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PAPER
Single Image Haze Removal Using Iterative Ambient Light
Estimation with Region Segmentation∗

Yuji ARAKI†, Kentaro MITA†, Student Members, and Koichi ICHIGE†a), Member

SUMMARY We propose an iterative single-image haze-removal
method that first divides images with haze into regions in which haze-
removal processing is difficult and then estimates the ambient light. The
existing method has a problem wherein it often overestimates the amount of
haze in regions where there is a large distance between the location the pho-
tograph was taken and the subject of the photograph; this problem prevents
the ambient light from being estimated accurately. In particular, it is often
difficult to accurately estimate the ambient light of images containing white
and sky regions. Processing those regions in the same way as other regions
has detrimental results, such as darkness or unnecessary color change. The
proposed method divides such regions in advance into multiple small re-
gions, and then, the ambient light is estimated from the small regions in
which haze removal is easy to process. We evaluated the proposed method
through some simulations, and found that the method achieves better haze
reduction accuracy even than the state-of-the art methods based on deep
learning.
key words: haze removal, dark channel, HSV color space, region segmen-
tation

1. Introduction

Various image-restoration techniques have been developed in
recent decades, and single-image haze removal is a key pro-
cess in image restoration. Single-image haze removal aims
to sharpen images by removing haze, fog, clouds, and any
other blurring factors. Image-sharpening techniques have
gained attention in various fields, such as satellite imaging
[1], image classification [2], remote sensing [3], andmoving-
image analysis [4]. Haze-removalmethods often estimate the
transmission map, i.e. the attenuation amount of the light re-
flected from the subject of the photograph, and the ambient
light, i.e. light in the atmosphere, and then derive a restored
image with linear processing [5], [6]. In general, all the
red, green, and blue (RGB) values in colored haze images
become equal because haze has a strong white component.
However, at least one of the RGB components takes a small
value in regions in which no haze exists.

Independent component analysis (ICA) [7] can be used
for haze removal, but it requires a long calculation time and
is not effective for processing images with a large amount of
haze. A haze reduction method using color line [8] is also
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attracted but it often removes too much haze and may make
images with inappropriate contrast. Also this method has a
drawback that the ambient light vector should be specified in
advance of haze reduction process. The method [9] focuses
to accurately estimate the ambient light, however it cannot
accurately remove haze from images with sky regions. A
method that uses a dark channel [10] creates an image called
a dark 0channel that selects the smallest RGB values in each
pixel and estimates the transmission map and ambient light.
However, there is an inherent problem in this method: the
transmission map and the ambient light cannot be accurately
estimated if there is white or sky regions in the input image.
Therefore, a method to create multiple dark channels with
different patch sizes [11] has been proposed, but the haze-
amount estimation in sky regions is still insufficient.

Recently the learning-based methods are very much
attracted and are already used in many applications [12],
[13]. A method that uses a convolutional neural network
(CNN) [12] is effective for processing sky regions, but the
color of regions without haze also changes when this method
is used. Also this kind of CNN-based method often does
not work accurately for dense haze images. The method
employing generative adversarial networks (GAN) [13] is
also effective for processing sky regions but often has a
same problem with the CNN-based methods.

Recall that a method using hue, saturation, and value
(HSV) color space [14] uses a depth map to estimate the
transmission map without approximating the white region.
The drawback of this approach is that it is difficult to restore
images that have large haze regions. We can improve the
accuracy of the transmission map by applying a guided filter
[15] to the depth-map processing for the images with a small
white area. This method works well overall, but it has dif-
ficulty processing white and sky regions, as is the case with
the methods using dark channels. A different method di-
vides the images into small regions in advance and employs
parallel processing [16]. This method divides sky regions
and reduces haze well using a dark channel, but the accuracy
of the haze removal is insufficient.

In this paper, we modify the method [14] so that we
can estimate the number of iterations prior to haze-removal
processing. We also propose a method to estimate optimal
ambient light by dividing regions for which it is difficult
to estimate the haze amount. The iterative method has an
advantage that we can adaptively remove haze depending on
how much the given image is hazed. Therefore the method
is effective to restore dense haze images. Performance of
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the proposed method is evaluated using numerical values for
artificially synthesized images and images with actual haze.

The structure of this paper is as follows. Section 2
gives a brief outline of existing methods for haze removal.
Section 3 describes our proposed method. In Sect. 4, we
evaluate the proposed method through simulation and we
state the results in Sect. 5. In Sect. 6, we discuss the haze
that remains after haze removal in the simulated results. We
conclude with a summary in Sect. 7.

2. Preliminaries

We introduce some existing methods for estimating an im-
age’s ambient light and transmissionmap, which are essential
for haze removal. We also discuss the method of dividing
white and sky regions in an image forwhich the haze-removal
processing is difficult.

2.1 Observation Model

Figure 1 shows a way of creating haze images. A haze image
is generated by synthesizing the transmission map (i.e. how
much the reflected light from the image subject reaches the
camera lens directly) and ambient light from the light source.
Therefore, the input image in the haze-removal process is
formulated as

I (x) = t(x)J (x) + (1 − t(x))A, (1)

As (1) shows, we can linearly derive the desired image J if
the transmission map t and ambient light A can be estimated
from an input image.

2.2 Estimation of Ambient Light and Transmission Map

To estimate the transmissionmap, we first transform the input
image to the HSV color space and estimate the depth image
d on the basis of the following model [14]:

d(x) = θ0 + θ1v (x) + θ2s(x) + ε(x), (2)

where θ0, θ1, θ2 are constants regardless of the input image,
ε is the Gaussian function with the standard deviation σ, v
is brightness, and s is saturation. The model (2) means that
the depth map d(x) increases in proportion to {v (x) − s(x)},
and therefore we estimate the transmission map using the
equation

t(x) = e−d(x) . (3)

Using (3), we can determine the depth map estimated from
(2) within the range of 0 < t(x) < 1. The ambient light A
can be modeled as

A = I (xdmax ), (4)

where xdmax denotes the pixel at which the luminance value
of the depth map reaches the maximum. This is because
with (1), the pixel with the largest depth gives the small-
est transmission map and is the closest to the ambient-light

Fig. 1 Example of obtaining haze images.

Fig. 2 Determination of feature pixel.

value. We aim to estimate the desired image J using the
transmission map t and ambient light A, which are estimated
by (3) and (4), respectively.

2.3 Region Segmentation Based on Feature Pixel

White and sky regions must be appropriately processed in
haze removal. If these regions are processed in the same
way as other regions, the luminance value of the output im-
age decreases and the color of the image may be excessively
changed. Therefore, we must divide the image into the re-
gions in which haze removal processing is easy and difficult.

First we specify the pixel called the feature pixel in
the region in which haze-removal processing is difficult, as
shown in Fig. 2. The input image is divided into four regions,
and the averaged pixel value in i-th region Ilighti is calculated
by

Ilighti =
1

Nϕ,i

Nϕ, i∑
n=1

*.
,

1
3

∑
c∈{r,g,b }

Ic (n)+/
-
, (5)

ϕnew = max
I
light
i

(ϕ), (6)

where ϕ is a set of divided regions. Then, we select a
region satisfying (6) from ϕ, and set the region as ϕnew . The
parameter i is the set that satisfies

i ∈



1, 2, 3, 4
������
Igradi ≤

1
4

4∑
i=1

Igradi



, (7)

where Igradi represents the contour (averaged high-frequency
components) of the i-th region [16]. We regard the i-th region
which satisfies the condition (7) as the region where the haze
removal process is difficult, because of lower contour and
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greater average pixel values. The rest regions which do not
satisfy the condition (7) are regarded as the region where the
haze amount can be easily estimated.

The region with lower contour and greater average pixel
values is selected from the divided four regions. This is
because white and sky regions for which haze removal is
difficult often have lower contour and greater average pixel
values. Next, we select the region ϕnew and again divide
it into four regions in the same manner. This process is
repeated until the regions reach a certain small size. The
pixel at the center of the selected region in the final process
is chosen as the feature pixel. The pixels similar to the feature
pixel are selected using mean shift filtering [17] to determine
the regions to be divided.

3. Proposed Method

We present an overview followed by the details of our pro-
posed method. First, we estimate the optimal number of
iterations in haze removal. Next, we describe why there are
regions in which haze removal is difficult. Then, we develop
amethod of using region segmentation in estimating ambient
light and the number of iterations, after which we explain the
method of adjusting the amount by which haze is reduced at
the last iteration.

3.1 Optimal Number of Iterations

First, we estimate the optimal number of iterations for us to
repeat the haze-removal process. A flowchart of this process
is shown in Fig. 3.

Initially, it is desirable to terminate the iteration when
the ambient-light location changes because the ambient light
can be regarded as a pixel value that has the maximum haze.
However, the location of the ambient light may change in
each iteration when haze exists uniformly in the image.
Therefore, we repeat the haze-removal process twice and

Fig. 3 Flowchart of determining the number of iteration.

see whether or not the ambient light changes. We regard the
ambient light as unchanged when the change in the location
of the ambient light satisfies

| |Aa − Ab | | ≤ Ath, (8)

where Aa, Ab , and Ath are the ambient light of the output
image, that of the input image, and the threshold of the
change in the location of the ambient light, respectively.
We regard the ambient light as changed when (8) is not
satisfied. We judge if the haze-removal process should be
repeated or terminated by calculating the difference∆t of the
transmission maps:

∆t =
1
N

N∑
x=1
|ta (x) − tb (x) |, (9)

where N, ta, and tb are the number of pixels, the transmission
map of the output image, and that of the input image, respec-
tively. If ∆t is sufficiently small, it can be considered that
there are many pixels without change. Therefore, the thresh-
old τ is set, and recursive processing ends, when ∆t < τ. A
pixel whose transmission map exceeds tmax is considered as
having a small change. We can avoid unnatural color change
caused by too many iterations by terminating the iteration
when the number of small-change pixels tec satisfies

tec
N
− δ > 0, (10)

where δ is the parameter that judges if the iteration should
be terminated or not. Using (10), the iteration is terminated
when the ratio of pixels whose transmission map is larger
than tmax exceeds δ. If the iteration is not terminated, we
replace the image I with the estimated one Ja and continue
the iterative processing.

3.2 Effect of False Detection Region of Transmission Map

As seen from (1) and Fig. 1, the value of the transmission
map becomes 1 if there is no haze because the reflected
light from the subject directly reaches the observation point.
However, the reflected light can hardly reach the observa-
tion point directly when the distance from the subject is very
large, as is the case in sky regions. Thus, the transmission
map decreases below the actual value, as shown in Fig. 4.
The same situation occurs when the desired image contains
a white region, as in Fig. 5. This is because the transmis-
sion map is calculated under the assumption that the haze
is white. In addition, the ambient light is selected as the
pixel with the smallest transmission map, i.e. the pixel value
with the greatest amount of haze. If an erroneously detected
region exists in the transmission map, we may select the am-
bient light from the erroneously detected region, which will
degrade the output-image quality.

For images that contain a large sky orwhite region, there
are many regions in which the haze amount is incorrectly
estimated. Because of this, the peak signal-to-noise ratio
(PSNR), structural similarity (SSIM), and the contrast will



ARAKI et al.: SINGLE IMAGE HAZE REMOVAL USING ITERATIVE AMBIENT LIGHT ESTIMATION WITH REGION SEGMENTATION
553

Fig. 4 False detection example of sky region.

Fig. 5 False detection example of white region.

Fig. 6 Example with too large number of iteration (SSIM=0.49,
PSNR=8.63 dB).

decrease, as shown in Fig. 6, because of excessive iterations.

3.3 Selection Region of Ambient Light

The existing method [16] regards the pixel value with the
greatest amount of haze as representative of the ambient
light, as discussed in Sect. 2. However, as described in
Sect. 3.2, it may not be optimal to select the ambient light
from the input image because there may exist regions for
which estimation of the haze amount is difficult depend-
ing on the input-image characteristics. For this reason, we
develop a method to determine the ambient light from the
region in which the haze amount is easily estimated using
the region segmentation described in Sect. 2.3. Here, the
ambient light is given by

A = Imain(xdmax ), (11)

where Imain is the region in which the amount of haze can be
easily estimated, and the value of the ambient light is given
as the pixel value at which the depth of Imain becomes the
maximum. Using (11), we can remove haze without select-
ing the ambient light from the region in which estimating the
haze amount is difficult.

Fig. 7 Used region of transmission map in determining iteration number.

3.4 Application of Region Segmentation to Transmission
Map Estimation

As described in Sect. 3.1, we use the difference of the trans-
missionmaps and the number of pixels for which the value of
the t(x) exceeds tmax to determine the number of iterations.
However, it is difficult to accurately estimate a sufficient
number of iterations for images that contain a region very far
from the main image subject, such as sky and white regions.
Therefore, we propose a method that uses only the region
in which the haze amount can be estimated to determine the
number of iterations, as shown in Fig. 7. Now, we modify
(9) as

∆tmain =
1

Nmain

Nmain∑
x=1

|tmain,a (x) − tmain,b (x) |, (12)

where tmain,a and tmain,b are the images in which the trans-
missionmap of the outputmatches the selected ambient-light
region. Using (12), we can calculate the average difference
of the transmission maps only for the selected ambient-light
region. The existing method of determining the number of
iterations also uses the difference of the transmissionmaps in
the region in which the amount of haze cannot be accurately
estimated. With the proposed method, we can determine the
number of iterations for the images that were difficult in the
existing method because we only use the regions in which
haze is easily estimated for calculating the transmission-map
difference.

3.5 Weighted Transmission Map

Removing haze from images inwhich the haze amount differs
by location is often difficult. For this reason, we adjust
the haze-removal intensity with the weighted transmission
map used in the last iteration. First, we extract the white
component from the image that is output by the automatically
determined number of iterations using [18]

p =
aT b

aT a
a, (13)

where p, b, and a = [1, 1, 1] are the vectors indicating the
extracted white component, the pixel value of the output im-
age, and the direction of the white component, respectively.
Then, we measure the error map e = b − p, which denotes
the difference between the extracted white component p and
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the pixel value b. This indicates the degree to which the pix-
els in the desired image contain vivid color. Haze removal
becomes easier as the error map e increases.

However, it becomes more difficult as the error map e
decreases. There are image regions for which it is difficult
to remove haze with the transmission map obtained from
the depth map because often, only a small amount of haze
remains in the last iteration. For these reasons, we apply
weights to the estimated depth map and the transmission
map used in the last iteration, i.e.

dw (x) = d(x) ·
{

max(w (x))
w (x)

} 1
m

, (14)

tw (x) = exp[−βdw (x)], (15)

wherem is an adjustment factor, and w (x) denotes theweight
given by

w (x) =
√

e2
r (x) + e2

g (x) + e2
b

(x), (16)

which represents the length of the error vector in each pixel.
The weighted depth map dw (x) improves the haze-removal
processing in the regions in which the white component
is large and hinders it in the regions in which the white
component is small. The factor m is empirically determined
as

m =
1
3

esum, (17)

where esum is obtained from error map e by

esum =
1
N

N∑
x=1

*.
,

1
3

∑
c∈{r,g,b }

e(x)+/
-
. (18)

The depth map must be reduced by weighting the image
pixels that have large regions with vivid colors in the desired
image. We can adjust the vividness of the whole image and
of the weights at the same time using (15).

4. Simulation

The performance of the proposed method was evaluated us-
ing computer simulation.

4.1 Simulation Specifications

The simulation parameters are listed in Table 1 and the
ground-truth images are shown in Fig. 8, where the parame-
ters θ0 to σ are the parameters used in (2) and adopted the
same values as those in [14]. We used the values τ = 0.1 and
δ = 0.8 as thresholds. The block size is the minimum value
of ϕnew when determining feature pixels to be used in region
segmentation. Also, the proposed algorithm for determin-
ing the number of iteration is called “Proposed 1” when not
using region segmentation and “Proposed 2” when region
segmentation is used described in Sect. 3.3 and Sect. 3.4.

Table 1 Simulation parameters.
β 1.0
θ0 0.122
θ1 0.959
θ2 −0.780
σ 0.0413
τ 0.1
δ 0.8

Ath 4
tmax 0.9

Block size 50

Fig. 8 Tested Images (ground truth).

4.2 Optimal Number of Iteration

Tables 2 and 3 gives the simulated results to test if the es-
timated number of iterations is optimal or not. The tested
images are as shown in Fig. 9. Tables 2 and 3 indicates
the determined number of iterations in bold. Note that the
best number of iteration for the image “doll” is different for
PSNR an SSIM, i.e., 1 for PSNR but 2 for SSIM. To deter-
mine which value is better, we evaluated which is better not
only from the objective evaluation in Tables 2 and 3 but also
the subjective evaluation. We found that the image becomes
a bit dark in case of 2 iterations, thereforewe adopt 1 iteration
as the best number of iteration for the image “doll”. As can
be seen from the values of PSNR and SSIM, the proposed
method can estimate the appropriate number of iterations
well overall, but it does not work well for images that have
large sky and white regions, as in Fig. 6.
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Table 2 Relationship between iteration and PSNR.
number of iterationImage

1 2 3 4
couch 20.03 26.39 24.80 19.43
doll 17.38 18.52 14.82 12.58
fruits 9.84 15.36 19.52 18.93
pizza 17.20 22.75 16.54 13.12

Table 3 Relationship between iteration and SSIM.
number of iterationImage

1 2 3 4
couch 0.83 0.92 0.91 0.51
doll 0.84 0.79 0.65 0.50
fruits 0.63 0.73 0.77 0.72
pizza 0.89 0.95 0.89 0.75

Fig. 9 Comparison of 2 iterations and 3 iterations (fluits).

4.3 Application of Region Segmentation

The original and input images are shown in Figs. 10(a),
10(b), 11(a), and 11(b). The output images are as shown
in Figs. 10(c), 10(d), 11(c), and 11(d). We can visually rec-
ognize that the Proposed 2 expresses color better in both
images. In particular, more natural color can be expressed
in the sky region, and contrast reduction can be suppressed.

In the without segmentation method, ambient light is
selected from the sky or white region, where the amount of
haze is detected to be greater than its actual value. As a
result, the selected ambient light is deemed to have a higher
luminance than it actually does. This is clear from the re-
gion where the ambient light is selected, as in Fig. 12. The
segmentation method also divides the non-sky regions in the
image of the church. This is because that region appears
close to white in the input image; thus, these regions do not
affect the output image.

Tables 4 and 5 show the values of PSNR and SSIM
for each iteration in the proposed 1 and proposed 2, and
the value at the terminated iteration is indicated in bold.
The image of the church in Fig. 6 looks over-processed; the

Fig. 10 Comparison of Proposed 1 and Proposed 2 (church).

Fig. 11 Comparison of Proposed 1 and Proposed 2 (road).

Fig. 12 Ambient light selection region.

haze-removal accuracy decreased because the Proposed 1
could not sufficiently estimate a suitable number of iterations.
In contrast, the Proposed 2 can determine the number of
iterations appropriately. However, iteration 1 in the Proposed
1 is better than iteration 2 in the Proposed 2 in terms of the
values of SSIM and PSNR. This is because the Proposed 1
represents the color of the sky region similarly to the original
image, as seen from Fig. 10. The Proposed 2, though, can
express a more vivid sky color than the original image. Thus
the Proposed 2 is more effective than the Proposed 1.

We also tested the with segmentation and without seg-
mentation methods for another image (the road image). It
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Table 4 Relationship between iteration and PSNR.
number of iterationImage

1 2 3 4
church (Proposed 1) 25.42 16.28 10.73 8.63
church (Proposed 2) 23.00 23.20 17.0 13.00
road (Proposed 1) 21.73 22.61 17.77 13.94
road (Proposed 2) 17.49 23.41 23.54 18.90

Table 5 Relationship between iteration and SSIM.
number of iterationImage

1 2 3 4
church (Proposed 1) 0.97 0.91 0.70 0.49
church (Proposed 2) 0.96 0.96 0.90 0.77
road (Proposed 1) 0.93 0.95 0.89 0.68
road (Proposed 2) 0.90 0.93 0.95 0.85

Fig. 13 Output result of error map.

is clear from Tables 4, 5 and Fig. 11 that the Proposed 2 is
more effective in both visual and numerical evaluations.

4.4 Weighted Transmission Map

The output results for the error maps are shown in Fig. 13.
We see from Fig. 13 that the values of the error map increase
in the regions with vivid color and decrease in the regions
near the sky or white areas. We calculate esum using this
error map and put the weights to the depth map, as described
in Sect. 3.5. Figure 14 is an example of processing when
the number of iterations is set to 2. First, the number of
iterations is determined, and then, the reference image is
created. Next, weights are applied to the depth map in the
first iteration using the reference image. In this manner, we

Fig. 14 Example of the haze reduction process with two iterations.

Table 6 Numerical change due to weight.
Image w/o Weight w/ Weight esum

SSIM 0.92 0.97couch
PSNR 26.39 29.83

27.69

SSIM 0.79 0.83doll
PSNR 18.03 19.55

19.15

SSIM 0.77 0.79fruits
PSNR 19.52 22.07

30.95

SSIM 0.95 0.94pizza
PSNR 22.75 23.71

21.66

SSIM 0.96 0.98church
PSNR 23.20 28.46

3.88

SSIM 0.95 0.96road
PSNR 23.54 25.67

3.27

can apply weights only to the last iteration.
Table 6 shows the numerical results of the simulation.

The weight changes in proportion to esum from (18). The
weight increases for the church and road images that require
region segmentation and decreases for the images that do not
require it. The accuracy of the output result is improved by
increasing theweight values at the last iteration for the images
that have regions close to white, for which it is difficult to
remove the haze. Hence, we can say that the white region,
for which it is difficult to remove haze in the last iteration,
is also necessary to strengthen the haze-removal processing.
Overall, the weight is effective for images with large regions
in which haze removal is difficult.

Tables 7–10 and Figs. 15–16 show the output images
and numerical evaluation of the conventional methods and
the proposed methods. The method of Ref. [10] is effective
for images that do not include the sky region, but weak
for images containing sky region as shown in Fig. 16(a), The
method ofRef. [12] is effective for images that containing sky
region as shown in Fig. 16(b), but weak for large haze such
the image of fruits as shown in Fig. 15(b). The method [8]
assumes that the ambient light is estimated in advance, and
has a similar property with [10]. Therefore we employ the
ambient light estimated by the first iteration of the proposed
method. Besides, the method [9] has a property that it is
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Table 7 Comparison of PSNRs (no sky images).
Proposed 1Image Ref. [10] Ref. [12] Ref. [8] Ref. [9] Ref. [13]

w/o Weight w/ Weight
couch 18.29 12.68 16.46 23.60 17.02 26.39 29.83
doll 14.44 16.24 17.34 14.88 13.90 18.03 19.55
fruits 20.77 9.27 16.20 8.74 11.55 19.52 22.07
pizza 16.57 15.35 13.54 11.06 24.48 22.75 23.71

Table 8 Comparison of SSIMs (no sky images).
Proposed 1Image Ref. [10] Ref. [12] Ref. [8] Ref. [9] Ref. [13]

w/o Weight w/ Weight
couch 0.75 0.70 0.64 0.92 0.66 0.92 0.97
doll 0.65 0.82 0.78 0.73 0.81 0.79 0.83
fruits 0.77 0.61 0.71 0.51 0.61 0.77 0.79
pizza 0.86 0.86 0.69 0.73 0.89 0.95 0.94

Table 9 Comparison of PSNRs (sky images).
Proposed 1 Proposed 2

Image Ref. [10] Ref. [12] Ref. [8] Ref. [9] Ref. [13] w/o w/ w/o w/
Weight Weight Weight Weight

church 10.85 26.32 11.67 12.28 20.33 25.42 15.07 23.20 28.46
road 13.42 25.55 12.17 19.64 17.91 22.61 25.49 23.54 25.67

Table 10 Comparison of SSIMs (sky images).
Proposed 1 Proposed 2

Image Ref. [10] Ref. [12] Ref. [8] Ref. [9] Ref. [13] w/o w/ w/o w/
Weight Weight Weight Weight

church 0.62 0.97 0.61 0.84 0.91 0.97 0.83 0.96 0.98
road 0.61 0.97 0.47 0.94 0.86 0.93 0.96 0.95 0.96

effective to dense haze images as to the proposed method,
however it often dehaze too much. The method [13] usually
makes too bright dehazed images. Also this method fixes
the image size 500 × 500, therefore we first resize the given
image into the size 500 × 500, dehaze the image and again
resize the image into the original size.

On the other hand, our proposed method not using re-
gion segmentation is effective for images that do not con-
tain sky regions. Also, the proposed method using region
segmentation is effective for images including sky region.
Weighted transmission map is effective for all images and
these are the best results compared with other conventional
methods in Table 7–Table 10.

4.5 Actual Haze Image

We further evaluated the methods using two images with
actual haze, Tiananmen and Snow, shown in Fig. 17. We see
from Fig. 18 that the Proposed 2 can generate a more natural
sky color in the sky region than the Proposed 1 method,
as shown in Figs. 18(g)–(i), while the conventional methods
generate unnatural sky colors as in Figs. 18(b)–(f). Also
we see from Fig. 19 that the snow region (which is close to
white) is separated along with the sky region. Moreover,
the Proposed 2 can express a more vivid sky color in the
sky region than the Proposed 1 method can, as shown in
Figs. 19(g)–(i).

From those results, the proposed 2 can be considered
to have removed haze well and have made better output
images. Also, the weighted transmission map is visually
good as compared with the conventional methods Ref. [10]
and Ref. [12]. Especially, the proposed method in Fig. 19(h)
have less degradation of luminance than the conventional
method in the sky region. So, this method shows best results.

4.6 Evaluation Using Benchmark Datasets

We also evaluate the performance of the proposed method
quantitatively using the public datasets [20] and [21]. The
dataset [20] contains relatively light haze images in indoor
and outdoor environments, we tested total 100 images (50
indoor and 50 outdoor images). The dataset [21] contains
dense haze images in natural environments, we tested all
the 45 images in the original dataset. Each dataset contains
images with sky region and those without sky region. We
employed Proposed 1 (w/ Weight) for the images without
sky region, and Proposed 2 (w/ Weight) for the images with
sky region.

Tables 11–12 show the obtained results of PSNR and
SSIM, and Figs. 20–21 show example output images. We
see from Tables 11–12 and Figs. 20–21 that the method [12]
gives the best performance for the dataset [20] but the pro-
posedmethod gives the best performance for the dataset [21],
which confirms that the proposed method is more effective
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Fig. 15 Comparison of haze reduction results (fruits).

for dense haze images.

4.7 Summary

Weproposed an iterative haze-removalmethod and evaluated
its accuracy. We also proposed a method to improve the
accuracy of ambient-light estimation by segmenting the sky
and white regions. As a result, the optimum number of
iteration could be determined regardless of the presence or
absence of the sky regions. We also found that PSNR can
be further improved by weighting the transmission map used
for the last iteration. Furthermore, it was found that the
proposed method visually showed good results with respect
to the actual haze image.

5. Discussion on Remained Haze

In this section, we analyze and evaluate the haze-removal
quality by examining the haze that remained in the images.

5.1 Quantitative Evaluation

First we quantitatively evaluate the remaining haze in each
output image. The remaining haze tsum is calculated by (19)
as a cumulative sum of the estimated transmission map in

Fig. 16 Comparison of haze reduction results (church).

Fig. 17 Input images with actual haze.

each pixel, i.e.

tsum =
1
N

N∑
x=1

t(x), (19)

where N and t(x) are the number of output-image pixels and
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Fig. 18 Comparison of haze reduction results (Tiananmen).

the transmission map estimated from the output image, re-
spectively. The remaining haze decreases as tsum approaches
1 and increases as it approaches 0.

The remaining haze tsum can also be calculated from the
region used in estimating the ambient light for the images that
require region segmentation. This is because it is sometimes
difficult to accurately estimate the amount of haze in white
or sky regions.

Fig. 19 Comparison of haze reduction results (snow).

Table 11 Comparison of Numerical Evaluation (Dataset [20] images).

Image Ref. [10] Ref. [12] Ref. [8] Ref. [9] Ref. [13] Proposed

PSNR 12.37 21.64 13.78 12.43 17.52 18.11
SSIM 0.54 0.88 0.59 0.73 0.84 0.80

Table 12 Comparison of Numerical Evaluation (Dataset [21] images).

Image Ref. [10] Ref. [12] Ref. [8] Ref. [9] Ref. [13] Proposed

PSNR 12.09 14.27 11.60 14.86 12.81 15.19
SSIM 0.32 0.59 0.38 0.61 0.58 0.62

5.2 Remained Haze in Each Iteration

Tables 13 and 14 show the behavior of the remaining haze
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Fig. 20 Comparison of haze reduction results (Dataset [20]).

tsum for the artificially created haze images, and the bold
numbers give the value at the moment when we terminated
the iterations. We see from Table 13 that the remaining haze
tsum increases with the number of iterations for the images
that do not require region segmentation. The PSNRs have
the largest values when the iteration is terminated in bold
numbers. If we continue iterations, the remaining haze tsum
still increases, but the PSNR decreases as we have already
seen in Fig. 22. The remaining haze tsum becomes almost
equal to its ground truth estimated from the original image
at the estimated number of iterations, which means that the
estimated number of iterations is almost optimal.

The remaining haze tsum of the original image exceeds
0.7 in all the tested images; this means that the value of tsum
under no haze exceeds 0.7. In addition, the remaining haze
tsum tends to decrease in images that have pixels and regions
close to white, such as the pizza image, but it remained
around 0.7, as in Fig. 8(a) and (d). From this, the lower limit
of tsum in a no-haze situation is considered to be 0.7.

However, the remaining haze tsum of the original image

Fig. 21 Comparison of haze reduction results (Dataset [21]).

is often largely estimated for the images with vivid colors,
such as the couch image. From this, we say that the optimal
value of tsum is not always the same but rather depends on
the color trend of the desired image. This can also be seen
from Table 14, which is the result of calculating tsum from
the region in which the haze amount can be estimated with
region segmentation. Moreover, we see from Table 14 that
the remaining haze tsum meets its ground truth well in cases
with region segmentation; however, it does not meet it in
cases without region segmentation.
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Table 13 Behavior of the remained haze tsum (No region segmentation).
number of iteration GroundImage

1 2 3 4 Truth
doll 0.44 0.57 0.73 0.85 0.78
fruits 0.53 0.70 0.82 0.89 0.85
pizza 0.55 0.72 0.82 0.90 0.70
couch 0.82 0.91 0.95 0.97 0.92

Table 14 Behavior of the remained haze tsum (Region segmentation).
number of iteration GroundImage

1 2 3 4 Truth
church (Proposed 1) 0.61 0.74 0.90 0.96 0.82
church (Proposed 2) 0.73 0.83 0.90 0.95 0.82
road (Proposed 1) 0.67 0.76 0.83 0.88 0.84
road (Proposed 2) 0.68 0.78 0.86 0.92 0.84

Fig. 22 Relationship between tsum and PSNR.

Table 15 Behavior of the remained haze tsum (Actual haze image).
number of iterationImage

1 2 3 4
Tienanmen (Proposed 1) 0.84 0.88 0.91 0.91
Tienanmen (Proposed 2) 0.94 0.96 0.97 0.97

Snow (Proposed 1) 0.71 0.83 0.91 0.96
Snow (Proposed 2) 0.86 0.95 0.97 0.99

5.3 Case of Images with Actual Haze

Table 15 shows the behavior of the remaining haze tsum
in each iteration for images with actual haze (i.e. images
without a ground truth). Again, the numbers in bold in
Table 15 indicate when the iteration terminated. Similarly to
Tables 13 and 14, we see from Table 15 that the remaining
haze tsum increases as the number of iterations increases.
According to the difference of tsum for each iteration, it
decreases as the number of iterations increases. This can
be considered as convergence, also confirmed in Tables 13
and 14. Again, the haze is well removed after the estimated
number of iterations because the remaining haze tsum when
the iteration is terminated again exceeds 0.7 and approaches
one.

6. Conclusion

Weproposed an iterative haze-removalmethod and evaluated
its accuracy, which can remove haze regardless of the size of
haze. This result is very effective when removing the haze
contained in the acquired image and video, as the proposed
method outperformed the state-of-the-art methods based on
deep learning. The proposed method is not a learning-based
approach and therefore it works even when only a hazed
image is given.

The drawback of the proposedmethod is that themethod
has many parameters as in Table 1, and the number of itera-
tions in Tables 2–5 as well. The values of the parameters in
Table 1 has been determined to be the same with [14], how-
ever they might not be optimum for the proposed method
because the algorithm has been modified from [14]. The
further optimization of those values remains as one of future
studies.
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