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Abstract 
 

Aeroelastic forces are characterized by aeroelastic coefficients or flutter derivatives which 

are mostly obtained from wind tunnel experiments as a function of reduced frequency. Flutter 

derivatives extraction in frequency domain in a wind tunnel test by either a free or forced vibration 

method requires a recursive process for several wind speed. In frequency domain offer 

computational efficiency because the analysis is carried out in the selected mode. On the other 

hand, in time domain analysis is more convenient because nonlinear phenomena such as geometric 

nonlinearity of deck structure may be easily taken into account in the calculation. Aeroelastic force 

in frequency domain can be transformed to the time domain by using Rational Function 

Approximation (RFA). In this manner, it required linear and nonlinear optimization to extract RFA 

coefficients. Recently, direct extraction algorithm of RFA coefficients from wind tunnel 

experiments has been developed and RFA coefficients can be directly converted to flutter 

derivatives. This technique is less time-consuming and requires at least two wind speed that covers 

a wide range of reduce frequency of flutter derivatives.  

This dissertation presents a fundamental investigation of the applicability of direct extraction 

of RFA coefficients for aeroelastic forces by forced vibration methods. This work is only limited 

to linear aeroelastic forces. The first step, a baseline study using secondary data of flutter 

derivatives of a truss deck, an edge girder deck, a twin deck, has been carried out to simulate 

appropriate wind speed combination and lag terms effect to extract a full set of the RFA 

coefficients. Aeroelastic forces are generated by using secondary tabular data of flutter derivatives 

and displacement time histories simulation. Applying RFA coefficient extractions procedure, new 

flutter derivatives can be obtained and the result is compared with experimental data. In this 

simulation, the phase lag between time histories and pre-set amplitude is neglected. Airfoil case 

shows a good agreement among eight flutter derivatives and proves that the RFA extraction 

algorithm is correct. The result shows that there is no relation between deck type and number of 

lag terms because lag terms are directly fitted. Two wind speed with one lag term is the minimum 

requirement for RFA extraction. One interesting point is that RFA extraction accuracy is limited 

to second-order polynomial of the flutter derivatives. 

In the next step, wind tunnel experiments on a bluff body section model with B/D= 9.25:1 

side ratio have been investigated by using one and two degrees of freedom experiments. The 

purpose of this experiment is to investigate the robustness of the direct extraction algorithm in 

terms of data length, pre-set amplitude and verify preliminary conclusions in numerical simulation. 

In the experiment, phase lag of displacement time histories and aeroelastic forces can be identified 

and the mechanism of wind speed combination can be verified. Free vibration was also conducted 



ii 
 

to validate forced vibration experiment result. Extended Kalman filter weight global iteration was 

used to extract flutter derivatives in free vibration method.  RFA extraction results are compared 

with classical approach of forced vibration and free vibration test results. In case of direct 

extraction, amplitude and phase lag are explicitly calculated. On the other hand, in RFA 

extractions, phase lag is implicitly calculated. There are some discrepancies between free and 

forced vibrations that might be caused by the airflow state. In the RFA extraction case, there is no 

effect on data length and discrepancies occur in case pre-set amplitude solely due to data 

processing. Results show that high-quality measurement data is an important matter to extract RFA 

coefficients. Based on the experimental result, it is confirmed that RFA extraction can be applied 

for a derivative that has a trend in a second-order polynomial. 
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 Introduction 
 

1.1 Motivation 

Since the collapse of the old Tacoma bridge in 1940, research in wind engineering 

in the civil engineering area, especially in the long span bridge, has been increasing rapidly 

in a few decades. In a long-span bridge, aeroelastic force is more dominant than the 

earthquake force. Amplitude divergent during the wind-induced response of the bridge 

deck becomes the primary concern, particularly in the design phase.  

The action of wind loads can be divided into two types, static and dynamic loads. 

In static case, such as lateral and vertical displacement can be easily prevented, i.e., by 

increasing the structural stiffness. On the other hand, dynamic loads need a depth 

investigation. In the wind dynamic, bridge response can be divided into two main types: 

limited-amplitude response (limited vibration) and divergent amplitude response 

vibrations (self-excited vibrations).  

In the limited-amplitude case, it usually occurs due to the Karman vortex shedding 

phenomenon. When the oscillation frequency is equal to vortex shedding frequency, 

resonance will occur, which is called lock-in phenomenon. In this case, an enormous 

amplitude oscillation response will appear. The lock-in phenomenon will occur not only 

in the bridge deck but also in member parts of the bridge such as; stay cable, hanger, and 

lighting poles. Divergent amplitude response occurs only in the bridge deck, which is 

defined as a flutter or galloping phenomenon. 

 

 
Fig.  1 Wind structure response against wind loading. 
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Aeroelastic forces of a bridge deck are characterized by aeroelastic coefficients [1] 

(flutter derivatives). Flutter derivatives are mostly obtained from a wind tunnel experiment 

with a scaled model of the bridge deck. Scanlan and Tomko [2] laid a fundamental theory 

to carry out flutter analysis in frequency domain. In this regard, the response of a structure 

is measured in every wind speed and the effectiveness of the restoring forces known as 

flutter derivatives is changing in a complex manner in every wind speed. Conducting wind 

tunnel experiments in frequency domain requires recursive procedure and time-

consuming.  

When a bridge deck is immersed in a wind field, a deck will be subjected to static 

and dynamic wind forces due to fluctuating wind speed. In frequency domain offer 

computational efficiency because the analysis is carried out in the selected mode. In time, 

domain analysis is more convenient because nonlinear phenomena such as geometric 

nonlinearity of deck structure may be easily taken into account in the calculation. Rational 

Function Approximation (RFA) will be used to model aeroelastic forces in time domain. 

Thirty-five years later, a former student of Prof. Scanlan, Prof. Sarkar et al. [3]–

[6] proposed a method to extract flutter derivative in time domain by employing RFA 

coefficients. This method is more direct and faster because it requires at least two wind 

speed to extract flutter derivatives through RFA. Another researcher, Siedziako and Øiseth 

[7] have been successful in obtaining a full set RFA coefficients using one wind speed 

subjected to random vibrations. The advantages of RFA extraction in wind tunnel 

experiments to extract flutter derivatives with less time consuming is mainly motivation 

in this thesis. 

Nevertheless, flutter derivatives extraction in time domain could make some 

ambiguity in principle in identifying flutter derivatives in frequency domain because the 

response of a structure is measured in every wind speed and the aerodynamic response 

(flutter derivatives) will change in a complex manner at every wind speed. Some questions 

arise why flutter derivatives extraction in time domain by two wind speed combinations 

or one wind speed can cover wind range of reduced frequency and the applicability of 

direct extraction of RFA. 

  

1.2 Aim and objectives 

The thesis aims to find the applicability and mechanism of direct extraction of RFA 

coefficients by forced vibration method. In this manner, the effects of wind speed steps 

and the accuracy of flutter derivative extraction through the RFA coefficients were 
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investigated by numerical simulation and experimental. The objectives of this study are 

but not limited to: 

1. To study the mechanism of direct extraction of RFA coefficients using different 

bridge deck types such as a streamlined deck, a truss deck, an edge girder deck by 

numerical simulation 

2. To investigate some conditions in applying direct extraction of RFA coefficients such 

as data length of time histories, pre-set amplitude effect by wind tunnel experiments. 

 

1.3 Dissertation outline 

Dissertation outline is summarized as follows:  

Chapter 2 will briefly summarize the current research related to the dissertation topic and 

presents system identification in frequency domain and time domain.  

Chapter 3 presents the numerical simulation for the direct extraction of flutter derivatives 

with RFA. This chapter aims to investigate the number of lag terms and wind speed by 

using secondary data to understand the mechanism of wind speed combination.  

Chapter 4 presents wind tunnel experiments for flutter derivative extraction in the time 

and frequency domain by forced vibration method. The purpose of this study is to 

investigate the applicability of RFA extraction in case of pre-set amplitude effect, data 

length and verify the mechanism of wind speed combination.  

Chapter 5 presents concluding remarks of the dissertation and future works.  

  



4 
 

 

 Theoretical Background 

 
2.1 Literature review 

Aeroelastic forces are characterized by flutter derivatives. Free and forced 

vibration techniques are two distinct methods to extract flutter derivatives in a wind tunnel 

experiment. Although free vibration cannot accurately predict flutter derivatives in higher 

wind speed, a phenomenon that occurred at every wind speed, such as lock-in 

phenomenon, can be directly observed during experiments. Basically, in free vibration 

methods, flutter derivatives can be derived from a comparison between the structure’s 

response in the wind off and wind on condition.  

Many system identifications were introduced to identify flutter derivatives in free 

vibration experiments in frequency domain. In free vibration method, either a free decay 

or buffeting signal can be as an input. In free decay test, the flutter derivatives are based 

on free decay signals as a result of initial displacement. One method based on free decay 

signal is the Extended Kalman Filter with Weighted Global Iteration (EKWGI) [8]. This 

identification system is based on the Kalman filter technique [9], which is conducted in 

one degree of freedom (DOF) of heaving and torsional oscillation. By using modal 

information of each observation, data can be computed and finally combined with the 

same reduce frequency for each data to obtain flutter derivatives. Nevertheless, this 

method will work well in higher wind speed where a coupled vibrations will occur. Other 

techniques are the Iterative Least Square method (ILS) [10] and the Unified Least Square 

(ULS) method [11]. Each response of the structure in every wind speed is iterated in the 

space state model until convergence. However, these methods have disadvantages. In 

higher reduced wind speed because deck section will decay rapidly and causing data 

length to become short. In buffeting signal, the input uses only a steady random response 

of the deck section without any initial displacement. This mechanism will more represent 

a real bridge under wind flow. Some system identifications which are based on buffeting 

response are the Covariance Block Hankel matrix (CHBM) [12], stochastic system 

identification [13], [14]. The deck response is also compared between wind on and wind 

off conditions in order to extract flutter derivatives. 

A forced vibration method has advantages more precisely in higher wind speed 

and straightforward. Flutter derivatives extraction is relatively easy by decomposing 

aerodynamic forces into the real part (aeroelastic stiffness) and imaginer part (aeroelastic 
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damping) in the complex plane. Aeroelastic forces can be measured either by load cells 

[13] or by pressure signals over the surface in the streamwise direction. The phase lag 

between displacement time histories aeroelastic forces is an important parameter in flutter 

derivatives extraction [14]. Many parameters can cause phase lag, such as sampling rate, 

instrumentation setup, and filters used [15]. By using surface pressure measurement, flow 

patterns around the bridge deck such as flow separation, flow reattachment, vortices 

formation can be easily investigated.  

Aeroelastic forces commonly are described in frequency domain as a function of 

reduced frequency. On the other hand, the wind-induced response of the bridge is 

described in time domain. In the aeronautics field, Roger [15] proposes Least Square 

Rational Approximation (LS-RFA) and Karpel [16] introduces Minimum State of RFA 

(MS-RFA) to approximate aerodynamic forces of wing planes in time domain. In this case, 

linear and nonlinear parameter optimization has been required to identify RFA coefficients 

associated with the frequency-dependent aeroelastic forces, and the lag terms are essential 

things. Linear parameters are determined using least square techniques and nonlinear (lag 

term) are determined by the non-gradient method [17]. Lag terms can be optimized by 

using non-gradient and gradient methods in other to improve fitting accuracy [18].  In 

that paper, it argued different expressions of lag terms can be used. In aerospace science, 

there are many alternative methods can be used to convert frequency-domain 

aerodynamics into time-domain aerodynamics [19][20]. 

In bridge engineering, Fujino and coworkers applied MS-RFA to model bridge 

response in time domain [21]. There is a trade-off between approximation and lag terms. 

More lag terms are used, approximation error becomes smaller [22]. For example, the 

Akashi Kaikyo bridge used four lag terms to have good behavior of aeroelastic forces. Lag 

terms (aerodynamics root) are only mathematical expression that the behavior of 

aeroelastic response in frequency domain will fit in time domain. In this study, it has been 

concluded that one lag term for a streamlined deck, two lags for a box deck, and three lags 

for a conventional truss deck. Many studies have been conducted in bridge modeling in 

time domain to analyze flutter and buffeting response by using RFA. The equation of 

motion is expressed in the modal coordinate state-space form [23]–[25], and the wind-

induced response of the bridge was also studied [26].  

Chowdhury and Sarkar proposed an identification method of RFA coefficients 

directly from a wind tunnel test in free vibration [3]. In this technique, A direct 

identification method of RFA coefficients from wind tunnel experiments has been 
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presented by measuring aeroelastic force with surface pressures and displacement time 

history. In this technique, the formulation of aerodynamic aeroelastic forces using the 

Minimum Sate Rational Function Approximation (MS-RFA) in time domain was applied 

with inverse Laplace transformation, and then RFA coefficients were extracted by the 

Least Square method. In this technique, lag terms are not an important issue and require 

fewer wind speed combinations. This idea was based on Iterative Least Square (ILS) and 

convergency of eigenvalue, which is the characteristic of system identification in free 

vibration methods is neglected. In free vibration method of RFA extraction, it is 

questionable whether in higher wind speed where vertical vibration decay rapidly will 

affect the extraction. 

Cao and Sarkar reformulated the identification method for forced vibration method 

in one degree of freedom (DOF) [4]. Time history information such as amplitude and 

phase lag explicitly calculated and was used in the extraction. The result shows there is a 

slight discrepancy result in the derivative of A2
* and H2

*. 

Reformulated RFA formulation Sarkar & Bao has been successful in developing a 

formulation for two DOF [5] experiment. This formulation is more robust and phase lag 

independent. Time histories are included directly into the formulation where phase lag is 

calculated implicitly. It was said that at least two wind speed with one lag term is required 

to extract flutter derivatives. Some algorithm test has been performed to test the robustness 

of the algorithm of the formulation. It has been shown that the algorithm was accurate in 

predicting RFA coefficients. Sauder and Sarkar also extended the formulation for three 

DOF experiment [6]. In this technique, the formulation of aerodynamic self-excited forces 

using MS-RFA in time domain was applied with inverse Laplace transformation, and then 

RFA coefficients were obtained by the Least Square method. One of the advantages of 

this technique requires fewer wind speed. Only two wind speed with one lag term are 

demanded to extract flutter derivatives. 

Siedziako and Øiseth [7] enhanced the identification procedure by using load cells 

to measure aeroelastic force during wind tunnel experiments. The purpose is to predict the 

self-excited drag force which contains nonlinear contributions more accurately. In this 

paper, they improve identification by making sure that the input lift force corresponds to 

predicted values of force components, and then aeroelastic forces equation in time domain 

is written in state-space. Therefore, RFA coefficients are obtained through the 

identification of the state space model. In this paper, they argued that the discrepancies of 

flutter derivatives between obtained RFA coefficients and references do not come from 
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errors in identification but indicate that the RFA extraction algorithm needs enhancement 

in the advanced model. In this experiment, the RFA coefficient was predicted before 

conducted the experiment and only one wind speed was used to extract RFA coefficients. 

Flutter derivatives are unique coefficients that sometimes change in a complex 

manner with a higher-order polynomial. An initial study of numerical simulation using 

secondary data of flutter derivatives has been carried out to find which wind speed range 

are suitable for RFA extraction [27]. A combination of low and high wind speed categories 

gave a smaller error of discrepancy, and the increasing number of wind speed did not 

affect the result marginally. Further investigation using a wind tunnel experiment is 

needed to confirm the numerical calculation. Moreover, in the algorithm of RFA 

extractions [5], there is a significant improvement of formulation that is phase lag 

independent. However, the role of pre-set amplitudes and data length for RFA extractions 

needs to be clarified.  

 

2.2 Equation motion of a bridge deck 

Assuming that the bridge deck which has two DOF subjected to oncoming flow, 

vertical displacement, h, and torsional displacement, α. The bridge deck has mass m and 

moment of inertia I. Damping and stiffness coefficients of the heaving and torsional modes 

are defined as ch, cα, kh, and kα, respectively. Equation of motion can be described as: 

 

h h ae

ae

mh c h k h L
I c k M   

+ + =

+ + =  (2.1) 

where Lse and Mse are an aeroelastic force of lift and moment, respectively. 

 

2.2.1 Formulation of aeroelastic forces for a streamlined deck 

 
Fig.  2 Two degrees of freedom of bridge deck. 
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The behavior of self-excited force for a streamlined deck may be assumed to be 

similar to the Theodorsen [28] thin plate theory as follows: 

 

  ( )

( )

2

3 2

2
2

2 8 2

se

se

bL b h U UbC k h U

U b bM b Ub C k h U

    

     

 
= − + + + + 

 

   
= − − + + +   

      (2.2) 

Where is deflection h and  are measured and defining complex sinusoidal motion can be 

defined as: 

 

0

0

i t

i t

h h e
e



 

=

=   (2.3) 

where b is the half width of the bridge deck. U and ρ are the mean wind speed and air 

density, respectively. C(k) is known as Theodorsen’s function which is defined as: 

 
( )

( )
( ) ( )

(2)
1

(2) (2)
1 0

H k
C k F Gi

H k iH k
= + =

+   (2.4) 

F and G are the real and the imaginary parts of C(k), respectively. Hn
(2)(k) is Hankel 

function.  C(k) can be approximated by R.T Jones’s formulation [29] as: 

 ( )
0.165 0.3351 0.0455 0.31 1

C k
i i

k k

 − −

− −

  (2.5) 

Unsteady aerodynamic coefficients of ( )* *and 1,4i iH A i = are called flutter derivatives that 

depend on deck shape and they can be connected with F and G as: 

 

* *
1 2

* *
3 4

* *
1 2

* *
3 4

42 ; 1
2

2 4; 1
2 2

1;
2 2 4 4

1 ;
2 32 4 2

F GH H F
K K K

F G GH H
K K K

F G FA A
K K K

F GA A G
K K K




 

 

 

−  
= − = + + 

 
−    

= − = +   
   

−  
= = − − 

 
− 

= + − = 
 

  (2.6) 

where K B U= is reduced frequency and  is circular frequency. 
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2.2.2 Formulation of aeroelastic forces for a bluff body 

The Theodorsen thin plate theory is not appropriate for the bluff body. Therefore, 

Scanlan [30] proposed reduced frequency dependent flutter derivates. Self-excited force 

formulation can be written as:  

 

2 * * 2 * 2 *
1 2 3 4

2 2 * * 2 * 2 *
1 2 3 4

1
2
1
2

ae

ae

h B hL U B KH KH K H K H
U U B

h B hM U B KA KA K A K A
U U B


 


 

 
= + + + 

 

 
= + + + 

 

  (2.7) 

where B is the width of the bridge deck. In matrix form, the equation of motion of bridge 

deck can be written as: 

 f+ + =Mq Cq Kq V Qq   (2.8) 

Coefficient matrices in the equation (2.8) are defined as follows: 
2

2

2
2 * * 2 * *

4 1 3 2
2 * * 2 * *

2 2 4 1 3 2

00 2 0
, , ,

0 0 2 0

1 0
2 ,

10
2

hhh h h h

f

mm m h B
I I I

U B K H pKH K H pKH
K A pKA K A pKAU B


    

 

  





      
= = = =      

       

 
   + +

= =   
+ +   

  

M C K q

V Q

  (2.9) 

Where p = sB/U=iK, i and s are unit imaginary numbers and non-dimensional time, 

respectively. s can be defined as s = Ut/B. 

 

2.3 Identification in frequency domain 

2.3.1 Free vibration method 

In this research, the identification of Flutter derivatives in frequency domain uses 

Extended Kalman Filter Global Weight Iteration (EKWGI). Expression of aeroelastic 

force can be described in other forms as: 

 
3

2
4

0
0

yI I yR Rae

yI I yR Rae

L L L LL h BB h B
M M M MM BB B

 

 




  

          
= +          

           

 (2.10) 
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Conversion to Scanlan format can be defined as: 
* * * *
1 4 2 3

* * * *
1 4 2 3

2 ; 2 ; 2 ; 2

2 ; 2 ; 2 ; 2
yI yR I R

yI yR I R

H L H L H L H L

A M A M A M A M
 

 

   

   

= = = =

= = = =  
Eight aeroelastic coefficients are unknown variables. In the algorithm of EKWGI, four 

displacement time histories and eight aeroelastic coefficients are described in state 

variable X as follows: 

 
 

 

1 2 3 4 5 6 7 8 9 10 11 12, , , , , , , , , , ,

, , , , , , , , , , ,

T

T

yR yI R I yR yI R I

X x x x x x x x x x x x x

X h h L L L L M M M M    

=

=
 (2.11) 

State equations are 

 

1 3 2 4
3 2

2
3 9 1 5 3 10 2 6 4 1

4 2
2

4 11 1 7 3 12 2 8 4 2

5 6 7 8 9 10 12 12

,
1 1

1 1

0

x x x x
Bx x x x x x x x x x
m
Bx x x x x x x x x x
I

x x x x x x x x

 


 

 


 

= =

 
= + + + − 

 

 
= + + + − 

 

= = = = = = = =

 (2.12) 

Based on the relation above, the EKWGI algorithm can be used [9] and flutter derivatives 

can be extracted. 

 

2.3.2 Forced vibration method 

The identification procedure in forced vibration method is straightforward. 

Aeroelastic forces are decomposed into real and imaginary parts. Supposed that heaving 

and torsional oscillation can be expressed as: 

 
( )

( )

0

0

sin

sin
hh h t

t



  

=

=
 (2.13) 

Where h0 and α0  are the vertical and torsional amplitudes, respectively, and corresponding 

the vertical and torsional frequency can be described as 2h hf =  and 2 f  = , 

respectively. The lift and moment forces associated with heaving oscillation can be 

expressed as:  
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( )

( )

0

0

sin

sin

h h h
ae h L

h h h
ae h M

L L t

M M t

 

 

= −

= −
 (2.14) 

0
hL  and 0

hM  are the amplitudes of the fluctuating lift and moment associated with heaving 

oscillation, respectively. h
L  is the phase lag between the lift force and the heaving 

oscillation. h
M  is the phase lag between the moment and the heaving oscillation. Flutter 

derivatives related to the heaving motion are given as: 

 

* *0 0
1 42 2

0 0

* *0 0
1 42 2

0 0

sin cos;

sin cos;

h hh h
L L

h hh h
M M

L LH H
h qK h qK
M MA A
h qBK h qBK

 

 

= =

= =

 (2.15) 

Where 21 2q U=  is dynamic pressure. The lift and moment forces associated with 
torsional oscillation can be expressed as: 

 
( )

( )

0

0

sin

sin

ae L

ae M

L L t

M M t

  



  



 

 

= −

= −
 (2.16) 

0L  and 0M   are the amplitudes of the fluctuating lift and moment associated with 

torsional oscillation, respectively. L
 is the phase lag between the lift force and the 

torsional oscillation and M
  is the phase lag between the moment and the torsional 

oscillation. Flutter derivatives related to torsional motion are given as: 

 

* *0 0
2 32 2

0 0

* *0 0
2 32 2 2 2

0 0

sin cos;

sin cos;

L L

M M

L LH H
qBK qBK

M MA A
qB K qB K

  

  

 

 

 

 

= =

= =

 (2.17) 

 

2.4 Identification in time domain 

RFA was firstly introduced by Roger [15] with the formulation as: 

 
0 1 1

1

1( )
nl

l
l l

p p
p 

+

=

= + +
+

Q A A A
  (2.18) 

where 0 1 and A A represent aerodynamic stiffness and damping matrices, respectively and 

1l lp + +A  represents lag terms. In minimum state equation, RFA can be written as [16]: 

 ( )
1

0 1( )p p p −
= + + +Q A A D I R E   (2.19) 

where R is a matrix containing the lag term coefficients. D and E are rectangular matrices. 

I is an identity matrix. Equation (2.19) can be rewritten for a single element of Q as: 
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( ) ( ) ( ) ( )0 1 1

1

1( )
nl

lij ij il lj
l l

p p
p 

+

=

= + +
+

Q A A D E A
  (2.20) 

Introducing that ( )= F D E  is the rational function coefficient matrices [3], equation (11) 

can be rewritten as: 

 
0 1( ) pp p

p 
= + +

+

FQ A A
  (2.21) 

The equation of motion of bridge deck (2.7) can be derived in the Laplace domain as: 

 ( ) ( ) ( )2
fs s L q L q+ + =M C K V Q

  (2.22) 

where  L denotes of Laplace operator. Using RFA, the right-hand side of equation (2.22) 

can be described as: 

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

11 11 12 12

21 21 22 22

2 11 12
0 1 0 1

2 2 21 22
0 1 0 1

1 ˆˆ ˆ
2

1 ˆˆ ˆ
2

ae

ae

F p F p
L U B A A p h B A A p

p p

F p F p
M U B A A p h B A A p

p p

 
 

 
 

     
= + + + + +    

+ +     

     
= + + + + +    

+ +          (2.23) 

 

In time-domain modeling, past researchers use linear and nonlinear optimization to 

obtain RFA coefficients, (^) denotes the transformation in the Laplace domain. Omitting 

denominator part and applying inverse Laplace transform equation, equation (2.23) can 

be rewritten as: 

 

2
1 2 3

2 2
4 5 6

1
2

1
2

ae L se

ae M se

U U BL L U B
B B U

U U BM M U B
B B U

 

 

    
+ = + +    

    

    
+ = + +    

    

ψ q ψ q ψ q

ψ q ψ q ψ q
 (2.24) 

Where 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 0 011 12

2 1 0 111 11 11 12 12 12

3 1 1 4 0 011 12 21 22

5 0 1 0 121 21 21 22 22 22

6 1 121 22

;

;

;

L L

L L

M M

M M

A A

A A F A A F

A A A A

A A F A A F

A A

 

 

 

 

 =  

 = + + + + 

   = =   

 = + + + + 

 =  

0

ψ

ψ

ψ ψ

ψ

ψ

  (2.25) 
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The equation above can be extracted in a different way. For the sake of simplicity, only 

lift force will be demonstrated. 

 
( )

( )2
0 1 0

1( )
2

L
Ut t

L B
ae

UBL t U B e d
U B

 
  

− −  
= + + −  

  
A q A q F q q  (2.26) 

Self-excited forces in time domain contain convolution integrals, defines as follows: 

 
( )

( )
0

L
Ut t

L BU e d
B

 
 

− −

= − Z q q  (2.27) 

The first derivative of the equation above has been shown in some literature [25], [31] as 

follows: 

 LU
B


= −Z q Z  (2.28) 

Equation (2.25) can be rewritten in matrix form matrix as: 

 

 

1 2 3

2
2

4 5 6

2 2
3

,

21 ,
2

,

21 ,
2

L L

T se
L L se

M M

T se
M M se

LU BU B b L
B U UB

MU BU B b M
B U UB











= −

    
= =    

    

= −

    
= =    

    

A ψ ψ ψ

X q q q

A ψ ψ ψ

X q q q

  (2.29) 

Equation (2.29) can be solved by the least square method as: 

( ) ( )( ) ( )( ) ( )( )
1 1

(1 1) (1 7) (7 1) (1 1) (7 1)1 7 1 7 1 7,T T T T
L L x L x L x M M x M xL x M x M xb b

− −

= =A X X X A X X X   (2.30) 

Conversion from RFA matrix to flutter derivatives can be done as: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

* 2 * 2 * 2 * 2
1 11 2 12 3 12 4 11

* 2 * 2 * 2 * 2
1 21 2 22 3 22 4 21

, , ,

, , ,

H i Q K H i Q K H Q K H Q K

A i Q K A i Q K A Q K A Q K

= = = =

= = = =   (2.31) 

Aeroelastic forces in time domain can be deduced as follows: 
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( ) ( )( ) ( )

( )
( )

( )

( ) ( )( ) ( )

( )
( )

( )

0 111 11 11

211 02

0 112 12 12

12 0

1( )
2

L

L

Ut tL B

ae

Ut tL B

h hA F A
B U

UF e h d
BL t U B

BA F A
U

UF e d
B

 

 


 



 


  

− −

− −

 
+ + 

 
 
− 
 =
 
+ + + 
 
 
− 
 





 (2.32) 

( ) ( )( ) ( )

( )
( )

( )

( ) ( )( ) ( )

( )
( )

( )

0 121 21 21

221 02 2

0 122 22 22

22 0

1( )
2

M

M

Ut tM B

ae

Ut tM B

h hA F A
B U

UF e h d
BM t U B

BA F A
U

UF e d
B

 

 


 



 


  

− −

− −

 
+ + 

 
 
− 
 =
 
+ + + 
 
 
− 
 





 (2.33) 

The equation above is phase lag independent which means the phase lag information is 

implicitly calculated.  

In one DOF experiment, aeroelastic forces in matrix form can be written as: 

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

11 11 12 12
1 2

21 21 22 22
1 2

2

2 2

11 12
0 1 0 1

21 22
0 1 0 1

1 2 0
0 1 2

0
0

h
ae ae
h
ae ae

L L

M M

L L U B
M M U B

F p F p
A A p A A p

p p h B
F p F p

A A p A A p
p p









 



 

   
=   
  

 
+ + + + 

+ +   
  
  + + + +

+ +  

  (2.34) 

Suppose the unknown parameter ij  is defined as follows: 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

1 211 12

1 211 11 12 12

11 12

1 221 22

1 221 21 22 22

21 22

11 0 12 0

21 0 1 22 0 111 12

31 1 32 1

41 0 42 0

51 0 1 21 52 0 1 22

61 1 62 1

; ;

; ;

; ;

; ;

; ;

; .

L L

L L

M M

M M

A A

A A F A A F

A A

A A

A A F A A F

A A

   

   

 

   

   

 

= =

= + + = + +

= =

= =

= + + = + +

= =

    (2.35) 

Each corresponding displacement and aeroelastic forces can be described in 

Laplace domain as follows: 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1

2

2

2
11 21 31

2 2
41 51 61

2
12 22 32

1
2

1
2

1
2

ae ae

ae

h h
ae L ae

h h
M

ae L ae

M

U U BL L U B h B h B h B
B B U

U U BM M U B h B h B h B
B B U

U U BL L U B
B B U

UM

 



    

    

       



    
+ = + +    

    

    
+ = + +    

    

    
+ = + +    

    

+ ( ) ( ) ( )2 2
42 52 62

1
2ae

U BM U B
B B U

       
    

= + +    
    

   (2.36) 

Solving equation above by linear least square method, RFA coefficient can be obtained. 

All the equation above is based on motivation that phase lag is implicitly 

calculated. Considering phase lag and amplitude of signal are calculated explicitly. For 

one DOF experiment, each component in aeroelastic force should be treated separately. 

i.e., each component in lift force associated with heaving time history and lift force 

associated with torsional time history are treated independently. In this part, only explain 

the derivation of the matrix 11Q . Recalling equation (2.13), (2.14) and (2.24). The 

formulation, which is including phase lag and amplitude information, can be rewritten as 

follows: 

( ) ( )0 0sin ; sinh
ae h L hL L t h h t  = − =   

2
1 2 3

1
2ae L ae

U U BL L U B
B B U

 
    

+ = + +    
    

ψ q ψ q ψ q

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0

22 0 0 0
1 2 311 11 11

cos sin

1 sin cos sin
2

h h h h
h h L L h L

h h h h h

UL t L t
B

h h hU BU B t t t
B B B U B

     

     

− + − =

    
+ −    

    
ψ ψ ψ

 

( ) ( ) ( ) ( )

( )  ( )

220
1 311 11

0

20
2 11

0

1sin cos
2

1cos sin
2

h
h h

h L L L h

h
h h

h L L L h

L U BB U U B a
h B U
LB U U B b
h

     

     

    
 + = −     

    

 − = 

ψ ψ

ψ
  

( )
( )

( )

( )

1

11

23 2 10 11

0 2 011

032 0 11

0

1 10 cos
2 2 sin

cos10 0 sin
2 L

LL

h
h

h L hh
L

h hh
Lh

h L
L

LU UB U
h LB

hLU B U
h

   





  


   
− −   

     =       
   
     b

AX

ψ
ψ
ψ

 (2.37) 

And least square procedures can be done as follows: 
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( ) ( )( ) ( )

1

4 2 2 4 4 21 1 1(1 2)11
T T

L L Lx L x xL x

−
 
 =
 

A X X X b  (2.38) 

For two DOF experiment, There are some other expressions in which 

superposition is taken into account. Recalling equation (2.13), (2.14) and (2.24), 

superposition can be derived as follows: 

 ( ) ( )

( ) ( )

0 0

0 0

sin sin

cos cos

h
ae ae ae

h h
ae h L L

h h
ae h h L L

L L L

L L t L t

L L t L t



 



 

 

   

     

= +

= − + −

= − + −

              (2.39) 

Applying RFA extraction in inverse Laplace domain, we can obtain the equation as 

follows: 

 
( ) ( )

( ) ( )( )

0 0

0 0

cos cos

sin sin

h h
ae L ae h h L L

h h
L h L L

UL L L t L t
B

U L t L t
B

 

 

 



      

    

+ = − + −

+ − + −

             (2.40) 

Introducing 0
0

T

s
h
B


 

=  
 

q and matching sin and cos function the final equation can be 

obtained as follows: 
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 (2.42) 

a least square can be done as follows: 
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( ) ( )( ) ( ) ( )( )

1

1 2 2 4 4 2 2 4
T T

L L L Lx x x L xb
−

=A X X X  (2.43) 

The least square method needs matrix inversion. Matrix inversion that contains zeros 

values will cause singularity and solving the equation by matching the equation is 

necessary. 

In literature [21]–[23], lag term plays a role, and flutter derivatives must be obtained 

before calculating RFA. Increasing lag terms, the number of unknowns becomes increases 

and consequently time-consuming. The detailed RFA formulation in higher order lag 

terms is explained in the appendix.  

  

2.5 Flutter analysis 

Flutter speed can be determined by performing the equation of motion in a state-

space form. for a typical complex conjugate pair of eigenvalue can be derived as: 

1 ; 1i i i i is j j  = −  − = −  (2.44) 

The corresponding frequency of oscillation and the logarithmic decrement can be derived 

from following: 

( )  ( ) 
2 2

Re Imi i is s = +  (2.45) 

( )

( )  ( ) 
2 2

2 Re

Re Im
i

i

i i

s

s s




−
=

+

 (2.46) 
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 Numerical Simulation for Direct Extraction of RFA 
 

This chapter is a baseline study in this research. Numerical simulation is 

conducted by using secondary data of flutter derivatives at the angle of attack being zero 

degrees. Different deck types such as a twin deck from the spindle bridge, a truss deck 

from the Akashi Kaikyo Bridge, an edge girder deck from the Suramadu Bridge are used 

for simulation. As verification for the extraction algorithm, airfoil will be used in the 

simulation. Displacement time histories defined as ( ) ( )sin 2 hh t f t=  and ( ) ( )sin 2a t f t=  

for heaving and torsional, respectively. Using those time histories and tabular data of 

flutter derivatives, aeroelastic force using (2.7) can be generated. Applying the procedure 

in chapter 3, RFA coefficients can be extracted. Flutter derivatives are used as the 

experimental results. 

To quantitatively assess the discrepancy between obtained extracted and 

experimental flutter derivatives, the following percentage error function is given as: 

( ) ( )( ) ( )( )
2 20 0

1 1 1

100 %

fdN N Nj j j
i i ij i i

fd

X X X
Error

N

= = =

 
− 

 = 

  

  (3.1) 

where ( )j
iX is the j-th flutter derivative from extraction. ( )0 j

iX is the corresponding flutter 

derivative of experimental data at i-th wind speed. N is the number of wind speed involved 

in the calculation. fdN is the number of types of flutter derivative. The procedure of 

numerical analysis can be shown in the figure below. The allowable error is not defined 

because the purpose is only to assess the accuracy of RFA extraction against all the flutter 

derivatives. If the allowable error is a primary concern, a weighting factor must be applied. 

For example, an edge girder which is susceptible to pure torsional flutter (A2
*) should have 

more priority than other flutter derivatives. In this simulation, some parameters such phase 

lag and pre-set amplitude are neglected. Tabular data of flutter derivatives from 

experiment directly used for simulation of aeroelastic forces. 

Extraction of flutter derivatives with RFA will use two and three wind speed. Each 

case has its combination as presented in Table 1. Each simulation will have eleven wind 

speeds which are varied in each bridge deck type. Therefore, there are eleven indices. For 

example, the combination ’1-10’ in case 9 means that simulation will carry out two wind 

speed at 1 and 10 indices. A Higher case number means a wider range of wind speed 
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combination. Furthermore, a higher combination number means a combination with 

higher wind speed. Case number also shows the increment of wind speed for each wind 

speed combination, case 1 means in three wind speed combinations means that there are 

three wind speeds that have a discrepancy of only 1 m/s. 

In the numerical simulation algorithm, the inverse matrix can cause numerical 

instability and a small magnitude of time histories must be added to avoid matrix 

singularity during inverse matrix process.  

 
Fig.  3 Numerical simulation procedure. 

 
Table  1 Wind speed combination for simulation. 

Number of 
wind speed 
combination 

Wind speed index combination (combination number) Case 

2 wind 
speed 

1-2 (1), 2-3 (2), 3-4 (3), 4-5 (4), 5-6 (5), 6-7 (6), 7-8 (7), 8-9 (8), 9-10 (9), 
10-11 (10) case 1 

1-3 (2), 2-4 (3), 3-5 (4), 4-6 (5), 5-7 (6), 6-8 (7), 7-9 (8), 8-10 (9), 9-11 (10) case 2 
1-4 (3), 2-5 (4), 3-6 (5), 4-7 (6), 5-8 (7), 6-9 (8), 7-10 (9), 8-11 (10) case 3 

1-5 (4), 2-6 (5), 3-7 (6), 4-8 (7), 5-9 (8), 6-10 (9), 7-11 (10) case 4 
1-6 (5), 2-7 (6), 3-8 (7), 4-9 (8), 5-10 (9), 6-11 (10) case 5 

1-7 (6), 2-8 (7), 3-9 (8), 4-10 (9), 5-11 (10) case 6 
1-8 (7), 2-9 (8), 3-10 (9), 4-11 (10) case 7 

1-9 (8), 2-10 (9), 3-11 (10) case 8 
1-10 (9), 2-11 (10) case 9 

1-11 (10) case 10 

3 wind 
speed 

1-2-3 (1), 2-3-4 (2), 3-4-5 (3), 4-5-6 (4), 5-6-7 (5), 6-7-8 (6), 7-8-9 (7), 8-9-
10 (8), 9-10-11 (9) case 1 

1-3-5 (3), 2-4-6 (4), 3-5-7 (5), 4-6-8 (6), 5-7-9 (7), 6-8-10 (8), 7-9-11 (9) case 2 
1-4-7 (5), 2-5-8 (6), 3-6-9 (7), 4-7-10 (8), 5-8-11 (9) case 3 

1-5-9 (7), 2-6-10 (8), 3-7-11 (9) case 4 
1-6-11 (9) case 5 
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4 wind 
speed 

1-2-3-4 (1), 2-3-4-5 (2), 3-4-5-6 (3), 4-5-6-7 (4), 5-6-7-8 (5), 6-7-8-9 (6), 7-
8-9-10 (7), 8-9-10-11(8) case 1 

1-3-5-7 (4), 2-4-6-8 (5), 3-5-7-9 (6), 4-6-8-10 (7), 5-7-9-11 (8) case 2 
1-4-7-10 (7), 2-5-8-11 (8) case 3 

 

3.1 Airfoil  

3.1.1 Wind speed combination 

Assuming the frequency response of a structure for lift and moment is defined as 1 

Hz and 2 Hz, respectively and deck width is 0.35 meters. Wind speed that are used for 

simulation are 3 m/s, 4 m/s, 5 m/s, 6 m/s, 7 m/s, 8 m/s, 9 m/s, 10 m/s, 11 m/s, 12 m/s and 

13 m/s. Applying equation (2.6) flutter derivatives can be obtained and have a trend in 

second-order polynomial as shown in the graph below.  

 

 
Fig.  4. Flutter derivatives of airfoil. 

y = -0.0076x2 - 0.6056x
R² = 0.9987

y = 0.0233x2 - 0.3479x
R² = 0.9979

y = -0.1426x2 + 0.3411x
R² = 0.9999

y = -0.0051x2 + 0.0197x
R² = 0.8451

-130

-110

-90

-70

-50

-30

-10

10

30

0 5 10 15 20 25 30 35

Fl
ut

te
r D

er
iv

at
iv

es

U/fB

H1*

H2*

H3*

H4*

y = 0.0019x2 + 0.1514x
R² = 0.9987

y = -0.0058x2 - 0.038x
R² = 0.9995

y = 0.0356x2 - 0.0853x
R² = 0.9999

y = -0.0001x2 + 0.0466x
R² = 0.9933

-10

-5

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Fl
ut

te
r D

er
iv

at
tiv

es

U/fB

A1*
A2*
A3*
A4*



21 
 

 

 
Fig.  5. Error comparison of flutter derivatives extraction at various combinations. 

 

 
Fig.  6 Comparison of flutter derivatives of airfoil in case 6 using one lag term. 
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Fig. 5 presents an error comparison of flutter derivatives extraction from two, three 

and four wind speed combinations. The minimum error at two wind speed is around 3 %. 

In this case, case 6 gives a stable result with an average error of about 4 % except for 

combination one. Using three wind speeds does not reduce the error significantly. A 

comparison of each flutter derivative between the theoretical and simulation result is 

presented in Fig. 6. All derivatives cases show similar results between theoretical and 

extraction from RFA. From this result, it can be concluded that the RFA extraction 

algorithm is correct. 

 

3.1.2 Lag terms effect 

 Numerical analysis is analyzed with one, two and three lag terms. Airfoil theory 

is used to facilitate discussion. In the figure below, we can see that the increasing number 

lag term does not decrease the number of errors. Additionally, with the same lag term, 

increasing the number of wind speed, the error will not reduce. 

 
Fig.  7 Wind speed combination using one lag term. 

 

 
Fig.  8 Wind speed combination using two lag terms. 
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Fig.  9 Wind speed combination using three lag terms. 

 

Error result that shown in the figure above for two and three lag terms are out of 

range. In more detailed explanation can be shown in the figure below. As we can see here, 

there are some discrepancies that come from other flutter derivatives. Increasing the 

number of lag terms will increase the unknown number of parameters, and the result 

becomes redundant. 

 
Fig.  10 Comparison of flutter derivatives based on airfoil in case 6 using two lag terms. 
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Fig.  11 Comparison of flutter derivatives based on airfoil in case 6 using three lag terms. 

 

The concept of RFA extraction here is different from the previous publication. 

[21], [32] where lag term plays an important role. λ is should be identified first and 

optimized until discrepancies between experimental and approximation become minimum. 

In time domain, it really quite hard to understand if multi lag terms is applied. 
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3.2 Twin deck 

A spindle bridge is a bridge that has separated traffic lanes in the main span and 

merged near to pylon to overcome the unsteady aerodynamic force because the center 

deck has an essential role in the occurrence of the flutter [33]. For this purpose, the spindle 

bridge uses a twin deck. The simulation frequency of the deck for lift and moment is 1.5 

Hz and 4.43 Hz, respectively. Deck width is 0.35 m. Wind speed that are used for 

simulation are 6.08 m/s, 6.87 m/s, 7.71 m/s, 8.42 m/s, 9.28 m/s, 10.14 m/s, 10.64 m/s, 

11.08 m/s, 13.24 m/s, 14.99 m/s and 17.53 m/s. The trend of flutter derivatives of twin-

deck can be shown below. 

 

 
Fig.  12 Flutter derivatives of twin decks. 
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Fig.  13 Error comparison of flutter derivatives extraction at various combinations. 

. 
Fig 13 shows an error comparison of flutter derivatives extraction using two and 

three and four wind combinations. Fig. 14 shows the comparison of each flutter derivative 

between experimental data and RFA extraction in case 6. Generally, all derivatives 

between experimental and extraction give the same trend. The discrepancy occurs due to 

the experimental data have third order polynomial in H1
* and A2

*. 

 
Fig.  14 Comparison of flutter derivatives of spindle bridge in case 6. 



27 
 

 

3.3 Truss deck 

A truss deck of Akashi Kaikyo bridge deck is selected for the simulation. Flutter 

derivatives were obtained by the Honshu Shikoku Bridge Authority [34] that contained 12 

types of flutter derivatives data. RFA extraction algorithm is extended into 3 DOF. 

Assuming that the frequency response of lift and moment of the bridge deck is 1.5 Hz. 

Wind speed that is used for the simulation are 4.79 m/s, 5.64 m/s, 6.55 m/s, 7.53 m/s, 8.46 

m/s, 9.38 m/s, 10.37 m/s, 11.27 m/s, 12.23 m/s, 13.08 m/s, and 14.04 m/s. The deck has 

characteristic coupled flutter and trend of graphs in third-order polynomial in A2*. 
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Fig.  15 Flutter derivatives of Akashi Kaikyo at 00. 

 

RFa extraction for 12 Flutter derivatives can be obtained as the following formulation, the 

formulation in the equation (2.24) can be extended as 
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ψ ψ ψ

ψ ψ ψ

  (3.2) 

Applying the least square method and following the procedure as described in chapter 2, 

we can obtain 12 flutter derivatives. 

 
Fig.  16 Error comparison of flutter derivatives extraction at various combinations. 
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Fig.  17 Comparison of flutter derivatives of Akashi Kaikyo Bridge deck in case 6. 

 

Fig. 16 shows an error comparison of flutter derivatives extraction using various 

wind speed combinations where the increase of wind speed does not reduce the 

discrepancy.  

Fig. 17 shows the comparison of each flutter derivative between experimental data 

and RFA extraction in case 6. Flutter derivatives of A2* change in a complex manner with 

higher polynomial while extraction from RFA changes quadratically. 

 

3.4 Edge girder deck 

Suramadu Bridge is the longest cable-stayed bridge in Indonesia. The main span 

length is 434 meters, and the deck width is 30 meters with edge girder deck type. The 

experiment with a section model in one DOF was conducted at Tongji University [35] by 
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free vibration method. Frequency simulation for lift and moment are 1.61 and 3.76 Hz, 

respectively. In this case, frequency simulation is the same as the frequency of the deck 

model. Wind speed that is used for the simulation are 3.98 m/s, 4.98 m/s, 6.00 m/s, 7.01 

m/s, 8.07 m/s, 9.16 m/s, 10.22 m/s, 11.32 m/s, 12.39 m/s, 12.93 m/s, and 13.54 m/s. This 

deck type has the characteristic in torsional divergent where A2
* tends to become positive. 

In heaving excitation, the data change in a complex manner. 

 

 
Fig.  18 Flutter derivatives of Suramadu Bridge at 00. 
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the discrepancy. Fig. 20 shows the comparison of each flutter derivative between 

experimental data and RFA extraction in case 6.  

 
Fig.  19 Error comparison of flutter derivatives extraction at various combinations. 

 

 
Fig.  20 Comparison of flutter derivatives of Suramadu Bridge deck in case 6. 

 

As seen in the figure above, there are some discrepancies in flutter derivatives for 

moment force that come from a complex manner of experimental data. Torsional 
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excitation derivatives the data is smooth while heaving excitation is not smooth. This 

condition will affect the accuracy of RFA extraction. 

 

3.5 Summary  

In this chapter, using secondary data of flutter derivatives in frequency domain 

using simulated sinusoidal displacement time histories, direct extraction of the RFA 

coefficients has been successfully presented. This chapter aims to verify the accuracy of 

RFA extraction against various trends of flutter derivatives. Some points can be 

summarized as follows: 

1. In the airfoil theory case, it shows that the RFA extraction program is correct.  

2. As a numerical simulation result, an increasing number of wind speed combinations 

and lag terms will not reduce the discrepancy. Increasing lag terms will increase 

unknown parameters and cause the result to become redundant. 

3. Two wind speed combinations with one lag term give optimum results for RFA 

extraction. From numerical simulation for two wind speed combinations, cases 5,6 

and 7 give optimum discrepancy between simulation and experiments. Cases 5,6 and 

7 are wind speed combinations between wid range and higher wind speed. 

4. Some variations in second-order polynomial can be diminished by averaging of wind 

speed combination. However, in third-order polynomial such A2
* in Akashi kaikyo 

bridge and some derivatives in Suramadu bridge, the discrepancies can be reduced to 

some extent. 

5. Many parameters did not consider simulation, such as phase lag between displacement 

time histories and white noise gaussian. 
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 Wind Tunnel Experiment 
 

4.1 Experimental setup 

A bluff body bridge deck model was tested in a closed-circuit wind tunnel at 

Yokohama National University. The working section is 1.8 m wide and 1.8 m high. The 

maximum wind velocity that can be generated by the propeller is equivalent to 35 m/s. 

The wooden model has a width B of 0.37 m and a height H of 0.04 m. The side ratio B/D 

(the ratio of width B to depth D) is 9.25:1. The measured vertical and natural frequency 

of the model are fh = 2.382 Hz fα = 5.883 Hz, respectively. The mass of the bridge model 

per unit length is 4.166 kg/m, and the mass moment of inertia in the torsional direction is 

6.368 x 10-2 kg m2/m. Mechanical damping ratios are ζh= 2.3% for the heaving motion 

and ζα= 1.41% for the torsional motion. The section model was attached to a shaft system 

and supported at each corner by a linear spring. The test was conducted with an angle of 

attack being 0o. 

 

 
 

 
Fig.  21 Deck section. 
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The section model is attached to a rigid frame and suspended across the wind tunnel 

by eight helical springs with stiffness k. Piano wires were used to restrain the desired 

degree of freedom. Displacement time histories are measured by a laser transducer. 

 

4.2 Experimental procedures 

The experimental procedures[36], [37] briefly can be described as follows: 

1. Wind flow is generated by propeller-driven with the desired RPM. A pitot tube is 

placed under the section model and connected to a manometer, and relative pressure 

will be displayed. The velocity of wind speed can be calculated from pressure by the 

calculation 

 

2 pU



=

 (4.1) 

The vertical and torsional displacement time history can be obtained through laser 

device measurement at a specific location. The time histories for vertical h (heaving) 

and torsional (pitching) α responses can be calculated as: 

 

1 2

1 1 2

2

tan
2

h hh

h h
 −

+
=

− 
=  

   (4.2) 

Where h1 and h2 are the displacement time histories that are measured by laser 1 and 

laser 2, respectively. 

 

2. The measurement data need to convert from volt to SI unit by calibration factor which 

derived from zero wind speed measurement 

 

4.2.1 Determination of vertical frequency and mass 

The mechanical properties of the section model can be determined by adding 

additional mass to the deck. The natural frequency of the deck model can be described as: 

 

K
m

 =
 (4.3) 

If the additional mass is located in the center of the deck, the natural frequency in the 

vertical direction can be written as: 
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i

i

K
m m

 =
+  (4.4) 

By adding mass, we can obtain linear regression of additional mass and frequency in the 

vertical direction. An additional parameter is known as deck mass. 

 
Fig.  22 Mass calibration. 

 

4.2.2 Torsional frequency and moment of inertia of deck model 

Determining torsional frequency and moment of inertial of deck model is similar 

to vertical frequency. The difference is the mass location located at the edge of the mid-

chord of the deck section. The moment of inertia of the additional mass can be defined as: 

 
2

i i iI d m =   (4.5) 

and torsional frequency is defined as 

 

K
I

 =
 (4.6) 

 

4.2.3 Determination of mechanical damping 

From free vibration of the bridge deck, the logarithmic decrement can be 

calculated as follows: 

y = 1132.6x - 5.2073
R² = 0.9978
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Fig.  23 Moment of inertia calibration. 

 

4.2.4 Pre-set amplitude calibration (forced vibration case) 

In case of heaving amplitude, 1 kg a mass is put in the center is equal to b/100 

where b is the deck's width. For the heaving signal, the amplitude of the heaving signal = 

0.3076 Volt.  

Calibration factor = 3.7mm 12.03mm volt
0.3076volt

=  for b/100. 

 

In case of torsional amplitude additional 1 kg, a mass is put in the edge of the deck, which 

is equal to 1 degree, the amplitude of torsional signal = 0.2899 volts.  

Calibration factor = 
0

01 3.45 volt 3.45 0.0602rad volt
0.2899 volt 180


= = =  for 1 degree, 

  

y = 109.38x - 0.0796
R² = 0.9991

0
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0.025
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4.3 Free vibration method 

The test was conducted in one DOF, heaving mode, and torsional mode. The 

sampling frequency was set at 200 Hz. There was some lock-in phenomenon in the 

heaving mode that occurred in wind speed from 1.93 m/s to 2.21 m/s. Keyence wave 

logger NR-500 program was used for data acquisition.  

 

4.4 Forced vibration method 

The motion was generated by two exciters. The high-strength thin wires were used 

to connect the exciters to the end of the shafts, which enable vertical and torsional 

oscillation of the deck section. The test was forced oscillated in one DOF, heaving mode, 

and torsional mode and two DOF. A wave factory WF 1946 2 channel was used to produce 

an oscillation of heaving and torsion. In the torsional case of one DOF, the phase 

difference was set on 0o and 90o for each exciter, respectively. 

 

 
(a) Exciters 

 
(b) Pressure acquisition system 
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(c) Graphtec Thermal Arracycorder WR300. 

 

 
(d) Wave Factory WF 1946 2 Channel. 

Fig.  24 Equipment devices for forced vibration method. 
 

There are 38 surface pressure taps used in the section model, which are arranged 

around the cross-section in the middle of the span. The sampling rate and the total 

sampling time were set at 200 Hz and 60 seconds for time history displacement and surface 

pressure measurement, respectively. The measurement used the acquisition system of the 

model MT-MP-32-R1-R±1250 Pa Melon Technos multi-point pressure measurement 

system with 64 tube connectors to measure the fluctuating surface pressure. Displacement 

time histories and pressure signals were connected to National Instruments CDAQ-9174. 

The deck model is forced to vibrate controlled by wave factory WF 1946 2 channel. 

Wind tunnel tests were performed from 1 m/s to 15 m/s with 1 m/s increment, 

which was controlled by propeller speed and total pressure. The amplitude was always 

monitored by Graphtec Thermal Arraycorder WR300 during data acquisition. 
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Fig.  25 Experimental setup for one DOF.  

 

The system above can be excited in one DOF heaving mode and torsional mode. 

The frequency of excitation was set at 1.5 Hz, 2 Hz, and 2.5 Hz for heaving and torsional 

oscillation, respectively. There are three cases of pre-set amplitude of heaving and 

torsional mode for the amplitude-dependent case, namely B/100 and =1o, B/50 and 

=0.5o, and B/200 and =2o, respectively.  
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Fig.  26 Experimental setup for two DOF. 

 

In two DOF case, only pre-set amplitude B/100 and 1o will be tested. In two DOF 

experiments, excitation frequency was tuned to maintain amplitude. Considering vortices 

in lower wind speed, the sampling frequency was set at 500 Hz. The exciter was set on 

the center of rotation and at the outer end as the figure above. 

 

4.5 Result and discussion 

A program based on MATLAB was developed for RFA extraction. The result of 

the displacement time histories measurement was reduced by means of displacement time 

histories in order to set them in the coordinate x-y axis. Aeroelastic forces were generated 

by the integration of unsteady surface pressure using a rectangular rule. A center of the 

deck is defined as a mid-chord.  
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4.5.1 Free vibration method 

 Free decay signals are obtained at a sampling frequency 200 Hz. The example of 

free decay response can be shown as below: 

 

 
Fig.  27 Free decay response at 0 m/s. 

 

4.5.2 Forced vibration method in one DOF experiment 

In a forced vibration test, aeroelastic forces were calculated by the integration of 

unsteady surface pressure using the rectangular rule. Phase lags can be calculated as a time 

delay associated with the peak in the cross-correlation [38], [39] function. In this method, 

sampling frequency choice is an important thing to determine an accurate phase lag. In 

this work, phase lags were obtained by cross power spectrum between displacement time 

histories and aeroelastic forces. The bandpass filter with low filter order was used to 

eliminate white Gaussian noise of fluctuating surface pressures.  

In using the bandpass filter, filter order and cut-off frequencies need to be 

identified. Compared to Chebyshev type I and Elliptic filtering, Butterworth gives better 
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peak amplitude in the filtering process. It is worth noting that filtering will affect the 

analytical result. In this dissertation, the bandpass filter with low order was used to 

eliminate the noise of resultant forces of surface pressure.  

The figure below shows the effect of filter order and cut-off frequencies for 

excitation frequency 2.5 Hz for heaving and torsional, respectively. 

 
(a) Cut-off frequency 0.5-4.5 Hz 

 
(b) Cut-off frequency 1.5 -3.5 Hz 

Fig.  28 Cut-off effect in filtering. 
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Fig.  29 Transfer function order effect in filtering. 

 

Bandpass filter in range +/- 0.5 Hz of excitation frequency is used as cut-off 

frequency because it will not affect much of time history amplitude. Increasing the order 

of transfer function will not affect the amplitude but phase lag between displacement time 

history and resultant force will be changed. Vice versa, a low order of transfer function 

will decrease the amplitude and do not change phase lag between displacement time 

history and resultant force. In the RFA extraction algorithm, the first-order forward finite 

difference method was employed to differentiate displacement time histories and 

aeroelastic force. It is interesting to note that between first-order and second-order give 

the same result. The experiment was conducted several times in one DOF for the heaving 
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and torsional case. Some combination of the result has been observed, and a good 

combination is presenting in this dissertation. 

Phase lag is negative when a displacement time history leads self-excited force 

component. The vertical motion in the downward direction and torsional motions in the 

clockwise direction are defined as positive. 

 

4.5.2.1 Direct extraction of forced vibration 

A free vibration test has the advantage that the instability phenomenon can be 

directly observed. On the other hand, aerodynamic derivative estimation in forced 

vibration test is straightforward, and phase lag plays a role in the accuracy of flutter 

derivatives identification. 

The coupled derivatives H2
* and H3

* describe the aerodynamic coupling between 

fluctuating lift and torsional excitation. The coupled derivatives A1
* and A4

* describe the 

aerodynamic coupling between fluctuating moment and vertical excitation. The negative 

value of the uncoupled derivatives H1
* and H4

* indicate increasing aerodynamic damping 

and stiffness for heaving motion as a function of reduced wind speed. The positive or 

negative value of the uncoupled derivative A2
* indicates negative or positive damping for 

torsional motion. 

Fig. 30 a), in the heaving oscillation of forced vibration method, H1
* and A1

* 

change slightly, while there is no effect on another two aerodynamics derivatives (H4
* and 

A4
*). An anomaly trend of A4

* that might be explained by the difficulties of observing in 

lower wind speed with large damping of structure. In the torsional oscillation, torsional 

amplitude is strongly affected H2
* and A2

* because of the movement of the reattaching 

point of separation flow [40]. In this experiment, the effect of torsional amplitude emerges 

in H2
* of case A. Because the graphs are plotted in reduced frequency and plotted free 

vibration result depends on natural frequency on the deck, it makes the result seem no 

proportional to forced vibration result. Additionally, system identification of the Kalman 

filter will identify the derivatives that have the same frequency. In this manner, torsional 

frequency is more dominant. 

Fig. 30 b) presents the effect of excitation frequency against flutter derivates 

extraction with case B pre-set amplitude. There is a slight discrepancy in derivatives H2
* 

and A2
*at higher reduced wind speed. It seems that higher excitation frequency will induce 

the movement of the reattaching point of separation flow.  
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a) Pre-set amplitude effect. 
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b) Frequency excitation effect. 

Fig.  30 Flutter derivatives extraction from forced vibration method. 
 

4.5.2.2 RFA extraction 

In  RFA extraction algorithm, the displacement time histories and aeroelastic force 

need to be numerically differentiated and phase lag is an independent parameter. There 

are many ways to do numerical differentiation, such as first-order forward and second-

order central finite difference method. Recorded the fluctuating surface pressures are 

contaminated with Gaussian white noise [3] and will be eliminated by a digital filter.  

In this deck type, H1
* indicates heaving instability (i.e., galloping) will never occur 

and the trend typically remains negative. A2
* usually positive as reduced wind speed 

increases. Fluctuating surface pressure contains noise and consequently, integration of 

surface pressures and their derivatives do not become nearly harmonic oscillation. 

Additionally, a least square of two wind speeds means solely complement each other. 

Previous studies[5], [7] were based on two DOF forced vibration mechanism where phase 
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lag sign that might be unnoticed. We encountered some challenges for conversion from 

RFA coefficient to flutter derivatives due to the phase lag issued and sign convention 

solves this problem.  

In the numerical simulation in chapter 3, we use flutter derivatives data which 

represent intercorrelation between heaving and torsional oscillation. Aeroelastic forces are 

generated as coupled aeroelastic forces. However, in the experiment, we treated 

aeroelastic forces separately as an equation (2.34) because classical approach is also 

treated as well. The result can be shown in the figure below. 

 
a) One wind speed 
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b) two wind speed combination 
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c) Three wind speed combination 

Fig.  31 RFA extraction with various wind speed combinations. 
 

The figures above show that various wind speed combinations show a good 

agreement between forced vibration and RFA extraction methods for different kinds of 

wind speed combinations, especially in one wind speed. It is hard to understand why one 

wind speed can cover a wider range of reduced frequency. To understand this phenomenon, 

we conducted numerical simulation as the procedure in chapter 3. 
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4.5.2.3 Numerical simulation 

In figures below show the trend of direct extraction of forced vibration method is 

in a quadratic polynomial.  

One DOF experiment has the advantage that each heaving and torsional excitation 

contribution to aeroelastic forces is well quantified and separated at every wind speed. In 

RFA extraction experiment, that separation must be treated by decoupling aeroelastic 

forces and solve the extraction for each force. However, in numerical simulation, 

aeroelastic forces must be constructed as coupled aeroelastic forces.  

 

 
Fig.  32 Polynomial order of flutter derivatives of 1 DOF experiment at B/100-10. 
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Numerical simulation will be done with various wind speed combinations as 

described in chapter 3 with simulation case as the table 2 below. In this case, aeroelastic 

force is generated with the fitting curve of flutter derivatives. The purpose of curve fitting 

is to minimize the error due to fluctuated phase lag in other to have a smooth graph. The 

figure below shows that between simulation and experimental has a good agreement 

among all derivatives, which confirms that the program is correct. 

 
Fig.  33 Simulation of RFA extraction in 1 DOF at B/100-10. 

 

 Another wind speed combination such as 3 and 4 wind speed combination is also 

observed. 
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Table  2 Wind speed combination for experimental simulation. 
Number of wind 

speed combination Wind speed index combination (combination number) Case 

2 wind speed 

1-2 (1), 2-3 (2), 3-4 (3), 4-5 (4), 5-6 (5), 6-7 (6), 7-8 (7), 8-9 (8), 9-
10 (9), 10-11 (10), 11-12 (11), 12-13 (12),13-14 (13), 14-15 (14) case 1 

1-3 (2), 2-4 (3), 3-5 (4), 4-6 (5), 5-7 (6), 6-8 (7), 7-9 (8), 8-10 (9), 
9-11 (10), 10-12 (11),11-13 (12),12-14 (13),13-15 (14) case 2 

1-4 (3), 2-5 (4), 3-6 (5), 4-7 (6), 5-8 (7), 6-9 (8), 7-10 (9), 8-11 
(10), 9-12 (11), 10-13 (12), 11-14 (13), 12-15 (14) case 3 

1-5 (4), 2-6 (5), 3-7 (6), 4-8 (7), 5-9 (8), 6-10 (9), 7-11 (10), 8-12 
(11) , 9-13 (12), 10-14 (13), 11-15 (14) case 4 

1-6 (5), 2-7 (6), 3-8 (7), 4-9 (8), 5-10 (9), 6-11 (10), 7-12 (11), 8-
13 (12), 9-14 (13), 10-15 (14) case 5 

1-7 (6), 2-8 (7), 3-9 (8), 4-10 (9), 5-11 (10), 6-12 (11), 7-13 (12), 
8-14 (13), 9-15 (14) case 6 

1-8 (7), 2-9 (8), 3-10 (9), 4-11 (10), 5-12 (11), 6-13 (12), 7-14 (13), 
8-15 (14) case 7 

1-9 (8), 2-10 (9), 3-11 (10), 4-12 (11), 5-13 (12), 6-14 (13), 7-15 (1
4) case 8 

1-10 (9), 2-11 (10), 3-12 (11), 4-13 (12), 5-14 (13), 6-15 (14) case 9 
1-11 (10), 2-12 (11), 3-13 (12), 4-14 (13), 5-15 (14) case 10 

1-12 (11), 2-13 (12), 3-14 (13), 4-15 (14) case 11 
1-13 (12), 2-14 (13), 3-15 (14) case 12 

1-14 (13), 2-15 (14) case 13 
1-15 (14) case 14 

3 wind speed 

1-2-3 (1), 2-3-4 (2), 3-4-5 (3), 4-5-6 (4), 5-6-7 (5), 6-7-8 (6), 7-8-9 
(7), 8-9-10 (8), 9-10-11 (9), 10-11-12 (10), 11-12-13 (11), 12-13-

14 (12), 13-14-15 (13) 
case 1 

1-3-5 (3), 2-4-6 (4), 3-5-7 (5), 4-6-8 (6), 5-7-9 (7), 6-8-10 (8), 7-9-
11 (9), 8-10-12 (10), 9-11-13 (11), 10-12-14 (12), 11-13-15 (13) case 2 

1-4-7 (5), 2-5-8 (6), 3-6-9 (7), 4-7-10 (8), 5-8-11 (9), 6-9-12 (10), 
7-10-13 (11), 8-11-14 (12), 9-12-15 (13) case 3 

1-5-9 (7), 2-6-10 (8), 3-7-11 (9), 4-8-12 (10), 5-9-13 (11), 6-10-14 
(12), 7-11-15 (13) case 4 

1-6-11 (9), 2-7-12 (10), 3-8-13 (11), 4-9-14 (12), 5-10-15 (13) case 5 
1-7-13 (11), 2-8-14(12), 3-9-15 (13) case 6 

1-8-15 (13) case 7 

4 wind speed 

1-2-3-4 (1), 2-3-4-5 (2), 3-4-5-6 (3), 4-5-6-7 (4), 5-6-7-8 (5), 6-7-
8-9 (6), 7-8-9-10 (7), 8-9-10-11 (8), 9-10-11-12 (9), 10-11-12-13 

(10), 11-12-13-14 (11), 12-13-14-15 (12) 
case 1 

1-3-5-7 (4), 2-4-6-8 (5), 3-5-7-9 (6), 4-6-8-10 (7), 5-7-9-11 (8),6-8-
10-12 (9), 7-9-11-13 (10), 8-10-12-14 (11), 9-11-13-15 (12) case 2 

1-4-7-10 (7), 2-5-8-11 (8), 3-6-9-11 (9), 4-7-10-13 (10), 5-8-11-
14(11), 6-9-12-15 (12) case 3 

1-5-9-13 (10), 2-6-10-14 (11), 3-7-11-15 (12) case 4 
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Fig.  34 Error comparison of flutter derivatives extraction at various combinations. 

 

The figure above shows the error comparison of flutter derivatives at various 

combinations of wind speed combinations. The error seems around 10 % for all wind 

speed combinations. Direct extraction result gives fluctuated phase lag and it may 

contribute to the discrepancy. The figure above shows that the combination in mid-range 

and higher wind speed will give minimum discrepancies. The largest range will not give 

the best option. It can be understood since in lower wind speed, the resultant force is too 

small for RFA extraction. For the sake of simplicity, combination 6-13 m/s is chosen the 

next analysis. 

 

4.5.2.4 Data length effect 

RFA extraction is conducted in time domain, and the data length is an important 

thing to observe.  Experiment data from case B pre-set Amplitude is used to extract RFA 

coefficients. Since reference results are described in aeroelastic coefficients, extraction of 

RFA coefficients will be converted to flutter derivatives and then compared with EKWGI 

and classical approach of case B pre-set amplitude. Due to high-quality experimental data, 

the results presented here have been obtained from wind speed combinations 6 m/s and 13 

m/s. In the measurement, the total sampling time was set on 60 seconds and the sampling 

rate is 200 Hz which means that there is a 12000 array dimension of data length. Smaller 
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data length will speed up the calculation and it is interesting to investigate RFA extractions 

against data length. Fig. 35 illustrates that flutter derivatives from RFA extractions 

generally compare well. There is no much difference between 60 seconds and 10 seconds 

of data length.  

 
Fig.  35 RFA extraction considering data length effect. 

 

4.5.2.5 Pre-set amplitude effect 

In the same manner in the direct extraction, Fig. 36 depicts the effect of pre-set 

amplitude on RFA extraction with 60 seconds of data length. Generally, they have the 

same trend as in the direct extraction approach. However, there are anomaly trends in case 

C pre-set amplitude that is the largest amplitude case. 
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Fig.  36 RFA extraction considering pre-set amplitude effect. 

 

4.5.2.6 Flutter analysis 

In order to investigate the effect on pre-set amplitude, two DOF flutter analyses 

were conducted for cases A-C of the RFA extraction as well as forced vibration case B, 

as shown in Fig. 37. A discrepancy in coupled derivatives is the reason for flutter 

instability in case of RFA extraction. However, it was recognized that some other 

derivative components also affect the flutter speed sensitively. 
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Fig.  37 Two modes flutter analysis. 

 

4.5.3 Forced vibration method in two DOF experiment. 

4.5.3.1 Direct extraction of forced vibration 

Experimental setup either in one DOF or in two DOF has a different system. In 

one DOF, a harmonic motion will contribute to each vertical and modal branch, the 

purpose that couple terms of derivatives can be accurately quantified. The reduced wind 

speed can be unified by setting the same excitation frequency. On the other hand, two 

DOF experiment is more precisely to measure a couple of aeroelastic forces. However, in 

two DOF experiment, phase lag must be maintained in order to produce designated 

coupled vibration. Nevertheless, due to the experiment device, in this thesis, excitation 

frequency was tuned to maintain pre-set amplitude. The figure below shows the direct 

extraction of flutter derivatives with pre-set amplitude with B/100 and 1ᵒ. Compared to 

one DOF experiment H1
* and H2

* have the trend in third-order polynomial. 
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Fig.  38 Direct extraction of flutter derivatives in two DOF experiment. 

 

4.5.3.2 RFA extraction 

Since RFA coefficient extraction can be extracted at every wind speed, the 

similarity between resultant forces and force simulation as well as the comparison of 

flutter derivatives are necessary. Two parameters are used to measure aeroelastic forces 

similarity, namely, correlation coefficient and coefficient of determination. The 

correlation coefficient (ρxy) and coefficient of determination (R2) between the 

measurement of resultant force (xi) and simulation (yi) within n-step signals can be 

calculated using the following equation: 
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Because it is the spring-mass system, a wind tunnel experiment was conducted 

with the frequency of excitation the same as deck's natural frequency to verify the 

calculation. The figures below show the RFA extraction in one DOF experiment. Results 

show there is no effect among wind speed combinations. Some discrepancies occur due 

to phase lag fluctuation for every wind speed. 

 
Fig.  39 RFA extraction in one DOF experiment by two DOF system. 

 

Fig. 40 below show the flutter derivatives extraction in two DOF excitation. Wind 

speed combination for the extraction was selected at wind speed 6 m/s with various higher 

wind speed from 11 to 15 m/s. Considering A2
*, wind speed combination 6 – 12 m/s and 

6 – 13 m/s have a good agreement with forced vibration result. Nevertheless, the RFA 

coefficients need to be investigated to find a reasonable reason why flutter derivatives 

have a large discrepancy in the small range of wind speed combination. 
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Fig.  40 RFA extraction in two DOF experiment. 

 

 Table 4 shows a summary of aeroelastic force comparison between measurement and 

simulation. Correlation coefficients and coefficients of determination are over 90 %, 

except for the 6 – 15 m/s combination case. Therefore, it is essential to emphasize that the 

coefficients tell that the identification algorithm and program are correct. The discrepancy 

which occurred indicates that direct extraction of RFA requires enhancement in the 

advanced model due to higher-order polynomial. 

  Considering flutter derivatives result and similarity between measurement and 

simulation, combination 6 – 13 m/s is the best option for direct extraction of RFA. There 

is some error in combination 6 – 15 m/s in Fig. 41 g) that can be explained in table 4.  
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Table  3 Correlation coefficient (ρxy) and coefficient of determination (R2) between measurement and 
simulation by RFA method with various 6 m/s combinations. 

Wind speed 
combination 

(m/s) 

Wind Speed 
simulation 

(m/s) 

Lift force (Nm) Moment force 
(Nm/m) 

xy  2R  xy  2R  

6-11 
15 0.967 0.935 0.976 0.938 
10 0.997 0.993 0.995 0.986 
6 0.998 0.996 0.997 0.992 

6-12 
15 0.981 0.961 0.989 0.968 
10 0.995 0.987 0.995 0.986 
6 0.998 0.994 0.997 0.991 

6-13 
15 0.990 0.979 0.993 0.985 
10 0.992 0.979 0.995 0.986 
6 0.998 0.994 0.997 0.988 

6-14 
15 0.996 0.993 0.995 0.989 
10 0.988 0.967 0.995 0.987 
6 0.998 0.994 0.997 0.986 

6-15 
15 0.010 - 0.997 0.993 
10 - - 0.996 0.989 
6 0.010 - 0.997 0.977 

 

 

 
a) Lift force time history by 6 - 12 m/s combination. 
 

 
b) Moment time history by 6 - 12 m/s combination. 

 

 
c) Lift force time history by 6 - 13m/s combination. 
 

 
d) Moment time history by 6 - 13 m/s combination. 
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 e) Lift force time history by 6 - 14 m/s combination. 

 

 
f) Moment time history by 6 - 14 m/s combination. 
 

 
g) Lift force time history by 6 - 15 m/s combination. 

 
h) Moment time history by 6 - 15 m/s combination. 

 
Fig. 41 Comparison of aeroelastic forces between measurement and simulation by RFA at wind speed 15 

m/s.  
 

The RFA coefficients extracted from various wind combinations are shown in 

Table 4. One interesting point is that λ parameter should be genuinely considered. In Table 

4, there is a negative value of λ in the wind speed combination 6 and 15 m/s. A negative 

value of λ will make the predicted aeroelastic force infinity. Some literature [21], [41] 

pointed out that λ should be greater or equal to zero. Parameter λ associate with the transfer 

function in which output lags behind the inputs and permits an approximation of the delays 

by the positive value of λ. The error comes from a numerical manner since during wind 

tunnel experiment divergent was never occur. Many factors can contribute, such as phase 

lag which could not be controlled during the experiment. 
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Table  4 RFA coefficient extraction from various 6 m/s combinations. 
Wind speed 
combination 

(m/s) 
A0 A1 F λL λM 

6 - 11 
-16.837 -1.404 -2.222 0.182 11.771 2.725 

0.150 0.184 
11.449 5.440 0.430 0.210 -10.581 -3.837 

6 - 12 
-30.701 -12.041 -2.031 0.226 29.585 15.357 

0.109 0.208 
6.698 3.048 0.408 0.196 -5.510 -1.325 

6 - 13 
-39.421 -17.747 -1.979 0.152 36.590 20.233 

0.080 0.206 
5.961 2.926 0.459 0.208 -5.647 -1.679 

6 - 14 
-109.408 -67.371 -1.505 0.302 107.697 70.383 

0.030 0.238 
3.638 1.699 0.440 0.190 -3.010 -0.313 

6 - 15 
43.873 47.821 -2.057 0.002 -45.186 -44.328 

-0.028 0.276 
1.297 0.614 0.602 0.250 -0.970 0.552 

 

4.5.3.3 Numerical simulation 

To understand the mechanism of RFA extraction in two  DOF experiment and why 

within in small different wind speed gives a different result. Numerical simulation is 

conducted following the procedure in chapter 3.  

 

 
a) 

 
b) 
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c) 

Fig.  42 Simulation of RFA extraction in two DOF experiment 
 

In Fig. 42 a) shows RFA extraction with conditions H1
*and H2

* are approximated 

with third-order polynomial and phase lag between displacement time histories are 

included. Fig. 42 b) shows RFA extraction with conditions H1
*and H2

* are approximated 

with third-order polynomial and phase lag between displacement time histories are 

neglected. Fig. 42 c) shows RFA extraction with conditions H1
*and H2

* are approximated 

with second-order polynomial and phase lag between displacement time histories are 

neglected. From the graph above, it can be concluded that the trend of aeroelastic forces 

which is represented by flutter derivatives, gives many contributions to RFA extraction. 

Since the experimental phase lag cannot be controlled and from the Fig. 42 (a) and (b) 

show that phase lag gives a small contribution to RFA extraction that can be ignored. 

Nevertheless, phase lag will contribute to a flutter derivatives trend. 
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Fig.  43 Error comparison of flutter derivatives extraction at various combinations of experimental 

simulation using third-order polynomial. 
 

 

 
Fig.  44 Error comparison of flutter derivatives extraction at various combinations of experimental 

simulation using second-order polynomial. 
 

In Fig. 43 and Fig 44 show error comparison using various combinations, third-

order polynomial will give an average error of 25 % and second-order polynomial give an 

average error of 15%.  
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4.6 Summary 

The conclusions from this chapter are summarized as follows:  

1. The flutter derivatives obtained by the free and forced vibration (direct extraction) test 

generally compare well.  

2. In the direct extraction, excitation frequency and pre-set amplitudes will affect A2
*and 

H2
*. Some literature points out that those discrepancies caused by separation flow the 

movement of the reattaching point of separation flow which needs further 

investigation.  

3. The direct extraction approach requires the amplitude and phase lag parameters to 

extract flutter derivatives. On the other hand, the RFA extraction requires time 

histories and a proper data measurement is necessary because aeroelastic forces 

contain noise that will amplify after taking the numerical derivative.  

4. In RFA extraction, the data length of time history will not influence RFA extraction 

results and 10 seconds of data length is sufficient for RFA extraction.  

5. In the pre-set amplitude case, it seems that the RFA algorithm does not affect much. 

An anomaly trend occurs in case C pre-set amplitude that might come from data 

processing.  

6. One DOF experiment has the advantage that each heaving and torsional excitation 

contribution to aeroelastic forces is well quantified and separated at every wind speed. 

Direct excitation can approximate it. In experimental, RFA extraction can approximate 

well in heaving and torsional excitation very well.  

7. The simulation of RFA extraction was conducted with the superposition of aeroelastic 

forces and showed a good agreement with all components of derivatives. 

8. Based on experimental result, one DOF experiment gives derivatives in second-order 

polynomial while two DOF experiment gives a result of derivatives in third-order 

polynomial. The trend of derivatives provides a different result within a small range 

wind speed combination. Simulation of RFA extraction in two DOF experiments 

clearly shows that trend derivatives will affect the extraction and fluctuating phase lag 

will not contribute to RFA extraction result. 
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 Conclusion and Future Research 
 

5.1 Conclusion 

Direct extraction of flutter derivatives in time domain requires less wind speed 

than in frequency domain. Previous study stated that two wind speed combination is 

sufficient to extract flutter derivatives. The identification process caused ambiguity in the 

flutter derivatives extraction principle because the aerodynamic damping did not always 

change monotonically and must be extracted in every wind speed. However, what 

condition of wind speed is chosen to extract a full set of RFA coefficients such as time 

length, polynomial order of derivatives was not yet fully explained. This thesis aims to 

find the applicability and mechanism of direct extraction of RFA. On the basis of the 

numerical and experimental study, the following conclusion is established. 

1. Direct extraction of RFA required one lag term with a minimum of two wind speed 

combination. The increasing number of wind speed in the combination will not 

improve the result significantly as well as the increasing number of lag terms.   

2. Increasing the number of lag terms will cause redundant results due to increasing 

unknown parameter numbers. This technique is quite different from indirect 

extraction, in which lag terms play an important role in approximation.  

3. There are some discrepancies in obtaining flutter derivatives between free and forced 

vibrations methods that might be caused by airflow state. 

4. In one DOF of direct extraction, excitation frequencies and pre-set amplitude will 

affect derivative associated with torsional oscillation due to state flow issue, and 

previous publication confirmed that issue. 

5. In one DOF of direct extraction of RFA, there is no effect on data length and 

discrepancies occur in case pre-set amplitude solely due to data processing. 

6. Based on simulation and experimental results, The trend of derivatives influence of 

RFA extraction, RFA extraction can only approximate derivative in second-order 

polynomial. 

7. In a third-order polynomial case, the error can be minimized by averaging the result 

to some extent. 
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5.2 Future Research 

Some suggestion for future research can be described as follows: 

1. A more advanced wind tunnel setup is required to extract flutter derivatives in forced 

vibration method where phase lag between aeroelastic forces and time histories can 

be controlled in order to study coupled vibration effect with different phase lag. 

2. The results from free vibration, one and two DOF of forced vibration give different 

values. Further investigation in wind flow by using Particle Image Velocimetry (PIV) 

and validated pressure field by numerical simulation is strongly suggested. 
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Appendix 1. Lag terms coefficient formulation 
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b) Two lag terms 
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Inverse Laplace domain of aeroelastic for two lag terms can be written as follows: 
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c) Three lag terms 
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Inverse Laplace domain of aeroelastic for three lag terms can be written as follows: 
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