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Abstract

We consider a proper coloring of a plane graph such that no face is rainbow, where a

face is rainbow if any two vertices on its boundary have distinct colors. Such a coloring is

said to be proper anti-rainbow. A plane quadrangulation G is a plane graph in which all

faces are bounded by a cycle of length 4. In this paper, we show that the number of colors

in a proper anti-rainbow coloring of a plane quadrangulation G does not exceed 3α(G)/2,

where α(G) is the independence number of G. Moreover, if the minimum degree of G is

3 or if G is 3-connected, then this bound can be improved to 5α(G)/4 or 7α(G)/6+ 1/3,

respectively. All of these bounds are tight.
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tem,
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1 Introduction

In this paper, we consider finite undirected simple graphs. Colorings of plane graphs or of

graphs embedded on surfaces with facial constraints have attracted many topological graph

theorists. In particular, facially-constrained colorings of plane graphs were overviewed by

Czap and Jendrol’ [3].

Let G be a plane graph (or a graph embedded on a surface). An anti-rainbow coloring,

which is also called a valid coloring or a non-rainbow coloring, is a (not necessarily proper)

coloring of G such that each face is not rainbow, where a face is rainbow if any two vertices on

its boundary have distinct colors. The anti-rainbowness of G is the maximum integer k such

that G has a surjective anti-rainbow k-coloring, denoted by χf (G). This type of coloring was

introduced by Ramamurthi and West [10] and Negami [8] independently. (See also [1, 2, 9] for

some acts of taking the initiative.) By requiring the properness for anti-rainbow colorings, we

additionally define a proper anti-rainbow coloring and the proper anti-rainbowness, denoted

by χp
f (G). Note that χp

f (G) cannot defined for a plane graph G with a triangular face,

while it can be defined for any triangle-free plane graph, which admits a proper 3-coloring

by Grötzsch’s theorem [5]. By the definition, χp
f (G) ≤ χf (G) for any triangle-free plane
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graph G. We should notice that the anti-rainbowness (resp. the proper anti-rainbowness)

may depend on the embedding, that is, for another embedding G′ of a graph G embedded

on a surface, χf (G
′) (resp. χp

f (G
′)) may not be equal to χf (G) (resp. χp

f (G)).

Ramamurthi and West [10] noticed that for every plane graph G of order n with an edge,

it holds that χf (G) ≥ α(G) + 1 ≥ ⌈n/χ(G)⌉ + 1, where α(G) is the independence number

of G and χ(G) is the chromatic number of G. Then, Grötzsch’s theorem [5, 11] implies that

χf (G) ≥ ⌈n/3⌉+ 1 for every triangle-free plane graph G of order n. However, Ramamurthi

and West [10] conjectured that this bound can be improved to ⌈n/2⌉+ 1. Jungić, Král’ and

Škrekovki [6] proved this conjecture. Moreover, in the same paper, they gave a lower bound

on χf (G) if a plane graph G has larger girth.

On the other hand, Dvořák, Král’ and Škrekovki [4] considered upper bounds on the

anti-rainbowness of plane graphs, and proved that every 3-connected plane graph G of order

n satisfies χf (G) ≤ ⌊7n−8
9 ⌋. They also gave upper bounds for the 4-connected or 5-connected

cases, and show that the obtained bounds are tight for the 3-connected and 4-connected

cases.

A triangulation on a surface is an embedding on the surface so that each face is bounded

by a cycle of length 3. Negami [8] introduced the notion of the “looseness” of triangulations on

surfaces, which was inspired by Arocha, Bracho and Neumann-Lara’s works [1, 2]. Actually,

the value of looseness of a triangulation G on a surface is equal to χf (G) − 2. Nakamoto,

Negami, Ohba and Suzuki [7] proved that for a triangulation G on a surface F 2, χf (G) ≤
2α(G) + ⌊ϵ(F 2)/2⌋, where ϵ(F 2) is the Euler genus of F 2. Moreover, they proved that this

upper bound can be improved to 11α(G)+2
6 for a plane triangulation G, and the bound is tight.

Thus, the anti-rainbowness χf (G) of a plane triangulation G behaves the same as α(G) up

to the constant factor.

As with a triangulation, a plane quadrangulation is defined as a plane graph with each

face bounded by a cycle of length 4. Note that any plane quadrangulation is bipartite.

Compared with the results on triangulations, it is natural to think the anti-rainbowness of

quadrangulations. This does not seem an easy question, but instead, we give a non-trivial

upper bound for the proper anti-rainbowness of a plane quadrangulation in terms of the

independence number α(G):

Theorem 1 Let G be a plane quadrangulation. Then all of the following statements hold.

(I) χp
f (G) ≤ 3

2α(G).

(II) If the minimum degree of G is at least 3, then χp
f (G) ≤ 5

4α(G).

(III) If G is 3-connected, then χp
f (G) ≤ 7

6α(G) + 1
3 .

These results show that similarly to the anti-rainbowness of triangulations, the proper

anti-rainbowness of a plane quadrangulation G behaves the same as α(G) up to the constant

factor. All upper bounds on χp
f (G) in Theorem 1(I)–(III) are tight, which are shown in

Section 4.

Recall that Dvořák, Král’ and Škrekovki [4] proved that every 3-connected plane graph G

of order n satisfies χp
f (G) ≤ χf (G) ≤ ⌊7n−8

9 ⌋. For a 3-connected plane quadrangulationG, the

upper bound of χp
f (G) in Theorem 1(III) is better than this bound when α(G) < 2

3n−
22
21 . Note

that it follows from Euler’s formula that for every plane quadrangulation G with n vertices,

if the minimum degree is three, then we have 3α(G) ≤ |E(G)| ≤ 2n− 4, or α(G) ≤ 2
3n− 4

3 .

Their result on 4-connected or 5-connected plane graphs cannot be compared with Theorem

1, since no plane quadrangulation is 4-connected by Euler’s formula.

2



Compared with the (non-proper) anti-rainbowness, it is natural to ask whether there

exists a plane quadrangulation G such that χp
f (G) < χf (G). We give a positive answer to this

question using Theorem 1. Let G be a pseud double wheel, which is a plane quadrangulation

obtained from an even cycle, say C2ℓ = v1w1v2w2 . . . vℓwℓ, by adding one vertex x inside and

another vertex y outside so that x is adjacent to vi for 1 ≤ i ≤ ℓ and y is adjacent to wi for

1 ≤ i ≤ ℓ; see Figure 1 for the case ℓ = 6. Note that G is 3-connected and α(G) = n
2 , where

n = |V (G)| = 2ℓ + 2. By Theorem 1(III), we have χp
f (G) ≤ 7

6α(G) + 1
3 = 7

12n + 1
3 . On the

other hand, suppose that ℓ is a multiple of three, and let S be the set of every third vertex

in C2ℓ, which are indicated by a circle in Figure 1. Note that each face contains exactly two

vertices in S ∪ {x, y}. Then by assigning the same color to all vertices S ∪ {x, y}, and a

distinct color to every other vertex, we obtain an anti-rainbow coloring with 4
3ℓ+1 = 2

3n− 1
3

colors. Thus, we have χf (G) ≥ 2
3n− 1

3 , and hence χp
f (G) < χf (G) if n ≥ 14 and n− 2 = 2ℓ

is multiple of six.

Figure 1: A pseud double wheel of order 14, where the vertices indicated by a circle form

S ∪ {x, y}.

The main idea for our proofs is a certain subgraph of the medial graph of a plane quad-

rangulation, called the dividing system and introduced in Section 2. We prove Theorem 1

in Section 3. In Section 4, we show the best possibility of the upper bounds on χp
f (G) in

Theorem 1(I)–(III).

2 Dividing system

Let G be a plane graph. The medial graph of G, denoted by M(G), is defined as follows: For

each edge e of G, we put a new vertex [e] in the middle of e, connect two vertices [e] and [e′]

if e and e′ consecutively appear in the boundary of a face of G, and delete all vertices and

edges in G. In other words, M(G) is the graph with vertex set
{
[e] : e ∈ E(G)

}
such that

[e][e′] ∈ E
(
M(G)

)
if and only if the edges e and e′ in G share an end vertex and e appears

just before or after e′ on the rotation of the end vertex. Note that each face f of G contains

k edges on M(G) in its inside, where k is the length of the boundary of f .
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For a plane quadrangulation G and a proper anti-rainbow coloring c, every face of G

receives exactly two or three colors on its boundary by c. By the following lemma, we can

focus on a proper anti-rainbow coloring such that no face receives exactly two colors.

Lemma 2 Let G be a plane quadrangulation. Then, in each proper anti-rainbow χp
f (G)-

coloring, no face receives exactly two colors.

Proof. Let c be a proper anti-rainbow χp
f (G)-coloring of a plane quadrangulation G. For

each edge e of G, we denote by Ce the set of colors appearing on an end vertex of e. Since

c is a proper coloring, |Ce| = 2 for each edge e. Then, consider the spanning subgraph Λc of

the medial graph M(G) of G induced by all edges [e][e′] with Ce = Ce′ . Note that each face

f of G receives exactly two or three colors on its boundary, and the situation of each case is

presented in Figures 2 and 3, respectively. Thus, Λc separates the plane into some regions,

and all vertices of G in the same region receive the same color by c, where there might exist

some regions containing no vertices of G, as in Figure 2.

Suppose that there is a face f of G that receives exactly two colors on its boundary by c.

Let v1v2v3v4 be the boundary of f . Since c is proper, we have c(v1) = c(v3) and c(v2) = c(v4).

Let σ be the region of Λc containing v1. Then we consider the following two cases.

• Suppose that σ does not contain v3. In this case, we change the color of all vertices

contained in σ with a new color. Since c(v2) = c(v4), f now receives exactly three

colors on its boundary. Similarly, each face receiving exactly two colors by c does not

become a rainbow face. For a face receiving exactly three colors by c, where w1w2w3w4

is its boundary with c(w1) = c(w3), if w1 is contained in σ, then so is w3. Thus, the

change of colors does not create a new rainbow face, and hence this contradicts the

maximality of χp
f (G).

• Suppose that σ contains v3. By Jordan’s curve theorem, σ together with the quadran-

gular region inside f as in Figure 2, separates the region of Λc that contains v2 from

the region that contains v4. Then, we can change the color of all vertices contained

in the region that contains v2 with a new color as in the previous case, and obtain a

contradiction to the maximality of χp
f (G).

In either case, we have a contradiction, and thus complete the proof of Lemma 2. □

1

12

2

{1,2}

{1,2}

{1,2}

{1,2}

Figure 2: A face with exactly two colors

on the boundary

1

12

3

{1,2}

{1,2}

{1,3}

{1,3}

Figure 3: A face with exactly three colors

on the boundary

Let G be a plane quadrangulation. A dividing system of G is a spanning subgraph of

the medial graph M(G) of G such that inside each face of G, exactly two edges that form
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a matching are chosen. See Figure 4 for example, where the dotted lines represent a plane

quadrangulation and the red bold lines represent its dividing system. This concept was first

defined by Negami and Midorikawa [9]. Since each edge of G belongs to the boundary of

exactly two faces, a dividing system of G is a 2-factor (i.e. a spanning subgraph in which

every vertex has degree exactly two) of M(G). Thus, it consists of pairwise vertex-disjoint

cycles. We first show a property of a dividing system.

Lemma 3 Let G be a plane quadrangulation, and let Λ be a dividing system of G. Then

all vertices in the same region separated by Λ belong to the same partite set of G.

Proof. Let σ be a region separated by Λ. For two vertices v1 and v2 in σ that are contained

in the same face f of G, it follows from the definition of a dividing system that the boundary

of f can be written as v1wv2w
′ for some w,w′ ∈ V (G). Thus, v1 and v2 belong to the same

partite set of G. Since σ is arcwise-connected, this completes the proof of the lemma. □

In the next lemma, we show the relation of a dividing system to a proper anti-rainbow

coloring.

Lemma 4 Let G be a plane quadrangulation. Then the anti-rainbowness χp
f (G) is equal to

the maximum number of regions separated by a dividing system Λ of G, where Λ is taken

over all dividing systems of G.

Proof. Let λ be the maximum number of regions separated by a dividing system Λ of G,

where Λ is taken over all dividing systems of G.

Let c be a proper anti-rainbow χp
f (G)-coloring of a plane quadrangulation G. By Lemma

2, no face receives exactly two colors. Thus, if we take the spanning subgraph Λ of the medial

graph M(G) of G induced by all edges [e][e′] with Ce = Ce′ as in the proof of Lemma 2, then

each face of G has the situation of Figure 3, and hence Λ is actually a dividing system of G.

Since all vertices in the same region of Λ have the same color by c, the number of colors of c

is at most the number of regions separated by Λ. This implies χp
f (G) ≤ λ.

On the other hand, suppose that there is a dividing system Λ of a plane quadrangulation

G such that Λ separates the plane into λ regions. By assigning distinct colors to each region,

and coloring all vertices of G contained in the same region by the color being assigning to

the region, we have the coloring of G with λ colors. By Lemma 3, the coloring is proper

and by the property of a dividing system (see Figure 3), it is anti-rainbow. Thus, we have

χp
f (G) ≥ λ. □

By Lemma 4, to evaluate the anti-rainbowness of a plane quadrangulation G, it suffices

to consider a dividing system of G with maximum number of regions. This is the main idea

to prove our main theorems. We say that a dividing system of G attaining the maximum

number of regions is optimal.

For a dividing system Λ of G, the division graph TΛ is defined as follows: We put a vertex

on each region separated by Λ, and connect two vertices if the boundary of the corresponding

two regions share a cycle of Λ. See Figure 5 for an example. Since each simple curve on the

plane is separating, we have the following lemma.

Lemma 5 Let G be a plane quadrangulation, and let Λ be a dividing system of G. Then,

the division graph TΛ is a tree with λ vertices, where λ is the number of regions separated

by Λ.
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Figure 4: A dividing system of a plane quad-

rangulation G

Figure 5: The division tree of the dividing sys-

tem in Figure 4.

By Lemma 5, we call the division graph the division tree from now on. For a vertex x of

the division tree TΛ of a dividing system Λ of a plane quadrangulation G, we denote by R(x)

the set of vertices in G contained in the region corresponding to x. By Lemma 3, R(x) is

an independent set. The set of leaves of TΛ that are adjacent with x is denoted by Lx. Let

R(Lx) =
⋃

y∈Lx
R(y). We have the following lemma.

Lemma 6 Let x be a vertex of the division tree TΛ of a dividing system Λ of a plane

quadrangulation G. If the degree of x in TΛ is at least 2, then |R(x)| ≥ 2.

Proof. Suppose that |R(x)| = 1 and let v be the unique vertex contained in R(x). For

a face whose boundary contains v, say vv1v2v3, either [vv1][v1v2], [vv3][v3v2] ∈ E(Λ) or

[vv1][vv3], [v1v2][v3v2] ∈ E(Λ). Since |R(x)| = 1, the latter holds for all such faces. Thus, a

cycle in Λ contains only v in its inside or outside, which contradicts that the degree of x in

TΛ is at least two. □

The following lemma is trivial from the definition but useful.

Lemma 7 Let TΛ be the division tree of a dividing system Λ of a plane quadrangulation G.

If two vertices x and y in TΛ are not adjacent, then no vertices in R(x) and no vertices in

R(y) are adjacent in G.

3 Proof of Theorem 1

In this section, we prove Theorem 1(I)–(III) in each subsection, respectively.

3.1 Proof of Theorem 1(I)

Let Λ be an optimal dividing system of G and TΛ be its division tree. Note that |V (TΛ)| =
χp
f (G). For i ≥ 1, let Vi = {x ∈ V (TΛ) : degTΛ

(x) = i}. Then
∑

i≥1 |Vi| = |V (TΛ)| = χp
f (G).

We divide the proof into two cases, depending on the value of |V1|.

Case (i): |V1| ≥ 2
3χ

p
f (G).

By Lemma 2, |V (TΛ)| ≥ 3, and hence no two leaves of TΛ are adjacent. By Lemma

7,
⋃

x∈V1
R(x) is an independent set in G. Since |R(x)| ≥ 1 for each x ∈ V1, we have

α(G) ≥
∑

x∈V1
|R(x)| ≥ |V1| ≥ 2

3χ
p
f (G), or χp

f (G) ≤ 3
2α(G).
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Case (ii): |V1| < 2
3χ

p
f (G).

By Lemma 6, we have

|V (G)| ≥ |V1|+
∑
i≥2

2|Vi| = |V1|+ 2
(
χp
f (G)− |V1|

)
= 2χp

f (G)− |V1| > 2χp
f (G)− 2

3
χp
f (G) =

4

3
χp
f (G).

Since G is bipartite, we have α(G) ≥ 1
2 |V (G)| > 2

3χ
p
f (G). Thus, χp

f (G) < 3
2α(G). □

3.2 Proof of Theorem 1(II)

Let Λ be an optimal dividing system of G and TΛ be its division tree. Let

A = {x ∈ V (TΛ) : Lx = ∅, degTΛ
(x) ≥ 2},

B = {x ∈ V (TΛ)−A : |R(x)| = 3}, and

Vi = {x ∈ V (TΛ)− (A ∪B) : degTΛ
(x) = i} for i ≥ 1.

By Lemma 6, each vertex x ∈ A satisfies |R(x)| ≥ 2. We have the following claims.

Claim 1 Each vertex x ∈ B satisfies |R(Lx)| ≤ 2.

Proof of Claim 1. By Lemma 7, any vertex in R(Lx) can be adjacent in G with only

vertices of R(x). Since |R(x)| = 3 and the minimum degree of G is 3, each vertex in R(Lx)

is adjacent to all vertices in R(x). Thus, if |R(Lx)| ≥ 3, then R(x) ∪R(Lx) induces a graph

containing K3,3, which contradicts the planarity of G. Therefore, |R(Lx)| ≤ 2. ■

Claim 2 For i ≥ 2, each vertex x ∈ Vi satisfies |R(x)| ≥ 4.

Proof of Claim 2. Let x ∈ Vi for i ≥ 2. Since x ̸∈ A, we have Lx ̸= ∅, say v ∈ Lx.

Since the degree of v in G is at least 3 and all neighbors of v are contained in R(x), we have

|R(x)| ≥ 3. Since x ̸∈ B, we have |R(x)| ̸= 3, and the claim holds. ■

We divide the proof into two cases, depending on the value of |V1|.

Case (i): |V1| ≥ 4
5χ

p
f (G)− 4

5 |A| − 2
5 |B|.

By Lemma 2, |V (TΛ)| ≥ 3, and hence two leaves of TΛ are not adjacent. Thus, by Lemma

7, S =
⋃

x∈V1
R(x) is an independent set in G, and |S| ≥ |V1|. We can observe the following:

• Let a ∈ A. Since La = ∅, if we add R(a) to S, then the set is still an independent set

in G. It follows from Lemma 6 that this addition increases the size of S by |R(a)| ≥ 2.

• Let b ∈ B. By Claim 1, we have |R(b)| − |R(Lb)| ≥ 1. Thus, if we replace R(Lb) in S

with R(b), then the set is still an independent set in G, which is larger than S.

Let f : A ∪ B → {1, 2} be the mapping such that f(a) = 2 for a ∈ A and f(b) = 1 for

b ∈ B. Note that |R(x)| − |R(Lx)| ≥ f(x) for x ∈ A ∪ B. Since A ∪ B induces a subgraph

of the division tree TΛ, which is a bipartite graph, one of its partite sets, say X, satisfies∑
x∈X f(x) ≥ 1

2

∑
x∈A∪B f(x) = 1

2

(
2|A| + |B|

)
. Since X is an independent set in TΛ, it
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follows from Lemma 7 that S ∪
(⋃

x∈X R(x)
)
−
⋃

x∈X R(Lx) is an independent set in G, and

hence

α(G) ≥
∣∣∣S ∪

( ⋃
x∈X

R(x)
)
−

⋃
x∈X

R(Lx)
∣∣∣ = |S|+

∑
x∈X

|R(x)| −
∑
x∈X

|R(Lx)|

≥ |V1|+
∑
x∈X

f(x) ≥ |V1|+
1

2

(
2|A|+ |B|

)
≥ 4

5
χp
f (G) +

1

5
|A|+ 1

10
|B| ≥ 4

5
χp
f (G).

Therefore, χp
f (G) ≤ 5

4α(G).

Case (ii): |V1| < 4
5χ

p
f (G)− 4

5 |A| −
2
5 |B|.

Note that
∑

i≥1 |Vi|+ |A|+ |B| = |V (TΛ)| = χp
f (G). By Lemma 6 and Claim 2, we have

|V (G)| ≥ |V1|+ 2|A|+ 3|B|+
∑
i≥2

4|Vi|

= |V1|+ 2|A|+ 3|B|+ 4
(
χp
f (G)− |A| − |B| − |V1|

)
= 4χp

f (G)− 2|A| − |B| − 3|V1|

> 4χp
f (G)− 2|A| − |B| − 3

(
4

5
χp
f (G)− 4

5
|A| − 2

5
|B|

)
=

8

5
χp
f (G) +

2

5
|A|+ 1

5
|B| ≥ 8

5
χp
f (G).

Since G is a bipartite graph, we obtain α(G) ≥ 1
2 |V (G)| > 4

5χ
p
f (G), or χp

f (G) < 5
4α(G),

which completes the proof. □

3.3 Proof of Theorem 1(III)

Let Λ be an optimal dividing system of G, and TΛ be its division tree. Let V1 = {x ∈ V (TΛ) :

degTΛ
(x) = 1}, and T ′

Λ = TΛ − V1. Note that T ′
Λ is a tree. For i ≥ 0 and k ≥ 1, let

V ′
i,k = {x ∈ V (T ′

Λ) : degT ′
Λ
(x) = i, |R(x)| − |R(Lx)| = k}, and

V ′
i,0 = {x ∈ V (T ′

Λ) : degT ′
Λ
(x) = i, |R(x)| − |R(Lx)| ≤ 0}.

Note that V ′
0,k ̸= ∅ only when T ′

Λ consists of only one vertex.

Claim 3 For i ≥ 0 and k ≥ 0, every vertex x ∈ V ′
i,k satisfies |R(x)| ≥ i− k + 4.

Proof of Claim 3. Let x ∈ V ′
i,k. For each component C of TΛ−x with |C| ≥ 2, we contract

all vertices of
⋃

y∈V (C)R(y) in G into one vertex, and let G′ be the obtained graph. By

Lemmas 3 and 7, G′ is a planar bipartite graph such that one of the partite sets is R(x), and

the other consists of the vertices in R(Lx) and exactly i vertices obtained by the contraction.

Thus, |V (G′)| = |R(x)|+ |R(Lx)|+ i. By Lemma 6, G′ has at least three vertices. It follows

from Euler’s formula that |E(G′)| ≤ 2|V (G′)|−4. On the other hand, since G is 3-connected

and no two vertices in R(Lx) are adjacent, each vertex of G′ −R(x) has degree at least 3 in

G′. Thus, |E(G′)| ≥ 3 (|R(Lx)|+ i). These inequalities imply

|R(x)| ≥ i+ |R(Lx)| − |R(x)|+ 4.
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Since x ∈ V ′
i,k, we have |R(Lx)| − |R(x)| ≥ −k regardless k ≥ 1 or k = 0, and hence we

obtain the desired inequality. ■

We divide the remaining proof into two cases depending on |V1|.

Case (i): |V1| ≥ 6
7χ

p
f (G)− 2

7 − 2
7

∑
i≥0

∑
k≥1 k|V ′

i,k|.
By Lemma 2, |V (TΛ)| ≥ 3, and hence two leaves of TΛ are not adjacent. Thus, by Lemma

7, S =
⋃

x∈V1
R(x) is an independent set in G, and |S| ≥ |V1|. For i ≥ 0, k ≥ 0 and each

vertex x ∈ V ′
i,k, if we replace R(Lx) in S with R(x), then the set is still an independent set

in G. Now let f be a mapping on
⋃

i≥0

⋃
k≥1 V

′
i,k such that f(x) = k for each x ∈ V ′

i,k. By

the definition, we have f(x) = |R(x)| − |R(Lx)| for each x ∈ V ′
i,k. Since T ′

Λ −
⋃

i≥0 V
′
i,0 is

bipartite, one of its partite sets, say X, satisfies∑
x∈X

f(x) ≥ 1

2

∑
x∈

⋃
i≥0

⋃
k≥1 V

′
i,k

f(x) =
1

2

∑
i≥0

∑
k≥1

k|V ′
i,k|.

Since X is an independent set in TΛ, it follows from Lemma 7 that S ∪
(⋃

x∈X R(x)
)
−⋃

x∈X R(Lx) is an independent set in G. Thus,

α(G) ≥
∣∣∣S ∪

( ⋃
x∈X

R(x)
)
−

⋃
x∈X

R(Lx)
∣∣∣ = |S|+

∑
x∈X

(
|R(x)| − |R(Lx)|

)
= |V1|+

∑
x∈X

f(x) ≥ |V1|+
1

2

∑
i≥0

∑
k≥1

k|V ′
i,k|

≥ 6

7
χp
f (G)− 2

7
+

3

14

∑
i≥0

∑
k≥1

k|V ′
i,k| ≥ 6

7
χp
f (G)− 2

7
.

This implies that χp
f (G) ≤ 7

6α(G) + 1
3 .

Case (ii): |V1| < 6
7χ

p
f (G)− 2

7 − 2
7

∑
i≥0

∑
k≥1 k|V ′

i,k|.
Note that |V1|+

∑
i≥0

∑
k≥0 |V ′

i,k| = |V (TΛ)| = χp
f (G). Since T ′

Λ is a tree with χp
f (G)−|V1|

vertices, it follows from the handshaking lemma that
∑

i≥0

∑
k≥1 i|V ′

i,k| = 2
(
χp
f (G)− |V1| − 1

)
.

Thus, by Claim 3, we have

|V (G)| =
∑

x∈V (TΛ)

|R(x)| ≥ |V1|+
∑
i≥0

∑
k≥0

(i− k + 4)|V ′
i,k|

= |V1|+ 4
∑
i≥0

∑
k≥0

|V ′
i,k| −

∑
i≥0

∑
k≥0

k|V ′
i,k|+

∑
i≥0

∑
k≥0

i|V ′
i,k|

≥ |V1|+ 4
(
χp
f (G)− |V1|

)
−
∑
i≥0

∑
k≥1

k|V ′
i,k|+ 2

(
χp
f (G)− |V1| − 1

)
= 6χp

f (G)− 5|V1| − 2−
∑
i≥0

∑
k≥1

k|V ′
i,k|

> 6χp
f (G)− 5

(
6

7
χp
f (G)− 2

7
− 2

7

∑
i≥0

∑
k≥1

k|V ′
i,k|

)
− 2−

∑
i≥0

∑
k≥1

k|V ′
i,k|

=
12

7
χp
f (G)− 4

7
+

3

7

∑
i≥0

∑
k≥1

k|V ′
i,k| ≥ 12

7
χp
f (G)− 4

7
.

Since G is bipartite, α(G) ≥ 1
2 |V (G)| > 6

7χ
p
f (G) − 2

7 , and hence χp
f (G) < 7

6α(G) + 1
3 . This

completes the proof of Theorem 1(III). □
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4 Plane quadrangulations satisfying the equality

In this section, we show that the upper bounds of χp
f (G) in Theorem 1(I)–(III) are best

possible.

4.1 Best possibility of Theorem 1(I)

In this section, we show the following proposition.

Proposition 8 There are infinitely many plane quadrangulations G such that χp
f (G) =

3
2α(G).

Proof. To construct quadrangulations with desired properties, we define a K2,4-addition

as follows. Let f be a face of a quadrangulation G, and let v1v2v3v4 be its boundary. We

add two new vertices u1 and u3 inside f , and connect them to v1 and v3 so that it creates

a new quadrangular face v1u1v3u3, say f ′. Then we further add two more new vertices u2
and u4 inside f ′, and connect them to u1 and u3 so that it creates a new quadrangular face

u1u2u3u4. We call this operation a K2,4-addition to the face f at v1 and v3; see Figure 6.

In the operation, we say that v1 and v3 are the base vertices and u1 and u3 are the subbase

vertices.

v1

v2

v3

v4

v1

v2

v3

v4u1

u2

u3

u4

Figure 6: The quadrangulation obtained by a K2,4-addition to the face f .

We define the set G1 of plane quadrangulations G with a family PG of pairwise disjoint

vertex subsets of G such that each S ∈ PG is an independent set with |S| = 2 and

(∗) for each face f of G, there exists S ∈ PG such that the boundary of f contains

the two vertices in S,

by recursively adding members as follows.

Let G1 be the plane quadrangulation obtained from C4 by a K2,4-addition (see Figure

7), and let S0 (resp. S1) be the set of the base (resp. subbase) vertices of the K2,4-addition,

respectively. Note that G1 satisfies the condition (∗) for PG1 = {S0, S1}. First we add G1 to

G1.

Let G ∈ G1, and let f be a face of G. By the condition (∗) for G, there exists S ∈ PG

such that the boundary of f contains the two vertices in S. We perform the K2,4-addition

to f at the two vertices in S. Let G′ be the obtained plane quadrangulation, S′ be the set of

the subbase vertices, and PG′ = PG ∪ {S′}. Since there are five new faces in G′ and each of

their boundaries contains either the two vertices of S or the two vertices of S′, G′ satisfies the

condition (∗) for PG′ . We add G′ to G1. Note that |V (G′)| = |V (G)|+4, and |PG′ | = |PG|+1.

10



Figure 7: The plane quadrangulation G1.

Since the vertices added to G form C4, we have α(G
′) ≤ α(G)+2. (To be exact, the equality

holds, but the inequality suffices for our proof.)

Then we obtain the set G1. Let G ∈ G1. We color the two vertices in each S ∈ PG by the

same color which is different from the one used for any S′ ∈ PG − {S}. Then we color the

remaining vertices, that is, the vertices that do not belong to any S ∈ PG, by different colors.

By the condition (∗), this coloring is a proper anti-rainbow coloring, and it uses |V (G)|−|PG|
colors. Since |V (G1)| = 8, |PG1 | = 2, and α(G1) = 4, if G is obtained by K2,4-addition k

times, then

|V (G)| = 4k + 8, |PG| = k + 2, and α(G) ≤ 2k + 4.

Thus,

χp
f (G) ≥ |V (G)| − |PG| = 3k + 6 ≥ 3

2
α(G).

Since χp
f (G) ≤ 3

2α(G) by Theorem 1(I), every member G of G1 satisfices χp
f (G) = 3

2α(G).

This completes the proof of Proposition 8. □

Remark: If a plane quadrangulation G satisfies χp
f (G) = 3

2α(G), then all equalities hold in

Case (i) of the proof of Theorem 1(I) in Section 3.1. In addition, if we follow the argument

in Case (ii) replacing the assumption with |V1| = 2
3χ

p
f (G), then we also obtain the bound

χp
f (G) ≤ 3

2α(G). Therefore, all equalities in Case (ii) also hold. Those conditions imply

that G is either a member of G1 or isomorphic to C4. (We leave the detail of the proof

to the readers.) This gives a complete characterization of plane quadrangulations G with

χp
f (G) = 3

2α(G).

4.2 Best possibility of Theorem 1(II)

Similarly to the previous section, we prove the following proposition.

Proposition 9 There are infinitely many plane quadrangulations G such that the minimum

degree of G is 3 and χp
f (G) = 5

4α(G).

Proof. We first define a cube-addition as follows, where the cube is the plane quadrangu-

lation represented in Figure 8. Let f be a face of a quadrangulation G, and let v1v2v3v4 be

11



its boundary. Let u1u2u3u4 be the boundary of the outer face of the cube. We embed the

cube into the inside of f and connect vi and uj for all pairs i, j ∈ {1, 3}; see Figure 9 for

example. We call this operation a cube-addition to the face f at v1 and v3. The partite set

of the cube containing u1 and u3 is the subbase of the cube-addition.

Figure 8: The cube

v₃ v₂

v₁v₄

u₁ u₂

u₃u₄

Figure 9: The plane quadrangulation obtained

from the cube by a cube-addition at v1 and v3

We define the set G2 of plane quadrangulations G with a family PG of pairwise disjoint

vertex subsets of G such that each S ∈ PG is an independent set with |S| = 4 and

(∗2) for each face f of G, there exists S ∈ PG such that the boundary of f contains

exactly two vertices in S

by recursively adding members as follows.

Let G2 be the cube and let S2 be one of the partite sets. Note that G2 satisfies the

condition (∗2) for PG2 = {S2}. First we add G2 to G2.

Let G ∈ G2, and let f be a face of G. By the condition (∗2) for G, there exists S ∈ PG such

that the boundary of f contains exactly two vertices in S. We perform a cube-addition to f at

the two vertices in S, and let G′ be the obtained plane quadrangulation with PG′ = PG∪{S′},
where S′ is the subbase of the cube-addition. Since there are nine new faces in G′ and each

of their boundaries contains either two vertices of S or two vertices of S′, G′ satisfies the

condition (∗2) for PG′ . We add G′ to G2. Note that |V (G′)| = |V (G)|+8, and |PG′ | = |PG|+1.

Since the vertices added to G form the cube, we have α(G′) ≤ α(G) + 4. (To be exact, the

equality holds, but the inequality suffices for our proof.)

Then we obtain the set G2. Note that the minimum degree of every member G ∈ G2 is

three. Let G ∈ G2. We color the four vertices in each S ∈ PG by the same color which is

different from the one used for any S′ ∈ PG − {S}. Then we color the remaining vertices,

that is, the vertices that do not belong to any S ∈ PG, by different colors. By the condition

(∗2), this coloring is a proper anti-rainbow coloring, and it uses |V (G)| − 3|PG| colors. Since
|V (G2)| = 8, |PG2 | = 1, and α(G2) = 4, if G is obtained by cube-addition k times, then

|V (G)| = 8k + 8, |PG| = k + 1 and α(G) ≤ 4k + 4.

Thus,

χp
f (G) ≥ |V (G)| − 3|PG| = 5k + 5 ≥ 5

4
α(G).

Since χp
f (G) ≤ 5

4α(G) by Theorem 1(II), every member G of G2 satisfices χp
f (G) = 5

4α(G).

This completes the proof of Proposition 9. □
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4.3 Best possibility of Theorem 1(III)

Similarly to the previous sections, we prove the following proposition.

Proposition 10 There are infinitely many 3-connected plane quadrangulations G such that

χp
f (G) = 7

6α(G) + 1
3 .

Proof. We first define an Ht-addition for t = 1, 2 as follows, where H1 and H2 are the

plane graphs in Figures 10 and 11, respectively.

Figure 10: The graph H1 Figure 11: The graph H2

Let f be a hexangular face of a plane graph G, and let v1v2v3v4v5v6 be its boundary.

For t = 1, 2, let f ′ be the outer face of the graph Ht and u1u2u3u4u5u6 be its boundary. We

embed the graph Ht into the inside of f and connect vi and ui for i ∈ {1, 3, 5} and connect

vi+2 and ui for i ∈ {1, 3, 5} where v7 = v1; see Figure 12 for example. We call this operation

an Ht-addition to the face f at v1, v3 and v5. The partite set of Ht that contains u1, u3 and

u5 is the subbase of the Ht-addition.

v₁

v₂

v₃

v₄

v₅

v₆
u₁

u₂

u₃

u₄

u₅

u₆

Figure 12: The 3-connected plane quadrangulation obtained from H1 (with an embedding in

which the hexangular face is an inner face) by an H1-addition.

We define the set G3 of plane graphs G with a family PG of pairwise disjoint vertex subsets

of G such that all faces of G are quadrangular except for one inner face that is hexangular,

each S ∈ PG is an independent set with |S| = 6 except for one independent set SH1 with

|SH1 | = 5 and

(∗3) for each face f of G, there exists S ∈ PG such that the boundary of f contains

exactly two vertices in S if f is quadrangular and exactly three vertices in S if f
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is hexangular,

by recursively adding members as follows.

First we re-embed the plane graph H1 so that the hexangular face is an inner face. Note

that H1 satisfies the condition (∗3) for PH1 = {SH1}, where SH1 is one of the partite sets of

H1. (Note that there are two choices for SH1 .) We add H1 to G3.

Let G ∈ G3, and let f be the unique hexangular face of G. By the condition (∗3) for G,

there exists S ∈ PG such that the boundary of f contains exactly three vertices in S. We

perform an H2-addition to f at the three vertices in S, and let G′ be the obtained plane

graph with PG′ = PG∪{S′}, where S′ is the subbase of the H2-addition. Note that there are

12 new quadrangular faces in G′ and each of their boundaries contains either two vertices

of S or two vertices of S′. In addition, the boundary of the unique hexangular face of G′

contains three vertices of S′. Thus, G′ satisfies the condition (∗3) for PG′ . We add G′ to G3.

Note that |V (G′)| = |V (G)|+12, |PG′ | = |PG|+1, and α(G′) ≤ α(G)+6. (The equality also

holds, but the inequality suffices for our proof.)

Then we obtain the set G3. Note that any member of G3 is 3-connected. Let G ∈ G3 with

the unique haxangular face f . By the condition (∗3) for G, there exists S0 ∈ PG such that

the boundary of f contains exactly three vertices in S0. We perform an H1-addition to f at

the three vertices in S0, and let G̃ be the obtained plane graph with P
G̃
= PG ∪ {S′

0}, where
S′
0 is the subbase of the H1-addition. Note that G̃ is a 3-connected plane quadrangulation

and |S′
0| = 5. We color the vertices in each S ∈ P

G̃
by the same color which is different

from the one used for any S′ ∈ P
G̃
− {S}. Then we color the remaining vertices, that is,

the vertices that do not belong to any S ∈ P
G̃
, by different colors. By the condition (∗3),

this coloring is a proper anti-rainbow coloring, and it uses |V (G̃)| −
∑

S∈P
G̃
(|S| − 1) colors.

Suppose that G is obtained from H1 by H2-addition k times. Since |V (H1)| = 10, |PH1 | = 1,

and α(H1) = 5, we have

|V (G̃)| = 12k + 20, |P
G̃
| = k + 2 and α(G̃) ≤ 6k + 10.

Thus,

χp
f (G̃) ≥ |V (G̃)| −

∑
S∈P

G̃

(|S| − 1) = 12k + 20− (5k + 8)

= 7k + 12 ≥ 7

6
α(G̃) +

1

3
.

Since χp
f (G̃) ≤ 7

6α(G̃)+ 1
3 by Theorem 1(III), the plane quadrangulation G̃ for every member

G of G3 satisfices χp
f (G̃) = 7

6α(G̃) + 1
3 . This completes the proof of Proposition 10. □

Remark: Note that all plane quadrangulations G we construct in this section satisfy

α(G) = |V (G)|
2 . Therefore, the bounds in Theorem 1(I)–(III) might be improved for plane

quadrangulations G such that α(G) is much larger than |V (G)|
2 . We leave this for the readers

as an open problem.
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