Quadrangulations of a Polygon with spirality

Fumiya Hidaka, Naoki Matsumoto ${ }^{\dagger}$ and Atsuhiro Nakamoto ${ }^{\ddagger}$

Abstract

Given an n-sided polygon P on the plane with $n \geq 4$, a quadrangulation of P is a geometric plane graph such that the boundary of the outer face is P and that each finite face is quadrilateral. Clearly, P is quadrangulatable (i.e., admits a quadrangulation) only if n is even, but there is a non-quadrangulatable even-sided polygon. Ramaswami et al. [10] proved that every n-sided polygon P with $n \geq 4$ even admits a quadrangulation with at most $\left\lfloor\frac{n-2}{4}\right\rfloor$ Steiner points, where a Steiner point for P is an auxiliary point which can be put in any position in the interior of P. In this paper, introducing the notion of the spirality of P to control a structure of P (independent of n), we estimate the number of Steiner points to quadrangulate P.

1 Introduction

An n-sided polygon P is a simple cycle with n straight segments in the plane. A triangulation of P is a geometric plane graph with vertex set $V(P)$ such that its outer cycle coincides with P and that each finite face is triangular, where $V(P)$ is the vertex set of P. The following is a well-known result for a triangulation on a polygon, which was used in the elegant proof of the art gallery problem by Fisk [4].

Proposition 1. Every polygon with at least three sides admits a triangulation.
We turn our attention to a quadrangulation of a polygon P, that is, a geometric plane graph with vertex set $V(P)$ such that the outer cycle coincides with P and that each finite face is quadrilateral. Let us consider whether or not, a given polygon P is quadrangulatable, i.e., P admits a quadrangulation. (Figure 1 shows an example of a polygon P and its quadrangulation. We always give a "proper vertex-2-coloring of $V(P)$ ", that is, giving black and white alternately to the vertex sequence on the boundary of P. Since every plane quadrangulation G on P is bipartite, the 2-coloring of $V(P)$ extends to the unique 2-coloring of G.)

We immediately find a combinatorial condition on the parity of length of P, that is, if an n-sided polygon P with $n \geq 4$ admits a quadrangulation, then n must be even. Hence we always consider an even-sided polygon, i.e., an n-sided polygon with $n \geq 4$ even. It is easy to see that every even-sided convex polygon is quadrangulatable, but we find a number of non-quadrangulatable even-sided polygons, as shown in Figure 2.

For an even-sided polygon P on the plane, a Steiner point is an auxiliary point which can be put in any position in the interior of P. Ramaswami et al. [10] asked whether

[^0]

Figure 1: A polygon P and a quadrangulation of P

Figure 2: Non-quadrangulatable even-sided polygons
P admits a quadrangulation with a set S of Steiner points, that is, whether P admits a geometric plane graph G with vertex set $V(P) \cup S$ such that the outer cycle of G coincides with P and that each finite face is quadrilateral. (See Figure 3.) Note that no odd-sided polygon P admits a quadrangulation no matter how many Steiner points are added, since every quadrangulation is bipartite.

Figure 3: Non-quadrangulatable polygon P and a quadrangulation of P with two Steiner points

Ramaswami et al. [10] proved the the following result:
Theorem 2 (Ramaswami et al. [10]). Every n-sided polygon with $n \geq 4$ even admits a quadrangulation with at most $\left\lfloor\frac{n-2}{4}\right\rfloor$ Steiner points.

On the other hand, Nakamoto et al. [9] defined the notion of "spirality" of a polygon P, which measures how far P is from being convex in a sense. We explain this notion, as follows.

Let P be an n-sided polygon, and let $v_{1} \cdots v_{n}$ be the sequence of the n vertices along the boundary of P, where $V(P)=\left\{v_{1}, \ldots, v_{n}\right\}$. In this case, we write $P=v_{1} \cdots v_{n}$. A vertex v_{i} is convex (resp., concave) if the inner angle at v_{i} is less (resp., greater) than π. The interval $\left[v_{p} \cdots v_{q}\right.$] of P (possibly $p=q$) is a spiral if v_{i} is concave for $i=p, p+1, \ldots, q$ but v_{p-1} and v_{q+1} are convex, where the subscripts are taken modulo n. The spirality of
P, denoted by $s p(P)$, is the number of the spirals of P. For example, see Figure 4. Note that P is convex if and only if $s p(P)=0$. Moreover, $s p(P)$ is independent of n, but we obviously have $s p(P) \leq \frac{n}{2}$, where the equality holds for the one in Figure 4(c). Therefore, we wonder if the quadrangulatability of a polygon P can be described by the spirality of P, and the following result answers this question.

Figure 4: (a) $P=v_{1} \cdots v_{16}$ with spirality 3 , in which $\left[v_{3}\right],\left[v_{9} v_{10} v_{11}\right]$ and $\left[v_{15}\right]$ are three spirals. (b) A polygon with spirality 1. (c) An n-sided polygon with spirality $\frac{n}{2}$. The marked vertices are concave.

Theorem 3 (Nakamoto et al. [9]). Let P be an n-sided polygon P with $n \geq 4$ even. If $s p(P) \leq 1$, then P is quadrangulatable.

The condition of the spirality in Theorem 3 is best possible, since there exists a nonquadrangulatable polygon with spirality 2, as shown in Figure 5. Moreover, we can construct a non-quadrangulatable polygon with spirality 2 which has arbitrarily large number of vertices, as in the right of Figure 5.

Figure 5: Non-quadrangulatable polygon with spirality 2 and its extension
When considering the quadrangulatability of an even-sided polygon P, there are two directions, in which one is to estimate the number of Steiner points to quadrangulate P with them (Theorem 2), and the other is to bound the spirality of P to be quadrangulatable (Theorem 3). Combining them, we have the following problem:

Problem 4. Let P be an n-sided polygon with $n \geq 4$ even which has spirality k. Can we estimate the number of Steiner points to quadrangulate P by a function of k ?

Our main contribution of this paper is to prove the following, answering Problem 4:
Theorem 5. Let P be an n-sided polygon with $n \geq 4$ even. If $\operatorname{sp}(P)=k \geq 1$, then P admits a quadrangulation with at most $2 k-2$ Steiner points. Moreover, the estimation for the number of Steiner points is best possible for every k.

Note that in Theorem 5, if $k=1$, then G is quadrangulatable with no Steiner points, and hence Theorem 5 implies Theorem 3. On the other hand, Figure 6 shows polygons P with spirality k which need at least $2 k-2$ Steiner points for its quadrangulation.

Figure 6: Polygons with spirality $k=2,3,4$ requiring at least $2 k-2$ Steiner points for its quadrangulation. In each polygon, the blue parts are spirals, and the shaded parts show an area which needs at least one Steiner point. Similarly, we can construct such an example for any $k \geq 2$

Surprisingly, the examples in Figure 6 show a tightness of Theorem 2 too, though Ramaswami et al. did not give such an example [10]. Since this polygon with spirality $k \geq 2$ requiring $2 k-2$ Steiner points has $n=8 k-6$ vertices, it is an example with n vertices requiring $\frac{n-2}{4}$ Steiner points. Hence, we also contribute to show the tightness of Theorem 2. However, Theorem 5 does not immediately imply Theorem 2, since we have only $s p(P) \leq \frac{n}{2}$ for any polygon P with n vertices, in general. (Even if we apply Theorem 5 to P, the number of Steiner points for P is at most $2 k-2 \leq 2\left(\frac{n}{2}\right)-2 \leq n-2$, which is much worse than Theorem 2.)

2 Related Results

In this section, we would like to mention some results related to our topic, which are geometric triangulations and quadrangulations on a point set.

Let Q be a set of points in the plane in general position, i.e., no three points are colinear, and let $\operatorname{Conv}(Q)$ denote the boundary of the convex hull of Q. A triangulation on Q is a geometric plane graph with vertex set Q whose outer cycle coincides with $\operatorname{Conv}(Q)$ and that each finite face is triangular. There are many results on triangulations on a point set, and edge flippings in those triangulations, which are related to Delaunay triangulations and Voronoi diagrams. For example, see $[3,5,6]$.

A quadrangulation on Q can be defined similarly to a triangulation on Q. It is easy to see that if $\operatorname{Conv}(Q)$ has even length, then Q admits a quadrangulation. There are several papers on quadrangulation on a colored point set with Steiner points avoiding monochromatic edges, for example, $[1,2,7,8]$. However, nothing is known for edge flips in those geometric quadrangulations of a point set, but we know a result for a quadrangulation of an even-sided polygon $P[9]$, in which if $s p(P) \leq 2$, then any two quadrangulations on P can be transformed into each other by flipping edges.

3 Proof of the theorem

Let P be an even-sided polygon with a proper vertex-2-coloring. By Proposition 1, P admits a triangulation, denoted by T_{P}. A triangular face f of T_{P} is monochromatic if the three vertices of f have the same color. Similarly, we can define monochromatic edges. Note that if we fix T_{P} on P, then the monochromatic faces and edges are well-defined, since the 2-coloring of $V(P)$ is unique. The monochromatic faces and edges in T_{P} play an essential role in our proof of Theorem 5.

If T_{P} has no monochromatic face, then we easily get a quadrangulation of P with no Steiner points, by removing all monochromatic edges from T_{P}. On the other hand, if T_{P} has several monochromatic faces, then we have the following lemma.

Lemma 6. For each monochromatic face f of T_{P}, put a single Steiner point in the interior of f. Then P is quadrangulatable with these Steiner points.

Proof. Suppose that all vertices of a face f are white in T_{P}. Then we put a single black vertex in the interior of f in T_{P}, and join it to the three vertices of T. Do the same procedures to all monochromatic faces. Removing all monochromatic edges from the resulting triangulations of P with the set S of the added points, we get a quadrangulation of P with Steiner points S. (See Figure 7.)

Figure 7: Construct a quadrangulation of P from T_{P} by putting a single Steiner point in each monochromatic face of T_{P} and removing all monochromatic edges of T_{P}

By Lemma 6, we have only to show the following lemma, in order to prove Theorem 5.
Lemma 7. If P has spirality k, then P admits a triangulation T_{P} with at most $2 k-2$ monochromatic faces.

Proof. Since $\operatorname{sp}(P)=k, P$ has precisely k spirals, denoted by A_{1}, \ldots, A_{k}. Observe that no edge of P joins two vertices of distinct spirals. Hence, removing A_{1}, \ldots, A_{k} from P, we have k disjoint intervals, denoted by B_{1}, \ldots, B_{k}. Choose T_{P} as a triangulation of P with the fewest monochromatic faces. Then we claim that no two vertices of any monochromatic face of T_{P} are contained in a single A_{i} nor B_{i} in the following argument.

For contradictions, suppose that T_{P} has a monochromatic face $x y z$ such that two of x, y and z are contained in a single A_{i} or B_{i} for some i. We let $I[x, y]$ denote the interval of P with endpoints x and y, not containing z, and may suppose without loss of generality that $I[x, y]$ is contained in either A_{i} or B_{i} for some i.

First suppose that $I[x, y] \subset A_{i}$. Since x and y have the same color, they are not adjacent in P. Hence, T_{P} cannot have the edge $x y$, since every vertex in $I[x, y]-\{x, y\}$ is concave, as shown in Figure 8(a). So this case does not happen.

Secondly, suppose $I[x, y] \subset B_{i}$. Let $P^{\prime}=I[x, y] \cup\{x z, y z\}$ be the sub-polygon of P. Observe that each inner vertex of $I[x, y]$ is convex in P^{\prime} since so is it in P. Moreover, each of x and y is convex in P^{\prime}, since so is it in P and since its inner angle in P^{\prime} is smaller than that in P. Finally, z is convex in P^{\prime} since $x y z$ forms a triangle in T_{P}. Consequently, P^{\prime} is a convex polygon. Hence we can modify the interior of P^{\prime} in T_{P} so that z is adjacent to all vertices in $I(x, y)$, as shown in Figure 8(b). This decreases the number of monochromatic faces by at least one, contrary to the assumption of T_{P}.

Now we regard T_{P} as a combinatorial plane graph, and let \tilde{T} denote the maximal outer plane graph with $2 k$ vertices obtained from T_{P} by contracting each of A_{i} 's and B_{i} 's into a single vertex. Observe that all monochromatic faces of T_{P} correspond to distinct triangular

Figure 8: The cases when x and y are contained in A_{i} or B_{i}
faces of \tilde{T}, as shown in Figure 9, since all three vertices of any monochromatic face are contained in distinct three of $A_{1}, \ldots, A_{k}, B_{1}, \ldots, B_{k}$, respectively. By Euler's formula, \tilde{T} has precisely $2 k-2$ triangular faces, and hence T_{P} has at most $2 k-2$ monochromatic faces. Thus, Lemma 7 follows.

Figure 9: Combinatorial representation of T_{P} and the maximal outer plane graph \tilde{T}

Proof of Theorem 5. Let P be an n-sided polygon with $n \geq 4$ even which has spirality k. Then, by Lemma 7, P admits a triangulation T_{P} with at most $2 k-2$ monochromatic faces. By applying Lemma 6 to T_{P}, we get a quadrangulation of P with at most $2 k-2$ Steiner points.

4 Conclusion

In this paper, we consider quadrangulatability of an even-sided polygon P. Though P is not quadrangulatable in general, we find two earlier results for this problem, in which one is to use Steiner points to get a quadrangulation of P (Theorem 2), and the other is to bound the spirality to get a quadrangulation of P (Theorem 3). This paper combines these two into Theorem 5, in which we prove that if a polygon P has spirality k, then P is quadrangulatable with at most $2 k-2$ Steiner points. Our proof is short and combinatorial, and the result is best possible.

Acknowledgement: The authors are grateful to the anonymous two referees for carefully reading the paper and giving us several suggestions to improve the presentations in the paper.

References

[1] V. Alvarez, T. Sakai and J. Urrutia, Bichromatic quadrangulations with Steiner points, Graphs Combin. 23 (2007), 85-98.
[2] V. Alvarez and A. Nakamoto, Colored quadrangulations with Steiner points, LNCS 8296 (2013), 20-29.
[3] P. Bose and F. Hurtado, Flips in planar graphs, Comput. Geom. 42 (2009), 60-80.
[4] S. Fisk, A short proof of Chvátal's watchman theorem, J. Combin. Theory, Ser. B 24 (1978), 374.
[5] F. Hurtado, M. Noy and J. Urrutia, Flipping edges in triangulations, Discrete Comput. Geom. 22 (1999), 333-346.
[6] J. De Loera, J. Rambau and F. Santos, Triangulations, "Structures for Algorithms and Applications", Algorithms and Computation in Mathematics 25, Springer (2010).
[7] V.M. Heredia and J. Urrutia, On convex quadrangulations of point sets on the plane, Lecture Notes in Computer Science 4381 (2005), 38-46.
[8] S. Kato, R. Mori and A. Nakamoto, Quadrangulations on 3-colored point sets with Steiner points and their winding numbers, Graphs Combin. 30 (2013), 1193-1205.
[9] A. Nakamoto, G. Kawatani, N. Matsumoto and J. Urrutia, Geometric quadrangulations of a polygon, Electron Notes Discrete Math. 68 (2018), 59-64.
[10] S. Ramaswami P. Ramos and G. Toussaint, Converting triangulations to quadrangulations, Comp. Geom. 9 (1998), 257-276.

[^0]: *Graduate School of Environment and Information Science, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan. E-mail: fumiyahidaka0514@gmail.com
 ${ }^{\dagger}$ Research Institute for Digital Media and Content, Keio University, 2-1-1 Hiyoshihoncho, Kouhoku-ku, Yokohama, Kanagawa 223-8523, Japan, E-mail: naoki.matsumoto@gmail.com
 ${ }^{\ddagger}$ Faculty of Environment and Information Science, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan. Email: nakamoto@ynu.ac.jp This work was supported by JSPS KAKENHI Grant Number 18K03390.

