of Eq. (3.1) is only $\lambda = \pm 1$ for the *d*-dimensional Gorver walk with moving shift. We begin with the eigenvalue problem $U_G\Psi = \lambda \Psi$ ($\lambda \in \mathbb{C}$ with $|\lambda| = 1$), which is equivalent to

$$\begin{cases} \lambda \Psi^{1}(\boldsymbol{x}) = \frac{1-d}{d} \Psi^{1}(\boldsymbol{x} + \boldsymbol{e}_{1}) + \frac{1}{d} \Psi^{2}(\boldsymbol{x} + \boldsymbol{e}_{1}) + \dots + \frac{1}{d} \Psi^{2d-1}(\boldsymbol{x} + \boldsymbol{e}_{1}) + \frac{1}{d} \Psi^{2d}(\boldsymbol{x} + \boldsymbol{e}_{1}), \\ \lambda \Psi^{2}(\boldsymbol{x}) = \frac{1}{d} \Psi^{1}(\boldsymbol{x} - \boldsymbol{e}_{1}) + \frac{1-d}{d} \Psi^{2}(\boldsymbol{x} - \boldsymbol{e}_{1}) + \dots + \frac{1}{d} \Psi^{2d-1}(\boldsymbol{x} - \boldsymbol{e}_{1}) + \frac{1}{d} \Psi^{2d}(\boldsymbol{x} - \boldsymbol{e}_{1}), \\ \vdots \\ \lambda \Psi^{2d-1}(\boldsymbol{x}) = \frac{1}{d} \Psi^{1}(\boldsymbol{x} + \boldsymbol{e}_{d}) + \frac{1}{d} \Psi^{2}(\boldsymbol{x} + \boldsymbol{e}_{d}) + \dots + \frac{1-d}{d} \Psi^{2d-1}(\boldsymbol{x} + \boldsymbol{e}_{d}) + \frac{1}{d} \Psi^{2d}(\boldsymbol{x} + \boldsymbol{e}_{d}), \\ \lambda \Psi^{2d}(\boldsymbol{x}) = \frac{1}{d} \Psi^{1}(\boldsymbol{x} - \boldsymbol{e}_{d}) + \frac{1}{d} \Psi^{2}(\boldsymbol{x} - \boldsymbol{e}_{d}) + \dots + \frac{1}{d} \Psi^{2d-1}(\boldsymbol{x} - \boldsymbol{e}_{d}) + \frac{1-d}{d} \Psi^{2d}(\boldsymbol{x} - \boldsymbol{e}_{d}), \end{cases}$$

where
$$\Psi(\boldsymbol{x}) = {}^{T}\left[\Psi^{1}(\boldsymbol{x}), \Psi^{2}(\boldsymbol{x}), \cdots, \Psi^{2d}(\boldsymbol{x})\right] \ (\boldsymbol{x} \in \mathbb{Z}^{d}).$$
 Put $\Gamma(\boldsymbol{x}) = \sum_{j=1}^{2d} \Psi^{j}(\boldsymbol{x})$

for $x \in \mathbb{Z}^d$. By using $\Gamma(x)$, Eq. (4.1) can be written as

$$\lambda \Psi^{2k-1}(\boldsymbol{x} - \boldsymbol{e}_k) + \Psi^{2k-1}(\boldsymbol{x}) = \frac{1}{d} \Gamma(\boldsymbol{x}), \tag{4.2}$$

$$\lambda \Psi^{2k}(\boldsymbol{x} + \boldsymbol{e}_k) + \Psi^{2k}(\boldsymbol{x}) = \frac{1}{d}\Gamma(\boldsymbol{x}), \tag{4.3}$$

for any k = 1, 2, ..., d and $\boldsymbol{x} \in \mathbb{Z}^d$. From Eqs. (4.2) and (4.3), we get immediately

$$\lambda \Psi^{2k-1}(x - e_k) + \Psi^{2k-1}(x) = \lambda \Psi^{2k}(x + e_k) + \Psi^{2k}(x),$$
 (4.4)

for any k = 1, 2, ..., d and $\boldsymbol{x} \in \mathbb{Z}^d$. In order to state the following lemma, we introduce the support of $\Psi : \mathbb{Z}^d \to \mathbb{C}^{2d}$ as follows.

$$S(\Psi) = \{ \boldsymbol{x} \in \mathbb{Z}^d : \Psi(\boldsymbol{x}) \neq \boldsymbol{0} \}.$$

LEMMA 1. Let $\Psi \in W(\lambda)$ with $\lambda = \pm 1$. Suppose $\#(S(\Psi)) < \infty$, where #(A) is the cardinality of a set A. If there exist $k \in \{1, 2, \dots, d\}$ and $\mathbf{x} \in \mathbb{Z}^d$ such that

$$\begin{bmatrix} \Psi^{2k-1}(\boldsymbol{x}) \\ \Psi^{2k}(\boldsymbol{x}) \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

then we have

$$\begin{bmatrix} \Psi^{2k-1}(\boldsymbol{x}-\boldsymbol{e}_k) \\ \Psi^{2k}(\boldsymbol{x}-\boldsymbol{e}_k) \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix} \ or \ \begin{bmatrix} \Psi^{2k-1}(\boldsymbol{x}+\boldsymbol{e}_k) \\ \Psi^{2k}(\boldsymbol{x}+\boldsymbol{e}_k) \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Proof. First we assume that

$$\begin{bmatrix} \Psi^{2k-1}(\boldsymbol{x}) \\ \Psi^{2k}(\boldsymbol{x}) \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \tag{4.5}$$

for some $k \in \{1, 2, \dots, d\}$ and $\boldsymbol{x} \in \mathbb{Z}^d$. Moreover we suppose

$$\begin{bmatrix} \Psi^{2k-1}(\boldsymbol{x}-\boldsymbol{e}_k) \\ \Psi^{2k}(\boldsymbol{x}-\boldsymbol{e}_k) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} \Psi^{2k-1}(\boldsymbol{x}+\boldsymbol{e}_k) \\ \Psi^{2k}(\boldsymbol{x}+\boldsymbol{e}_k) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

that is,

$$\Psi^{2k-1}(\boldsymbol{x} - \boldsymbol{e}_k) = 0, \tag{4.6}$$

$$\Psi^{2k}(\boldsymbol{x} - \boldsymbol{e}_k) = 0, \tag{4.7}$$

$$\Psi^{2k-1}(\boldsymbol{x} + \boldsymbol{e}_k) = 0,$$

$$\Psi^{2k}(\boldsymbol{x} + \boldsymbol{e}_k) = 0. \tag{4.8}$$

Combining Eq. (4.4) with Eqs. (4.6) and (4.8), we have

$$\Psi^{2k-1}(\boldsymbol{x}) = \Psi^{2k}(\boldsymbol{x}). \tag{4.9}$$

From the assumption Eqs. (4.5) and (4.9), we put

$$\Psi^{2k-1}(\mathbf{x}) = \Psi^{2k}(\mathbf{x}) = \eta, \tag{4.10}$$

where $\eta \in \mathbb{C}$ with $\eta \neq 0$. Furthermore, by Eq. (4.4) for $\boldsymbol{x} - \boldsymbol{e}_k$, we obtain

$$\lambda \Psi^{2k-1}(x - 2e_k) + \Psi^{2k-1}(x - e_k) = \lambda \Psi^{2k}(x) + \Psi^{2k}(x - e_k).$$
 (4.11)

Combining Eq. (4.11) with Eqs. (4.6), (4.7) and (4.10) implies

$$\Psi^{2k-1}(\boldsymbol{x} - 2\boldsymbol{e}_k) = \eta, \tag{4.12}$$

since $\lambda \neq 0$. In a similar way, Eq. (4.4) for $\boldsymbol{x} - 2\boldsymbol{e}_k$ becomes

$$\lambda \Psi^{2k-1}(x - 3e_k) + \Psi^{2k-1}(x - 2e_k) = \lambda \Psi^{2k}(x - e_k) + \Psi^{2k}(x - 2e_k).$$
 (4.13)

From Eq. (4.13) with Eqs. (4.7) and (4.12), we have

$$\Psi^{2k-1}(x - 3e_k) = \lambda \{ \Psi^{2k}(x - 2e_k) - \eta \}, \tag{4.14}$$

since $\lambda = \pm 1$. Similarly, Eq. (4.4) for $\boldsymbol{x} - 3\boldsymbol{e}_k$ becomes

$$\lambda \Psi^{2k-1}(x - 4e_k) + \Psi^{2k-1}(x - 3e_k) = \lambda \Psi^{2k}(x - 2e_k) + \Psi^{2k}(x - 3e_k). \quad (4.15)$$

From Eq. (4.15) with Eq. (4.14), we get

$$\Psi^{2k-1}(\boldsymbol{x} - 4\boldsymbol{e}_k) = \lambda \Psi^{2k}(\boldsymbol{x} - 3\boldsymbol{e}_k) + \eta.$$

Continuing this argument repeatedly, we finally abtain

$$\Psi^{2k-1}(\mathbf{x} - (j+1)\mathbf{e}_k) = \lambda \Psi^{2k}(\mathbf{x} - j\mathbf{e}_k) + (-\lambda)^{j+1}\eta, \tag{4.16}$$

for any $j=0,1,2,\cdots$. Assumption $\#(S(\Psi))<\infty$ implies that there exists J such that

$$\Psi^{2k-1}(\mathbf{x} - j'\mathbf{e}_k) = \Psi^{2k}(\mathbf{x} - j'\mathbf{e}_k) = 0, \tag{4.17}$$

for any $j' \geq J$. Combining Eq. (4.16) with Eq. (4.17) gives $\eta = 0$ since $\lambda \neq 0$. Therefore contradiction occurs, so the proof is complete.

LEMMA 2. Let $\Psi \in W(\lambda)$ with $\lambda = \pm 1$. Suppose $\#(S(\Psi)) < \infty$. If there exist $k \in \{1, 2, \dots, d\}$ and $\mathbf{x} \in \mathbb{Z}^d$ such that

$$\begin{bmatrix} \Psi^{2k-1}(\boldsymbol{x}) \\ \Psi^{2k}(\boldsymbol{x}) \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

then there exist $m^{(-)}(\leq 0)$ and $m^{(+)}(\geq 0)$ with $m^{(-)} < m^{(+)}$ and $\alpha, \beta \in \mathbb{C}$ with $\alpha\beta \neq 0$ such that

$$\begin{bmatrix}
\Psi^{2k-1}(\boldsymbol{x} + m\boldsymbol{e}_{k}) \\
\Psi^{2k}(\boldsymbol{x} + m\boldsymbol{e}_{k})
\end{bmatrix} = \begin{cases}
T [0,0] & (m < m^{(-)}) \\
T [\alpha,0] & (m = m^{(-)}) \\
T [0,\beta] & (m = m^{(+)})
\end{cases}$$
(4.18)

Moreover, we have

$$\begin{bmatrix} \Psi^{2l-1}(\boldsymbol{x} + m^{(-)}\boldsymbol{e}_k) \\ \Psi^{2l}(\boldsymbol{x} + m^{(-)}\boldsymbol{e}_k) \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

and

$$\begin{bmatrix} \Psi^{2l-1}(\boldsymbol{x} + m^{(+)}\boldsymbol{e}_k) \\ \Psi^{2l}(\boldsymbol{x} + m^{(+)}\boldsymbol{e}_k) \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

for any $l \in \{1, 2, \cdots, d\} \setminus \{k\}$.

Proof. From Lemma 1, we get $\#(S(\Psi)) \geq 2$. Therefore we see that there exist $m^{(-)}(\leq 0)$ and $m^{(+)}(\geq 0)$ with $m^{(-)} < m^{(+)}$ and $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $|\alpha| + |\gamma| > 0$ and $|\beta| + |\delta| > 0$ such that

$$\begin{bmatrix}
\Psi^{2k-1}(\boldsymbol{x} + m\boldsymbol{e}_k) \\
\Psi^{2k}(\boldsymbol{x} + m\boldsymbol{e}_k)
\end{bmatrix} = \begin{cases}
T \left[0, 0\right] & (m < m^{(-)}) \\
T \left[\alpha, \gamma\right] & (m = m^{(-)}) \\
T \left[\delta, \beta\right] & (m = m^{(+)})
\end{cases}$$

$$T \left[0, 0\right] & (m > m^{(+)})$$
(4.19)

By Eq. (4.4) for $x + (m^{(-)} - 1)e_k$, we have

$$\lambda \Psi^{2k-1}(\boldsymbol{x} + (m^{(-)} - 2)\boldsymbol{e}_k) + \Psi^{2k-1}(\boldsymbol{x} + (m^{(-)} - 1)\boldsymbol{e}_k)$$

$$= \lambda \Psi^{2k}(\boldsymbol{x} + m^{(-)}\boldsymbol{e}_k) + \Psi^{2k}(\boldsymbol{x} + (m^{(-)} - 1)\boldsymbol{e}_k). \tag{4.20}$$

Combining Eq. (4.19) with Eq. (4.20) gives

$$\Psi^{2k}(\mathbf{x} + m^{(-)}\mathbf{e}_k) = \gamma = 0, \tag{4.21}$$

since $\lambda \neq 0$. In a similar fashion, from Eq. (4.4) for $\boldsymbol{x} + (m^{(+)} + 1)\boldsymbol{e}_k$, we have

$$\Psi^{2k-1}(\mathbf{x} + m^{(+)}\mathbf{e}_k) = \delta = 0. \tag{4.22}$$

Thus combining Eqs. (4.19), (4.21) and (4.22) implies Eq. (4.18). By Eq. (4.2) for $\mathbf{x} + m^{(-)}\mathbf{e}_k$, we have

$$\lambda \Psi^{2k-1}(\boldsymbol{x} + (m^{(-)} - 1)\boldsymbol{e}_k) + \Psi^{2k-1}(\boldsymbol{x} + m^{(-)}\boldsymbol{e}_k) = \frac{1}{d}\Gamma(\boldsymbol{x} + m^{(-)}\boldsymbol{e}_k).$$
(4.23)

Then combining Eq. (4.23) with Eq. (4.18) gives

$$\frac{1}{d}\Gamma(\boldsymbol{x} + m^{(-)}\boldsymbol{e}_k) = \alpha. \tag{4.24}$$

Similarly, by Eq. (4.3) for $\boldsymbol{x} + m^{(+)}\boldsymbol{e}_k$ and Eq. (4.18), we get

$$\frac{1}{d}\Gamma(\boldsymbol{x} + m^{(+)}\boldsymbol{e}_k) = \beta.$$

From now on, we assume that there exists $l \in \{1, 2, \dots, d\} \setminus \{k\}$ such that

$$\begin{bmatrix} \Psi^{2l-1}(\boldsymbol{x} + m^{(-)}\boldsymbol{e}_k) \\ \Psi^{2l}(\boldsymbol{x} + m^{(-)}\boldsymbol{e}_k) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \tag{4.25}$$

or

$$\begin{bmatrix} \Psi^{2l-1}(\boldsymbol{x} + m^{(+)}\boldsymbol{e}_k) \\ \Psi^{2l}(\boldsymbol{x} + m^{(+)}\boldsymbol{e}_k) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$
 (4.26)

First we consider Eq. (4.25) case. We now use Eq. (4.2) with $k \to l$ and $\boldsymbol{x} \to \boldsymbol{x} + m^{(-)}\boldsymbol{e}_k$ to get

$$\lambda \Psi^{2l-1}((\boldsymbol{x} + m^{(-)}\boldsymbol{e}_k) - \boldsymbol{e}_l) + \Psi^{2l-1}(\boldsymbol{x} + m^{(-)}\boldsymbol{e}_k) = \frac{1}{d}\Gamma(\boldsymbol{x} + m^{(-)}\boldsymbol{e}_k).$$

Using the equation just derived and Eq. (4.24), we have

$$\lambda \Psi^{2l-1}((\boldsymbol{x} + m^{(-)}\boldsymbol{e}_k) - \boldsymbol{e}_l) + \Psi^{2l-1}(\boldsymbol{x} + m^{(-)}\boldsymbol{e}_k) = \alpha.$$
 (4.27)

By assumption $\Psi^{2l-1}(x + m^{(-)}e_k) = 0$ in Eq. (4.25), we see that Eq. (4.27) becomes

$$\Psi^{2l-1}((\boldsymbol{x}+m^{(-)}\boldsymbol{e}_k)-\boldsymbol{e}_l)=\lambda\alpha, \tag{4.28}$$

since $\lambda = \pm 1$. Next we see Eq. (4.4) with $k \to l$ and $\boldsymbol{x} \to \boldsymbol{x} + m^{(-)}\boldsymbol{e}_k - \boldsymbol{e}_l$ to get

$$\lambda \Psi^{2l-1}((\boldsymbol{x} + m^{(-)}\boldsymbol{e}_k) - 2\boldsymbol{e}_l) + \Psi^{2l-1}((\boldsymbol{x} + m^{(-)}\boldsymbol{e}_k) - \boldsymbol{e}_l)$$

$$= \lambda \Psi^{2l}(\boldsymbol{x} + m^{(-)}\boldsymbol{e}_k) + \Psi^{2l}((\boldsymbol{x} + m^{(-)}\boldsymbol{e}_k) - \boldsymbol{e}_l).$$

Combining this equation with Eq. (4.28) and assumption $\Psi^{2l}(\boldsymbol{x}+m^{(-)}\boldsymbol{e}_k)=0$ in Eq. (4.25) gives

$$\Psi^{2l-1}((x+m^{(-)}e_k)-2e_l) = \lambda \Psi^{2l}((x+m^{(-)}e_k)-e_l) - \lambda^2 \alpha,$$

since $\lambda = \pm 1$. By the similar argument repeatedly, we obtain,

$$\Psi^{2l-1}((\boldsymbol{x}+m^{(-)}\boldsymbol{e}_k)-(j+1)\boldsymbol{e}_l)=\lambda\Psi^{2l}((\boldsymbol{x}+m^{(-)}\boldsymbol{e}_k)-j\boldsymbol{e}_l)-(-\lambda)^{j+1}\alpha,\ (4.29)$$

for any $j=1,2,\cdots$. Assumption $\#(S(\Psi))<\infty$ implies that there exists J such that

$$\Psi^{2l-1}((\boldsymbol{x}+m^{(-)}\boldsymbol{e}_k)-j'\boldsymbol{e}_l)=\Psi^{2l}((\boldsymbol{x}+m^{(-)}\boldsymbol{e}_k)-j'\boldsymbol{e}_l)=0, \qquad (4.30)$$

for any $j' \geq J$. Combining Eq. (4.29) with Eq. (4.30) gives $\alpha = 0$ since $\lambda \neq 0$. Thus we have a contradiction.

Next we consider Eq. (4.26) case. In a similar fashion, we get $\beta = 0$ and have a contradiction. Therefore the proof of Lemma 2 is complete.

THEOREM 1. For the Grover walk on \mathbb{Z}^d with moving shift, we have

$$\#(S(\Psi)) \ge 2^d,$$

for any $\Psi \in W(\lambda)$ with $\lambda = \pm 1$. In particular, there exists $\Psi_{\star}^{(\lambda)} \in W(\lambda)$ such that

$$\#(S(\Psi_{\star}^{(\lambda)})) = 2^d,$$

for $\lambda = \pm 1$. In fact, we obtain

$$\Psi_{\star}^{(\lambda)}(\boldsymbol{x}) = \lambda^{x_1 + x_2 + \dots + x_d} \times {}^{T} \left[|x_1\rangle, |x_2\rangle, \dots, |x_d\rangle \right] \quad (\boldsymbol{x} \in S(\Psi_{\star}^{(\lambda)})),$$

where

$$S(\Psi_{+}^{(\lambda)}) = \{ \boldsymbol{x} = (x_1, x_2, \dots, x_d) \in \mathbb{Z}^d : x_k \in \{0, 1\} \ (k = 1, 2, \dots, d) \}.$$

Here
$$|0\rangle = {}^{T}[1, 0] \text{ and } |1\rangle = {}^{T}[0, 1].$$

Proof. For $\Psi \in W(\lambda)$ with $\lambda = \pm 1$, there exist $k \in \{1, 2, \dots, d\}$ and $\boldsymbol{x} \in \mathbb{Z}^d$ such that

$$egin{bmatrix} \Psi^{2k-1}(m{x}) \ \Psi^{2k}(m{x}) \end{bmatrix}
eq egin{bmatrix} 0 \ 0 \end{bmatrix}.$$

Thus, we have $\boldsymbol{x} \in S(\Psi)$.

First we consider d=1 case. From Lemma 1, we see that $\boldsymbol{x}-\boldsymbol{e}_1\in S(\Psi)$ or $\boldsymbol{x}+\boldsymbol{e}_1\in S(\Psi),$ so $\#(S(\Psi))\geq 2$. If fact, we can construct a $\Psi_{\star}^{(\lambda)}\in W(\lambda)$ with $\lambda=\pm 1$ satisfying $\#(S(\Psi_{\star}^{(\lambda)}))=2$ as follows.

$$\begin{bmatrix} \Psi^{1}(\boldsymbol{x} + m_{1}\boldsymbol{e}_{1}) \\ \Psi^{2}(\boldsymbol{x} + m_{1}\boldsymbol{e}_{1}) \end{bmatrix} = \begin{cases} T \begin{bmatrix} 0,0 \end{bmatrix} & (m_{1} < 0) \\ \lambda^{m_{1}} \times^{T} \begin{bmatrix} 1,0 \end{bmatrix} & (m_{1} = 0) \\ \lambda^{m_{1}} \times^{T} \begin{bmatrix} 0,1 \end{bmatrix} & (m_{1} = 1) \end{cases},$$

$$T \begin{bmatrix} 0,0 \end{bmatrix} & (m_{1} > 1)$$

where $m_1 \in \mathbb{Z}$.

Next we deal with d=2 case. Considering the argument for d=1 case, we can assume

$$\begin{bmatrix} \Psi^{1}(\boldsymbol{x}) \\ \Psi^{2}(\boldsymbol{x}) \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} \Psi^{1}(\boldsymbol{x} + \boldsymbol{e}_{1}) \\ \Psi^{2}(\boldsymbol{x} + \boldsymbol{e}_{1}) \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \tag{4.31}$$

By Lemma 2 with Eq. (4.31), we can also assume $m^{(-)} = 0$ and $m^{(+)} = 1$ to minimize the $\#(S(\Psi))$, then we have

$$\begin{bmatrix} \Psi^3(\boldsymbol{x}) \\ \Psi^4(\boldsymbol{x}) \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \tag{4.32}$$

and

$$\begin{bmatrix} \Psi^3(\boldsymbol{x} + \boldsymbol{e}_1) \\ \Psi^4(\boldsymbol{x} + \boldsymbol{e}_1) \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \tag{4.33}$$

From Lemma 1 with Eqs. (4.32) and (4.33), we obtain " $\boldsymbol{x} - \boldsymbol{e}_2 \in S(\Psi)$ or $\boldsymbol{x} + \boldsymbol{e}_2 \in S(\Psi)$ " and " $\boldsymbol{x} + \boldsymbol{e}_1 - \boldsymbol{e}_2 \in S(\Psi)$ or $\boldsymbol{x} + \boldsymbol{e}_1 + \boldsymbol{e}_2 \in S(\Psi)$ " respectively, so

 $\#(S(\Psi)) \ge 4$. In fact, we can construct a $\Psi_{\star}^{(\lambda)} \in W(\lambda)$ with $\lambda = \pm 1$ satisfying $\#(S(\Psi_{\star}^{(\lambda)})) = 4$ as follows.

$$\Psi(\boldsymbol{x} + m_{1}\boldsymbol{e}_{1} + m_{2}\boldsymbol{e}_{2}) = \begin{cases}
\lambda^{m_{1}+m_{2}} \times^{T} [1,0,1,0] & (m_{1},m_{2}) = (0,0) \\
\lambda^{m_{1}+m_{2}} \times^{T} [0,1,1,0] & (m_{1},m_{2}) = (1,0) \\
\lambda^{m_{1}+m_{2}} \times^{T} [1,0,0,1] & (m_{1},m_{2}) = (0,1) , (4.34) \\
\lambda^{m_{1}+m_{2}} \times^{T} [0,1,0,1] & (m_{1},m_{2}) = (1,1) \\
T [0,0,0,0] & (otherwise)
\end{cases}$$

for $m_1, m_2 \in \mathbb{Z}$. Remark that Eq. (4.34) has been introduced in Stefanak et al. [7]. Continuing a similar argument for $d = 3, 4, \dots$, we have the desired conclusion.

From Eq. (4.34), we obtain the following equation as one of a stationary measure of Grover walk on \mathbb{Z}^2 when $\lambda = 1$.

$$\Psi = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \delta_{(x,y)} + \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} \delta_{(x+1,y)} + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \delta_{(x,y+1)} + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \delta_{(x+1,y+1)} ,$$

for any $(x,y) \in \mathbb{Z}^2$. Let $x,y \in \{0,-1\}$, then we easily get $\#(S(\Psi)) = 9$ such that

$$\Psi = \begin{bmatrix} 2\\2\\2\\2 \end{bmatrix} \delta_{(0,0)} + \begin{bmatrix} 1\\1\\0\\2 \end{bmatrix} \delta_{(0,1)} + \begin{bmatrix} 0\\2\\1\\1 \end{bmatrix} \delta_{(1,0)} + \begin{bmatrix} 1\\1\\2\\0 \end{bmatrix} \delta_{(0,-1)} + \begin{bmatrix} 2\\0\\1\\1 \end{bmatrix} \delta_{(-1,0)}
+ \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix} \delta_{(1,1)} + \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix} \delta_{(1,-1)} + \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix} \delta_{(-1,-1)} + \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix} \delta_{(-1,-1)} .$$
(4.35)

Remark that Eq. (4.35) has been introduced in Komatsu and Konno [4].

5. Grover walk on \mathbb{Z}^d with flip-flop shift

In this section, we consider the case of the d-dimensional Grover walk with flip-flop shift. The eigenvalue problem $U_G\Psi=\lambda\Psi$ ($\lambda\in\mathbb{C}$ with $|\lambda|=1$) is

equivalent to

$$\begin{cases}
\lambda \Psi^{1}(\boldsymbol{x}) = \frac{1}{d} \Psi^{1}(\boldsymbol{x} + \boldsymbol{e}_{1}) + \frac{1 - d}{d} \Psi^{2}(\boldsymbol{x} + \boldsymbol{e}_{1}) + \dots + \frac{1}{d} \Psi^{2d-1}(\boldsymbol{x} + \boldsymbol{e}_{1}) + \frac{1}{d} \Psi^{2d}(\boldsymbol{x} + \boldsymbol{e}_{1}), \\
\lambda \Psi^{2}(\boldsymbol{x}) = \frac{1 - d}{d} \Psi^{1}(\boldsymbol{x} - \boldsymbol{e}_{1}) + \frac{1}{d} \Psi^{2}(\boldsymbol{x} - \boldsymbol{e}_{1}) + \dots + \frac{1}{d} \Psi^{2d-1}(\boldsymbol{x} - \boldsymbol{e}_{1}) + \frac{1}{d} \Psi^{2d}(\boldsymbol{x} - \boldsymbol{e}_{1}), \\
\vdots \qquad (5.1)$$

$$\lambda \Psi^{2d-1}(\boldsymbol{x}) = \frac{1}{d} \Psi^{1}(\boldsymbol{x} + \boldsymbol{e}_{d}) + \frac{1}{d} \Psi^{2}(\boldsymbol{x} + \boldsymbol{e}_{d}) + \dots + \frac{1}{d} \Psi^{2d-1}(\boldsymbol{x} + \boldsymbol{e}_{d}) + \frac{1 - d}{d} \Psi^{2d}(\boldsymbol{x} + \boldsymbol{e}_{d}), \\
\lambda \Psi^{2d}(\boldsymbol{x}) = \frac{1}{d} \Psi^{1}(\boldsymbol{x} - \boldsymbol{e}_{d}) + \frac{1}{d} \Psi^{2}(\boldsymbol{x} - \boldsymbol{e}_{d}) + \dots + \frac{1 - d}{d} \Psi^{2d-1}(\boldsymbol{x} - \boldsymbol{e}_{d}) + \frac{1}{d} \Psi^{2d}(\boldsymbol{x} - \boldsymbol{e}_{d}),
\end{cases}$$

where $\Psi(\boldsymbol{x}) = {}^{T}\left[\Psi^{1}(\boldsymbol{x}), \Psi^{2}(\boldsymbol{x}), \cdots, \Psi^{2d}(\boldsymbol{x})\right] \ (\boldsymbol{x} \in \mathbb{Z}^{d}).$ Put $\Gamma(\boldsymbol{x}) = \sum_{i=1}^{2d} \Psi^{j}(\boldsymbol{x})$

for $\boldsymbol{x} \in \mathbb{Z}^d$. By using $\Gamma(\boldsymbol{x})$, Eq. (5.1) can be written as

$$\lambda \Psi^{2k-1}(\boldsymbol{x} - \boldsymbol{e}_k) + \Psi^{2k}(\boldsymbol{x}) = \frac{1}{d} \Gamma(\boldsymbol{x}), \tag{5.2}$$

$$\lambda \Psi^{2k}(\boldsymbol{x} + \boldsymbol{e}_k) + \Psi^{2k-1}(\boldsymbol{x}) = \frac{1}{d}\Gamma(\boldsymbol{x}), \tag{5.3}$$

for any k = 1, 2, ..., d and $\boldsymbol{x} \in \mathbb{Z}^d$. From Eqs. (5.2) and (5.3), we get immediately

$$\lambda \Psi^{2k-1}(\boldsymbol{x} - \boldsymbol{e}_k) + \Psi^{2k}(\boldsymbol{x}) = \lambda \Psi^{2k}(\boldsymbol{x} + \boldsymbol{e}_k) + \Psi^{2k-1}(\boldsymbol{x}), \tag{5.4}$$

for any $k = 1, 2, \dots, d$ and $\boldsymbol{x} \in \mathbb{Z}^d$.

LEMMA 3. Let $\Psi \in W(\lambda)$ with $\lambda = \pm 1$. Suppose $\#(S(\Psi)) < \infty$. If there exist $k \in \{1, 2, \dots, d\}$ and $\mathbf{x} \in \mathbb{Z}^d$ such that

$$\begin{bmatrix} \Psi^{2k-1}(\boldsymbol{x}) \\ \Psi^{2k}(\boldsymbol{x}) \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

then we have

$$\begin{bmatrix} \Psi^{2k-1}(\boldsymbol{x}-\boldsymbol{e}_k) \\ \Psi^{2k}(\boldsymbol{x}-\boldsymbol{e}_k) \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix} \ or \ \begin{bmatrix} \Psi^{2k-1}(\boldsymbol{x}+\boldsymbol{e}_k) \\ \Psi^{2k}(\boldsymbol{x}+\boldsymbol{e}_k) \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Proof. First we assume that

$$\begin{bmatrix} \Psi^{2k-1}(\boldsymbol{x}) \\ \Psi^{2k}(\boldsymbol{x}) \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

for some $k \in \{1, 2, \dots, d\}$ and $\boldsymbol{x} \in \mathbb{Z}^d$. Furthermore we suppose

$$\begin{bmatrix} \Psi^{2k-1}(\boldsymbol{x}-\boldsymbol{e}_k) \\ \Psi^{2k}(\boldsymbol{x}-\boldsymbol{e}_k) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} \Psi^{2k-1}(\boldsymbol{x}+\boldsymbol{e}_k) \\ \Psi^{2k}(\boldsymbol{x}+\boldsymbol{e}_k) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

By a similar calculation as in Lemma 1, we get the following equation corresponding to Eq. (4.16).

$$\Psi^{2k-1}(\boldsymbol{x} - (j+1)\boldsymbol{e}_k) = -\lambda \Psi^{2k}(\boldsymbol{x} - j\boldsymbol{e}_k) + \lambda^{j+1}\eta, \tag{5.5}$$

where $\eta = \Psi^{2k-1}(\boldsymbol{x}) = \Psi^{2k}(\boldsymbol{x})$ for any $j = 0, 1, 2, \cdots$. Assumption $\#(S(\Psi)) < \infty$ implies that there exists J such that

$$\Psi^{2k-1}(\mathbf{x} - j'\mathbf{e}_k) = \Psi^{2k}(\mathbf{x} - j'\mathbf{e}_k) = 0, \tag{5.6}$$

for any $j' \geq J$. Combining Eq. (5.5) with Eq. (5.6) gives $\eta = 0$ since $\lambda \neq 0$. Therefore contradiction occurs, so the proof is complete.

LEMMA 4. Let $\Psi \in W(\lambda)$ with $\lambda = \pm 1$. Suppose $\#(S(\Psi)) < \infty$. If there exist $k \in \{1, 2, \dots, d\}$ and $\mathbf{x} \in \mathbb{Z}^d$ such that

$$\begin{bmatrix} \Psi^{2k-1}(\boldsymbol{x}) \\ \Psi^{2k}(\boldsymbol{x}) \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

then there exist $m^{(-)}(\leq 0)$ and $m^{(+)}(\geq 0)$ with $m^{(-)} < m^{(+)}$ and $\alpha, \beta \in \mathbb{C}$ with $\alpha\beta \neq 0$ such that

$$\begin{bmatrix}
\Psi^{2k-1}(\boldsymbol{x} + m\boldsymbol{e}_k) \\
\Psi^{2k}(\boldsymbol{x} + m\boldsymbol{e}_k)
\end{bmatrix} = \begin{cases}
^{T} [0,0] & (m < m^{(-)}) \\
^{T} [\alpha,0] & (m = m^{(-)}) \\
^{T} [0,\beta] & (m = m^{(+)})
\end{cases}$$
(5.7)

Moreover, we have

$$\Gamma(\boldsymbol{x} + m^{(-)}\boldsymbol{e}_k) = 0 , \qquad (5.8)$$

and

$$\Gamma(\boldsymbol{x}+m^{(+)}\boldsymbol{e}_k)=0.$$

Proof. From Lemma 3, we get $\#(S(\Psi)) \ge 2$. Therefore we see that there exist $m^{(-)}(\le 0)$ and $m^{(+)}(\ge 0)$ with $m^{(-)} < m^{(+)}$ and $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $|\alpha| + |\gamma| > 0$ and $|\beta| + |\delta| > 0$ such that

$$\begin{bmatrix}
\Psi^{2k-1}(\boldsymbol{x} + m\boldsymbol{e}_k) \\
\Psi^{2k}(\boldsymbol{x} + m\boldsymbol{e}_k)
\end{bmatrix} = \begin{cases}
^T [0,0] & (m < m^{(-)}) \\
^T [\alpha, \gamma] & (m = m^{(-)}) \\
^T [\delta, \beta] & (m = m^{(+)})
\end{cases}$$

$$^T [0,0] & (m > m^{(+)})$$
(5.9)

By Eq. (5.4) for $\mathbf{x} + (m^{(-)} - 1)\mathbf{e}_k$, we have

$$\lambda \Psi^{2k-1}(\boldsymbol{x} + (m^{(-)} - 2)\boldsymbol{e}_k) + \Psi^{2k}(\boldsymbol{x} + (m^{(-)} - 1)\boldsymbol{e}_k)$$

$$= \lambda \Psi^{2k}(\boldsymbol{x} + m^{(-)}\boldsymbol{e}_k) + \Psi^{2k-1}(\boldsymbol{x} + (m^{(-)} - 1)\boldsymbol{e}_k).$$
(5.10)

Combining Eq. (5.9) with Eq. (5.10) gives

$$\Psi^{2k}(\mathbf{x} + m^{(-)}\mathbf{e}_k) = \gamma = 0, \tag{5.11}$$

since $\lambda \neq 0$. In a similar fashion, from Eq. (5.4) for $\boldsymbol{x} + (m^{(+)} + 1)\boldsymbol{e}_k$, we have

$$\Psi^{2k-1}(\mathbf{x} + m^{(+)}\mathbf{e}_k) = \delta = 0. \tag{5.12}$$

Thus combining Eqs. (5.9), (5.11) and (5.12) implies Eq. (5.7).

By Eq. (5.2) for $\boldsymbol{x} + m^{(-)}\boldsymbol{e}_k$, we have

$$\lambda \Psi^{2k-1}(\boldsymbol{x} + (m^{(-)} - 1)\boldsymbol{e}_k) + \Psi^{2k}(\boldsymbol{x} + m^{(-)}\boldsymbol{e}_k) = \frac{1}{d}\Gamma(\boldsymbol{x} + m^{(-)}\boldsymbol{e}_k).$$
 (5.13)

Then combining Eq. (5.13) with Eq. (5.7) gives

$$\frac{1}{d}\Gamma(\boldsymbol{x} + m^{(-)}\boldsymbol{e}_k) = 0.$$

Similarly, by Eq. (5.3) for $\boldsymbol{x} + m^{(+)}\boldsymbol{e}_k$ and Eq. (5.7), we get

$$\frac{1}{d}\Gamma(\boldsymbol{x} + m^{(+)}\boldsymbol{e}_k) = 0.$$

Therefore the proof of Lemma 4 is complete.

THEOREM 2. For the Grover walk on \mathbb{Z}^d with flip-flop shift, we have

$$\begin{cases} \#(S(\Psi)) = 0 & (d = 1) \\ \#(S(\Psi)) \ge 4 & (d \ge 2) \end{cases},$$

for any $\Psi \in W(\lambda)$ with $\lambda = \pm 1$. In particular, there exists $\Psi_{\star}^{(\lambda)} \in W(\lambda)$ such that

$$\#(S(\Psi_{\star}^{(\lambda)})) = 4 \quad (d \ge 2)$$

for $\lambda = \pm 1$. In fact, we obtain

$$\Psi_{\star}^{(\lambda)}(\boldsymbol{x}) = \lambda^{x_1 + x_2} \times {}^{T} \left[(-1)^{x_1 + x_2} | x_1 \rangle, \ (-1)^{x_1 + x_2 + 1} | x_2 \rangle, \boldsymbol{0}, \cdots, \boldsymbol{0} \right] \quad (\boldsymbol{x} \in S(\Psi_{\star}^{(\lambda)})),$$

where

$$S(\Psi_{\star}^{(\lambda)}) = \{ \boldsymbol{x} = (x_1, x_2, \dots, x_d) \in \mathbb{Z}^d : x_1, x_2 \in \{0, 1\}, \ x_3 = x_4 = \dots = x_d = 0 \}.$$

Here
$$|0\rangle = {}^{T}[1, \ 0], \ |1\rangle = {}^{T}[0, \ 1] \ and \ \mathbf{0} = {}^{T}[0, \ 0].$$

Proof. First, we consider d=1 case. For $\Psi \in W(\lambda)$ with $\lambda=\pm 1$, there exists $x \in \mathbb{Z}$ such that

$$\begin{bmatrix} \Psi^1(x) \\ \Psi^2(x) \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

From Lemma 4, we have $m_1^{(-)}(\leq 0)$ and $m_1^{(+)}(\geq 0)$ with $m_1^{(-)} < m_1^{(+)}$ and $\alpha, \beta \in \mathbb{C}$ with $\alpha\beta \neq 0$ such that

$$\begin{bmatrix}
\Psi^{1}(x+m_{1}) \\
\Psi^{2}(x+m_{1})
\end{bmatrix} = \begin{cases}
T [0,0] & (m_{1} < m_{1}^{(-)}) \\
T [\alpha,0] & (m_{1} = m_{1}^{(-)}) \\
T [0,\beta] & (m_{1} = m_{1}^{(+)}) \\
T [0,0] & (m_{1} > m_{1}^{(+)})
\end{cases} ,$$
(5.14)

and

$$\begin{cases} \Gamma(x+m_1^{(-)}) = 0\\ \Gamma(x+m_1^{(+)}) = 0 \end{cases}$$
 (5.15)

By definition of Γ and Eq. (5.14), we have

$$\begin{cases} \Gamma(x + m_1^{(-)}) = \alpha \\ \Gamma(x + m_1^{(+)}) = \beta \end{cases}$$
 (5.16)

Combining Eq. (5.15) with Eq. (5.16), we get $\alpha = \beta = 0$. So we see that the finite support for d=1 does not exist.

Next we deal with d=2 case. For $\Psi \in W(\lambda)$ with $\lambda=\pm 1$, we assume that there exists $\boldsymbol{x} \in \mathbb{Z}^2$ such that

$$\begin{bmatrix} \Psi^{1}(\boldsymbol{x}) \\ \Psi^{2}(\boldsymbol{x}) \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \tag{5.17}$$

and we put

$$\begin{cases} m^{(-)} = 0 \\ m^{(+)} = 1 \end{cases} , \tag{5.18}$$

for Eq. (5.7) on Lemma 4 to minimize $\#(S(\Psi))$. By using (5.7) with Eq. (5.18), we have

$$\begin{bmatrix} \Psi^{1}(\boldsymbol{x}) \\ \Psi^{2}(\boldsymbol{x}) \end{bmatrix} = \begin{bmatrix} \alpha \\ 0 \end{bmatrix}. \tag{5.19}$$

By definition of Γ with Eqs. (5.8), (5.18) and (5.19), we get

$$\begin{bmatrix} \Psi^{3}(\boldsymbol{x}) \\ \Psi^{4}(\boldsymbol{x}) \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \tag{5.20}$$

since $\alpha \neq 0$.

Similarly, from Lemma 3 with Eq. (5.17), we can assume

$$egin{bmatrix} \Psi^1(m{x} + m{e}_1) \ \Psi^2(m{x} + m{e}_1) \end{bmatrix}
eq egin{bmatrix} 0 \ 0 \end{bmatrix},$$

and we obtain

$$\begin{bmatrix} \Psi^3(\boldsymbol{x} + \boldsymbol{e}_1) \\ \Psi^4(\boldsymbol{x} + \boldsymbol{e}_1) \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \tag{5.21}$$

since $\beta \neq 0$. From Lemma 3 with Eqs. (5.20) and (5.21), we obtain " $\boldsymbol{x} - \boldsymbol{e}_2 \in S(\Psi)$ or $\boldsymbol{x} + \boldsymbol{e}_2 \in S(\Psi)$ " and " $\boldsymbol{x} + \boldsymbol{e}_1 - \boldsymbol{e}_2 \in S(\Psi)$ or $\boldsymbol{x} + \boldsymbol{e}_1 + \boldsymbol{e}_2 \in S(\Psi)$ " respectively, so $\#(S(\Psi)) \geq 4$. In fact, we can construct a $\Psi_{\star}^{(\lambda)} \in W(\lambda)$ with $\lambda = \pm 1$ satisfying $\#(S(\Psi_{\star}^{(\lambda)})) = 4$ as follows.

$$\Psi(\boldsymbol{x} + m_{1}\boldsymbol{e}_{1} + m_{2}\boldsymbol{e}_{2}) = \begin{cases}
T \left[1, 0, -1, 0 \right] & (m_{1}, m_{2}) = (0, 0) \\
T \left[0, -\lambda, \lambda, 0 \right] & (m_{1}, m_{2}) = (1, 0) \\
T \left[-\lambda, 0, 0, \lambda \right] & (m_{1}, m_{2}) = (0, 1) , \\
T \left[0, 1, 0, -1 \right] & (m_{1}, m_{2}) = (1, 1) \\
T \left[0, 0, 0, 0 \right] & (otherwise)
\end{cases} (5.22)$$

for $m_1, m_2 \in \mathbb{Z}$.

Finally, we consider $d \geq 3$ case by continuing the argument on d = 2 case. To expand Eq. (5.22) to $d \geq 3$, we focus on the fact that $\Gamma(\boldsymbol{x} + m_1\boldsymbol{e}_1 + m_2\boldsymbol{e}_2) = 0$ for any $\boldsymbol{x} \in \mathbb{Z}^2$ and $m_1, m_2 \in \mathbb{Z}$ in Eq. (5.22). By assuming $\Psi^{2k-1}(\boldsymbol{x} + m_1\boldsymbol{e}_1 + m_2\boldsymbol{e}_2) = \Psi^{2k}(\boldsymbol{x} + m_1\boldsymbol{e}_1 + m_2\boldsymbol{e}_2) = 0$ for any $k \in \{3, 4, \dots, d\}$, we can contruct a $\Psi^{(\lambda)}_{\star} \in W(\lambda)$ with $\lambda = \pm 1$ satisfying $\#(S(\Psi^{(\lambda)}_{\star})) = 4$ as follows.

$$\Psi(\boldsymbol{x} + m_{1}\boldsymbol{e}_{1} + m_{2}\boldsymbol{e}_{2}) = \begin{cases} T \left[1, 0, -1, 0, 0, \cdots, 0 \right] & (m_{1}, m_{2}) = (0, 0) \\ T \left[0, -\lambda, \lambda, 0, 0, \cdots, 0 \right] & (m_{1}, m_{2}) = (1, 0) \end{cases}$$

$$T \left[-\lambda, 0, 0, \lambda, 0, \cdots, 0 \right] & (m_{1}, m_{2}) = (0, 1) .$$

$$T \left[0, 1, 0, -1, 0, \cdots, 0 \right] & (m_{1}, m_{2}) = (1, 1) .$$

$$T \left[0, 0, 0, 0, 0, \cdots, 0 \right] & (otherwise)$$

Theorem 2 can be derived from another approach based on the spectral mapping theorem, see Corollary 2 in Higuchi et al. [2].

6. Summary

We presented the minimum supports of states for the Grover walk on \mathbb{Z}^d with moving and flip-flop shifts, respectively, by solving the eigenvalue problem $U_G\Psi=\lambda\Psi$. Results on the moving shift model was obtained by Theorem 1 which coincides with result in Stefanak et al. [7] (\mathbb{Z}^2 case) and improves result in Komatsu and Konno [4] (\mathbb{Z}^d case). Moreover, results on the flip-flop shift model shown by Higuchi et al. [2] was given by Theorem 2. One of the interesting future problems might be to clarify a relationship between the stationary measure and the time-averaged limit measure of the Grover walk on \mathbb{Z}^d .

References

- D. Aharonov, A. Ambainis, J. Kempe, and U. V. Vazirani, Quantum walks on graphs, Proceedings of ACM Symposium on Theory of Computation (STOC'01), July 2001, pp.50–59 (2001).
- [2] Y. Higuchi, N. Konno, I. Sato, and E. Segawa, Spectral and asymptotic properties of Grover walks on crystal lattice, *Journal of Functional Analysis*, **267** (2014), 4197–4235.
- [3] N. Inui, Y. Konishi, and N. Konno, Localization of two-dimensional quantum walks, *Physical Review A*, **69** (2004), 052323.
- [4] T. Komatsu, and N. Konno, Stationary amplitudes of quantum walks on the higher-dimensional integer lattice, Quantum Information Processing, 16 (2017), 291.
- [5] T. Komatsu, and T. Tate, Eigenvalues of quantum walks of Grover and Fourier types, Journal of Fourier Analysis and Applications, 25 (2019), 1293–1318.
- [6] N. Konno, Quantum Walks, Lecture Notes in Mathematics, 1954, 309–452, Springer, 2008.
- [7] M. Stefanak, B. Kollar, T. Kiss, and I. Jex, Full revivals in 2D quantum walks, *Physica Scripta*, **2010** (2010), T140.
- [8] K. Watabe, N. Kobayashi, M. Katori, and N. Konno, Limit distributions of twodimensional quantum walks, *Physical Review A*, 77 (2008), 062331.

Department of Applied Mathematics, Faculty of Engineering, Yokohama National University 79-5 Tokiwadai, Hodogaya, Yokohama, 240-8501, Japan

E-mail: konno-norio-bt@ynu.ac.jp E-mail: takahashi-sarato-vb@ynu.jp