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Abstract

Gröbner bases is a field of algebra, and Buchberger proposed a Gröbner basis and an

algorithm to find it in 1964 [3]. When there is an ideal on a polynomial ring, the Gröbner

basis is always found and has special characteristics. Due to its characteristics, Gröbner

bases have a wide range of applications and is used in many topics of mathematics and

engineering. After Buchberger proposed the algorithm, many improvements and speed-

up methods were proposed. F4 algorithm proposed by Faugère in 1999 [15] is known to be

fast and is implemented in many algebraic computing software. In calculating a Gröbner

basis, unnecessary calculations called zero reductions occur. Zero reductions are not only

calculations for which information about a Gröbner basis cannot be obtained, but also

calculations that generally require a large amount of calculations. Several methods have

been proposed to reduce the number of zero reductions by detecting zero reductions that

appear in the middle of the calculations and omitting them. The major improvement

of algorithms for finding Gröbner basis is F5 algorithm proposed by Faugère in 2001

[16]. While the improvements and speed-up methods proposed so far have been based

on the Buchberger algorithm, F5 has different processes and we require additional (or

different) arguments to prove the termination and the correctness of F5 algorithm. It

is known that the theory is difficult and implementations for efficient calculations are

difficult. However, when the set of input polynomials is a regular sequence, F5 can be

calculated without zero reductions. If we have less zero reductions that occur during the

calculations, the amount of calculations is small, so efficient and fast calculations are

possible. After that, F5 was generalized as a signature-based algorithm, and efficient

calculation methods, and the proofs of the termination and the correctness were mod-

ified. One of them is rewrite basis algorithm, which is a generalization of the previous

signature-based algorithm by Eder and Roune [12]. The algorithm is a compilation of

many signature-based algorithms proposed so far. This paper introduces an improved

version of Rewrite basis algorithm, which we call alternative rewrite basis algorithm.

Unlike Buchberger algorithm, signature-based algorithms require a module order to be



selected in addition to a monomial order, and when an arbitrary module order is chosen,

alternative rewrite basis algorithm detects and omits extra zero reductions that occur in

rewrite basis algorithm. Alternative rewrite basis algorithm is concretely designed and

is provided in a form that is easy to be implemented. Thanks to that, the proofs of the

termination and the correctness are simpler, and written in more detail. In addition,

this paper proposes a method for efficient calculations for signature-based algorithms.

Gröbner bases algorithms have procedures for reducing polynomials, and this proce-

dures occupy most of the computational complexity of the algorithm. There are two

conventional strategies to reduce polynomials for signature-based algorithms. One is the

only-top reduction strategy that reduces only the leading terms. The other is the full

reduction strategy that reduces every term which can be reduced. In this paper, we

propose a strategy for reducing polynomials, called the selective-full reduction strategy.

In the proposed strategy, we reduce the leading terms and then, when the condition is

satisfied, we reduce the terms of entire polynomial. When the condition is not satisfied,

we stop reducing terms. The conventional two strategies and the proposed strategy were

evaluated using Gröbner bases benchmark problem. As a result, it was found that the

selective-full reduction strategy can be calculated more efficiently than the conventional

two strategies for finding the reduced Gröbner basis. In addition, the selective-full re-

duction strategy is a valid strategy because it does not give the worst result among the

three strategies when finding the Gröbner basis.
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Chapter 1

Introduction

1.1 Background and Motivation

Gröbner bases is one of important research topics in algebra. In 1964, Buchberger [3]

introduced Gröbner basis and proposed a basic algorithm for finding a Gröbner basis.

The algorithm is called Buchberger algorithm. If an ideal on a polynomial ring and an

monomial order is given, a Gröbner basis for the the ideal is found. The Gröbner basis

shows the characteristics of the ideal, and is a useful set. Therefore, there are many

propositions and it is widely used for applications. One of well-known applications is

the elimination theory [6]. When we solve a multivariate polynomial equation, finding

a Gröbner basis for the lexicographical order is helpful, because we obtain a Gröbner

basis of the ideal generated by polynomials with some variables restricted. As other ap-

plications of Gröbner bases, we have cryptography, coding theory, statistics and integer

programming problem etc. It is possible to obtain a solution by converting a problem

into a polynomial system and computing its Gröbner basis. Some engineering problems

require to deal with polynomial systems including parameters. In that case, a compre-

hensive Gröbner system, which treats parametrized polynomial systems, is possible to

solve the problem. A comprehensive Gröbner system is obtained by computing Gröbner

bases multiple time. Thus, Gröbner bases has a wide range of applications, and a lot of

research related to the applications would progress by improving algorithms computing

a Gröbner basis. Avoiding zero reduction operations leads to more efficient algorithms

because the number of reductions related to reducing polynomials to zero is tend to be
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larger than that of reductions of polynomials which are not reduced to zero. Moreover,

the calculations of zero reduction operations do not give any information of a Gröbner

basis. Therefore, in order to decrease amount of calculations, it is important to study

algorithms detecting polynomials which are reduced to zero.

1.2 Earlier research

A first signature-based algorithm, called F5, was proposed by Faugère in 2002 [16]. By

using F5, we can detect and discard many polynomials which will be reduced to zero.

Moreover, a zero reduction does not happen when the input polynomials are regular

sequence. Therefore, F5 is recognized as an efficient algorithm for computing Gröbner

bases. The proofs of the termination and the correctness of F5 are in the paper [16].

However, the descriptions of F5 and the proofs are complicated, and the proof of the

termination is not sufficient.

After F5 was proposed, many propositions related to F5 were submitted. In the

Stegers’s dissertation [26], an efficient computation method for F5 was proposed. The

method used the characteristic that the calculation of F5 proceeds incrementally. Let

F = {f1, f2, . . . , fm} ⊂ R be a polynomial system. At first, we compute a Gröbner

basis of the ideal 〈f1〉. Second, we compute a Gröbner basis of the ideal 〈f1, f2〉. Next,

we compute a Gröbner basis of 〈f1, f2, f3〉. After a series of computations in order, we

finish to compute a Gröbner basis of 〈F 〉. That is the process of F5. Stegers proposed

the process to find reduced Gröbner basis 〈f1, . . . , fl〉 for l < m after the computation

of a Gröbner basis of 〈f1, . . . , fl〉. In the next phase about 〈f1, . . . , fl, fl+1〉, we use

the reduced Gröbner basis of 〈f1, . . . , fl〉 for reducing polynomials. By this method, the

number of reductions are suppressed in the calculation. In 2010, Eder and Perry proposed

further improvement from the above method, named F5C [8]. In Steger’s method, the

reduced Gröbner basis is used for only reductions. In F5C, the reduced Gröbner basis

is used for reductions and generating S-pairs. F5C can decrease the more number of

reductions. Ars and Hashemi proposed the selectivity of a module order in F5 [14].

Original F5 and the algorithms related F5 use the same module order called POT order.

In the paper [14], F5 with a module order other than POT was described, and the result
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of the computations by several module orders are shown. In original F5, zero reductions

which can be detected are only syzygies generated by trivial syzigies fifj−fjfi. By Arri

and Perry [1] as well as Gao, Guan and Volny [21], the method to detect zero reductions

by zero reductions calculated before was proposed. The method is useful even when a

module order other than POT is chosen. The paper [13] compiled studies of signature-

based algorithms, so that we can overview research of signature-based algorithms. In the

paper, signature-based algorithms are generalized as rewrite basis algorithm (RB) [12].

The algorithm in [1] called Arri and the algorithm in [22] called GVW are introduced

as RB with RAT selected for a rewrite order. The explanations and the definitions of

rewrite basis algorithm, a rewrite order and RAT are not given in this paper because

they are too long. When we choose RAT for a rewrite order, rewrite basis algorithm

become the most efficient. The proofs of correctness and termination in [13] are not

self-contained unfortunately. Additionally, RB is not provided as an efficient algorithm

in case we choose module orders other than POT (position over term) because RB is

introduced as a generalized signature-based algorithm.

1.3 Structure of this thesis

In Chapter 2, we review notations and basic notions of a polynomial rings, Gröbner

bases and modules. In Chapter 3, we introduce alternative rewrite basis algorithm

(altRB). The algorithm is efficient for an arbitrary module order other than POT, and

moreover it is concrete to be implemented. We prove the correctness (Theorem 56) and

the termination (Theorem 57) of altRB. By designing the algorithm concretely, the

proofs of the correctness and the termination are clearer and more transparent. The

proofs are done by several steps. We take up some signature-based (semi-)algorithms

for computing Gröbner bases: fundSB, simpleSB, syzSB and altRB. In each step,

we discuss the correctness and the termination of an algorithm. By discussing the

correctness and the termination of these (semi-)algorithms step by step, we have finally

obtained the correctness and the termination of altRB. In Chapter 4, we introduce an

efficient strategy for signature-based algorithms. The idea of the strategy we proposed

is following: when we have computed a signature Gröbner basis, there are unnecessary
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elements for a minimal Gröbner basis, so candidates of elements needed for a minimal

Gröbner basis should be sufficiently reduced, that means full s-reduced. Overview of

the strategy is following: after generating an S-pair, we operate only-top reduction.

If the S-pair meets a certain condition ( SF in §4), we operate full reduction. We

name the strategy selective-full reduction strategy (Algorithm 5). The efficiency of the

strategy was evaluated by some Gröbner basis benchmarks which is commonly used.

The selective-full strategy operates fewer times of reduction for computing the reduced

Gröbner basis.
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Chapter 2

Notations and algorithms of

Gröbner bases

2.1 Fields and Rings

Gröbner bases is one of topics of algebra. In this paper, we consider a commutative

polynomial ring.

Definition 1. A commutative ring consists of a set R and two binary operations “+”

and “·” defined on R that satisfy the following conditions: for all a, b, c ∈ R

(i) (a+ b) + c = a+ (b+ c).

(ii) (a · b) · c = a · (b · c).

(iii) a+ b = b+ a.

(iv) a · b = b · a.

(v) a · (b+ c) = a · b+ a · c.

(vi) There exists 0, 1 ∈ R such that a+ 0 = a · 1 = a.

(vii) Given a ∈ R, there exists b ∈ R such that a+ b = 0.

A commutative ring is defined over a certain field.
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Definition 2. A field consists of a set K and two binary operations “+” and “·” defined

on K and following conditions are satisfied: for all a, b, c ∈ K

(i) (a+ b) + c = a+ (b+ c).

(ii) (a · b) · c = a · (b · c).

(iii) a+ b = b+ a.

(iv) a · b = b · a.

(v) a · (b+ c) = a · b+ a · c.

(vi) There exists 0, 1 ∈ K such that a+ 0 = a · 1 = a.

(vii) Given a ∈ K, there exists b ∈ K such that a+ b = 0.

(viii) Given a ∈ K, a 6= 0, there exists c ∈ K such that a · c = 1.

Note that any field is clearly a commutative ring. An ideal is a subset of a ring. A

Gröbner basis, a theme of this thesis, is defined for an ideal.

Definition 3. Let R be a commutative ring. A subset I ⊂ R is an ideal if the following

conditions satisfies:

(i) 0 ∈ I.

(ii) If a, b ∈ I, then a+ b ∈ I.

(iii) If a ∈ I and b ∈ R, then b · a ∈ I.

We now define polynomials. We start by defining monomials. We consider polyno-

mials with n variables and coefficients over K.

Definition 4. A monomial of x1, x2, . . . , xn is the product of the form xa11 xa22 · · ·xann

in which all exponents a1, a2, . . . , an are non-negative integers. The total degree of this

monomial is |a| = a1 + · · ·+ an in total.

A polynomial is consisted by sum of monomials.
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Definition 5. A polynomial f in x1, . . . , xn with coefficients in a field K is a finite linear

combination of monomials. We write a polynomial f of the form f =
∑

a cax
a which is a

finite sum with xa = xa11 xa22 · · ·xann for a = (a1, . . . , an) ∈ Zn
≥0. The set of all polynomials

in x1, . . . , xn with coefficients in K is denoted by K[x1, . . . , xn].

Let K be a field. The set K[x1, . . . , xn] satisfies the conditions of Definition 2.

Therefore, K[x1, . . . , xn] is a commutative ring. Consider a, b ∈ K[x1, . . . , xn]. If a is

divisible by b, we write a | b.

We use the following notations for dealing with polynomials.

Definition 6. Let f =
∑

a cax
a be a polynomial in K[x1, . . . , xn].

(i) We call ca the coefficient of the monomial xa.

(ii) We call cax
a a term of f .

(iii) The total degree of f , denoted deg(f), is the maximum |a| = a1+a2+ · · ·+an such

that the coefficient of cax
a is nonzero. The total degree of the zero polynomial is

not defined.

Let R = K[x1, . . . , xn] be a polynomial ring. Let f1, . . . , fm be elements of R. The

elements f1, . . . , fm generate an ideal.

Lemma 7. Let f1, . . . , fm be polynomials in R. Then, the following set

〈f1, . . . , fm〉 =

{
m∑
i=1

hifi | h1, . . . , hm ∈ R

}
is an ideal.

2.2 Monomial Order

Let f be a certain polynomial over a polynomial ring R which includes more than two

variables. There are many ways to write f , namely there are many ways to arrange the

monomials of f . Certainly, the monomial which is written at the first is not canonically

determined. Hence, we need to consider a monomial ordering, for Gröbner basis com-

putation. Especially, the first term written in f , called the leading term, is determined

after we fix a monomial ordering, and it plays an important role for the definitions and

calculations of Gröbner bases.
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Definition 8. A monomial ordering > on K[x1, . . . , xn] is a relation on Zn
≥0 on the set

of monomials xα, α ∈ Zn
≥0, satisfying:

(i) > is a total ordering on Zn
≥0.

(ii) If α > β and γ ∈ Zn
≥0, then α+ γ > β + γ.

(iii) > is a well-ordering on Zn
≥0. This means that every nonempty subset of Zn

≥0 has

a smallest element under >.

Here is an example of an important monomial order for a Gröbner basis. Let α =

(α1, . . . , αn) and β = (β1, . . . , βn) be in Zn
≥0. We say xα >lex xβ is lexicographic ordering

if the leftmost nonzero entry of the vector difference α − β ∈ Zn is positive. We say

xα >grevlex xβ is graded reverse lexicographic ordering if |α| =
∑n

i=1 αi > |β| =
∑n

i=1 βi,

or |α| = |β| and the rightmost nonzero entry of α − β ∈ Zn is negative. Generally, it is

known that a Gröbner basis can be obtained at fast using graded reverse lexicographic

ordering. For some applications, a Gröbner basis of lexicographic ordering has a useful

characteristic. Since it has polynomials with variables eliminated, it is easy to find the

solutions of the simultaneous equations.

Example 9. ConsiderR = Q[x, y, z] with x > y > z. Consider monomials x2y, y2z2, x3 ∈

R. On lexicographic ordering, x3 > x2y > y2z2. On graded reverse lexicographic order-

ing, y2z2 > x3 > x2y.

Fix a monomial ordering. Representations of any polynomial f over R is determined.

Especially, the largest term of f is unique. Such a term is important for the definitions

and calculations of Gröbner bases, so it is given a special notation.

Definition 10. Let f be a nonzero polynomial in K[x1, . . . , xn] and let > be a monomial

order.

(i) the leading term of f is the term which is the largest monomial for the chosen

monomial ordering. We write LT(f).

(ii) the leading coefficient of f is the coefficient of the leading term of f . We write

LC(f).
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(iii) the leading monomial of f is the monomial of the leading term of f . We write

LM(f).

Clearly, LT(f) = LC(f) · LM(f).

Example 11. Consider a polynomial f = 2x2y + 3y2z2 + 7x3. On lexicographic order-

ing, LT(f) = 7x3,LC(f) = 7,LM(f) = x3. On graded reverse lexicographic ordering,

LT(f) = 3y2z2,LC(f) = 3,LM(f) = y2z2.

2.3 Gröbner bases

When we see an ideal generated by polynomials, the ideal generated by the leading

terms of polynomials plays an important role. Since the monomial ordering is fixed, the

leading terms of polynomials in I can be considered.

Definition 12. Let I ⊂ K[x1, . . . , xn] be an ideal other than 0, and fix a monomial

ordering. Then:

(i) We denote by LT(I) the set of leading terms of nonzero elements of I.

(ii) We denote by 〈LT(I)〉 the ideal generated by the elements of LT(I).

Consider an ideal I of a polynomial ring. Theorem 13 says, there exists a set of finite

elements which generate I.

Theorem 13. (Hilbert basis theorem) Every ideal I ⊂ R has a finite generating set. In

other words, I = 〈g1, . . . , gs〉 for some g1, . . . , gs ∈ I.

Proof. The proof is found in many algebraic books. For example, see [6].

There are many sets which generate an ideal. When a monomial ordering is fixed,

there exists a special set which generate I.

Definition 14. Fix a monomial order on the polynomial ring R. A finite subset G =

{g1, . . . , gs} of an ideal I ⊂ R is said to be a Gröbner basis if 〈LT(g1), . . . ,LT(gs)〉 =

〈LT(I)〉.

From Hilbert basis theorem, every ideal of R has a Gröbner basis. A special property

of a Gröbner basis is described in next section.
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Algorithm 1 Buchberger algorithm

Input : a finite subset F = {f1, . . . , fm} of R

Output : a Gröbner basis G of F

Step 0 G← ∅, P ← {S(fi, fj) | 1 ≤ i < j ≤ m}

Step 1 If P = ∅, return G

p← an element in P

P ← P\{p}

Step 2 p′ ← result of reduced p by G

Step 3 (i) If p′ = 0

Go to Step 1

(ii) If p′ 6= 0

P ← P ∪ {S(g, p′) | g ∈ G}

G← G ∪ {p′}

Go to Step 1

2.4 Buchberger algorithm

Gröbner bases and an algorithm which calculates it are introduced by B. Buchberger

[3]. The algorithm, called Buchberger algorithm, is a basic Gröbner bases algorithm.

We review a special polynomial, called S-polynomial, and a special operation, called a

reduction. They are indispensable for Buchberger algorithm.

Definition 15. (i) Let xα, xβ , xγ be monomials in R, and let α, β, γ be in Zn
≥0. Let

γ = (γ1, . . . , γn) satisfy γi = max(αi, βi) for each i. We call xγ the least common

multiple of xα and xβ , written xγ = LCM(xα, xβ).

(ii) Let f, g ∈ R be polynomials. The S-polynomial of f and g is defined as follows.

S(f, g) =
LCM(LT(f),LT(g))

LT(f)
f − LCM(LT(f),LT(g))

LT(g)
g (2.1)

Definition 16. Let f, f ′ ∈ R be polynomials. We say that f is reduced to f ′ if there

exist a polynomial g ∈ R and a monomial r ∈ R satisfying the conditions:

(a) LT(rf) = t for a (certain) monomial t in f

(b) f ′ = f − rg
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Corollary 17 says a Gröbner basis of an ideal I has a special property for I.

Corollary 17. Let G be a Gröbner basis for an ideal I ⊂ R and let f ∈ R. Then f ∈ I

if and only if f is reduced to zero by G.

Proof. The proof is found in many algebraic books. For example, see [6].

Algorithm 1 is the pseudocode of Buchberger algorithm. The termination of the

algorithm follows from Theorem 13, but here we do not explain the proof, see [6] for the

proof. The details of the proofs are in [6]. The correctness of the algorithm follows from

the next theorem.

Theorem 18. Let I ⊂ R be an ideal. G = {g1, . . . , gs} is a Gröbner basis of I if and

only if S-polynomials S(gi, gj) for all pairs i 6= j are reduced to zero by G.

Proof. The proof is found in many algebraic books. For example, see [6].

A Gröbner basis is not uniquely determined for a given ideal. A minimal Gröbner

basis is not unique, but the number of elements in the basis is unique.

Definition 19. Let G ⊂ R be a Gröbner basis for an certain ideal. G is called a minimal

Gröbner basis if G satisfy the following condition.

� There do not exist g, g′ ∈ G such that LT(g) | LT(g′) and g 6= g′.

The reduced Gröbner basis is determined uniquely for an ideal. For applications, the

reduced Gröbner basis play important roles.

Definition 20. Let G ⊂ R be a Gröbner basis for an certain ideal. G is called a reduced

Gröbner basis if G satisfy the following condition.

� There do not exist g, g′ ∈ G such that LT(g) | t (t is a term in g′) and g 6= g′.

Now consider a problems of Buchberger algorithm. In the algorithm, S-polynomials

which are selected at Step 1 may be reduced to zero (Step 3 (ii)). If an S-polynomial is

reduced to zero, no information about the Gröbner basis is available. Therefore, these

calculations are useless. Also, in general, the number of reductions of polynomials that

become zero tends to increase. Thus, if it is known in advance that the polynomial is

11



reduced to zero before the S-polynomial is reduced, it is possible to perform an efficient

computation by discarding it without reductions. Signature-based algorithms, which are

the theme of this paper, can detect many polynomials which are reduced to zero and

can omit unnecessary calculations.

2.5 Modules over Rings

For descriptions of signature-based algorithms, we review the definition of modules over

rings. Let R be a commutative ring. An R-module is defined as follows.

Definition 21. A module over R is a set M with two operations (addition + and scalar

multiple by elements of R) such that the following conditions: for a, b ∈ R and f, g ∈M

(i) M is an abelian group under the addition. There is an additive identity element

0 ∈M , and each element has an additive inverse element.

(ii) a(f + g) = af + ag.

(iii) (a+ b)f = af + bf .

(iv) (ab)f = a(bf).

(v) If 1 is multiplicative identity in R, 1f = f .

An element of Rm of the form aei for a monomial a of R is called a term of Rm. Let

α = aei, β = bej be terms in R-module. If a | b and i = j, we write α | β.

Definition 22. Let M be a module over a ring R. We say that M is free if M has a

basis, namely there exist f1, . . . , fm ∈ M such that each m ∈ M is uniquely written of

the form
∑

aifi with ai ∈ R. .

The R-module Rm is a free module. The standard basis elements

e1 =



1

0

...

0


, e2 =



0

1

...

0


, · · · , em =



0

0

...

1


(2.2)

form a basis for Rm.
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Definition 23. Let M be an R-module. Let f1, . . . , fm be elements of M . The set of all

(h1, . . . , hm) ∈ Rm such that h1f1 + · · · + hmfm = 0 is called the (first) syzygy module

of (f1, . . . , fm), and denoted Syz(f1, . . . , fm).

Like monomial ordering, we consider ordering for modules. For signature-based

algorithms, it is required to fix a module order in addition to a monomial order. Original

F5 algorithm [16] uses POT order for a module order. Let a, b be monomials in R. We

say aei �POT bej is POT (Position over Term) order if i > j or i = j and a > b.
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Chapter 3

Signature-based algorithms for

computing Gröbner bases

In this section, the proofs of the termination and the correctness of signature-based al-

gorithms are given. Four signature-based algorithms are presented. They are named

as fundamental signature-based semi-algorithm (fundSB), simple signature-based algo-

rithm (simpleSB), syzygy simple signature-based algorithm (syzSB) and alternative

rewrite basis algorithm (altRB). By discussing the correctness and the termination of

these algorithms step by step, we obtain the correctness and the termination of altRB.

The proofs are self-contained and clear by discussing as the above. altRB is presented

to be efficient when a arbitrary module order other than POT is chosen.

3.1 Notation

Let R be a polynomial ring over a fieldK. Let us denoteK\{0} byK×. Let f1, f2, . . . , fm

be elements of R. Let e1, e2, . . . , em be the standard basis of a free module Rm.

Definition 24. Consider the homomorphism

¯: Rm −→ R

defined by

α =
m∑
i=1

aiei 7−→ α =
m∑
i=1

aifi,
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where a1, . . . , am ∈ R, especially ei = fi holds.

Example 25. Consider R = Q[x, y, z] with x > y > z and graded reverse lexicographical

ordering, and consider f1 = x2 + y, f2 = xy + z. Let α = x3e1 + ze2 be an element of

Rm. Then, we have α = x3e1 + ze2 = x5 + x3y + xyz + z2.

We fix a monomial order ≤ on R, and fix a module order �. In the classical Gröbner

bases algorithm like Buchberger algorithm, we fix a monomial order. In signature-based

algorithm, we fix a module order as well as a monomial order. The calculations in the

algorithms vary by the module order we choose. The module order is required to be

compatible with the monomial order, that means: aei � bei for i = 1, . . . ,m for all

monomials a, b ∈ R in case a ≤ b.

Definition 26. Let α = aei and β = bej be terms, if there exists c ∈ K× such that

a = cb and i = j, we write α ' β and we say that α and β are equivalent.

Signature is just defined as the leading term of the element of Rm, but it has an

important role in signature-based algorithms.

Definition 27. For α ∈ Rm, the signature s(α) of α is defined to be the leading term

of α with respect to the module order.

Example 28. Consider POT order with e1 ≺ e2. Let α = (x3 + z)e1 + (z2 + y)e2 be

an element of Rm. The signature of α is s(α) = z2e2.

In the classical Gröbner bases algorithm, we reduce polynomials. In signature-based

algorithms, we operate different reductions named s-reductions.

Definition 29. Let G be a subset of Rm. For α, α′ ∈ Rm, we say that α is s-reduced to

α′ if there exist β ∈ G and b ∈ R satisfying the three conditions:

(a) LT(bβ) = t for a (certain) monomial t in α

(b) s(bβ) � s(α)

(c) α′ = α− bβ.

At this time, we call β a reducer.
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A difference between s-reductions and reductions operated in the classical Gröbner

bases algorithm is (b).

Definition 30. We say that α is singularly s-reduced to α′ if the condition (b) above is

replaced by s(bβ) ' s(α), and otherwise that α is regularly s-reduced to α′.

Example 31. Consider f1 = x2 + y, f2 = xy+ z. Let α = ye1 + e2, β = e2 be elements

of Rm. This implies that α = ye1 + e2 = x2y + y2 + xy + z and β = e2 = xy + z. We

have s(α) � s(yβ) and LT(α) = LT(yβ). Then, α is regularly s-reduced to α− yβ by a

reducer β.

Definition 32. Let α be an element in Rm.

(i) Let β be a reducer of α. If there exists c ∈ K such that LT(bβ) = cLT(α), the

s-reduction is called top s-reduction and otherwise called tail s-reduction.

(ii) If α cannot be s-reduced, we say that α is completely s-reduced.

(iii) If α cannot be regularly top s-reduced, we say that α is completely regularly top

s-reduced.

(iv) If α can be both neither regularly top s-reduced nor regularly tail s-reduced, we

say that α is completely regularly full s-reduced.

When α is s-reduced, α = 0 or α = 0 happens. These are confusing, so we introduce

the following notation. If α ∈ Rm is completely s-reduced and α is 0 ∈ R, then we say

that α is completely s-reduced to 0 ∈ R.

Definition 33. The S-pair of α, β ∈ Rm is defined as following

spair(α, β) =
λ

LT(α)
α− λ

LT(β)
β,

where λ is the least common multiple of LT(α) and LT(β). If

s

(
λ

LT(α)
α

)
' s

(
λ

LT(β)
β

)
,

we call the S-pair is singular, otherwise, the S-pair regular.
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S-pairs are substitutions of S-polynomials.

In signature-based algorithms, we compute a signature Gröbner basis. In the middle

of the algorithms, we compute a signature Gröbner basis up to or in T .

Definition 34. Let T be a term in Rm.

(i) A subset G ⊆ Rm is a signature Gröbner basis up to T if all α ∈ Rm with s(α) ≺ T

are completely s-reduced to 0 ∈ R with respect to G.

(ii) A subset G ⊆ Rm is a a signature Gröbner basis in T if all α ∈ Rm with s(α) ≺ T

are completely s-reduced to 0 ∈ R with respect to G.

(iii) A subset G ⊆ Rm is a signature Gröbner basis if all α ∈ Rm are s-reduced to 0 ∈ R

with respect to G.

Next proposition proves that if G is a signature Gröbner basis, then {g | g ∈ G} is a

Gröbner basis of the ideal generated by {g | g ∈ G}.

Proposition 35. Let I be the ideal generated by {f1, . . . , fm}, let G be a signature

Gröbner basis. Then, {g | g ∈ G} is a Gröbner basis of the ideal 〈g | g ∈ G〉.

Proof. First, we show α ∈ I for any α ∈ G. Let α ∈ G, which is written as
∑m

i=1 riei,

for ri ∈ R. Then α =
∑m

i=1 riei =
∑m

i=1 rifi.

Assume that {g | g ∈ G} is not a Gröbner basis of I. Then, there exists h ∈ I such

that h is not top reducible by {g | g ∈ G}. As h ∈ I, one can write h as
∑m

i=1 aifi

for ai ∈ R. Put β =
∑m

i=1 aiei ∈ Rm. Then, we have β = h. Since G is a signature

Gröbner basis, β is top s-reducible. This means that h is top reducible. This is a

contradiction.

Definition 36. A signature Gröbner basis G is minimal if there does not exist an

element α in G which top s-reduces any other elements in G\{α}. We also use the word

“minimal” for a signature Gröbner basis in G and up to G.

3.2 Fundamental signature-based semi-algorithm

In this section, fundamental signature-based semi-algorithm (fundSB) is considered.

fundSB does not terminate, so we call fundSB a “semi”-algorithm. This means that
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Algorithm 2 Fundamental signature-based semi-algorithm (fundSB)

Input : a finite subset F = {f1, . . . , fm} of R

Step 0 G← ∅

Step 1 α← the minimal term in Rm which is bigger than the terms computed before

Step 2 α′ ← result of completely regularly top s-reducing α by G

Step 3 (i) If α′ = 0

Go to Step 1

(ii) If α′ 6= 0

(a) If α′ is singularly top s-reducible by G

Go to Step 1

(b) If α′ is not singularly top s-reducible by G

G← G ∪ {α′}

Go to Step 1

fundSB is not appropriate for implementation and computation. However, fundSB

helps us to comprehend how signature-based algorithms work. Specifically, it shows

that why signature-based algorithms proceed in the ascending order of signatures. Al-

gorithm 2 is the pseudocode of fundSB. fundSB does not terminate, since fundSB

will compute all terms in Rm and the number of elements of Rm are infinite. However,

we can prove the following properties of fundSB.

(A) At the end of Step 3 in fundSB, G is a signature Gröbner basis in α,

(B) At the end of Step 1 in fundSB, G is a signature Gröbner basis up to α.

For (A), note that α is a term chosen in Step 1 of the same loop. If (A) is true, (B)

is true since fundSB computes in the ascending order of terms in Rm step by step. We

prove (A) in Proposition 40.

Lemma 37 is called singular criterion [25]. Let α, β be elements in Rm whose signature

is equivalent to that of the other. The criterion means that the results of regular s-

reduction are the same. This property is the most significant in the signature-based

algorithm.

Lemma 37. Let T be a term in Rm and let G be a signature Gröbner basis up to T .

Let α and β in Rm satisfy
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(1) s(α) = s(β) � T ,

(2) α and β are completely regularly top s-reduced by G.

Then, LT(α) = LT(β). Moreover, if α and β are completely regularly s-reduced, then

α = β.

Proof. First, we prove the former. For the sake of contradiction, assume that LT(α) 6=

LT(β). Then, either LT(α− β) = LT(α) or LT(α− β) = LT(β) holds. From the

condition, s(α) = s(β), then we have s(α − β) ≺ s(α) � T . Therefore, α − β is top

s-reducible by G, there exists a pair (γ, a) ∈ G × R such that s(aγ) � s(α − β) and

LT(aγ) = LT(α− β). This aγ satisfies that s(aγ) ≺ s(α) = s(β) and either LT(aγ) =

LT(α) or LT(aγ) = LT(β). Then, aγ regularly top s-reduce α or β. This contradicts

that α and β are completely regularly top s-reduced.

Next, we prove the latter. For the sake of contradiction, assume that α− β 6= 0.

The leading term of α− β is the term included in either α or β. Since s(α) = s(β), we

have s(α− β) ≺ s(α) � T . Therefore, α− β is top s-reducible by G, that is, there exists

a pair (γ, a) ∈ (G,R) such that s(aγ) � s(α − β) and LT(aγ) = LT(α− β). This aγ

satisfies that s(aγ) ≺ s(α) = s(β) and there exists a term in α or β such that the term

is the same as LT(aγ). Then, aγ regularly s-reduce α or β. This contradicts that α and

β are completely regularly s-reduced.

Let α be an element after Step 2 in fundSB. If α is singularly top s-reducible by G,

then the signature of α is the same as the signature of the reducer.

Lemma 38. Let α ∈ Rm and β ∈ G satisfy

(1) s(α) � T ,

(2) α is completely regularly top s-reduced by G,

(3) there exists a ∈ R which satisfies s(α) ' s(aβ) and LT(α) = LT(aβ).

Then, s(α) = s(aβ).

Proof. For the sake of contradiction, assume that s(α) 6= s(aβ). Then, there exists

c ∈ K that satisfies c 6= 1 and s(α) = cs(aβ). Since s(α − caβ) ≺ s(α) � T , we have
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that α− caβ is top s-reducible by G. Therefore, there exists a pair (γ, b) ∈ G×R that

satisfies s(bγ) � s(α − caβ) and LT(bγ) = LT(α− caβ). Since LT(α− caβ) ' LT(α),

we have that γ regularly top s-reduce α. This contradicts that α is completely regularly

top s-reduced.

Let α be an element after Step 2 in fundSB. By Lemma 39, If α is singularly top

s-reducible by G, α is s-reduced to 0 ∈ R by G.

Lemma 39. Let T be a term in Rm and let G be a signature Gröbner basis up to T .

Let α ∈ Rm satisfies

(1) s(α) � T ,

(2) α is completely regularly top s-reduced by G,

(3) α is singular top s-reducible by G.

Then, α is s-reduced to 0 ∈ R by G.

Proof. Let β ∈ G be a reducer which singularly top s-reduces α. From Lemma 38, there

exists a ∈ R that satisfies LT(α) = LT(aβ) and s(α) = s(aβ). Then, we have that

s(α− aβ) ≺ s(α), so α− aβ is s-reduced to 0 ∈ R by G.

By Lemmas 37, 38 and 39, we prove (A) at the end of Step 3 in fundSB, G is a

signature Gröbner basis in α.

Proposition 40. At the end of Step 3 in fundSB, G is a signature Gröbner basis in α

at the every loop.

Proof. Let α be the term chosen in the latest Step 1. Let α′ be the result of completely

regularly top s-reducing α. Let G be a signature Gröbner basis up to α. We prove that

G is a signature Gröbner basis in α after the end of Step 3, that is, all β ∈ Rm with

s(β) � α are s-reduced to 0 ∈ R by G.

Since G is a signature Gröbner basis up to α, then β ∈ Rm with s(β) ≺ α is s-

reduced to 0 ∈ R by G. Then, let β satisfy s(β) ' α. As we s-reduce β by G step by

step, suppose β would be changed as follows: β → β(1) → β(2) → · · · → β(i) → · · · .

Assume an s-reduction such that s(β(i)) = s(aγ) (a ∈ R, γ ∈ G) occurs for a certain i.
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Since s(β(i+1)) ≺ α for the i, in this case, β is s-reduced to 0 ∈ R. Suppose that such an

s-reduction does not occur. Let β′ be the result of completely s-reducing β. Note that

s(β′) ' α and β′ is completely regularly top s-reduced. From Lemmas 37 and 38, there

exists c ∈ K such that s(α′) = cs(β′) and LT(α′) = cLT(β′).

We consider the result of s-reducing β in the following three cases according to how

α′ was handled in Step 3.

(i) If α′ = 0, then β′ as well as α′ is s-reduced to 0 ∈ R by Lemma 37.

(ii) If α′ 6= 0 and α′ is singularly top s-reducible, then β′ as well as α′ is singularly top

s-reducible. By Lemma 39, we have that β′ is s-reduced to 0 ∈ R.

(iii) If α′ 6= 0 and α′ is not singularly top s-reducible, then β′ is singularly top s-

reducible by α′ since s(α′) = cs(β′) and LT(α′) = cLT(β′), and α′ is included in

G. By Lemma 39, β′ is s-reduced to 0 ∈ R.

From the above, we have proved that all β ∈ Rm with s(β) � α are s-reduced to

0 ∈ R by G. Thus, G is a signature Gröbner basis in α at the end of Step 3.

Actually, fundSB computes a minimal signature Gröbner basis. Similarly, signature-

based algorithms presented after this compute a minimal signature Gröbner basis.

Lemma 41. Let T ∈ Rm be a term chosen at Step 1 in fundSB. Let G in fundSB be

the set after Step 3 of T . Then, G is a minimal signature Gröbner basis in T .

Proof. From Proposition 40, G is a signature Gröbner basis in T . Let α be an element

in G. We prove that there does not exist β ∈ G \ {α} such that s(α) = s(β) and

LT(α) = LT(β). For β ∈ G with s(β) ≺ s(α), clearly β is not top s-reducible by α.

For β ∈ G with s(β) � s(α), β is not regularly top s-reducible by α because of Step 2.

Moreover, β is not singularly top s-reducible by α because of Step 3 (ii) (b). Then, β is

not top s-reducible by α. Thus, there is no element in G which top s-reduces any other

elements in G. Therefore, G is a minimal signature Gröbner basis in T .
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Algorithm 3 Simple signature-based algorithm (simpleSB)

Input : a finite subset F = {f1, . . . , fm} of R

Output : a minimal signature Gröbner basis G of F

Step 0 G← ∅, P ← {e1, . . . , em}

Step 1 If P = ∅, return G

α← the minimal term in P

P ← P\{α}

Step 2 α′ ← result of completely regularly top s-reducing α by G

Step 3 (i) If α′ = 0

Go to Step 1

(ii) If α′ 6= 0

(a) If α′ is singularly top s-reducible by G

Go to Step 1

(b) If α′ is not singularly top s-reducible by G

P ← P ∪ {s(spair(α′, β)) | β ∈ G, spair(α′, β) is regular} (#)

G← G ∪ {α′}

Go to Step 1

3.3 Simple signature-based algorithm

In this section, we consider simple signature-based algorithm (simpleSB). simpleSB

terminates in finite steps and outputs a signature Gröbner basis. We use a conception

of S-pair in simpleSB. An S-pair is generated by two elements of Rm, and we focus on

the signatures of S-pairs. In fundSB, all terms in Rm are intended to be computed,

and it is not impossible. Therefore, simpleSB does not terminate. In simpleSB, the

terms which appear as the signatures of the S-pairs are computed. We prove that such

terms are finite in Proposition 48, that means simpleSB terminates. However, some

terms which appear as the signatures of the S-pairs are not computed. We prove that

such terms do not need to be computed in Propositions 47 and 49.

Algorithm 3 is the pseudocode of simpleSB. Note that simpleSB outputs a min-

imal signature Gröbner basis by Lemma 41.

The proof of the termination of simpleSB is proved by Proposition 48. The proof of
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the correctness is proved by Proposition 49. For proving the two Propositions, we prove

several Lemmas below.

Let T be a term in Rm. Let G be a signature Gröbner basis up to T . Let aα with

a ∈ R and α ∈ G be an regularly top s-reducible by G. This means that an element

whose signature is s(aα) may be an element of a signature Gröbner basis. Lemma 42

says that the signature of such an element appear as the signature of a certain S-pair.

Lemma 42. Let T be a term in Rm and let G be a signature Gröbner basis up to T .

Let α ∈ G and let a be a monomial in R satisfy

(1) s(aα) � T ,

(2) aα is regularly top s-reducible by G.

Then, there exists an S-pair a′α− bβ (a′ and b are monomials in R, β is in G) such that

(3) s(a′α− bβ) = s(a′α),

(4) a′ | a.

Proof. Let a′ be the minimal monomial in the set consisting of the monomials r ∈ R

satisfying that r | a and rα is regularly top s-reducible. Since a′α is regularly top s-

reducible, there exists a pair (β, b) ∈ G × R such that s(a′α) � s(bβ) and LT(a′α) =

LT(bβ). Let d = a′ LT(α) = bLT(β). Assume that GCD(a′, b) = m with m 6= 1. Then,

a′ and b are written as a′ = ma′′ and b = mb′ such that GCD(a′′, b′) = 1. For a′′α and

b′β, note that s(a′α) � s(bβ) leads to s(a′′α) � s(b′β) and a′ LT(α) = bLT(β) leads to

a′′ LT(α) = b′ LT(β). This means that a′′α is regularly top s-reducible and a′′ < a′. This

contradicts the minimality of a′. Therefore, m = 1 and GCD(a′, b) = 1. There exists

e ∈ K× such that d = e lcm(LT(α),LT(β)). Then, we have

a′α− bβ =
d

LT(α)
α− d

LT(β)
β =

e lcm(LT(α),LT(β))

LT(α)
α− e lcm(LT(α),LT(β))

LT(β)
β.

This is an S-pair satisfying (3) and (4).

Let α ∈ Rm be completely regularly top s-reduced. Consider α′ ∈ Rm with s(α′) =

s(α). Lemma 43 says that there does not exist an element α′ whose leading term LT(α′)

is smaller than the leading term LT(α).
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Lemma 43. Let T be a term in Rm and let G be a signature Gröbner basis up to T .

Let α ∈ Rm satisfy

(1) s(α) � T ,

(2) α is completely regularly top s-reduced by G.

Then, any pair (β, a) ∈ G×R with s(α) = s(aβ) satisfies LT(α) ≤ LT(aβ).

Proof. Assume that there exists a pair (β, a) ∈ G × R such that s(α) = s(aβ) and

LT(α) > LT(aβ). Let γ be the result of completely regularly top s-reducing aβ. Then,

we have LT(α) > LT(aβ) ≥ LT(γ) and s(α) = s(γ). This contradicts Lemma 37.

Let α ∈ Rm be completely regularly top s-reduced by G. Of course, α is not regularly

top s-reducible by G. The signatures of the terms computed after this are larger than

s(α) because signature-based algorithms compute in ascending order of terms in Rm.

Therefore, α is not regular top s-reducible even if G is a signature Gröbner basis. Thus,

there does not exist a regular S-pair α− bβ with β ∈ G, b ∈ R.

Lemma 44. Let T be a term in Rm and let G be a signature Gröbner basis up to T .

Let α ∈ G and let a be a monomial in R satisfy

(1) s(aα) � T ,

(2) aα is completely regularly top s-reduced by G.

Then, there do not exists a pair (β, b) ∈ G×R such that

(3) s(aα− bβ) = s(aα),

(4) aα− bβ is a regular S-pair.

Proof. We prove the contraposition. Assume that there exists a pair (β, b) ∈ G × R

satisfying (3) and (4). This means that s(aα) � s(bβ) and LT(aα) = LT(bβ). Then, aα

is regularly top s-reducible by bβ.

Lemma 45 is clear because of Lemma 37.

Lemma 45. Let T be a term in Rm and let G be a signature Gröbner basis up to T .

Let α and β in Rm satisfy

24



(1) s(α) � T ,

(2) α is completely regular top s-reduced,

(3) s(β) ' s(α),

(4) LT(β) > LT(α).

Then, β is regularly top s-reducible.

Proof. Assume that β is not regularly top s-reducible, that is, β is completely regularly

top s-reduced by G. From Lemma 37, we have LT(β) = LT(α). This contradicts

LT(β) > LT(α).

Unlike fundSB, simpleSB computes the terms which appear as the signatures of

the regular S-pairs. Therefore, some terms in Rm are not computed. We prove that

such terms do not need to be computed by Lemma 46. When such terms are completely

regularly top s-reduced, they are singularly top s-reducible. Singularly top s-reducible

elements are discarded in simpleSB, that is, they do not need to be computed.

Lemma 46. Let T be a term in Rm and let G be a signature Gröbner basis up to T .

Let α ∈ Rm satisfies

(1) s(α) ' T ,

(2) s(α) is equivalent to a signature of a regular S-pair that does not appear in Step 3

(ii) (b).

Let α′ be the result of completely regularly top s-reducing α by G. Then, α′ is singularly

top s-reducible by G. In particular, G is a signature Gröbner basis in T .

Proof. Let β ∈ G and let a be a monomial in R satisfying s(aβ) = s(α′) such that LT(aβ)

is minimal. We prove that LT(aβ) ' LT(α′). By Lemma 43, we have LT(α′) ≤ LT(aβ).

Assume that LT(α′) < LT(aβ). By Lemma 45, aβ is regularly top s-reducible.

Consider a′β such that a′ is a monomial in R and the monomial a/a′ ∈ R∖K. Assume

that a′β is regularly top s-reducible by G. And let γ be the result of regularly top

s-reducing a′β. Then, we have LT(a′β) > LT(γ). As a′ < a, we have s(γ) = s(a′β) ≺

25



s(aβ) ' T . This means that γ is top s-reducible. However, γ is completely regularly s-

reduced, then γ is singularly top s-reducible. By Lemma 38, there exists a pair (ω, r) ∈

G × R such that s(γ) = s(rω) and LT(γ) = LT(rω). Note that s(a′β) = s(rω) and

LT(a′β) > LT(rω). By multiplying the both sides of the two equations by a/a′, we have

s(aβ) = a/a′s(rω) and LT(aβ) > a/a′ LT(rω) and note that a
a′ is a term of R. This

means that there exists a pair (ω, ar/a′) ∈ G × R such that s((ar/a′)ω) = s(aβ) and

LT((ar/a′)ω) < LT(aβ). This contradicts the minimality of LT(aβ).

Therefore, a′β with a/a′ ∈ R ∖ K is not regularly top s-reducible. From Lemmas

42 and 44, there exists an S-pair aβ − bω′ such that s(aβ − bω′) = s(aβ) for b ∈ R and

ω′ ∈ G. This means that a regular S-pair whose signature is s(aβ) = α appears in Step

3 (ii) (b) (#). This is a contradiction. Thus, we have LT(α′) ' LT(aβ). Then, α′ is

singularly top s-reducible by G.

It follows from Lemma 39 that α′ is s-reduced to 0 ∈ R by G. Thus, G is a signature

Gröbner basis in T .

simpleSB so not compute some terms in Rm. However, when a term α ∈ Rm is

chosen in Step 1, G is a signature Gröbner basis in α after Step 3 like fundSB.

Proposition 47. Let T ′ in Rm be a term chosen at Step 1 in simpleSB, and let T

be the term chosen just before T ′. Assume that G in simpleSB is a signature Gröbner

basis in T after Step 3 of the loop starting with α = T . Then, G is a signature Gröbner

basis in T ′ after Step 3 of the loop starting with α = T ′.

Proof. First, we prove that G is a signature Gröbner basis up to T ′ when T ′ is chosen in

Step 1. Suppose G is not a signature Gröbner basis up to T ′. Consider the set of terms

α ∈ Rm with T ≺ α ≺ T ′ satisfying that G is not a signature Gröbner basis in α. Let

α0 be the minimal element of the set. Note that any set of terms in Rm has a minimal

element. Then, G is a signature Gröbner basis up to α0. Because α0 is not selected

before T ′ is selected, an S-pair whose signature is equivalent to α0 does not appear in

the algorithm. By Lemma 46, G is a signature Gröbner basis in α0. This contradicts

that G is not a signature Gröbner basis in α0. Therefore, G is a signature Gröbner basis

up to T ′. The operation on G for T ′ in simpleSB is exactly same as that in fundSB.
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By Proposition 40, G is a signature Gröbner basis in T ′ after Step 3 of the loop starting

with α = T ′.

Our proof of termination is almost the same as Eder and Perry [9], Roune and

Stillman [25] and Eder and Roune [12].

Proposition 48. simpleSB terminates in finite steps.

Proof. We write R = K[x1, . . . , xk]. Set

R′ = K[x1, . . . , xk, y11, . . . , ymk, z1, . . . , zm].

For β ∈ Rm, we write (s(β),LT(β)) = (cxv11 xv22 · · ·x
vk
k ei, r), where c ∈ K, v = (v1, . . . , vk) ∈

Zk
≥0 and r is a term of R. Let f : Rm → R′ be the map defined by β 7→ ryv1i1 · · · y

vk
ik zi.

Let G(α) be the G (in simpleSB) obtained when Step 3 is finished for α, where α was

chosen in Step 1. Consider the following monomial ideal I(α) = 〈f(β) | β ∈ G(α)〉.

Let α1, α2, . . . be the elements chosen in this order in Step 1 of simpleSB. Then we

have the sequence G(α1) ⊂ G(α2) ⊂ · · · and also I(α1) ⊂ I(α2) ⊂ · · · . Any ascending

sequence of ideals in R′ is stable since R′ is a Noetherian ring. There exists i0 such that

for i > i0 we have I(αi) = I(αi0).

For i < j, we claim that G(αi) ⊊ G(αj) if and only if I(αi) ⊊ I(αj). The “if”-part is

obvious. We prove the “only if”-part in the following way. Suppose that G(αi) ⊊ G(αj)

and I(αi) = I(αj). Let β ∈ G(αj) ∖ G(αi). By f(β) ∈ I(αj) = I(αi), there exists

β′ ∈ G(αi) such that f(β′)|f(β), since I(αi) is the ideal generated by the monomials

f(β′′) for β′′ ∈ G(αi). If f(β′) | f(β), we have LT(β′) | LT(β) and s(β′) | s(β), by the

definition of f . Hence, there exist elements β and β′ of G(αj) with β 6= β′ such that

LT(β′) | LT(β) and s(β′) | s(β). This contradicts that simpleSB computes a minimal

signature Gröbner basis in s(αj).

Thus we have shown that G(αi) = G(αi0) for i > i0. Hence G in simpleSB does not

grow after αi0 , which means that Step 3 (ii) (b) does not occur after αi0 and therefore

P does not grow after αi0 . But, in Step 1, the number of elements in P decreases by

one in each step. Thus, simpleSB terminates in finite steps.

Proposition 47 says that G is a signature Gröbner basis in α for every loops like
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fundSB. When simpleSB terminates, G is a signature Gröbner basis by Proposition

49.

Proposition 49 (Correctness). simpleSB outputs a signature Gröbner basis when sim-

pleSB terminates.

Proof. Let T be the term in Rm chosen in Step 1, and finally computed before simpleSB

terminates. By Proposition 47, G is a signature Gröbner basis in T . Suppose G is not

a signature Gröbner basis. Consider the set of terms α ∈ Rm with T ≺ α satisfying

that G is not a signature Gröbner basis in α. Let α0 be the minimal element of the set.

Then, G is a signature Gröbner basis up to α0. However, an S-pair whose signature is

equivalent to α0 does not appear in the algorithm because the algorithm terminates at

T . By Lemma 46, G is a signature Gröbner basis in α0. This contradicts that G is not

a signature Gröbner basis in α0. Therefore, G is a signature Gröbner basis.

3.4 Simple syzygy signature-based algorithm

In this section, a method to detect zero reductions is described. The method is used

in most signature-based algorithms, and is characteristic in signature-based algorithms.

The method can be used thanks to the use of signature, and also thanks to regular

s-reductions instead of reductions which is used in Buchberger algorithm. There are two

criteria, Propositions 50 and 51 for detecting zero reductions. By Lemma 37, elements

in Rm whose signatures are s(fiej − fjei) are completely regularly s-reduced to 0 ∈

R, because of a following equation fiej − fjei = 0. Moreover, elements in Rm whose

signatures are s(r(fiej − fjei)) are completely regularly s-reduced to 0 ∈ R because of

a following equation r(fiej − fjei) = 0 for all r ∈ R\{0}. By this, we have Proposition

50.

Proposition 50. Let T be a term in Rm and let G be a signature Gröbner basis up to

T . Let α, β, γ ∈ Rm satisfy s(α) � T and s(βγ − γβ) | s(α). Then, α is completely

regularly s-reduced to 0 ∈ R by G.

Proof. Let r be a monomial in R such that s(α) = s(r(βγ− γβ)). Let α′ be the element

obtained by completely regularly s-reducing α. Note that r(βγ − γβ) is the completely
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regularly s-reduced element by G because r(βγ − γβ) = 0. By Lemma 37, we have

LT(α′) = LT(r(βγ − γβ)) = 0. Then, α is completely regularly s-reduced to 0 ∈ R by

G.

Signature-based algorithms can detect zero reductions using zero reductions which

happens before. In detail, let α ∈ Rm be completely regularly s-reduced to 0 ∈ R.

Consider β ∈ Rm with s(β) = s(α). By similar discussion on Proposition 50, β is

completely regularly s-reduced to 0 ∈ R.

Proposition 51. Let T be a term in Rm and let G be a signature Gröbner basis up to

T . Let α and β in Rm satisfy

(1) α is completely regularly s-reduced to 0 ∈ R by G and

(2) s(α) | s(β).

Then, β is completely regularly s-reduced to 0 ∈ R by G.

Proof. From the assumption, there exists γ ∈ Rm such that s(α−γ) = s(α) and α− γ =

0. Let r ∈ R satisfy s(β) = rs(α). Then, s(r(α − γ)) = s(rα) = s(β) and r(α− γ) = 0.

By Lemma 37, β is completely regularly s-reduced to 0 ∈ R by G.

Algorithm 4 is simple syzygy signature-based algorithm (syzSB). syzSB is mod-

ified simpleSB as to Propositions 50 and 51.

The proofs of the correctness and the termination are described briefly because

syzSB computes terms which is also computed in simpleSB, but do not compute

terms which will be regularly s-reduced to 0 ∈ R.

Proposition 52 (Termination). syzSB terminates in finite loops.

Proof. By Propositions 50 and 51, the set P at each step 1 in syzSB is exactly same

as that at the corresponding Step 1 in simpleSB. Further, simpleSB computes finite

number of the terms.

Proposition 53 (Correctness). syzSB outputs a signature Gröbner basis.
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Algorithm 4 Simple syzygy signature-based algorithm (syzSB)

Input : a finite subset F = {f1, . . . , fm} of R

Output : a minimal signature Gröbner basis G of F

Step 0 G← ∅, P ← {e1, . . . , em},H ← ∅

Step 1 If P = ∅, return G

α← the minimal term in P

P ← P\{α}

Step 2 If there exists γ ∈ H with γ | α, go to Step 1

Step 3 α′ ← result of completely regularly top s-reducing α by G

Step 4 (i) If α′ = 0

H ← H ∪ {α}

Go to Step 1

(ii) If α′ 6= 0

(a) If α′ is singularly top s-reducible by G

Go to Step 1

(b) If α′ is not singularly top s-reducible by G

P ← P ∪ {s(spair(α′, β)) | β ∈ G, spair(α′, β) is regular} (#)

H ← H ∪ {s(βα′ − α′β) | β ∈ G}

G← G ∪ {α′}

Go to Step 1

Proof. Let A be the set of the terms which simpleSB computes, and let B the set of

the terms which are completely regularly s-reduced to 0 ∈ R by G. By Propositions 50

and 51, syzSB computes the set A \ B. Then, the output G of syzSB is the same as

that of simpleSB.

3.5 Alternative rewrite basis algorithm

In this section, alternative rewrite basis algorithm (altRB) is introduced. So far, many

signature-based algorithms are introduced. In 2013, The paper [12] introduced rewrite

basis algorithm RB as a generalized signature-based algorithm. altRB is introduced

easily to understand operations of the algorithm and easily to implement comparing to

RB. In this paper, altRB is the most useful signature-based algorithm for implementa-

30



Algorithm 5 Alternative rewrite basis algorithm (altRB)

Input : a finite subset F = {f1, . . . , fm} of R

Output : a minimal signature Gröbner basis G of F

Step 0 G← ∅, P ← {e1, . . . , em},H ← ∅

Step 1 If P = ∅, return G

α← the minimal term in P

P ← P\{α}

Step 2 If there exists γ ∈ H with γ | α, go to Step 1

Step 3 α′ ← ω ∈ {α} ∪ {rβ | r ∈ R, β ∈ G, s(rβ) = α} such that LT(ω) is minimal

Step 4 α′′ ← result of completely regularly top s-reducing α′ by G

Step 5 (i) If α′′ = 0

Append α to H

(ii) If α′′ 6= 0 and (α′ is regularly top s-reduced at least one time or s(α′′) is a standard basis)

P ← P ∪ {s(spair(α′′, β)) | β ∈ G, spair(α′′, β) is regular} (#)

H ← H ∪ {s(βα′′ − α′′β) | β ∈ G} (∗)

G← G ∪ {α′′}

Go to Step 1

tion. From the discussion so far, singularly top s-reducible elements which are completely

regularly top s-reduced need not be included in G. By discarding these elements without

reducing them, we can expect improvements of syzSB. In other words, it is enough to

regularly s-reduce the elements which is expected to be the element of minimal signature

Gröbner basis. We can also expect to improve efficiency by replacing elements which

have the same signature and are not needed to reduce the number of times. Among the

algorithms proposed in [1], [22] and etc., the method is used implicitly. The paper [13]

introduced such algorithms as RB with RAT selected for rewrite order. When we choose

RAT for a rewrite order, rewrite basis algorithm become the most efficient. altRB is

simply introduced and as efficient as RB with RAT. Algorithm 5 is the pseudocode of

altRB.

Lemma 54. Let α′ and α′′ be obtained at Step 3 and at Step 4 in altRB respectively.

Let G be a signature Gröbner basis up to s(α′′). The condition at Step 5 (ii) in altRB

is equivalent to the condition that α′′ is not singularly top s-reducible by G.
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Lemma 55. Let α′ and α′′ be obtained at Step 3 and at Step 4 in altRB respectively.

Let G be a signature Gröbner basis up to s(α′′). The condition at Step 5 (ii) in altRB

is equivalent to the condition that α′′ is not singularly top s-reducible by G.

Proof. If s(α′′) is a standard basis of Rm, say ei, there is no element in G whose signature

belongs to Rei. Thus, α′′ is not singularly top s-reducible by G. If α′ is regularly top

s-reduced at least one time at Step 4, we have LT(α′′) < LT(α′). For all b ∈ R and

β ∈ G such that s(α′′) = s(bβ), we have LT(α′′) < LT(α′) ≤ LT(bβ) by the minimality

of LT(α′) at Step 3. Then, α′′ is not singularly top s-reducible by G.

Conversely, if α′′ is not singularly top s-reducible, we consider the following two

cases : (a) s(α′′) is not a standard basis of Rm and (b) otherwise. In case (a), we

claim that there exists a pair (β, a) ∈ G × R with s(α′′) = s(aβ). Let the signature of

α′′ be rei (r ∈ R \ K×). The standard basis of Rm ei is chosen at Step 1 before rei

is chosen because ei is smaller than rei. Assume that there does not exist an element

of G whose signature is ei. The element whose signature is ei is regularly s-reduced

to 0 ∈ R, then we proceed Step 5 (i). In this case, elements whose signatures are rei

do not appear in P . This means that we do not compute such an element rei. It

contradicts that the signature of α′′ is rei (r ∈ R \ K×). Then, there is an element

of G whose signature is ei. Thus, (r, ei) is a pair that we claimed. Consider the set

of pairs (β, a) ∈ G × R with s(α′′) = s(aβ). Let (β′, a′) be a pair such that LT(a′β′)

is minimal in the set. Note that LT(aβ) = LT(α′) because of the process at Step 3.

By Lemma 43, we have LT(α′′) ≤ LT(aβ). If LT(α′′) = LT(aβ), α′′ is singularly top

s-reducible. This contradicts that α′′ is not singularly top s-reducible. Then, we have

LT(α′′) < LT(aβ) = LT(α′). This means that α′ is regularly top s-reduced at least one

time at Step 4. In case (b), there is nothing to prove.

Theorem 56 (Correctness). altRB outputs a signature Gröbner basis.

Proof. We prove by confirming the difference between the algorithm and the syzSB. At

Step 3, by Lemma 37, as long as the signature is the same, we can choose any elements

in Rm. Thus, we can choose the element with the smaller leading term.

At Step 5, altRB does not have branch whether α′′ is singularly top s-reducible or

not. Instead of the above, altRB check whether α′ is regularly top s-reduced at least
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one time at Step 4 and check whether s(α′′) is a standard basis of Rm. By, Lemma 55,

they are equivalent.

Theorem 57 (Termination). altRB terminates in finite steps.

Proof. The set P at every step 1 in altRB is exactly same as that at the corresponding

Step 1 in syzSB. Further, syzSB computes finite number of the terms.

3.6 Module orders and zero reductions

In the paper [13], RB does not have a (∗) line which is in altRB. That is because

RB is introduced as a generalized signature-based algorithm. When implemented RB,

we have to be careful about the number of zero reductions in the calculation. If we

select POT as the module order and calculate incrementally like Algorithm 6, we can

calculate with fewer zero reductions. Especially if the polynomial system is a regular

sequence, the number of zero reductions is zero. If we select a module order other than

POT or a module order that is not suitable for incremental calculation, the number of

zero reductions will increase during the calculation. If we choose POT as the module

order and calculate it incrementally, we can prove that it is sufficient to update H at

first, as in Algorithm 6.

Lemma 58. Let α′′ be a new element at Step 5 (ii) in Algorithm 6 with POT such

that e1 ≺ e2 ≺ · · · ≺ em. For all β ∈ G, there exists γ ∈ H such that γ | s(α′′β − βα′′).

Proof. First, we prove H = {rem | r ∈ HT(F )}. We have s(eiem − emei) = s(eiem)

because the module order is POT. Then, we have s(eiem) = s(fiem) = s(HT(fi)em) =

HT(fi)em.

Let α′′ and β ∈ G be written as α′′ =
∑m

i=1 riei and β =
∑m

j=1 r
′
jej , for ri, r

′
i ∈ R.

Then, we have α′′ =
∑m

i=1 rifi ≡ hmfm (mod F ).

α′′β − βα′′ = (
m∑
i=1

rifi) · (
m∑
j=1

r′jej)− (
m∑
j=1

r′jfj) · (
m∑
i=1

riei)

= {(
m∑
i=1

rifi) · r′m − (

m∑
j=1

r′jfj) · rm}em + · · ·

(3.1)
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Algorithm 6 Alternative rewrite basis algorithm (incremental)

Input : a Gröbner basis F = {f1, . . . , fm−1} ⊂ R, a polynomial fm ∈ R

Output : a minimal signature Gröbner basis G of F ∪ {fm}

Step 0 G← {f1, . . . , fm−1}, P ← {em},H ← {s(eiem − emei) | 1 ≤ i ≤ m− 1}

Step 1 If P = ∅, return G

α← the minimal term in P

P ← P\{α}

Step 2 If there exists γ ∈ H with γ | α, go to Step 1

Step 3 α′ ← ω ∈ {α} ∪ {rβ | r ∈ R, β ∈ G, s(rβ) = α} such that LT(ω) is minimal

Step 4 α′′ ←result of completely regularly top s-reducing α′ by G

Step 5 (i) If α′′ = 0

Append α to H

(ii) If α′′ 6= 0 and (α′ is regularly top s-reduced at least one time or s(α′′) is a standard basis)

P ← P ∪ {s(spair(α′′, β)) | β ∈ G, spair(α′′, β) is regular} (#)

G← G ∪ {α′′}

Go to Step 1

We focus on polynomial part of em.

(
m∑
i=1

rifi) · r′m − (
m∑
j=1

r′jfj) · rm ≡ rmfmr′m − r′mfmrm (mod F )

≡ 0 (mod F )

Therefore, there exists an element in H which divides s(α′′β − βα′′).
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Chapter 4

An efficient strategy for

signature-based algorithms

In order for efficient Gr öbner basis computation, it is one of the important problems

to decrease the number of reduction that occupy a large proportion in the calculation.

In this chapter, a new strategy for regular s-reduction aiming to decrease the number

of regular s-reductions and usual reductions is introduced. The idea of the strategy is

that when a signature Gröbner basis is calculated, there are unnecessary elements for a

minimal Gröbner basis. If candidates of elements which will be included in a minimal

Gröbner basis should be sufficiently reduced, we can compute the minimal signature

Gröbner basis from a signature Gröbner basis by low calculations. Overview of the

strategy is following: after generating an S-pair, we fulfill only-top reduction. If the

S-pair meets a certain condition ( SF in §4), we execute full reduction. We name the

strategy selective-full reduction strategy (Algorithm 11). Efficiency of the strategy was

evaluated by several Gröbner basis benchmarks. The selective-full reduction strategy

reduces the number of reductions to calculate the reduced Gröbner basis. To calculate

the signature Gr öbner basis, the selective-full reduction strategy is the most efficient or

not the worst.

Note that reductions handled in Buchberger algorithm is called normal reductions

to distinguish s-reduction.
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Algorithm 7 TOP REDUCE

input : a finite subset G of Rm, α ∈ Rm

output : γ ∈ Rm

for β ∈ G do

if LT(β) | LT(α) and s(α) � LT(α)

LT(β))
· s(β) then

γ ← α− LT(α)

LT(β))
· β

return γ

end if

end for

γ ← α

return γ

4.1 Conventional s-reduction strategies

In this section, we review two strategies of regular s-reducing S-pairs mentioned in

the paper [13]. One is only-top reduction strategy. How to calculate by the only-top

reduction strategy is following. After generating an S-pair, regularly s-reduce leading

monomials until the leading monomial cannot be regularly s-reduced. The algorithm

of the only-top reduction strategy is Algorithm 9. By this procedure, the S-pair is

completely regularly top s-reduced. The other is full reduction strategy. How to calculate

by the full reduction strategy is following. After generating S-pairs, regularly s-reduce

the monomials included in the S-pairs. The algorithm of the full reduction strategy

is Algorithm 10. First, run regular top s-reduction, and if the S-pair is completely

regular top s-reduction, then execute regular tail s-reduction. By this procedure, the

S-pair is completely regularly full s-reduced.

Each strategy has advantages and disadvantages. If we choose the only-top reduction

strategy, it is expected that the number of times of regular s-reduction is fewer because

we regularly s-reduce the only leading terms. However, the number of times of top

s-reduction may increase. Because, the polynomials used to regularly s-reduce the S-

pairs are not reduced many with respect to the fixed monomial order. On the other
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Algorithm 8 TAIL REDUCE

input : a finite subset G of Rm, α ∈ Rm

output : γ ∈ Rm

for t ∈ T(α− LT(α)) do (t is a monomial in α− LT(α))

for β ∈ G do

if LT(β) | t and s(α) � t
LT(β))

· s(β) then

γ ← α− t
LT(β))

· β

return γ

end if

end for

end for

γ ← α

return γ

hand, consider the case of the full reduction strategy. We regularly s-reduce all terms

included in S-pairs. The terms included in regularly s -reduced S-pairs is relatively small

in terms of the fixed monomial order. Also, the number of times of interreductions for

computing the reduced Gröbner basis becomes few because regular tail s-reductions has

been operated in advance. However, regular tail s-reductions are restricted reductions

comparing to usual reductions, so we cannot reduce terms enough in comparison with

usual reductions. In addition, the number of signature Gröbner basis elements is greater

than the number of the minimal Gröbner basis elements. Therefore, the number of

S-pairs that we need to completely regularly full s-reduce is also much greater.

Whether the good strategy is the only-top reduction strategy or the full reduction

strategy depends on the polynomial system we solve. Tables 1 and 3 show the benchmark

results. When computing a signature Gröbner basis or a reduced Gröbner basis, it is

not sure which strategy is better for the actual problem.
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Algorithm 9 ONLY-TOP REDUCE

input : a finite subset G of Rm, α ∈ Rm

output : β ∈ Rm which is completely regular top s-reduced by G

repeat

β ← α

α← TOP REDUCE(G, β)

until α = β

return β

4.2 Our s-reduction strategy

Consider that we calculate the reduced Gröbner basis after a signature Gröbner basis has

been calculated. The number of elements of a signature Gröbner basis which signature-

based algorithms output is greater than the minimal Gröbner basis. Therefore, we first

calculate the minimal Gröbner basis from a signature Gröbner basis we has computed.

How to calculate it is to remove α ∈ G satisfying the following condition from the

found signature Gröbner basis: There exists α′ ∈ G,LT(α) | LT(α′). Then, we obtain a

minimal Gröbner basis. By interreducing the found minimal Gröbner basis, the reduced

Gröbner basis is obtained.

Here we consider the relation between the full reduction strategy and the reduced

Gröbner basis. The full reduction strategy can be thought of as a strategy that decreases

the number of interreductions. In that sense, the s-reductions of S-pairs removed in the

step of calculating the minimal Gröbner basis do not need. An algorithm based on

this idea to s-reduce an S-pair is Algorithm 11. First, we regularly top s-reduce an

S-pairs until the S-pair is completely regularly top s-reduced. Then, perform regularly

tail s-reduction only if the following conditions are satisfied:

for all α′ ∈ G,LT(α′) ∤ LT(α) SF

We call this strategy selective-full reduction. The output of the Algorithm 11 denotes

a completely regular selective-full reduced S-pair.

Following shows that selective-full strategy is reasonable.
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Algorithm 10 FULL REDUCE

input : a finite subset G ∈ Rm, α ∈ Rm

output : β ∈ Rm which is completely regular full s-reduced by G

repeat

β ← α

α← TOP REDUCE(G, β)

until α = β

repeat

β ← α

α← TAIL REDUCE(G, β)

until α = β

return β

(1) Let α be an S-pair which does not satisfy SF . We can predict that α will be

removed when calculating the minimal Gröbner basis. If we choose the selective-

full reduction strategy, we will not regularly tail s-reduce α that will eventually be

discarded. Therefore, the number of times of regularly s-reductions by selective-

full reduction strategy is expected to be less than the number of times of regularly

s-reductions by a full reduction strategy.

(2) Consider the case where a signature Gröbner basis has been calculated. Then,

we compute the minimal Gröbner basis. If we choose selective-full strategy, all

elements of the minimal Gröbner basis are completely regularly full s-reduced.

Therefore, the number of interreductions with the selective-full reduction strategy

is expected to be much less than the number of interductions with the only-top

reduction strategy.

(3) Let α ∈ G be a possible reducer for a certain S-pair, and α was not completely

regularly full s-reduced, that is, α did not satisfy SF . Then there exists α′ that

satisfies the following (i) and (ii): (i) LT(α′) | LT(α), (ii) α′ is completely regularly

full s-reduced or an input module of the algorithm. Especially with regard to
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Algorithm 11 SELECTIVE-FULL REDUCE

input : a finite subset G ∈ Rm, α ∈ Rm

output : β ∈ Rm which is completely regular selective-full s-reduced by G

repeat

β ← α

α← TOP REDUCE(G, β)

until α = β

for γ ∈ G do

if LT(γ) | LT(α) then

return β (if α does not satisfy SF , return α)

end if

end for

repeat

β ← α

α← TAIL REDUCE(G, β)

until α = β

return β

(ii), there exists α′ ∈ G such that LT(α′) | LT(α) and LT(β) ∤ LT(α′) for all

β ∈ G\{α′}. Then α′ was generated from a certain S-pair that satisfies SF or an

input module of the algorithm. Therefore, if we can regularly s-reduce the S-pair,

we can choose a reducer that is regularly full s-reduced. Therefore, to some extent,

the number of regular s-reductions is expected to be low compared to the only top

reduction strategy.

4.3 Results

In this section, we evaluate the proposed s-reduction strategy, selective-full reduction

strategy, using well-known Gröbner basis benchmarks. Implementation is done by C, and

we count the times of s-reductions, normal reductions and multiplications. Benchmarks

40



were computed on both homogeneous and inhomogeneous ideals. We compared three

strategies, only-top reduce, full reduce, and selective-full reduce. We refer to [13] for

recording the number of multiplications and reductions. All systems are computed over

a field of characteristic 32003, with graded reverse lexicographical monomial order. For

a module order, we used the POT order which is used in the original F5. For finding

the syzygy modules, we used signatures which are zero reduced. Therefore, like F5, all

algorithms proceeds incrementally. Like F5C [8], the reduced Gröbner basis was found

at each incremental steps.

The results are shown in table 4.1, 4.2, 4.3, 4.4, 4.5, 4.6. In table 4.1, 4.3, the

numbers of sum of one-time s-reductions and usual reductions to compute a signature

Gröbner basis(SGB:ALL), among them the numbers of one-time s-reductions(SGB:S-

RED) and the numbers of sum of one-time s-reductions and usual reductions to compute

the reduced Gröbner basis(RGB:ALL) are shown. In table 4.2, 4.4, the numbers of times

of multiplications processed in above computation are shown. In table 4.5, 4.6, the

numbers of generated S-pairs which satisfy SF and does not satisfy SF are shown.

There are benchmarks with many elements which satisfy SF during the computa-

tions, for example noon-8,9 and HRandom(10,2,2) and HRandom(11,2,2). The elements

which satisfy SF have a high probability of being included in a minimal Gröbner basis.

If the elements are regularly full s-reduced, they need to be reduced fewer times in com-

puting the reduced Gröbner basis step. Actually, the number of times of reductions by

the full reduction strategy is smaller than that of reductions by the only-top reduction

strategy at benchmarks with many elements which satisfy SF . The number of times

of reductions by the selective-full strategy is the almost same as that of reductions by

the full reduction strategy. In case of benchmarks with few elements which satisfy SF

during the computations, for example cyclic-8 and eco-11. The number of times of re-

ductions by the full reduction strategy is bigger than that of reductions by the only-top

reduction strategy. The number of times of reductions by the selective-full strategy is

smaller than that of reductions by the only-top reduction strategy.

To calculate the reduced Gröbner basis, the selective-full reduction strategy calcu-

lates the least number of times of s-reductions and normal reductions of the three strate-

gies. The number of multiplications is also small on the selective-full strategy, except
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for little disadvantage to full reduction strategy at the two benchmarks Random(10,2,2)

and Random(11,2,2). Therefore, the selective-full reduction strategy is efficient strategy

for the reduced Gröbner basis.

To calculate a signature-Gröbner basis, the selective-full strategy is superior to the

only-top reduction strategy on most benchmarks except for two benchmarks, noon-8 and

noon-9. When comparing the full reduction strategy to the selective-full strategy, the

selective-full reduction strategy is better or equivalent. From table 5 and 6, the more

effective the selective-full reduction strategy is, the more number the difference between

the reduced Gröbner basis and a signature Gröbner basis is. Only-top reduction strat-

egy is ineffective against Random(10,2,2) and Random(11,2,2)(both homogeneous and

inhomogeneous) and full reduction strategy is ineffective against katstura-11(both homo-

geneous and inhomogeneous). However, the selective-full reduction strategy is not bad

against Random(10,2,2) Random(11,2,2) and katstura-11. Moreover, for all the bench-

marks in this paper, the selective-full strategy is not the worst of the three strategies.

Therefore, the selective-full reduction strategy is a rational strategy for signature-based

algorithms.
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Table 4.1: The numbers of times of reductions (homogeneous)

ADD RAT

benchmark SGB RGB SGB RGB

ALL s-RED ALL ALL s-RED ALL

only-top 217.380 217.118 217.528 217.099 216.740 217.284

cyclic-7 full 216.954 216.936 217.035 216.442 216.416 216.557

selective 216.699 216.677 216.795 216.344 216.316 216.466

only-top 222.788 222.484 222.837 221.983 221.382 222.075

cyclic-8 full 223.319 223.298 223.333 222.041 221.990 222.076

selective 222.336 222.295 222.365 221.280 221.192 221.339

only-top 219.026 218.902 219.435 218.781 218.632 219.255

eco-10 full 220.314 220.302 220.350 219.013 218.983 219.101

selective 218.852 218.819 218.950 218.741 218.704 218.846

only-top 221.541 221.421 221.950 221.166 221.008 221.679

eco-11 full 223.739 223.734 223.755 221.486 221.465 221.563

selective 221.401 221.378 221.482 221.166 221.139 221.261

only-top 29.852 29.718 210.723 29.647 29.492 210.530

f-633 full 29.990 29.956 210.007 29.533 29.486 29.557

selective 29.635 29.591 29.656 29.496 29.447 29.520

only-top 216.942 216.752 217.074 216.598 216.348 216.757

f-744 full 217.398 217.393 217.414 216.435 216.426 216.465

selective 216.801 216.795 216.825 216.340 216.331 216.373

only-top 221.797 218.644 222.331 221.747 218.356 222.257

katsura-11 full 223.709 223.700 223.713 223.515 223.504 223.520

selective 221.600 221.560 221.618 221.594 221.553 221.612

only-top 215.849 215.847 220.145 214.541 214.537 219.993

noon-8 full 218.103 218.103 218.109 217.940 217.940 217.948

selective 218.024 218.024 218.031 217.865 217.865 217.873

only-top 218.401 218.400 223.045 216.756 216.755 222.881

noon-9 full 220.685 220.685 220.690 220.515 220.515 220.521

selective 220.603 220.603 220.608 220.445 220.445 220.451

only-top 219.452 218.004 219.575 219.454 218.009 219.577

HRandom(10,2,2) full 217.659 217.616 217.761 217.660 217.617 217.762

selective 217.655 217.611 217.757 217.656 217.613 217.758

only-top 221.620 220.097 221.727 221.621 220.101 221.729

HRandom(11,2,2) full 219.612 219.571 219.690 219.612 219.571 219.691

selective 219.596 219.555 219.676 219.598 219.556 219.677
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Table 4.2: The numbers of times of multiplications (homogeneous)

ADD RAT

benchmark SGB RGB SGB RGB

ALL s-RED ALL ALL s-RED ALL

only-top 224.401 224.275 224.523 223.994 223.820 224.155

cyclic-7 full 224.305 224.286 224.400 223.758 223.730 223.895

selective 224.057 224.034 224.169 223.616 223.584 223.766

only-top 231.140 230.971 231.181 230.132 229.769 230.214

cyclic-8 full 231.978 231.959 231.995 230.698 230.650 230.739

selective 230.861 230.818 230.898 229.789 229.696 229.865

only-top 224.460 224.340 224.839 224.291 224.155 224.713

eco-10 full 226.007 225.996 226.043 224.708 224.681 224.795

selective 224.513 224.481 224.612 224.409 224.375 224.515

only-top 227.628 227.505 227.992 227.339 227.187 227.775

eco-11 full 229.978 229.974 229.996 227.812 227.791 227.889

selective 227.711 227.689 227.793 227.484 227.458 227.580

only-top 212.429 212.302 213.305 212.232 212.086 213.105

f-633 full 212.687 212.649 212.702 212.300 212.251 212.321

selective 212.356 212.309 212.376 212.258 212.207 212.279

only-top 221.553 221.438 221.701 221.258 221.111 221.433

f-744 full 222.201 222.198 222.223 221.274 221.267 221.315

selective 221.554 221.549 221.588 221.152 221.145 221.196

only-top 229.633 227.907 230.009 229.548 227.635 229.926

katsura-11 full 232.170 232.162 232.175 231.969 231.961 231.976

selective 229.932 229.897 229.958 229.907 229.871 229.934

only-top 220.402 220.401 223.998 219.802 219.801 223.906

noon-8 full 222.249 222.249 222.388 222.128 222.128 222.279

selective 222.169 222.169 222.316 222.059 222.059 222.218

only-top 223.198 223.198 227.216 222.394 222.393 227.110

noon-9 full 225.156 225.156 225.332 225.029 225.029 225.220

selective 225.076 225.076 225.261 224.969 224.969 225.167

only-top 227.035 226.085 227.103 227.036 226.087 227.105

Random(10,2,2) full 225.936 225.872 225.984 225.937 225.874 225.985

selective 226.038 225.979 226.083 226.039 225.980 226.084

only-top 229.967 229.024 230.022 229.968 229.025 230.023

Random(11,2,2) full 228.831 228.770 228.867 228.831 228.770 228.867

selective 228.937 228.880 228.970 228.938 228.882 228.972
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Table 4.3: The numbers of times of reductions (inhomogeneous)

ADD RAT

benchmark SGB RGB SGB RGB

ALL s-RED ALL ALL s-RED ALL

only-top 217.380 217.118 217.433 217.099 216.740 217.163

cyclic-7 full 216.954 216.936 216.979 216.442 216.416 216.478

selective 216.699 216.677 216.729 216.344 216.316 216.382

only-top 222.788 222.484 222.793 221.983 221.382 221.994

cyclic-8 full 223.319 223.298 223.320 222.041 221.990 222.046

selective 222.355 222.314 222.358 221.288 221.200 221.295

only-top 217.942 217.650 218.422 216.892 216.252 217.741

eco-10 full 220.878 220.868 220.888 218.283 218.223 218.346

selective 218.031 217.960 218.106 217.528 217.427 217.634

only-top 220.637 220.369 221.048 219.125 218.247 220.064

eco-11 full 224.492 224.489 224.495 220.790 220.742 220.825

selective 220.710 220.659 220.747 219.890 219.797 219.954

only-top 29.716 29.568 210.654 29.502 29.329 210.460

f-633 full 29.950 29.914 29.979 29.474 29.424 29.514

selective 29.583 29.537 29.620 29.435 29.384 29.476

only-top 216.039 215.449 216.148 215.398 214.364 215.561

f-744 full 216.286 216.278 216.313 215.424 215.409 215.472

selective 215.560 215.546 215.604 214.458 214.427 214.550

only-top 221.797 218.644 222.331 221.747 218.356 222.257

katsura-11 full 223.709 223.700 223.713 223.515 223.504 223.520

selective 221.600 221.560 221.618 221.594 221.553 221.612

only-top 215.849 215.847 220.145 214.541 214.537 219.993

noon-8 full 217.940 217.940 217.948 218.011 218.011 218.018

selective 218.024 218.024 218.031 217.865 217.865 217.873

only-top 218.401 218.400 223.045 216.756 216.755 222.881

noon-9 full 220.515 220.515 220.521 220.584 220.584 220.589

selective 220.603 220.603 220.608 220.445 220.445 220.451

only-top 219.452 218.004 219.575 219.454 218.009 219.577

Random(10,2,2) full 217.659 217.616 217.761 217.660 217.617 217.762

selective 217.655 217.611 217.757 217.656 217.613 217.758

only-top 221.620 220.097 221.727 221.621 220.101 221.729

Random(11,2,2) full 219.612 219.571 219.690 219.612 219.571 219.691

selective 219.596 219.555 219.676 219.598 219.556 219.677
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Table 4.4: The numbers of times of multiplications (inhomogeneous)

ADD RAT

benchmark SGB RGB SGB RGB

ALL s-RED ALL ALL s-RED ALL

only-top 224.401 224.275 224.438 223.994 223.820 224.042

cyclic-7 full 224.305 224.286 224.326 223.758 223.730 223.788

selective 224.057 224.034 224.081 223.616 223.584 223.649

only-top 231.140 230.971 231.143 230.132 229.769 230.138

cyclic-8 full 231.978 231.959 231.979 230.698 230.650 230.701

selective 230.864 230.821 230.866 229.788 229.695 229.793

only-top 223.162 222.849 223.661 222.403 221.843 223.161

eco-10 full 226.466 226.457 226.480 223.914 223.860 223.993

selective 223.504 223.431 223.607 223.017 222.914 223.160

only-top 226.551 226.256 226.932 225.409 224.679 226.136

eco-11 full 230.544 230.540 230.549 227.051 227.002 227.100

selective 226.844 226.787 226.900 226.044 225.944 226.141

only-top 212.207 212.058 213.219 211.987 211.812 213.022

f-633 full 212.554 212.513 212.608 212.112 212.057 212.186

selective 212.187 212.134 212.257 212.064 212.006 212.140

only-top 220.627 220.098 220.762 219.945 219.005 220.153

f-744 full 221.094 221.084 221.128 220.284 220.267 220.344

selective 220.275 220.258 220.336 219.192 219.156 219.318

only-top 229.633 227.907 230.009 229.548 227.635 229.926

katsura-11 full 232.170 232.162 232.175 231.969 231.961 231.976

selective 229.932 229.897 229.958 229.907 229.871 229.934

only-top 220.402 220.401 223.998 219.802 219.801 219.801

noon-8 full 222.128 222.128 222.279 222.231 222.231 222.373

selective 222.169 222.169 222.316 222.059 222.059 222.218

only-top 223.198 223.198 227.216 222.394 222.393 227.110

noon-9 full 225.029 225.029 225.220 225.140 225.140 225.317

selective 225.076 225.076 225.261 224.969 224.969 225.167

only-top 227.035 226.085 227.103 227.036 226.087 227.104

Random(10,2,2) full 225.936 225.872 225.984 225.937 225.874 225.985

selective 226.038 225.979 226.083 226.039 225.980 226.084

only-top 229.967 229.024 230.022 229.968 229.025 230.023

Random(11,2,2) full 228.831 228.770 228.867 228.831 228.770 228.867

selective 228.937 228.880 228.970 228.938 228.882 228.972
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Table 4.5: The numbers of generated S-pairs which satisfy SF compared to the numbers

which do not satisfy SF (homogeneous)

ADD RAT

benchmark SF not SF SF not SF

cyclic-7 477 465 477 265

cyclic-8 1515 4011 1515 2342

eco-10 417 507 417 135

eco-11 844 1517 844 303

f-633 46 7 46 2

f-744 380 354 380 158

katsura-11 884 1293 884 1245

noon-8 1336 40 1336 40

noon-9 3680 54 3680 54

HRandom(10,2,2) 778 144 778 144

HRandom(11,2,2) 1479 342 1479 342
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Table 4.6: The numbers of generated S-pairs which satisfy SF compared to the numbers

which do not satisfy SF (inhomogeneous)

ADD RAT

benchmark SF not SF SF not SF

cyclic-7 475 467 475 267

cyclic-8 1504 4022 1504 2353

eco-10 315 629 315 130

eco-11 634 1849 634 283

f-633 46 7 46 2

f-744 333 229 333 160

katsura-11 884 1293 884 1245

noon-8 1336 40 1336 40

noon-9 3680 54 3680 54

Random(10,2,2) 778 144 778 144

Random(11,2,2) 1479 342 1479 342
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Chapter 5

Conclusions

5.1 Contributions

This thesis is devoted to the followings:

� We have presented some signature-based (semi-)algorithms for computing Gröbner

bases: fundSB, simpleSB, syzSB and altRB. Among them, altRB is a practical

signature-based algorithm and can be implemented easily in any computer algebra

system, as altRB is described concretely. The other (semi-)algorithms are used

auxiliarily to prove the correctness and the termination of altRB. By discussing

the correctness and the termination of these (semi-)algorithms step by step, we

have finally obtained the correctness and the termination of altRB. The proofs

are self-contained and very clear. altRB is efficient for an arbitrary module order.

In the last section, we have discussed how signature-based algorithms work when

POT is chosen as a module order and when it proceeds incrementally.

� We have introduced a new strategy for s-reduction, named the selective-full strat-

egy, aiming to decrease the number of sum of s-reductions and usual reductions.

Efficiency of the strategy has been evaluated by some Gröbner basis benchmarks.

For computing the reduced Gröbner basis, the selective-full reduction strategy is

more efficient comparing with conventional s-reduction strategies. For computing

a signature Gröbner basis, the selective-full reduction strategy is better or equiva-

lent to the full reduction strategy. Although, the selective-full strategy is not the
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worst strategy in the three strategies in the case of all benchmarks in this paper.

5.2 Future works

We will aim to clarify the folowings:

� It is known that if an input system is regular sequence, singature-based algorithms

with POT moudule order do not calculate zero reduction. When a module order

other than POT is chosen, zero reductions happen even if an input system is regu-

lar. The calculations with POT has inefficiency for some input systems because the

calculations proceed incrementally. Therefore, methods to detect zero reductions

for regular input systems with a module order other than POT is required. We

aim to establish the method.

� In cryptgraphy, Gröbner bases is used for attacking some cryptography. That

means the security of cryptography is evaluated by algorithms of Gröbner bases.

The input systems appeared in cryptography has characteristics, so we aim to

establish methods to compute these problems efficiently.
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Gröbner bases.: Proceedings of the 2010 international symposium on Symbolic and

algebraic computation, pages 13–19. ACM, 2010.

[22] Gao, S., Volny, F. IV, Wang, M.: A new framework for comput-
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