Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

## Supporting Information for

## Why is the O3 to O1 phase transition hindered in LiNiO<sub>2</sub> on full

delithiation?

Naohiro Ikeda<sup>1</sup>, Itsuki Konuma<sup>1</sup>, Hongahally Basappa Rajendra<sup>2</sup>, Taira Aida<sup>3</sup>,

and Naoaki Yabuuchi<sup>1, 2, 4\*</sup>

<sup>1</sup>Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai,

Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan

<sup>2</sup>Advanced Chemical Energy Research Center, Yokohama National University, 79-5 Tokiwadai,

Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan

<sup>3</sup>Sumitomo Metal Mining Co., Ltd., Battery Research Laboratories, 17-3, Isoura-cho, Nihama,

Ehime 792-0002, Japan

<sup>4</sup>Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, f1-30 Goryo-Ohara,

Nishikyo-ku, Kyoto 615-8245, Japan

\*corresponding author, e-mail: yabuuchi-naoaki-pw@ynu.ac.jp

## **Supporting Figures**



Figure S1. (a) An XRD pattern and SEM image and (b) charge/discharge curves of LiNiO<sub>2</sub> used in this study. Discharge capacity retention and Coulombic efficiency for 30 cycles are also shown in (c). (d) Changes in the impedance of LiNiO<sub>2</sub> at fully charged state.



Figure S2. (a) An XRD pattern and SEM image and (b) charge/discharge curves with differential capacity plots of  $LiCoO_2$  used in this study.



Figure S3. In-situ XRD patterns of (a)  $LiNiO_2$  and (b)  $LiCoO_2$  at a rate of 5 mA g<sup>-1</sup>.



**Figure S4**. An XRD pattern of NiO<sub>2</sub> obtained by voltage holding at 4.5 V for 100 h in a Li cell.



Figure S5. Results of Rietveld analysis on as-prepared  $LiNiO_2$  (a) and  $Li_{0.82}NiO_2$  after the initial

cycle (b).