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PAPER
Optimization and Hole Interpolation of 2-D Sparse Arrays for
Accurate Direction-of-Arrival Estimation∗

Shogo NAKAMURA†, Sho IWAZAKI†, Student Members, and Koichi ICHIGE†a), Member

SUMMARY This paper presents a method to optimize 2-D sparse ar-
ray configurations along with a technique to interpolate holes to accurately
estimate the direction of arrival (DOA). Conventional 2-D sparse arrays are
often defined using a closed-form representation and have the property that
they can create hole-free difference co-arrays that can estimate DOAs of
incident signals that outnumber the physical elements. However, this prop-
erty restricts the array configuration to a limited structure and results in a
significant mutual coupling effect between consecutive sensors. In this pa-
per, we introduce an optimization-based method for designing 2-D sparse
arrays that enhances flexibility of array configuration as well as DOA es-
timation accuracy. We also propose a method to interpolate holes in 2-D
co-arrays by nuclear norm minimization (NNM) that permits holes and to
extend array aperture to further enhance DOA estimation accuracy. The
performance of the proposed optimum arrays is evaluated through numeri-
cal examples.
key words: direction of arrival estimation, array signal processing, sparse
array, mutual coupling, nuclear norm minimization

1. Introduction

Antenna arrays are often employed as one of key devices in
radar or communication applications [1], [2]. To accurately
detect the incident directions of array input signals, direc-
tion of arrival (DOA) estimation is effective, and many DOA
estimation algorithms have been proposed such as multiple
signal classification (MUSIC) and estimation of signal pa-
rameters via rotational invariance techniques (ESPRIT) [3]–
[6]. Most of those methods are based on the eigenvalue de-
composition of a sample covariance matrix of an array input
signal, which means that those algorithms are with the de-
gree of freedom (DOF) of O(N), where N denotes the num-
ber of antenna elements. Many methods have been devel-
oped to enhance the DOF like minimum redundancy array
(MRA) [7], a method using 4th-order cumulants [8], or ex-
tended beamforming [9]–[11]. However, these approaches
are very complicated.

2-D sparse arrays such as billboard arrays and 2-D
nested arrays have already been studied that can accurately
estimate 2-D DOAs (azimuth and elevation) [12], [13]. The
arrays utilize Khatri-Rao product [14] to increase the DOF
[15] and create virtual arrays, which are called difference
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co-arrays as they are composed of virtual sensors. The dif-
ference co-arrays possess the DOF to O(N2) that can resolve
up to O(N2) uncorrelated signals. Thus, the co-arrays have
no holes in the apertures, which means that they can form
a complete uniform rectangular array (URA). This is called
“hole-free” property.

One inherent problem of those arrays is that their con-
figurations often trigger severe mutual coupling, resulting in
considerable interference between sensor outputs [16], [17]
and degrading DOA estimation performances. The hour-
glass array [18] can reduce the mutual coupling influence
and creates a hole-free difference co-array. Large sensor
separations help to reduce the mutual coupling effect, and
the sensors are located more sparsely in the hourglass array
than in the other 2-D sparse arrays such as open box arrays
(OBAs) or billboard arrays [19]. However, the closed-form
representation in the hourglass array also becomes a restric-
tion and prevents further improvement of DOA estimation
performance.

Recall that the array configuration can no longer be a
closed-form representation or be further modified by any op-
timization, as demonstrated when one of the authors applied
simulated annealing (SA) to optimize the configuration of a
1-D sparse array [8]. It is assumed that the hole-free prop-
erty that restricts the array configuration and the DOA esti-
mation performance can be further improved by introducing
nuclear norm minimization (NNM) [20] so that we can in-
terpolate hole elements. NNM can interpolate lacking ma-
trix elements while preserving the low-rank property of the
matrix and can be applied to estimate the received signal
components by virtual elements. The optimum arrays are
more robust to mutual coupling due of permitting holes in
the aperture.

In this paper, we develop a method of constructing 2-
D sparse arrays using optimization and hole interpolation
for accurate DOA estimation. The array configuration is
first optimized while fixing the array aperture [21]. We also
introduce a way to interpolate holes in 2-D difference co-
arrays by using NNM [22] to develop arrays with larger in-
tervals and smaller mutual couplings. Then, we propose an
extended optimum array whose aperture is extended by us-
ing the modified SA algorithm. Array elements can be lo-
cated more sparsely by extending the array aperture. Also,
the optimum extended array aperture is expected to increase
DOFs and DOA estimation accuracy. The interpolation ac-
curacy and DOA estimation accuracy of the proposed array
configuration are evaluated through numerical examples.

Copyright c© 2021 The Institute of Electronics, Information and Communication Engineers
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2. Preliminaries

In this section, we review the data model and the conven-
tional array geometry.

2.1 2-D Sparse Array Data Model

Suppose that D uncorrelated sources impinge on a 2-D sen-
sor array in an additive white Gaussian noise (AWGN) envi-
ronment, where the signals and noises are statistically inde-
pendent. The array aperture and the sensor location are re-
spectively given by Nx ×Ny and nd, where n = (nx, ny) ∈ Z2

is an integer-valued vector, d = λ/2 is the minimum separa-
tion between sensors, and λ is the wavelength of incoming
sources. Assume that the sensor location n forms a set S.
Then the sensor input xS on S can be modeled similarly to
in the hourglass array [18] as

xS =

D∑
i=1

AiCuS(θ̄i, φ̄i) + uS, (1)

θ̄i =
d
λ

sin θi cos φi, (2)

φ̄i =
d
λ

sin θi sin φi, (3)

where the i-th source is with the complex amplitude Ai ∈ C,
the azimuth φi ∈ [0, 2π], and elevation θi ∈ [0, π/2]. The
element of the steering vector uS(θ̄i, φ̄i) corresponding to the
sensor at n = (nx, ny) is given by e j2π(θ̄inx+φ̄iny). The mutual
coupling matrix C [17] is characterized by its entries

〈C〉n1,n2 =

{
c(‖n1 − n2‖2), ‖n1 − n2‖2 ≤ B,
0, otherwise, (4)

where n1, n2 ∈ S denote the sensor location, B is the max-
imum sensor separation where the mutual coupling effect
exists, and c(·) is the mutual coupling coefficient given by
c(0) = 1 and |c(k)/c(`)| = `/k for k, ` > 0 [18]. Here, the
covariance matrix RS of the array S can be expressed as

RS = E
[
xSxH

S

]
. (5)

We also define the difference co-array D =

{n1 − n2 | n1, n2 ∈ S} for any 2-D sparse array S. Then the
input vector of the difference co-array xD can be obtained by
vectorizing (5) while removing duplicated entries [18]. Note
that the higher DOF of the difference co-array D enables us
to identify O(N2) uncorrelated signals.

2.2 Conventional 2-D Sparse Arrays

The hourglass array [18] was developed on the basis of the
OBA [19] to reduce the mutual coupling effect. The con-
figurations of the OBA and the hourglass array are respec-
tively illustrated in Fig. 1(a) and (b), where the red dots rep-
resent physical sensors with the minimum sensor separation
d = λ/2. The sensor location of the hourglass array is de-
fined in a closed-form expression and the difference co-array

Fig. 1 Examples of conventional 2-D sparse arrays with 33 physical sen-
sors. Apertures for both difference co-arrays are 17 × 25.

becomes a hole-free URA [18]. We also see from Fig. 1
that the hourglass array has fewer elements with the small-
est separation than the OBA. That means, the hourglass ar-
ray can reduce the mutual coupling effect more efficiently
because of larger sensor separations.

3. Configuration of the Proposed 2-D Sparse Arrays

In this section, we introduce SA-based optimum 2-D sparse
arrays to further reduce the mutual coupling effect. First, we
develop an optimization method to develop hole-free sparse
arrays. However, the hole-free condition sometimes makes
it difficult to distribute sensors more sparsely even though
a sparse distribution is often necessary for accurate DOA
estimation. Therefore, we also develop a method to allow
holes in the difference co-array and then interpolate them.
Then the interpolated hole-free virtual array can be applied
to the DOA estimation algorithms that require continuous
arrays such as ESPRIT.

We first develop a way to optimize the array configu-
ration while given array apertures are fixed as given initial
arrays in Sect. 3.1. Then, we introduce a method to interpo-
late holes for a 2-D co-array via NNM in Sect. 3.2. Finally,
we propose a method to extend array apertures in Sect. 3.3.

3.1 Optimization of Array Configuration

In a previous study [8], we developed a 1-D sparse array that
has a large aperture on the basis of the optimization by SA.
In this work, we apply a similar approach to construct arrays
that are less susceptible to the mutual coupling. Many op-
timization methods can be applied to develop array config-
uration optimization, such as genetic algorithm (GA), parti-
cle swarm optimization (PSO), and ant colony optimization
(ACO). We evaluated those algorithms and found that the
SA-based optimization has a very high probability of con-
verging to a global solution and is quite simple to apply to
array construction [8]. Because small sensor separations re-
sult in a large mutual coupling effect, we define the cost
function to be minimized as

D1 =

N∑
i, j

1
‖ni − nj‖2

, such that ‖ni − nj‖2 ≤ B (6)
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where ni, nj ∈ S and N denotes the number of sensors, and B
is shown in (4). Besides, ||·||2 denotes `2 norm of vectors, and
therefore ‖ni − nj‖2 means the distance between the i-th and
j-th array elements. Equation (6) means the sum of a recip-
rocal of distances between two elements, and the function’s
behavior depends on the distance. In this optimization, the
sensor locations are changed within a given aperture so as
to minimize the cost function. The optimum array can be
obtained by minimizing the cost function because a smaller
value ofD1 leads to sparser arrays.

The whole optimization algorithm is shown in Algo-
rithm 1. The initial array S0 is the hourglass array, and
the parameters related to temperature (T,Tmin,∆T ) are set
empirically. Note that the parameters T,Tmin,∆T are the
temperature parameters used in SA; T denotes the tempera-
ture, and ∆T (< 1) is the temperature ratio in each optimiza-
tion step. More specifically, the temperature goes down by
T×∆T → T and stops iteration when T < Tmin. The number
of holes for the final array Sfinal, which is a solution, can be
controlled by changing the parameter pnum (the permitted
number of holes). For example, an array as a solution has
fewer than 100 holes when pnum = 100.

The following steps after setting these parameters are
iterated until the temperature becomes sufficiently cool (T >
Tmin). In the annealing iteration, the first step is to cal-
culate the value of the initial cost function D1,ini on the
basis of (6) and the number of holes (num) for array S.
Then, a sensor randomly selected from Stmp is moved in
the aperture until the condition num > pnum is met, where
four sensors that determine the aperture are fixed at cor-
ners. Note that if the condition is not met, the picked sen-
sor is returned to the original location and the operation is
repeated. An annealing test is conducted after sensor move-
ment. Here two conditions are assumed for adopting new
arrays: the value of the cost function for Stmp is smaller
than that of S (D1,tmp < D1,ini) or the value calculated by
exp((D1,ini − D1,tmp)/T ) > x is larger than x ∈ [0, 1], where
x is a random value. The latter is characteristic of SA, a new
array is often adopted when T is large, and the probability
of adoption gradually decreases as T decreases. By control-
ling the possibility of adopting a new array configuration in
this manner, we can often reach a global-optimum solution
without converging to local-optimums.

The annealing test helps to avoid convergence to the
local minimum. The final step is to cool the temperature as
the equation: T ⇐ T×∆T . Through these steps, an optimum
2-D sparse array Sfinal that is more robust to mutual coupling
can be obtained, where the value of the cost function of Sfinal
is equal toD1,ini.

3.2 2-D Co-Array Interpolation via NNM

The holes in optimum arrays in Sect. 3.1 must be interpo-
lated to accurately estimate DOA. An interpolation method
for 1-D sparse arrays has been proposed [20] that utilizes the
property that a correlation matrix is a low rank and the best
relaxation problem for low rank optimization: NNM. We

Algorithm 1 Optimization based on SA
set initial array Sini as hourglass array, initial temperature T , end tem-
perature Tmin, changing rate of temperature ∆T , permitted # of holes
(pnum)
S⇐ Sini
calculate value of cost functionD1,ini for S0 by (6)
while T > Tmin do

calculate # of holes (num) for S
while num > pnum do
Stmp ⇐ S
move a sensor randomly rather than 4 sensors at corners in Stmp

end while
calculate value of cost functionD1,tmp for Stmp by (6)
set a random value x ∈ [0, 1]
if D1,tmp < D1,ini then
S⇐ Stmp
D1,ini ⇐ D1,tmp

else if exp((D1,ini −D1,tmp)/T ) > x then
S⇐ Stmp
D1,ini ⇐ D1,tmp

end if
T ⇐ T × ∆T

end while
Sfinal ⇐ S

Fig. 2 Example 2-D sparse array in case of Nx = 3, Ny = 2, with the (a)
physical elements S (red), (b) difference co-array D (red + blue), and (c)
interpolated co-array V (red + blue + green).

extend this method to 2-D cases for accurate interpolation.
In the 1-D sparse array interpolation method [20], the

correlation matrix involving hole elements for NNM is de-
signed by assuming the matrix is Hermitian Toeplitz when
the array is linear, that is, how to interpolate holes can be
interpreted as how to design the matrix. We will present
several methods on how to interpolate holes, in other words,
how to design a matrix for NNM in the 2-D case.

Figure 2 shows an example of 2-D sparse array whose
aperture is Nx = 3,Ny = 2: (a) the physical array S, (b)
the difference co-array D, and (c) the interpolated difference
co-array V. Red and blue circles represent physical and vir-
tual sensors, respectively, while green circles denote holes
to be interpolated. The origin O is the bottom-left corner in
Fig. 2(a), and the sensor output corresponding to the sensor
at n1 − n2 (n1, n2 ∈ S) is expressed as 〈x̃D〉n1,n2 , which are
known virtual array outputs.

The form of NNM in a 2-D case is modeled as

R̃?
V = arg min

R̃V
‖R̃V‖∗ (7)

where

R̃V = R̃H
V , (8)

〈R̃V〉n1,n2 = 〈x̃D〉n1,n2 . (9)
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Fig. 3 Basic concept to apply 1-D NNM to 2-D case. The two sensor
outputs have complex conjugate values when they are odd-symmetrically
located.

The optimal solution R̃?
V in (7) denotes the interpolated au-

tocorrelation matrix. The method to construct the initial ma-
trix R̃V with holes is divided into several ways by utilizing
the co-array property shown in (10), and we will describe
them.

3.2.1 Column/Row Interpolation

The basic idea of this interpolation is to apply 1-D NNM
[20] to a 2-D case directly. In a 1-D case, the matrix R̃V in
(7) is Hermitian Toeplitz and can be designed by using the
following property. For 2-D difference co-arrays, an odd-
symmetrically located sensor pair for the origin O has com-
plex conjugate signals as shown in (10), e.g., the signal on
(1, 1) is a complex conjugate of the signal on (−1,−1). That
means the equality x1,1 = x∗

−1,−1 holds, where xnx,ny denotes
sensor output on (nx, ny):

xnx,ny = exp
{
anx + bny

}
= exp

{
a(−nx) + b(−ny))

}
= x∗−nx,−ny , (10)

where a, b are appropriate complex values. Figure 3(a) and
(b) show the basic concept to apply 1-D NNM to a 2-D case.
Designing a Hermitian Toeplitz matrix R̃V by using 2-D ar-
ray outputs corresponds to abstracting a linear array as a cor-
relation matrix of a linear array is Hermitian Toeplitz. How
to abstract sensors is not determined uniquely. Figure 3(a)
shows column interpolation, which utilizes a part located as
a column where holes exist. Similarly, we also propose row
interpolation that uses sensor output located as in Fig. 3(b).
The sensors in yellow rectangles are odd-symmetrically lo-
cated, hence, they have complex conjugate signals. Note
that the origin output has real value so that it is lined up at
a principal diagonal in the matrix R̃V for any interpolation
method.

Fig. 4 Example 2-D sparse array in case of Nx = 3, Ny = 2, red and
blue circles represent physical and virtual sensors, respectively. (a) Array
with holes and (b) reference array (OBA) that has same aperture as (a) and
hole-free property.

3.2.2 2-D Interpolation

The correlation matrix for NNM in Sect. 3.2.1 must be a
Hermitian Toepliz and is for linear arrays. That is, it is a
method to abstract linear arrays from 2-D arrays. Hence,
NNM has to be performed at each part where there are holes,
and this incurs calculation cost. In this subsection, we pro-
pose a method to construct a correlation matrix of 2-D spare
arrays with holes in which we prepare the matrix for NNM
only once. A hole-free reference array Sref is prepared in
advance, and the index information is used to realize this
method. For example, we consider the array with holes
shown in Fig. 4(a) and the reference array with hole-free
property shown in Fig. 4(b). These two arrays must have
the same aperture (but not necessarily the same number of
sensors), which is 3× 2 for a physical array in this example.
The correlation matrices RS and RSOBA , which respectively
correspond to Figs. 4(a) and 4(b), are given by

RSOBA =


x0,0 x0,−1 x−1,0 x−2,0 x−2,−1
x0,1 x0,0 x−1,1 x−2,1 x−2,0
x1,0 x1,−1 x0,0 x−1,0 x−1,−1
x2,0 x2,−1 x−1,0 x0,0 x0,−1
x2,1 x2,0 x1,1 x0,1 x0,0

 , (11)

RS =


x0,0 x0,−1 x−1,0 x−2,0 x−2,0
x0,1 x0,0 x−1,1 x−1,0 x−2,1
x1,0 x1,−1 x0,0 x0,−1 x−1,0
x1,1 x1,0 x0,1 x0,0 x−1,1
x2,0 x2,−1 x1,0 x1,−1 x0,0

 , (12)

Comparing (11) and (12), the signal information of dif-
ference co-array x−2,−1, x2,1 in (11) is lacking. Thus, the sig-
nals in (12) are sorted the same as in (11) while the holes
x−2,1, x2,1 are set to 0. NNM can be applied to this corre-
lation matrix with holes R̃V directly, and NNM is operated
only once. There must be a reference array Sref with any
aperture such as OBA, and a correlation matrix for NNM
can be constructed with a size of |Sref | × |Sref |. It includes
all information of difference co-array’s signals rather than
information of holes, so more accurate interpolation can be
expected. In this paper, we use OBA as a reference array.
The interpolation accuracy does not depend on which arrays
are used as a reference array as we only use the index infor-
mation of the reference array.
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3.3 Extension of Array Aperture

In this subsection, we propose an extended optimum array
that has a larger aperture than the initial array. For the SA
algorithm referred to in Sect. 3.1, the aperture determined
by corner sensors is fixed as the initial condition. On the
other hand, the modified SA algorithm can make a larger ar-
ray aperture and element intervals, which will lead to larger
DOFs and more accurate DOA estimation. Here we fixed
the number of physical elements, i.e., the target of this work
is to enhance DOA estimation performance by optimizing
the array configuration under the condition of the same num-
ber of physical elements. The flow of the modified SA algo-
rithm is shown in Algorithm 2 and its details are as follows.

The initial parameters used in Algorithm 2 are the
same as in Algorithm 1; the initial array location, tem-
perature parameters, the number of holes of difference co-
array, and the permitted number of holes are defined as
S0,T,Tmin,∆T, num, and pnum, respectively. The cost func-
tion is defined as

D2 =
1
2
D1(1 + r), (13)

where D1 is calculated by (6), and r means the DOF ratio
modeled as

r =
DOF

(2Nx − 1)(2Ny − 1)
. (14)

In (14), the numerator DOF is the number of sensors of the
difference co-array and Nx,Ny is the aperture. The cost D2
in (13) matches D1 in (6) when r is equal to 1, in the case
the difference co-array is a complete URA whose aperture
is (2Nx − 1)(2Ny − 1). The reason we define the cost func-
tion as this form is that a large number of holes makes the
performance worse and the renewed cost function leads to
sparser arrays and fewer holes (large DOF). It is suitable as
the modified SA because there must be holes when extend-
ing the aperture.

The aperture is extended as seen in Fig. 5 if the condi-
tion num ≤ pnum is satisfied. We introduce three ways to
extend the aperture: modes 1, 2, and 3. In mode 1, the sen-
sor located at the origin (0, 0) is fixed throughout the steps,
and sensors located at (0,Ny), (Nx, 0), (Nx,Ny) are moved to
(0,Ny+1), (Nx+1, 0), (Nx+1,Ny+1) respectively. For modes
2 and 3, the apertures are extended as in Fig. 5(b) and (c). In
this case, they are enlarged one at a time in only the x or y
direction. Here, the sensors defining the aperture are picked
up in only this step, otherwise they are fixed.

In the next step, a sensor is chosen rather than all
four sensors at corners, is moved to a space in the aper-
ture, and then calculates the cost function (13). If either
D2,tmp < D2,ini or exp((D2,ini − D2,tmp)/T ) > x is satisfied,
a new array is adopted. The temperature T is reduced and
if T does not meet the termination T < Tmin, these steps are
iterated. Otherwise it stops. The final solution Sfinal is an
extended optimum array that has a larger aperture than and

Algorithm 2 Modified SA algorithm for extending aperture
set initial array Sini as hourglass array, initial temperature T , end temper-
ature Tmin, changing rate of temperature ∆T , permitted # of holes (pnum)

S⇐ Sini
calculate value of cost functionD2,ini by (13)
while T > Tmin do

calculate # of holes (num) for S
if num ≤ pnum then

extend the aperture: the extended temporary array is Stmp
end if
move a sensor randomly rather than 4 sensors at corners in Stmp
calculate value of cost functionD2,tmp for Stmp
set a random value x ∈ [0, 1]
if D2,tmp < D2,ini then
S⇐ Stmp
D2,ini ⇐ D2,tmp

else if exp((D2,ini −D2,tmp)/T ) > x then
S⇐ Stmp
D2,ini ⇐ D2,tmp

end if
T ⇐ T × ∆T

end while
Sfinal ⇐ S

Fig. 5 Example way to extend array aperture. Sensors located at corners
without the sensor at the origin (0, 0) are moved as shown in this figure.

the same number of sensors as the initial array Sini.

4. Numerical Results

In this section, we evaluate the DOA estimation accuracy in
the presence of mutual coupling for hourglass arrays [18],
the optimum arrays developed in Sect. 3.1, and the extended
optimum arrays developed in Sect. 3.3.

After showing specifications of simulation in Sect. 4.1,
we first evaluate the performance of extended optimum ar-
rays in Sect. 4.2. We also evaluate the values of cost func-
tion D2 in (13) as a function of pnum shown in Sect. 3.3.
By changing the value of pnum, the arrays with different
apertures or DOFs that have the smallest value of D2 can
be obtained. Accordingly, in Sect. 4.3, we evaluate the per-
formances of different interpolation approaches: column in-
terpolation, row interpolation, and 2-D interpolation for the
arrays. Finally, the arrays are evaluated through root mean
square error (RMSE) as a function of signal-to-noise ratio
SNR and the number of snapshots in Sect. 4.4.

4.1 Simulation Specifications

Tables 1 and 2 show the simulation parameters used in the
following subsections. In Sect. 4.2, arrays are constructed
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Table 1 Simulation specifications in Sect. 4.2.

minimum element interval, d 0.5λ
initial array hourglass array

initial array size, (Nx,Ny) (26, 13)
# of physical sensors, N 50

initial temperature, T 105

end temperature, Tmin 10−5

changing rate of temperature, ∆T 0.999
permitted # of holes, pnum 0 to 5,000

# of trials, M 1, 000

Table 2 Simulation specifications in Sects. 4.3 and 4.4.

Section 4.3 4.4
# of incident signals, D 16 uncorrelated sources

DOAs as in Fig. 6
SNR (in dB) 0 −25 to 5 / 0

# of snapshots, K 200 200 / 20 to 1,000
coupling of elements, c(1) 0.3

coupling effected interval, B 5
DOA estimation method 2D unitary ESPRIT

hole interpolation method column/row/2-D 2-D
# of trials M 1, 000

Fig. 6 Distribution of incident signals.

on different conditions: parameter pnum is changed per 100
from 0 to 5, 000 at each mode. The initial array is an hour-
glass array whose aperture and the number of sensors are
26 × 13 and 50, respectively. Parameters related to temper-
ature in SA are shown in Table 1. Then, a comparison of
interpolation methods, SNR-RMSE, and Snapshots-RMSE
characteristics are simulated under the conditions in Table 2.
We assume 16 uncorrelated, narrowband and equal-power
sources whose DOAs are shown in Fig. 6. SNR is defined
as the ratio of the source signal power σ2

s to the noise power
σ2

n in decibels, i.e., SNR [dB] = 10 log(σ2
s/σ

2
n). The mutual

coupling model is given by (4), where c(1) = 0.3, B = 5
and c(`) = exp[ jπ(` − 1)/4]/`. The parameter c(1) means
the mutual coupling magnitude between two nearest sen-
sors, where the distance between the nearest sensors is λ/2.

Note that mutual coupling exists in the measurement
but the 2D unitary ESPRIT method does not deal with the
mutual coupling effect. Therefore, the baseline performance
of DOA estimation can be evaluated. The RMSE of the
DOA estimation for azimuth φ and elevation θ are respec-

Fig. 7 Cost function in (13) as a function of pnum.

tively evaluated by

RMSE(φ)[deg.] =

√√√
1

DM

D∑
i=1

M∑
m=1

(φ̂i − φi)2, (15)

RMSE(θ)[deg.] =

√√√
1

DM

D∑
i=1

M∑
m=1

(θ̂i − θi)2, (16)

where M and D stand for the numbers of Monte-Carlo trials
and received signals, respectively.

4.2 Examination of Extended Optimum Arrays

First, we start by determining which extended optimum ar-
rays have better performance. They are evaluated by the
values of the cost function in (13) and RMSE as a function
of pnum. The results are shown in Fig. 7. The graphs for
each mode have minimum values around pnum = 1, 000 to
1, 500 although they are not completely smooth. At each
pnum, the cost function is minimized to optimize the ar-
ray configuration. However, the configuration as well as the
value of the cost function depends on the permitted num-
ber of holes in the optimization. Considering (13) including
distance and DOF term, the array tends to be more balanced
when the cost function becomes smaller. That is, the ar-
ray with the smallest cost function value should be better in
the presence of mutual coupling. Hence, we pick out arrays
with such values at each mode and compare them with con-
ventional methods. Figure 8 shows the tested array configu-
rations: hourglass array, hole-free optimum array, optimum
array with holes, mode-1 optimum array, mode-2 optimum
array, and mode-3 optimum array.

4.3 Comparison of Interpolation Methods

In this subsection, we evaluate which methods in
Sects. 3.2.1 and 3.2.2 can interpolate holes more accurately.
The methods to be compared include column, row, and 2-
D interpolation. RMSEs are computed under the following
conditions: SNR= 0dB, the number of snapshots = 200,
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Fig. 8 Arrays’ configurations for simulation.

Table 3 Comparison of array aperture and the value of the cost function.

kind of mode aperture value of cost function
Hourglass array 26 × 13 120.11

Optimum (hole-free) 26 × 13 114.27
Optimum (98 holes) 26 × 13 104.50

Mode 1 35 × 22 86.164
Mode 2 62 × 13 84.950
Mode 3 26 × 31 87.356

c(1) = 0.3, and B = 5. All the arrays have the smallest possi-
ble cost function value at each mode, and their aperture and
the values of cost functions are shown in Table 3. Note that
the values of pnum in modes 1, 2, and 3 are 1, 100, 1, 300,
and 1, 300, respectively. We see from Table 3 that the op-
timum arrays with larger apertures can make values of the
cost function smaller, and mode 2 has the smallest value.

Figure 9 shows the results for azimuth and elevation
angles. The RMSEs are the smallest for any arrays inter-
polated by 2-D interpolation. Therefore, we conclude that
the 2-D interpolation method is more optimal than other ap-
proaches. This fact makes more accurate interpolation pos-
sible. Among the three modes, mode 2 has the worst RMSEs
in both azimuth and elevation angles when the same inter-
polation method is used although its cost function has the
minimum value. Also, it achieves the aperture of 62 × 13,
but its corresponding unbalanced aperture may not be appro-
priate for 2-D DOA estimation in this case. In contrast, the
balanced arrays in modes 1 and 3 have better RMSEs, and
in azimuth angles, mode 3 outperforms mode 1, whereas in
elevation angles, mode 1 is better. Basically, the longer the
x axis, the better the elevation estimation performance, and
azimuth estimation accuracy depends on the y axis length.
Mode 2 has a small array aperture along the y direction,

Fig. 9 Comparison of interpolation methods.

and therefore the estimation error of azimuth angles often
becomes large. Note that 2-D Unitary ESPRIT estimates
DOA by (2) and (3), which include both azimuth and ele-
vation angles. The azimuth estimation error in 2-D Unitary
ESPRIT will affect the elevation estimation accuracy, hence
the RMSE by mode 2 becomes worse. The aperture of mode
1 is 35 × 22, and that of mode 3 is 26 × 31. Thus, the dif-
ferences in the mode aperture accounts for the differences in
their performance. In real situations, it would be better to
use an array whose aperture is close to a square to reduce
the difference between azimuth and elevation.

4.4 SNR-RMSE and Snapshots-RMSE Characteristics

In this subsection, proposed optimum arrays are evaluated
through RMSE as a function of SNR and the number of
snapshots. For comparison, the hourglass array, hole-free
optimum array [21], optimum array with 98 holes [22], and
extended optimum array modes 1-3 are used. Here the op-
timum array’s aperture is fixed as introduced in this paper
and in our previous paper [22]. In the paper [22], the op-
timum array with 98 holes performed the best. Note that
the hourglass array, hole-free optimum array, and optimum
array with 98 holes have the same aperture: 26 × 13. The
extended optimum arrays are characterized in Table 3.

First, the simulation results of SNR-RMSE character-
istics are shown in Fig. 10(a) and (b). In Fig. 10, Hourglass
[18], Optimum [21], [22], Optimum (98 holes) [19], and
Extended Optimum (modes 1-3) represent hourglass array,
hole-free optimum array, optimum array with 98 holes, and
extended optimum arrays (modes 1-3), respectively. The op-
timum array with hole-free property has almost the same es-
timation accuracy as the hourglass array due to the restric-
tion that the array must be hole-free. However, in both az-
imuth and elevation angles, the estimation performance for
the fixed optimum array is greatly improved in the low or
high SNR domains and the improvement is especially out-
standing at SNR values over −15 dB. As a result, this array
configuration can suppress the mutual coupling more effi-
ciently by permitting holes in the aperture. As for the ex-
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Fig. 10 SNR-RMSE characteristics in case of extended optimum arrays.

tended optimum arrays, especially modes 1 and 3, the RM-
SEs in both angles under high SNR (more than −15dB) are
better than for Optimum (98 holes). The threshold values for
modes 2 and 3 are almost the same while that of mode 1 is
slightly larger. Therefore, mode 3 has the best performance
and the most balanced aperture among these three modes.

The obtained configuration also depends on the initial
array. In this example, the initial aperture is 26 × 13 and
mode 3, which is extended in the y direction only to make it
more balanced (the aperture of the mode 3 is 26 × 30). It is
important to choose the mode that leads to a balanced array.

Snapshots-RMSE characteristics are shown in Fig. 11(a)
and (b). The results resemble SNR-RMSE characteristics in
terms of mode 3, which has the lowest RMSE in a small
number of snapshots (around 40) and good accuracy in a
large number of snapshots. The results emphasize the su-
periority of optimum arrays, especially extended optimum
arrays.

5. Conclusion

In this paper, we introduced a method to optimize array con-
figurations and a method to design a correlation matrix for
hole interpolation via NNM. The optimum arrays are made
on the basis of SA, and a modified SA algorithm enlarges

Fig. 11 Snapshots-RMSE characteristics.

the aperture to obtain extended optimum arrays. The inter-
polation methods are based on NNM and optimization ori-
entations were categorized as all-sensors, column, row, and
2-D interpolation. Among the four orientations, 2-D inter-
polation has the best performance in interpolation methods
even the computational cost becomes large. Besides, the
extended optimum arrays (with holes and larger aperture)
have lower RMSEs than that the conventional method. We
emphasize that the larger aperture works effectively even the
existence of holes, which can be interpolated by NNM.

For future work, the optimum cost function for array
optimization will be studied with considerations for the bal-
ance of aperture. Also the application of 2-D sparse arrays
to beamforming should be studied, as we have already dis-
cussed in [23].
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