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Abstract

Given an n-sided polygon P on the plane with n ≥ 4, a quadrangulation of P is
a geometric plane graph such that the boundary of the outer face is P and that each
finite face is quadrilateral. Clearly, P is quadrangulatable (i.e., admits a quadran-
gulation) only if n is even, but there is a non-quadrangulatable even-sided polygon.
Ramaswami et al. [10] proved that every n-sided polygon P with n ≥ 4 even admits a
quadrangulation with at most ⌊n−2

4 ⌋ Steiner points, where a Steiner point for P is an
auxiliary point which can be put in any position in the interior of P . In this paper,
introducing the notion of the spirality of P to control a structure of P (independent
of n), we estimate the number of Steiner points to quadrangulate P .

1 Introduction

An n-sided polygon P is a simple cycle with n straight segments in the plane. A trian-
gulation of P is a geometric plane graph with vertex set V (P ) such that its outer cycle
coincides with P and that each finite face is triangular, where V (P ) is the vertex set of
P . The following is a well-known result for a triangulation on a polygon, which was used
in the elegant proof of the art gallery problem by Fisk [4].

Proposition 1. Every polygon with at least three sides admits a triangulation.

We turn our attention to a quadrangulation of a polygon P , that is, a geometric
plane graph with vertex set V (P ) such that the outer cycle coincides with P and that
each finite face is quadrilateral. Let us consider whether or not, a given polygon P is
quadrangulatable, i.e., P admits a quadrangulation. (Figure 1 shows an example of a
polygon P and its quadrangulation. We always give a “proper vertex-2-coloring of V (P )”,
that is, giving black and white alternately to the vertex sequence on the boundary of P .
Since every plane quadrangulation G on P is bipartite, the 2-coloring of V (P ) extends to
the unique 2-coloring of G.)

We immediately find a combinatorial condition on the parity of length of P , that is, if
an n-sided polygon P with n ≥ 4 admits a quadrangulation, then n must be even. Hence
we always consider an even-sided polygon, i.e., an n-sided polygon with n ≥ 4 even. It
is easy to see that every even-sided convex polygon is quadrangulatable, but we find a
number of non-quadrangulatable even-sided polygons, as shown in Figure 2.

For an even-sided polygon P on the plane, a Steiner point is an auxiliary point which
can be put in any position in the interior of P . Ramaswami et al. [10] asked whether
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Figure 1: A polygon P and a quadrangulation of P

Figure 2: Non-quadrangulatable even-sided polygons

P admits a quadrangulation with a set S of Steiner points, that is, whether P admits a
geometric plane graph G with vertex set V (P )∪S such that the outer cycle of G coincides
with P and that each finite face is quadrilateral. (See Figure 3.) Note that no odd-sided
polygon P admits a quadrangulation no matter how many Steiner points are added, since
every quadrangulation is bipartite.

Figure 3: Non-quadrangulatable polygon P and a quadrangulation of P with two Steiner
points

Ramaswami et al. [10] proved the the following result:

Theorem 2 (Ramaswami et al. [10]). Every n-sided polygon with n ≥ 4 even admits a
quadrangulation with at most ⌊n−2

4 ⌋ Steiner points.

On the other hand, Nakamoto et al. [9] defined the notion of “spirality” of a polygon
P , which measures how far P is from being convex in a sense. We explain this notion, as
follows.

Let P be an n-sided polygon, and let v1 · · · vn be the sequence of the n vertices along
the boundary of P , where V (P ) = {v1, . . . , vn}. In this case, we write P = v1 · · · vn. A
vertex vi is convex (resp., concave) if the inner angle at vi is less (resp., greater) than π.
The interval [vp · · · vq] of P (possibly p = q) is a spiral if vi is concave for i = p, p+1, . . . , q
but vp−1 and vq+1 are convex, where the subscripts are taken modulo n. The spirality of
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P , denoted by sp(P ), is the number of the spirals of P . For example, see Figure 4. Note
that P is convex if and only if sp(P ) = 0. Moreover, sp(P ) is independent of n, but we
obviously have sp(P ) ≤ n

2 , where the equality holds for the one in Figure 4(c). Therefore,
we wonder if the quadrangulatability of a polygon P can be described by the spirality of
P , and the following result answers this question.

Figure 4: (a) P = v1 · · · v16 with spirality 3, in which [v3], [v9v10v11] and [v15] are three
spirals. (b) A polygon with spirality 1. (c) An n-sided polygon with spirality n

2 . The
marked vertices are concave.

Theorem 3 (Nakamoto et al. [9]). Let P be an n-sided polygon P with n ≥ 4 even. If
sp(P ) ≤ 1, then P is quadrangulatable.

The condition of the spirality in Theorem 3 is best possible, since there exists a non-
quadrangulatable polygon with spirality 2, as shown in Figure 5. Moreover, we can con-
struct a non-quadrangulatable polygon with spirality 2 which has arbitrarily large number
of vertices, as in the right of Figure 5.

Figure 5: Non-quadrangulatable polygon with spirality 2 and its extension

When considering the quadrangulatability of an even-sided polygon P , there are two
directions, in which one is to estimate the number of Steiner points to quadrangulate P
with them (Theorem 2), and the other is to bound the spirality of P to be quadrangulatable
(Theorem 3). Combining them, we have the following problem:

Problem 4. Let P be an n-sided polygon with n ≥ 4 even which has spirality k. Can we
estimate the number of Steiner points to quadrangulate P by a function of k?

Our main contribution of this paper is to prove the following, answering Problem 4:

Theorem 5. Let P be an n-sided polygon with n ≥ 4 even. If sp(P ) = k ≥ 1, then P
admits a quadrangulation with at most 2k − 2 Steiner points. Moreover, the estimation
for the number of Steiner points is best possible for every k.

Note that in Theorem 5, if k = 1, then G is quadrangulatable with no Steiner points,
and hence Theorem 5 implies Theorem 3. On the other hand, Figure 6 shows polygons P
with spirality k which need at least 2k − 2 Steiner points for its quadrangulation.
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Figure 6: Polygons with spirality k = 2, 3, 4 requiring at least 2k − 2 Steiner points for
its quadrangulation. In each polygon, the blue parts are spirals, and the shaded parts
show an area which needs at least one Steiner point. Similarly, we can construct such an
example for any k ≥ 2

Surprisingly, the examples in Figure 6 show a tightness of Theorem 2 too, though
Ramaswami et al. did not give such an example [10]. Since this polygon with spirality
k ≥ 2 requiring 2k − 2 Steiner points has n = 8k − 6 vertices, it is an example with n
vertices requiring n−2

4 Steiner points. Hence, we also contribute to show the tightness of
Theorem 2. However, Theorem 5 does not immediately imply Theorem 2, since we have
only sp(P ) ≤ n

2 for any polygon P with n vertices, in general. (Even if we apply Theorem
5 to P , the number of Steiner points for P is at most 2k− 2 ≤ 2(n2 )− 2 ≤ n− 2, which is
much worse than Theorem 2.)

2 Related Results

In this section, we would like to mention some results related to our topic, which are
geometric triangulations and quadrangulations on a point set.

LetQ be a set of points in the plane in general position, i.e., no three points are colinear,
and let Conv(Q) denote the boundary of the convex hull of Q. A triangulation on Q is a
geometric plane graph with vertex set Q whose outer cycle coincides with Conv(Q) and
that each finite face is triangular. There are many results on triangulations on a point set,
and edge flippings in those triangulations, which are related to Delaunay triangulations
and Voronoi diagrams. For example, see [3, 5, 6].

A quadrangulation on Q can be defined similarly to a triangulation on Q. It is easy
to see that if Conv(Q) has even length, then Q admits a quadrangulation. There are
several papers on quadrangulation on a colored point set with Steiner points avoiding
monochromatic edges, for example, [1, 2, 7, 8]. However, nothing is known for edge flips in
those geometric quadrangulations of a point set, but we know a result for a quadrangulation
of an even-sided polygon P [9], in which if sp(P ) ≤ 2, then any two quadrangulations on
P can be transformed into each other by flipping edges.

3 Proof of the theorem

Let P be an even-sided polygon with a proper vertex-2-coloring. By Proposition 1, P
admits a triangulation, denoted by TP . A triangular face f of TP is monochromatic if the
three vertices of f have the same color. Similarly, we can define monochromatic edges.
Note that if we fix TP on P , then the monochromatic faces and edges are well-defined,
since the 2-coloring of V (P ) is unique. The monochromatic faces and edges in TP play an
essential role in our proof of Theorem 5.
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If TP has no monochromatic face, then we easily get a quadrangulation of P with no
Steiner points, by removing all monochromatic edges from TP . On the other hand, if TP

has several monochromatic faces, then we have the following lemma.

Lemma 6. For each monochromatic face f of TP , put a single Steiner point in the interior
of f . Then P is quadrangulatable with these Steiner points.

Proof. Suppose that all vertices of a face f are white in TP . Then we put a single black
vertex in the interior of f in TP , and join it to the three vertices of T . Do the same
procedures to all monochromatic faces. Removing all monochromatic edges from the
resulting triangulations of P with the set S of the added points, we get a quadrangulation
of P with Steiner points S. (See Figure 7.)

Figure 7: Construct a quadrangulation of P from TP by putting a single Steiner point in
each monochromatic face of TP and removing all monochromatic edges of TP

By Lemma 6, we have only to show the following lemma, in order to prove Theorem 5.

Lemma 7. If P has spirality k, then P admits a triangulation TP with at most 2k − 2
monochromatic faces.

Proof. Since sp(P ) = k, P has precisely k spirals, denoted by A1, . . . , Ak. Observe
that no edge of P joins two vertices of distinct spirals. Hence, removing A1, . . . , Ak from
P , we have k disjoint intervals, denoted by B1, . . . , Bk. Choose TP as a triangulation
of P with the fewest monochromatic faces. Then we claim that no two vertices of any
monochromatic face of TP are contained in a single Ai nor Bi in the following argument.

For contradictions, suppose that TP has a monochromatic face xyz such that two of
x, y and z are contained in a single Ai or Bi for some i. We let I[x, y] denote the interval
of P with endpoints x and y, not containing z, and may suppose without loss of generality
that I[x, y] is contained in either Ai or Bi for some i.

First suppose that I[x, y] ⊂ Ai. Since x and y have the same color, they are not
adjacent in P . Hence, TP cannot have the edge xy, since every vertex in I[x, y]−{x, y} is
concave, as shown in Figure 8(a). So this case does not happen.

Secondly, suppose I[x, y] ⊂ Bi. Let P ′ = I[x, y] ∪ {xz, yz} be the sub-polygon of P .
Observe that each inner vertex of I[x, y] is convex in P ′ since so is it in P . Moreover, each
of x and y is convex in P ′, since so is it in P and since its inner angle in P ′ is smaller than
that in P . Finally, z is convex in P ′ since xyz forms a triangle in TP . Consequently, P

′ is
a convex polygon. Hence we can modify the interior of P ′ in TP so that z is adjacent to all
vertices in I(x, y), as shown in Figure 8(b). This decreases the number of monochromatic
faces by at least one, contrary to the assumption of TP .

Now we regard TP as a combinatorial plane graph, and let T̃ denote the maximal outer
plane graph with 2k vertices obtained from TP by contracting each of Ai’s and Bi’s into a
single vertex. Observe that all monochromatic faces of TP correspond to distinct triangular
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Figure 8: The cases when x and y are contained in Ai or Bi

faces of T̃ , as shown in Figure 9, since all three vertices of any monochromatic face are
contained in distinct three of A1, . . . , Ak, B1, . . . , Bk, respectively. By Euler’s formula, T̃
has precisely 2k − 2 triangular faces, and hence TP has at most 2k − 2 monochromatic
faces. Thus, Lemma 7 follows.

Figure 9: Combinatorial representation of TP and the maximal outer plane graph T̃

Proof of Theorem 5. Let P be an n-sided polygon with n ≥ 4 even which has spirality
k. Then, by Lemma 7, P admits a triangulation TP with at most 2k − 2 monochromatic
faces. By applying Lemma 6 to TP , we get a quadrangulation of P with at most 2k − 2
Steiner points.

4 Conclusion

In this paper, we consider quadrangulatability of an even-sided polygon P . Though P
is not quadrangulatable in general, we find two earlier results for this problem, in which
one is to use Steiner points to get a quadrangulation of P (Theorem 2), and the other is
to bound the spirality to get a quadrangulation of P (Theorem 3). This paper combines
these two into Theorem 5, in which we prove that if a polygon P has spirality k, then P is
quadrangulatable with at most 2k−2 Steiner points. Our proof is short and combinatorial,
and the result is best possible.

Acknowledgement: The authors are grateful to the anonymous two referees for carefully
reading the paper and giving us several suggestions to improve the presentations in the
paper.
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