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Chapter 1

Introduction

In [12], Oort introduced the notion of leaves on a family of p-divisible groups. Note that p-
divisible groups are often called Barsotti-Tate groups, to study the moduli space of abelian
varieties in positive characteristic. Let p be a prime number. Fix an algebraically closed
field k of characteristic p. Let S be a noetherian scheme over k. For a p-divisible group Y
over k, in [12, 2.1], Oort defined Cy (S) by a locally closed subset of S for a p-divisible group
Y over S characterized by s belongs to Cy (S) if and only if ) is isomorphic to ¥ over an
algebraically closed field containing k(s) and k; see the first paragraph of Section 2.1 for
a review. We call Cy (S) the central leaf associated to Y and ), if ) — S is a universal
family over a deformation space or a moduli space.

In [12, 2.2] Oort showed that Cy (S) is closed in an open Newton polygon stratum. We
regard Cy(S) as a locally closed subscheme of S by giving the induced reduced scheme
structure. We are interested in the boundaries of leaves on the deformation space, and in
the next paragraph we state this as a problem. In [12, 6.10], Oort treated this question
in the polarized case, i.e., the case that p-divisible groups associated to polarized abelian
varieties.

Let us formulate the problem on the boundaries of central leaves. Let Xy be a p-
divisible group over k. Put ®ef(Xo) = Spf(I') the deformation space of X(. This deforma-
tion space is the formal scheme pro-representing the functor Arty — Sets which maps R
to the set of isomorphism classes of p-divisible groups X over R such that X ~ Xy. We
denote by Arty the category of local Artinian rings with residue field k. Let X’ — Spf(T")
be the universal p-divisible group. In [6, 2.4.4] de Jong showed that there exists an equiva-
lence of categories between the category of p-divisible groups over Spf(I") and the category
of the p-divisible groups over Spec(I') =: Def(Xy). Let X be the p-divisible group over
Def(X() obtained from X’ by this equivalence. In [12, 2.7] Oort studied Cx,(Def(Xy)).
We are interested in Cy (Def(X)) for X #Y with ) = X. Here is a basic problem:



Problem 1.1. Let Y be a p-divisible group over k. Classify p-divisible groups X over k
such that Cy (Def(X)) # (). Here Cy (Def(X)) # () means that X appears as a specialization

of a family of p-divisible groups whose geometric fibers are isomorphic to Y.

Since the general case looks difficult, In this paper we discuss the case that the p-
divisible group Y is “minimal”. Oort introduced the notion of minimal p-divisible groups
in [13, 1.1], and he showed in [13, 1.2] that the property: Let X and Y be p-divisible
groups over k. Suppose that X is minimal. If the kernel of the p-multiplication on X is
isomorphic to that of Y, then X and Y are isomorphic. For a Newton polygon £, we obtain
the minimal p-divisible group H (). See the third and fourth paragraphs of Section 2.1
for the definitions of Newton polygons and minimal p-divisible groups.

We call Cy (Def(Xp)) with Y a minimal p-divisible group a central stream. This notion
is a “central” tool in the theory of foliations. For instance, it is known that the difference
between central leaves and central streams comes from isogenies of p-divisible groups. Thus
to study boundaries of general leaves, it is natural to start with investigating boundaries
of central streams.

Let € be a Newton polygon. For the notation as above, we may treat the problem:
Problem 1.2. Classify p-divisible groups X over k such that Cry(¢)(Def(X)) # 0.

Let us translate this problem into the terminology of the Weyl group of GL,. We
denote by W = Wj, the Weyl group of GL;. We identify this W with the symmetric
group &y in the usual way. Define J = J. by J. = {s1,...,sn} — {s¢}, with simple
reflections s; = (i,7 + 1). Put d = h — ¢. Then there exists a one-to-one correspondence
between the isomorphism classes of BT;’s of rank p" and dimension d over k and the
subset YW of W, see Section 2.3. Let X be a p-divisible group. Let w € 7W. We say w
is the (p-kernel) type of X|[p] if the BTy X|[p] corresponds to w by this bijection.

In Proposition 2.1 we will show that: Let X and Y be p-divisible groups over k with
Cre)(Def(X)) # 0 and X[p] ~ Yp]. Then Cg)(Def(Y)) # (0. Thanks to this proposi-

tion, Problem 1.2 is reduced to
Problem 1.3. Classify elements w of /W such that

(¢) there exists a p-divisible group X over k such that w is the type of X[p| and

In this paper, we treat the following problem:

Problem 1.4. Classify w € /W satisfying (o) and £(w) = £(H(£)[p]) — 1.



Theorem 1.5 and Theorem 1.6 reduce Problem 1.4 to the case that Newton polygons
¢ consisting of two slopes satisfying that one slope is less than 1/2 and the other slope is
greater than 1/2. In Section 4, we solve the problem for that case.

Before we state the main theorems, we explain the above formulations using special-
izations of p-divisible groups. For p-divisible groups X and Y over k, we say X is a
specialization of Y if there exists a family of p-divisible group X — Spec(R) with discrete
valuation ring R in characteristic of p such that X is isomorphic to Y over an algebraically
closed field containing L and k, and Xj is isomorphic to X over an algebraically closed
field containing K and k, where L is the field of fractions of R, and K = R/m is the
residue field of R. Note that X is a specialization of Y if and only if Cy (Def(X)) # 0
holds. For a p-divisible group X, we define the length ¢(X[p]) of the p-kernel by the length
of the element of the Weyl group which is the type of X[p]. It is known that for the
p-divisible group X, the length ¢(Xy[p]) is equal to the dimension of the locally closed
subscheme of Def(X() obtained by giving the induced reduced structure to the subset of
Def(Xy) consisting of points s € Def(X() such that X/[p] is isomorphic to Xy[p] over an
algebraically closed field; see [15, 6.10] and [8, 3.1.6]. We say a specialization X of Y is
generic if {(X[p]) = £(Y[p]) — 1.

Let £ be a Newton polygon. We define B(&) by

B(&) = {types of X,[p] | X5 = H(§) and £(X,[p]) = ¢(X7[p]) — 1 for some X — S}, (1.1)

where S = Spec(R) with a discrete valuation ring (R, m), s = Spec(x) and j = Spec(K)
with kK = R/m and K = frac(R). Problem 1.4 asks us to determine the set B(§). We
call B(&) the set of boundary components of the central stream associated to . The first

result is:

Theorem 1.5. Let { = Y7 (m;, n;) be a Newton polygon. Let & = (mj, n;)+(miy1,ni41)
be the Newton polygon consisting of two adjacent segments for ¢ = 1,...,2z — 1. For any
w € B(&), the direct sum W) G w is contained in B(&), where we() is the type of H(¢W)
with ¢ = (my,n1) + -+ (Mmij—1,ni—1) + (Miy2,Niy2) + - + (M2, n.). Moreover the

obtained map

z—1
L] B&) - B© (1.2)

which sends w € B(§;) to W) @ w is bijective.

This theorem implies that the problem of determining boundary components of cen-



tral streams is reduced to the case that the Newton polygon consists of two segments.

Moreover, for the two segments case, we will show the following result:

Theorem 1.6. Let & = (my,n1)+ (ma, n2) be a Newton polygon satisfying that ny/(mq+
n1) > no/(ma + ng) > 1/2. Put €€ = (my,n1 — my) + (ma,ny — msg). Then the map

sending w t0 W|{1, . n,4n,} gives a bijection from B() to B(£°).

For a Newton polygon & = (m1,n1) + (m2,n2), we set &P = (ng,ma) + (n1,m1).
By the duality, it is easy to see that the map sending w to i — | — w(l — i), with | =
my +n1+ma+ng+1, gives a bijection from B(€) to B(£P). Using repeatedly this duality
and Theorem 1.6, we can reduce Problem 1.4 to the case of [5], i.e., to the case that the
Newton polygon £ consists of two slopes such that one slope is less than 1/2 and the other
slope is greater than 1/2. In this paper, we treat this case in Chapter 4. There results
give a complete answer to Problem 1.4.

Next, we formulate a problem on determining the Newton polygon of each boundary
component in B(£). Let € and ¢ be Newton polygons. We write ¢ < £ if each point of ¢
is above or on £ with ¢ # £. We say ( < & is saturated if there exists no Newton polygon
n such that ¢ 2 n £ £ We denote by we the element of the Weyl group corresponding to
H(&)[p]. Our next problem is

Problem 1.7. Let & be a Newton polygon. We fix a generic specialization X of H ().
Show that the existence of a Newton polygon ( such that

(x) H(C) appears as a specialization of X and ¢ < & is saturated,
and determine this (.

Note that for the Newton polygon np(X) of X, since ¢ < & is saturated, we have that
np(X) = ¢, and in particular np(X) < & is saturated, if the above problem is affirmatively
solved. see [5, Corollary 1.2].

Let us translate this problem to the terminology of the Weyl group of GLj. We say
that w’ is a specialization of w, denoted by w’ C w, if there exists a discrete valuation ring
R of characteristic p such that there exists a finite flat commutative group scheme G over
R satisfying that Gx is a BT of the type w’, and Gy is a BT of the type w, where L (resp.
k) is the fractional field of R (resp. is the residue field of R). A generic specialization w’
of w is a specialization of w satisfying ¢(w’) = ¢(w) — 1. For these notations, our main

result is

Theorem 1.8. Let ¢ be any Newton polygon. Let w € /W be a generic specialization of

wg. Then there exists a Newton polygon ¢ such that



(i) ¢ < ¢ is saturated, and
(i) we C w.

By Theorem 1.5, to show Theorem 1.8, the case that & consists of two segments is
essential, see Theorem 6.6 and its proof.

For the two-slopes case, using the map given in Theorem 1.6, we have:

Theorem 1.9. Let & = (my,n1)+ (ma, n2) be a Newton polygon satisfying that ny/(mq+
ni) > na/(me + n2) > 1/2. Put €€ = (m1,m1 — m1) + (ma2,n2 — mg). For a generic
specialization w € B(€), let w’ € B(£C) be the generic specialization corresponding to w
by the map of Theorem 1.6. Then a Newton polygon ¢ = Y (¢, d;) satisfies (i) and (ii) of
Theorem 1.8 for we and w if and only if the Newton polygon (¢ = Y (c;, d; — ¢;) satisfies

i) and (ii) for wec and w'.
13

This paper is organized as follows. In Chapter 2, we recall the notions of p-divisible
groups, Newton polygons and truncated Dieudonné modules of level one, and we review
the classification of BT’s. In Chapter 3, we introduce arrowed binary sequences, and show
some properties of ABS’s corresponding to minimal DM;’s. We mainly use this notion to
show the main results. In Chapter 4, we treat central streams corresponding to Newton
polygons satisfying that the one slope is greater than 1/2 and the other is less than 1/2.
We will solve Problem 1.4 for such Newton polygons &. Moreover, we show a key statement
to solve Problem 1.7, see Proposition 4.9. In Chapter 5, we introduce Euclidean algorithm
for Newton polygons. Using this algorithm, we solve Problem 1.4 and Problem 1.7 for all
Newton polygons £ consisting of two segments by reducing the problems to the case of
Chapter 3. Finally, in Chapter 6, we solve the problems for all Newton polygons.

I would like to express my deepest appreciation to Professor Shushi Harashita for his

assistance.



Chapter 2

Preliminaries

In this chapter, first we recall the notions of p-divisible groups, leaves and Dieudonné
modules. Next, in Section 2.3, we review the definition of truncated Barsotti-Tate groups

of level one and a classification of BT’s.

2.1 p-divisible groups and Dieudonné modules

Fix a prime number p. Let S be a scheme in characteristic p. Let h be a non-negative
integer. A p-divisible group (Barsotti-Tate group) of height h over S is an inductive system
(Gy,iy)v>1, where G, is a finite locally free commutative group scheme over S of order

p", and for every v, there exists the exact sequence of commutative group schemes
0 — Gy - Gpy1 == Gy, (2.1)

with canonical inclusion iy, i.e., G, ~ Gy41[p"] for all v. Let X = (G,,1,) be a p-divisible
group over S. Since Gyy1 ~ Gyia[p?™!], we see that G, 1 is killed by p'*!. Hence the
multiplication by p : Gy+1 — Gyy1 can be regarded as p : Gy41 — Gyt1[p?] ~ G,. Thus
we get maps j, : Gyr1 — Gy. Let GY denote the inductive system (Ds(Gy), Ds(jv))v>1,
where Dg(—) is the Cartier dual. We call this G' the Serre dual of G. Moreover, let T
be a scheme over S. Then we have the p-divisible group X7 over T', which is defined as
(Gy xg T, iy x id). For the case T is a closed point s over S, we call the p-divisible group
X, the fiber of X over s. Let k be an algebraically closed field of characteristic p. Let
Y — Spec(k) be a p-divisible group, and let J) — S be a p-divisible group over S. In [12,
2.1] Oort defined a leaf by



Cy(S) = {s € S| Ys is isomorphic to Y over an algebraically closed field}, (2.2)

as a set. He showed that Cy (S) is closed in a Newton stratum (cf. [12, 2.2]). We regard
Cy (S) as a locally closed subscheme of S by giving the induced reduced structure on it.

Let K be a perfect field of characteristic p. Let W (K') denote the ring of Witt-vectors
with coefficients in K. Let o be the Frobenius over K. We denote by the same symbol
o the Frobenius over W (K) if no confusion can occur. A Dieudonné module over K is a
finite W (K)-module M equipped with o-linear homomorphism F : M — M and o~ !-linear
homomorphism V : M — M satisfying that F oV and V o F equal the multiplication by
p. For each p-divisible group X, we have the Dieudonné module D(X) using the covariant
Dieudonné functor. The covariant Dieudonné theory says that the functor D induces a
canonical categorical equivalence between the category of p-divisible groups over K and
that of Dieudonné modules over K which are free as W (K)-modules. Moreover, there
exists a categorical equivalence from the category of finite commutative group schemes
over K to that of Dieudonné modules over K which are of finite length.

Let {(m;, n;) biz1
satisfying that if ¢ < j, then A\; > \; with A\; = n;/(m;+n;) for each i. A Newton polygon is

,,,,, » be a set of a finite number of pairs of coprime non-negative integers
a lower convex polygon in R?, which breaks on integral coordinates and consists of slopes

Ai. We write

z

Z(mz,nl) (2.3)

i=1
for the Newton polygon. We call each coprime pair (m;, n;) the i-th segment of the Newton

polygon. For a Newton polygon & = ). (m;,n;), we define the p-divisible group H(£) by
i

where H,, ,, is the p-divisible group over F,, which is of dimension n and its Serre-dual is

of dimension m. Moreover the Dieudonné module D(H,, ,,) is described as

m-+n

D(Hpn) = P W(Fp)ei, (2.5)
=1

where with respect to the basis {e;};, the operations F and V satisfy that Fe; = ¢;_,, and
Ve; = ej—n With €;_(;,4.) = pe;. Note that W (IF,) is isomorphic to the ring Z, of p-adic

integers .



We say a p-divisible group X is minimalif X is isomorphic to H (&) over an algebraically
closed field for a Newton polygon £. For a p-divisible group X, the p-kernel X [p] is obtained
by the kernel of the multiplication by p. It is known that the Dieudonné module of H(&)[p]
makes a truncated Dieudonné module of level one (abbreviated as DM;) D(H (§)[p]). A
DM; over K of height h is the triple (N, F, V) consisting of a K-vector space N of height h,
a o-linear map F : N — N and a o~ !'-linear map V : N — N satisfying that ker F = im V
and imF = ker V.

Let & = > (m4,n;) be a Newton polygon. We denote by N¢ the DM; associated to
H(&)[p]. Then N¢ is described as

Ne = @Nmi,nw (2.6)

where N, ,, is the DM; corresponding to the p-kernel of H,,,. We call such DM; N¢ a
manimal DM .

We use the same notation as in Chapter 1. The following proposition would be well-
known to the specialists, but as any good reference cannot be found, we give a proof for

the reader’s convenience. In the polarized case, a proof is given in [11, 12.5].

Proposition 2.1. Let £ be a Newton polygon. Put Y = H(£). Let X and X’ be p-
divisible groups over an algebraically closed field of characteristic p. If Cy (Def(X)) # 0
and X [p] ~ X'[p], then Cy (Def(X")) # 0.

Proof. Let h and ¢ be positive integers such that X [p] is the type of w € JW with W = W,
and J = J,,. Put n = h —m. Let F (resp. V) denote the o-linear map (resp. o~ !-linear
map) of the DM; D(X[p]) = D(X)/pD(X) with o the Frobenius. Take a basis Z,11, ..., 2
of the image of V, and choose z1,. .., z, € D(X|[p]) so that zi,..., z, is a basis of D(X[p]).
We choose lifts z1,...,2, of Z1,..., 2, to D(X). Then {z1,...,2,} is a basis of D(X). We

write

A B
C D

for the display of X with respect to the basis {z1,..., 2}, where A is the n x n matrix,
and D is the (h —n) x (h —n) matrix. See [10] for the construction of the display. Then
for the Dieudonné module D(X) of X equipped with the operations F and V, we have

A pB
C pD

(Fz1,...,Fzp) = (21,..., 2zn)



and

pa pp
(Vz1,...,Vzp) = (21, .., 2n) ,
v 4
where
a f
v 9

is the inverse matrix of the display of X. The operations F and V on D(X [p]) satisfy that

B B B (A0
(le,...,th)Z(Zl,...,Zh) _
cC 0
and
(Vil,...,VZh) = (217---;2h)

For the p-divisible group X — Spec(R) corresponding to Spec(R) — Cy(Def(X)) C
Def(X), the display of X induces that

B - B _[A+TC 0
(le,...,FZh) = (21,...,Zh) _
C 0
and
0.—1
0 0
(Vzi,...,VZzZy) = (Z1,...,2p) o
¥y AT +6

where T is an (h — n) x n matrix on R. On the other hand, we denote by

the display of X’. Using the isomorphism from X[p] to X'[p], we have the basis €1, ..., €
of D(X'[p]) = D(X')/pD(X’). We have then

a 0
(Fz1,...,Fz,) = (Z1,..., Zn)
c 0
and
0'_1

0 0

(Vzh cee 7V2h) = (217 s Zh) _

,yl 6/

10



for the inverse matrix
a/ 6/
,.y/ 6/

of the display of X’. Let ) be the p-divisible group having

as its display, where T is a matrix such that 7 mod p equal T. Then for the display of
Ylp], we see

a+Tec 0
(le,...,FEh) = (217'--72h
c 0
and
o1
0 0
(Vzl,...,VZh):(21,...,2h) B o B
,y/ _,Y/T_i_ 5/
whence Y belongs to Cy (Def(X")). O

2.2 Specializations

Let R be a commutative ring of positive characteristic p. Let o be the frobenius endomor-

phism on R defined by o(a) = d”.

Definition 2.2. A DM; over R of height A is a quintuple N' = (N, C, D, F, V1), where
(1) N is a free R-module of rank h,
(2) C and D are submodules of N which are locally direct summands of N,
(3) F: W/C)®ro R— D and V71 :C ®py R — N/D are R-linear isomorphisms.

Let k be an algebraically closed field of characteristic p, and let R = k[t] be the ring of
formal power series over k. For an arbitrary DMy A over R, we can consider NV}, := N ®grk,

which is a DM; over k. Hence we have the canonical map
{DM; over R} — {DM; over k}

sending N to N. We call this the specialization map.

11



2.3 Classification of BTy’s

In this section, we work over an algebraically closed field k. Let us review the classification
of truncated Barsotti-Tate groups of level one.

Fix a prime number p. Let S be a scheme of characteristic p. We denote by frobg : S —
S the absolute Frobenius morphism of S. Let w : N — S be a finite commutative group
scheme. We define 7®) : N(®) — § to be the pull-back of 7 : N — S via frobs. Using the
cartesian product, we obtain the map N — N®. We write this map for F = Fy. For
the dual NP of N, we have Fyp : NP — (NP)®) = (N®)P We define V by the dual
Vy :N® — N of Fyb.

Definition 2.3. A truncated Barsotti-Tate group of level one (BT;) is a commutative,
finite and flat group scheme N over a scheme in characteristic p satisfying properties

[p]ny =0, and

im(V:N® 5 N) = ker(F:N— N®), (2.7)
im(F: N = N®) = ker(V:N® - N). (2.8)

A DM; appears as a Dieudonné module of a BT;. Let W = W}, be the Weyl group of
the general linear group GLj, as Chapter 1. This W can be identified with the symmetric
group &y. Let Q denote the standard generator of W = &j. We write s; for the simple
reflection (7,7 + 1). We define J = J. by J. = Q@ — {s.}. Put d = h — ¢. For the set
Wy = W, x Wy, let /W be the set consisting of elements w € W}, such that w is the
shortest element of Wy - w, see [1, Chap. IV, Ex. §1 (3)]. Then we have

Theorem 2.4. There exists a one-to-one correspondence
W «— {BT’s over k of height h of dimension d}/ = . (2.9)
Moreover, running over all d, we have

| 7w «— {o0,1}". (2.10)
d

Kraft [7], Oort [11] and Moonen-Wedhorn [9] show the existence of a one-to-one cor-

respondence:

{0,1}" «— {DM;’s over k of height h}/ = . (2.11)

12



For v € {0,1}", we construct the DM; D(v) as follows. We write v(i) for the i-th
coordinate of v. Set N = ke @ --- @ kep. We define the maps F and V as follows:

Fe, = ej, j=#{|v(l)=0, 1 <i} forv(i)=0, (2.12)

0 otherwise.

Let ji,. .., je be the natural numbers satisfying v(j;) = 1 with j; < --- < j.. Put d = h—c.
Then the map V is defined by

ej,, l=1—d fori>d,
Ve; = (2.13)

0 otherwise.

Therefore the DMy D(v) is given by the triple D(v) = (N,F,V). Thus we can identify
DM;’s with sequences consisting of 0 and 1.

Let us construct a bijection between YW and the set of isomorphism classes of DM;’s
over k of height h and dimension d. For an element w of YW, we define v(j) = 0 if and only
if w(j) > ¢ for j = 1,...,h, and we obtain the element (v(1),v(2),...,v(h)) of {0,1}".
This gives a one-to-one correspondence between /W and the subset of {0,1}" consisting
of elements v satisfying #{j | v(j) = 0} = d.

Here, we show a lemma used for the construction of generic specializations. We define
x € Wby x(i) =i+difi <cand z(i) =i — ¢ otherwise. Let 6 be the map from W to
itself defined by (u) = zuz~—!. By [14, 4.10], we have w’ C w if and only if there exists
u € Wy such that u=!w'6(u) < w with the Bruhat order <.

Lemma 2.5. Let w € YW. Let w’ be a specialization of w. If w’ is generic, then there

exist v € W and v € W such that

(i) v =ws for a transposition s,

(i) €(0) = €(w) — 1,

(iii) w’' = wvd(u~t).
Proof. Let w € /W. Let w' € /W satisfying that w’ C w and £(w') = £(w) — 1. Choose
an element u of W satisfying that u=!w'0(u) < w. Set v = u~'w'@(u). Let us show (ii).
Since w’ belongs to W, we have £(v) > £(u w') — £(0(u)™1) = £(u) + £(w') — £(0(u)).
Moreover, we have £(u) + ¢(w') — £(0(u)) = £(w’) since for all element v’ of W; we have
l(u') = £(A(v')) by the definition of §. As v < w, we have £(v) < £(w). Thus we see (ii).
Let w = s;,8i,...5s; be a reduced expression of w with v = s;, ... Siq_1Sigi1 - - Siy- Set

§ = (Siy - - Sig41)Sig(Sigss - - - 8iy)- Then s is a transposition, and this s satisfies v = ws. [

13



Chapter 3

Arrowed binary sequences

In this chapter we introduce arrowed binary sequences as a generalization of classifying
data YW of BT ’s. Arrowed binary sequences are a main tool to prove the main the-
orems. For instance, in Section 3.2, we introduce a combinatorial method to construct

specializations of minimal DM;’s.

3.1 The definition of arrowed binary sequences

Definition 3.1. An arrowed binary sequence (we often abbreviate as ABS) is the triple
(T, A,II) consisting of a totally ordered finite set T = {t; < to < --- < t,}, a map
A:T — {0,1} and a bijection I : T — T. For an ABS S, let T'(S) denote the totally
ordered finite set of S. Similarly, we denote by A(S) (resp. II(S)) the map from T'(S) to
{0,1} (resp. the map from T'(S) to itself). For an ABS S, we define the length £(S) of S
by

US) = #{(t,¢) € T(S) x T(S) | t < t' with A(S)(t) = 0 and A(S)(¥') =1}.  (3.1)

Remark 3.2. Let N = (N,F,V) be a DM;. We construct the arrowed binary sequence
(A, d,7) associated to N as follows. Let v be the element of {0,1}" corresponding to N.
For a totally ordered set A = {¢1,...,¢,}, let 6 : A — {0,1} be the map which sends ¢; to
the i-th coordinate of v. Using the basis of N satisfying (2.12) and (2.13), we define the
map 7 : A — A by 7(t;) = t;, where j is uniquely determined by

Fei =€ if (5(tz) = 0,

Ve; =e; otherwise.
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We say an ABS is admissible if it is associated to some DM by the above correspondence.

Remark 3.3. For the DM N, , corresponding to the p-divisible group H, ,, we get the
ABS S as follows. Set T'(S) = {t1,...,tmtn}. The map A(S) is defined by A(S)(t;) =1
if i < m, and A(S)(¢t;) = 0 otherwise. The map II(S) is defined by II(S)(t;) = tisp if
i < m, and II(S)(t;) = t;—m, otherwise.

Let S be an ABS. Put 6 = A(S) and 7 = II(.S). The binary expansion b(t) of t € T'(S)
is the real number b(t) = 0.b1bs. ..., where b; = §(77(t)).

Proposition 3.4. Let S be an admissible ABS. For elements t; and t; of T(S) =
{t1,t2,...,tn}, the following holds.

(i) Suppose A(S)(t;) = A(S)(tj). Then t; < t; if and only if II(S)(¢;) < II(S)(¢;).
(ii) Suppose b(t;) # b(t;). Then b(t;) < b(t;) if and only if ¢ < j.

Proof. (i) follows from the construction of admissible ABS’s. Let us see (ii). Put § = A(S)
and 7 = II(S). By the construction of admissible ABS’s, for elements ¢ and ¢’ of T'(S), if
§(t) =1 and 6(t') = 0, then 7 (t') < m(t). First, assume b(t;) < b(t;). Then there exists a
non-negative integer u such that 6(7="(¢;)) = (7~ (t;)) for 0 < v < wand §(7~*(¢;)) = 0,
§(m74(t;)) = 1. We have then m=%T1(¢;) < 77FL(¢;), and the assertion follows from (i).
Next, assume ¢ < j. To lead a contradiction, we suppose that b(t;) < b(¢;). Then there
exists a non-negative integer u such that d(7~"(¢;) = 0 and é(7~*(¢;)) = 1, and for non-
negative integers v satisfying v < u, we have §(77"(t;) = 6(7~"(¢;)). This implies that

7 utL(t;) < m7FL(t;), and this is a contradiction. O

Next, in Definition 3.5, we introduce the direct sum of ABS’s. The construction of the

direct sum is induced from the direct sum of corresponding DM;’s.

Definition 3.5. Let S; and Sy be ABS’s. We define the direct sum S = S1® Sy of S1 and
Sy as follows. Let T'(S) = T'(S1)UT(S2) as sets. We define the map A(S) : T'(S) — {0,1}
to be A(S)|7(s,) = A(S;) for i = 1,2. Let II(S) be the map from T'(S) to itself satisfying
that T1(S)|p(s,) = II(S;) for i = 1,2. We define the order on T'(S) so that for elements ¢
and t’ of T'(S),

(i) if b(t) < b(t'), then t < t';
(i) ¢t <t if and only if II(S)(¢) < II(S)(¢') when A(S)(t) = A(S)(¥').

Notation 3.6. Let N¢ be the minimal DM; of a Newton polygon & = ., (m;,n;). Let
S be the ABS associated to N¢. Then S is described as S = @@;_; S;, where S; is the ABS
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associated to the DMy Ny, »,. If an element ¢ of T'(.S) belongs to T'(.S,), then we denote
by t" or 7" this element ¢t with 7 = A(S)(¢). If we want to say that the element ¢" is the

i-th element of T'(S,), we write t] for the element ¢". Furthermore, we often write 7 for

the element ¢] of T'(S) with 7 = A(S)(¢]).
For certain Newton polygons £, the ABS associated to N¢ is described as follows:

Lemma 3.7. Let N¢ be the minimal DM of £ = (mq, n1) + (ma, n2) with Ay < 1/2 < Aq.

For the above notation, the sequence S associated to N¢ is obtained by the following:

1 1 gt 142 2 a1 142 2 2 2
11k ob 0L 1212 0L Ly ec0p 12 L1202, - 07, (3.3)
—_————  —— —— —
mi ni—mi na mi ma2—ng no
Proof. See [2], Proposition 4.20. O

We denote by H'(h,d) the set of admissible ABS’s whose corresponding DM;’s are of
height h and dimension d. We have a natural bijection from “W to H'(h,d). Via this
bijection, the ordering C on YW defines an ordering on H'(h, d).

We shall give a method to construct a typical specialization of ABS’s. It will turns
out to correspond to specializations w’ C w with v = ws < w and w’ = wvf(u~'), where

s denotes a transposition and u € Wj.

Definition 3.8. Let S be an admissible ABS with T(S) = {t; < --- < t;}. Let i and
4 be natural numbers with i < j. We define an ABS S(© as follows. We set T/(S(0) =
{th <" - <" t}} to be t, =ty for f = (i,7) transposition. Let A(SO) = A(S). For
a natural number z with 1 < z < h, we denote by g(z) the natural number satisfying

I(S)(t:) = tg(z). We define I(S©) : T(S©) — T(5©) by

t’g(j) if z =1,
(sO)(t,) = thy ifz=j, (3.4)

t’g ) otherwise.

Thus we obtain an ABS S(°). We call this ABS the small modification by (t;, tj).

For an ABS S, we often describe th map II(S) using the arrows:

° o, ° o, (3.5)
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where e are elements of A(S).

Example 3.9. Let { = (2,7) + (3,5). Let S be the ABS corresponding to the DM; Ng.
Then S is described as

Moreover, the small modification S© by (0}, 12) is described as

XN RRTRETIN

SO =11 13 oi 13 of 12 o} of of 13 0% 0% 0f 0f 0Z 0% 03. (3.7)

Definition 3.10. Let S be an admissible ABS. Let S(© be the small modification by
(ti t;). Put T(S©) = {t; < --- < t}. An ABS is a full modification of S if

(i) T(S") = T(5©) as sets,
(i) A(S") = A(S©),
(i) T1(S") = 1I(S®), and
(iv) <’ is an ordering of T'(S") to be t, <" t, = b(ty) < b(ty)

for elements ¢, and t, of T(S’). We denote by S’ a full modification obtained by S(). We
say a full modification S’ of S is generic if £(S") = £(S) — 1.

By construction, for a small modification S of an ABS S, there exists at least
one full modification S’. Put T(S") = {t} < --- <’ ¢} }. Full modifications are not
always unique but the sequence A(S')(t}),...,A(S")(t},) is unique, see Example 3.13.
Moreover, if the full modification S’ of S by (0}, 1]2) is unique, then this corresponds to a
specialization of w, where w is the element of T corresponding to S. In Proposition 3.20
and Proposition 3.23, we will see that if full modifications are not unique, then these are

not generic for an ABS S corresponding to a Newton polygon &.

Let us see some examples of constructing full modifications.

Example 3.11. Let us see an example of constructing a full modification. Let £ =

(2,7)+(3,5), and let S be the ABS associated to N¢. Let S’ denote the full modification
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of the small modification obtained by 0} and 12. Then S’ is described as

Y A A 2 SN

S =11 o} 1 13 o} 12 of of ol 0% 12 02 0 0§ 02 0% 0%. (3.8)

One can see that these S and S’ satisfy £(S") = £(S) — 1, i.e., this S’ is a generic full

modification of S.

Example 3.12. Next, let us treat a Newton polygon consisting of three segments. Let

£€=1(2,7)+(1,2) +(3,5). Then the ABS S corresponding to N is

For this S, the full modification S of the small modification obtained by exchanging 0}

and 13 is

I\ 5 ORI\
o wﬂg o

We see that this S’ is not generic.

Example 3.13. Let £ = (3,4) + (3,2). Then the ABS S corresponding to ¢ is described

as
1§ 15 13 05 13 13 0§ 05 07 13 0F 0F. (3.11)

NN ¢ sV

Let us consider the full modification of the small modification obtained by 0} and 13. For
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elements ¢ of the small modification 7'(S(?)), binary expansions b(t) are obtained by

0.010101--- if A(S)(¥) =1,
b(t) = (3.12)
0.101010--- otherwise.

Thus in this case, full modifications are not unique. However the DM; is uniquely deter-

mined as N¢ with ¢ = 6(1,1).

Remark 3.14. Let S € H/(h,d). Let S’ be a full modification of the small modification
S©) obtained by exchanging ¢; and ¢; with T(S') = {t} <’ --- <’ #}}. We denote by w
the element of YW corresponding to S. Put s = (i,5) transposition. Maps II(S) and
II(S") can be regarded as elements of W. We have then II(S) = zw. For the small
modification S with T(S©)) = {tgo) < < t,(zo)}, we define £ € W to be t) = t’a(z).
Since b(tgo)) < 0.1if 2 < d and b(tgo)) > 0.1 otherwise, e stabilizes {1,2,...,d}. Put
v = ws. Then w' = uvh(u~!) corresponds to S’ for u = v~ 1e~tx € W;. The map II(S’)

is obtained by ¢~ TI(S)se.

After this, S denotes the ABS corresponding to a Newton polygon &. In Definitions 3.15
and 3.16 below, we introduce sets A,,, B,, and a method to construct full modifications S’
of S combinatorially. Using these sets and the method, we can calculate the lengths of full
modifications, and classify generic full modifications. For instance, in Proposition 6.2 and
Corollary 6.3, using this construction, we give a necessary condition for a full modification

to be generic.

Definition 3.15. Let S be the ABS of a minimal DM;. Let S he the small modification
by (07, 1;]-). Set § = A(S®) and m = I1(S©®). For non-negative integers n, we write a,,

for 7(07). We define a subset Ay of T(S() to be
Ag={t e T(SO) |t < ag and a; < 7(t) in T(S)), with §(t) = 0} (3.13)

endowed with the order induced from T'(S(?)). Let n be a natural number. We construct
an ABS S and a set A4,, from the ABS S(™=1 and the set A,_1 as follows. Let T(S(”)) =
T(S"=1) as sets. We define the order on T(S™) so that for ¢ < ¢’ in S~V we have
t >t if and only if a;, <t/ < 7(tmax) and t = v, in S(=1) Here tpax is the maximum

element of A, 1. We define the set A, by

A, ={teT(S™)—T(S,) | t < an and anyq < 7(t) in T(S™) with §(t) = 6(an)}
(3.14)
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endowed with the order induced from S, Thus we obtain the ABS S = (T(S™), 8, )
and the set A,,. We call these sets {4, } A-sequence associated to S, 0] and 1;1-.

Proposition 3.20 implies that if a full modification obtained by a small modification
is generic, then there exists a non-negative integer a such that A4, = (). Now we suppose

that there exists such an integer a. Then we can define the following ABS’s and sets.

Definition 3.16. For the ABS S corresponding to a minimal DM, let S(©) be the small
modification by (07, 1?). We write § for A(S®) and 7 for TI(S©®). Put 8, = 77”(1;1.) for
non-negative integers n. Assume that there exists the minimum non-negative integer a

such that A, = (), we define a set By by
By ={teT(5%)| By <tand n(t) < By in T(SW) with 6(¢) = 1} (3.15)

endowed with the order induced from T'(S(). For the ABS S(@*"~1) and the set B,,_1, we
define an ABS S(®*7) as follows. Let T(S@t7) = T(S@+7=1)) as sets. Let A(S(@+)) =
A(S@+r=D) and T1(S@+t™) = 11(S@+7=1D). The ordering of T'(S(**™) is given so that for
t <t in S(*+"=1 we have t > ' if and only if 7(tmin) <t < B, and t' = f3,,, where tuyin

is the minimum element of B,,_1. We define the set B,, as
B, = {t € T(S“t™) | B, < t and 7(t) < Bpi1 in T(S@H™) with 6(¢) = §(8,)}  (3.16)

with the ordering obtained from the order on S(@*+") . Thus we obtain the ABS S(@t7%) and
the set By,. We call these sets {B,,} B-sequence associated to S, 0] and 1?.

For a small modification by (07, 1?), if there exists non-negative integers a and b such

that A, = () and B, = (), then the ABS S(@+% is the full modification by (07, 19). In
Proposition 3.23, we will see that if a full modification is generic, then for the above sets
B, there exists a non-negative integer b such that B, = (), i.e., a generic full modification

is obtained by the ABS S(@+?) for some integers a and b.

Example 3.17. Let £ = (2,7) + (3,5). Let S be the ABS of £&. The small modification
SO by (0},12) constructed in Example 3.9, we have sets 4g = {0} and A; = (. The
ABS SU is obtained by

[\ O OO

SM =11 o} 11 12 0 12 0} of oF 1% 02 02 0 05 0% 02 0%. (3.17)
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By the above By = {12}. We have By = {02} with the ABS

N\ PSRRI

S@ = 11 o} 11 12 ol 12 0} of o} 1% 02 02 0} 0f 0% 02 0%. (3.18)

Clearly By = (). Hence we see a = 1 and b = 1. One can check that the full modification
SG) is equal to S’ of Example 3.11.

3.2 Constructing full modifications combinatorially

In this section, using Definitions 3.15 and 3.16, we construct full modifications combina-
torially.

We use the notation of Notation 3.6. Furthermore, we fix the following notation.
Let S be the ABS associated to Ng. Let S be the small modification by (0:,1?)
Then we obtain arrowed binary sequences S, () .. and the A-sequence Ao, A1,... by
Definition 3.15. Put § = A(S() and 7 = TI(S(). We set oy, = 7(07) and 8, = 77”(1?)

for non-negative integers n.

Proposition 3.18. Let n be a natural number with n < o/, where o’ is the minimum

number such that a, = By. The set A, is equal to

{(7(t) | t € An_q, 7(t) € T(S,) and 6(n(t)) = 5(an)}. (3.19)

Proof. Note that for elements ¢ and t' of T(S™), with n < a/, we have t < t and
n(t") < m(t) with 6(¢t) = 6(¢') if and only if ¢t € A,, and t' = vy, or t = fp and ¥’ € Bj) =
{t e T(SO) | By < t and 7(t) < B1 with 6(t) = 1}. First take an element 7(t) of the set
(3.19). Let us show that this 7(¢) belongs to A,. The part of S~1 can be described as

7RI

an+1o7r ano7r o t ap_q.

Since A,_1 contains ¢, we see a, < w(t) in T(S™ V). As §(n(t)) = 6(ay,), we have
ny1 < m(w(t)) in T(S"Y). In the set T(S™), the element a, is located in the right
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side of the maximum element of 7(A4,,—1). By construction, the part of S (") is described

apy1 © w(m(t)) o w(t) ap,  t ap_1.

as

We have then 7(t) < oy, and ayy1 < 7(7w(t)) in T(S™). Hence we see that A, contains
7(t).

Conversely, let ¢ be an element of A,. Let ¢t be an element of T'(S(™) such that
7(t) = t'. Tt is enough to show that ¢ belongs to A,_1. By the definition of A, this
t satisfies that 7(t) < a,, and o,y < w(w(t)) in T(S™). As 6(n(t)) = 6(an), we have
ny1 < m(w(t)) and a, < w(t) in T(S™ V). To make a contradiction, let us suppose
ap_1 < tin T(S("_l)). Then for the maximum element tp,ax of A,_1, we have a,, < 7(t)
in T(S™) since oy < T(tmax) < 7(t) in T(S"=1). This contradicts the definition of A,,.
Thus we have shown t < a;,—1 in T(S(”_l)), and it implies that ¢ belongs to A,,_1. Hence
this ¢ is an element of the set (3.19). O

Proposition 3.19. A,, does not contain elements «,, for m < n.

Proof. Note that for all non-negative integers n, sets A, do not contain the inverse image
of ag, which is an the element of T'(S;). Here S, is the ABS corresponding to the DMy
Ningng- Let us show the assertion by induction on n. The case n = 0 is obvious. For
a natural number n, suppose that A, contains «,, for a non-negative integer m with
m < n. By Proposition 3.18, then A,,_1 contains «,,—1. This contradicts the hypothesis

of induction. O

Proposition 3.20. If there exists no non-negative integer a such that A, = (), then every

full modification S’ of the small modification S(® is not generic.

Proof. First, let us construct a full modification combinatorially. Let a’ be the minimum

number satisfying o = fo. Let B{) be the set
B, ={teT (5| By <tand 7(t) < B in T(SV) with §(t) = 1}.

We can describe a part of $(@~1) ag

Bo s m(t) n(s) P w2 (t) t Qg .



Assume that m(Ag 1) is contained in Bj). Then there exists no element s of T'(S®)) such
that s < o and a4y < 7(s) since t” < By and 7(t") < By in T(S@)) for all t” € 7(Ag_1).
Thus there exists an element ' of Ay _1 such that 8y < 7(t') and 81 < w(x(t')) in T(S@ 1)
with 6(8p) = d(m(t')). Then for all elements s of Bj, we have s < 7(t') since if 7(t') < s,
then 7(t') < s and 7(s) < w(w(¢t')) holds with d(s) = o(w(¢')). This is a contradiction.
Thus there exists no element u of T(S(*)) such that By < u and 7(u) < f1. Let m be
a non-negative integer such that |A,,| = |Am+1| = ---. Then for elements u and u’ of
T(S™), we have u < u' if b(u) < b(u'), where b(u) is the binary expansion of u, see
the paragraph before Proposition 3.4 for the definition of binary expansions. Hence a full
modification S’ of S is obtained by (S(™), §, 7).

Let us compare lengths of S and S’. One can see that £(S) — £(S©)) = |Ag| + | B)| + 1.
Since £(S™) — £(S©)) < |Ag| — |Apm|, we see £(S") < £(S) — 1. O

By Proposition 3.20, we may assume that there exists a non-negative integer a such
that A, is an empty set to classify generic full modifications of arrowed binary sequences.
In Proposition 3.23, we will show that to classify generic full modifications, it suffices
to consider the case there exists a non-negative integer b such that B, = (). Let us see

some properties of sets B,,, which is used for the proof of Proposition 3.23.

Proposition 3.21. Let n be a natural number. The set B,, is obtained by
B, ={n(t) |t € By—1 and §(n(t)) = 0(Bn)}- (3.20)

Proof. A proof is given in the same way as Proposition 3.18. 0

Proposition 3.22. B,, does not contain elements (3,, for m < n.
Proof. A proof is given in the same way as Proposition 3.19. O

Proposition 3.23. If there exists no non-negative integer b such that B, = (), then every

full modification of the small modification S is not generic.

Proof. In this hypothesis, there exists a non-negative integer m such that |By,| = |Bp41| =
-++. Then the elements of T(S(“+m)) are ordered by these binary expansions. Thus we
obtain a full modification S’ = (T'(S\@+™), 6, ).

Let us compare the lengths of S and §'. Tt is clear that £(S) —£(S©)) = |Ao| +|Bj| +1,
where the set B|, is as in Proposition 3.20. Let a’ be as in Proposition 3.20. If the non-

negative integer a satisfies a > a/, then |By| < |Bj)|, see the proof of Proposition 3.20.
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Since £(S(®) — ¢(S©) < |Ag| and £(S") — £(S@) < |By| — |Bp|, we see that S’ is not
generic in this case. Let us see the case a < a’. For a natural number n such that
0(a,) = 1 and A,_;1 contains the inverse image of [y, one can see that By belongs to
By. Let I denote the set consisting of such a,,. We have then By = BjUI. If o,
belongs to I, then £(S™) — ¢(S"=D) =|A,_1| — |An| — 1 since A,, does not contain fy.
Thus we have £(S(®) — ¢(S©)) < |Ag| — |I|. Since £(S") — £(S@) < |By| — |Bm|, we see
0(S") —£(S) < |Ao| + |Bj)| — |Bm|, and it implies that S’ is not generic. O

By Propositions 3.20 and 3.23, we construct the full modifications for all small modifi-
cations. Moreover, these propositions imply that, to classify generic full modifications, we
may suppose that there exist non-negative integers a and b such that A, = () and B, = ()
for a small modification. For the ABS S+ if elements t and ¢’ of T'(S(@*?)) satisfy that
t <t and 6(t) = §(t'), then m(t) < w(t') holds. Thus we see that by Definitions 3.15 and
3.16, for a small modification, we get a full modification S’ of S by S0 We call this
ABS S+ the full modification by (07,19).

177
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Chapter 4

The case of 1/2-separated Newton
polygons

In this chapter, we treat Newton polygons £ satisfying the condition

e ¢ consists of two segments satisfying that one slope is less than 1/2 and the other is

greater than 1/2.

We call such a Newton polygon a 1/2-separated Newton polygon, i.e., a Newton polygon
& = (mq,n1) + (mg,ng) is 1/2-separated if na/(ma + nz) < 1/2 < ny/(m1 + n1). In this
chapter, we solve Problem 1.4 for these 1/2-separated Newton polygons. Moreover, we
shall show a key proposition (Proposition 4.9) to solve Problem 1.7 for the case that the
Newton polygon ¢ is 1/2-separated.

4.1 Classifying generic specializations for 1/2-separated New-

ton polygons

In this section we classify generic full modifications for ABS’s corresponding to 1/2-
separated Newton polygons. Let £ be a 1/2-separated Newton polygon, say £ = (m1,n1)+
(ma,m2). Let S be the ABS corresponding to . Let S’ be a full modification obtained
by the small modification by a pair (0}, 132) with m; < i <mnj and 1 < j < mgy. Then we
obtain the A-sequence and B-sequence Ay, ..., A, and By,..., By, where a (resp. b) is the
smallest integer such that A, = () (resp. B, = 0)). Note that, by Propositions 3.20 and
3.23, we may assume that there exist non-negative integers a and b such that A, = () and
By, = 0 to classify generic full modifications of S. Moreover, we have ABS’s SO, ... §(a+b)

with S+ = §’. Theorem 4.1 below gives a classification of generic specializations of

we with 1/2-separated Newton polygons £&. We denote by the element ¢; (resp. 1);) of
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T(S©) the inverse image of 0} (resp. 13) by the map II(S(). Since T'(S™) for all n are
the same as sets, we use the same symbol ¢; (resp. 1)) for the same element of T(S™)

corresponding to the element ¢; (resp. ;) of T(S®).

Theorem 4.1. Let £ be a 1/2-separated Newton polygon. Let S be the ABS correspond-
ing to N¢. A full modification S’ obtained by the small modification by 0} and 1? is generic
if and only if the subsets A, of T(S™) (resp. B, of T(S*™)) do not contain ¢; (resp.
;) for all n.

By Lemma 3.7, for 0} and 1?, we can consider the following three cases:
(i) m1 <i<mnjand 1< j<ng,
(ii) mp <i < nj and ny < j < mao,
(iii) n1 < <mi1+ny and ny < j < mo.

By the duality, it suffices to deal with cases (i) and (ii). We fix some notations. Put o, =
I1(S)™(0}) and 3, = H(S)”(l?). For non-negative integers n, set e(n) = £(S™+1))—¢(5™),
Moreover, we write di(n) = |A,| — |An+1| and da(n) = |Bp| — |Bnt1l.

Propositions 4.2 and 4.3, which compare values e(n) and d,(n), are key propositions

to give a criterion of generic full modifications.

Proposition 4.2. For all non-negative integers n with n < a, we have e(n) < di(n).
Moreover, the equality holds for all n if and only if there exists no non-negative integer n

such that A,, contains ;.

Proof. By Definition 3.15, we clearly have e(n) < di(n) for all n. If for all n the sets

A, do not contains 1, then e(n) = di(n) holds for all n. Conversely, assume that A,

contains v; for some n. Since m; < ¢ < nq, the inverse image of 1? is 07,1+m1 in S If
A(S)(an) =1, then e(n) = di(n) — 1. On the other hand, if A(S)(ay,) = 0, then we have
e(n) = —1 and d;(n) = 1. This completes the proof. O

Recall that the set I is the subset of By consisting of elements which are of the form

Qyy,, see the proof of Proposition 3.23.

Proposition 4.3. For all non-negative integers n with a < n < a+b, we have e(n) < da(n).

Moreover, for the case 1 < j < ns, the equality holds if and only if

(i) there exists no non-negative integer n such that B, contains ¢;, and
(ii) 1 =90.
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Proof. By Definition 3.16, clearly the inequality e(n) < da(n) holds, and if B, do not
contain ¢; for all n, then e(n) = da(n) holds. In the case 1 < j < ng, the inverse image of
0} is 02 Assume that B, contains 02- for some n. Then e(n) = —1 and da(n) =1

J+mo: +mao
since §(m(t)) = 1 for elements t of B, except 02 where § = A(S™) and 7 = II(S™).

J+ma>
Next, suppose I # (). We divide the proof into two cases depending on values of 4(81).
If 6(B1) = 1, then as e(0) = —|I| and d2(0) = |I|. On the other hand, if 6(8;) = 0, then

e(1) = —|I| and da(1) = |1. O

Proof of Theorem 4.1. First, let us treat the case m; < ¢ < nj; and 1 < j < ng. In this
case, we have £(S(0)—¢(S) = —(n;—i+j). Note that if there exists no non-negative integer
n such that A,, contains v, then the set I is empty. By definition we have Zi;é di(n) =
ny—iand %11 dy(n) = j—1. Thus, if the subsets A, of T(S™) (resp. B,, of T(S©@+™)))
do not contain ¢; (resp. ;) for all n, then by Proposition 4.2 and Proposition 4.3,
we obtain £(S") — £(S®) = ny — i+ j — 1. Hence S is generic. Let us consider the
converse. If T is empty, then we have 3%Zje(n) < ny — i or Z“H’ Ye(n) < j —1 with
0(S©) — ¢(S) = ny — i+ j. On the other hand, if T # @, then %"} e(n) < n; —i — |I.
Moreover, by the proof of Proposition 4.3 we have Z“+b Ye(n)<j—1.

Next, suppose that m; < i < ny and ny < j < my. We have then £(S) — £(S©)) =
m1+n1—i+j. In this case, ZZ;}) e(n) < mq+mny —isince Ay contains the v;. Moreover,

Za—i—b—l e(n) < j—1, and hence S’ is not generic. O

n=1

Example 4.4. Here let us see an example of constructing a generic full modification for

a 1/2-separated Newton polygon. Let £ = (2,5) + (3,2). For the ABS S

B 0.0 ¢ NNN

S= 1} 15 0} o} of 12 12 of 0o} 12 0% 02, (4.1)

corresponding to &, let us construct the full modification from the small modification by

(0%,13). The ABS S is described as

/v/m

SO = 11 11 ol 12 o} 12 o} of 0} 12 02 02 (4.2)

\
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We have the set Ag = {0} and the ABS S(1:

1\ 757NN

S — 11 wol 12 04 0Z. (4.3)

We see that A; is an empty set. Moreover, the set By is {13}. Since Bj is empty, the ABS
S®) is the full modification S’. We obtain the full modification S’ by

N\ 7SN N

S =11 o 1 13 of 12 of o} of 03 13 02. (4.4)

SO XL

One can see that this full modification is generic.

Here we state some properties of generic full modifications S’ of S. Note that for a
small modification of .S, the full modification is unique if it is generic. These properties are
useful for constructing Newton polygons of generic specializations w of w¢. By the proof
of Theorem 4.1, to study generic specializations, it suffices to deal with full modifications
obtained by the small modification by OZ-1 and 132» with m; < i < nj; and 1 < j < na.
Let S = S; @ Sy be the ABS associated to a 1/2-separated Newton polygon, where S;
corresponds to i-th segment of the Newton polygon. For a generic full modification, by
Theorem 4.1, the sets A,, (resp. B,) only depend on i (resp. j) since A, (resp. B,) are
subsets of T'(S1) (resp. T'(S2)) as sets. Thus we can define the following sets.

Definition 4.5. Set

G1 = {(0}

H ]) | S” obtained by 0} and 12 is generic with m; <i <mnj; and 1 < j < no}.

By the above, we can describe this set G; as G; = C’ x D', with C' C T(S;) and
D' CT(S:). Put C=C'—{0},} and D = D' — {13}.

Remark 4.6. By the duality, the set

Go {(021, 1?) | S’ obtained by 021 and 1j2~ is generic,n; < i < hy and ng < j < ma},

wheret hy = mj+n1, can be described as Go = C”"x D", with C” C T'(S1) and D" C T(S2).

Moreover, the set G' consisting of pairs (0}, 12) such that the full modifications S’ obtained

Z’]
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by 0} and 1? are generic is equal to G1 U Go.

This definition says that a full modification obtained by the small modification by 0}
and 1? is generic if and only if 0} belongs to C’ and 1? belongs to D’. Note that in [4], we

treated the generic full modification obtained by the small modification by 0} and 13.

Example 4.7. Let £ = (2,5) + (3,2). Let S be the ABS corresponding to . Then the
set G is obtained by

G = {(03,13), (04,13), (05,13), (05,13), (05,13), (07,13)}. (4.5)

Lemma 4.8. Let n be a non-negative integer. For a generic full modification, if d;(n) > 0
(resp. da(n) > 0) and A, 11 (resp. By4+1) is not empty, then the maximum element of A, 41

(resp. the minimum element of By41) is 1}, (resp. 02, ).

Proof. For a non-negative integer n satisfying that di(n) > 0 and A, 11 # 0, if A(S) () =
1, then A,y = II(S™)(A,) and d;(n) = 0. Moreover, if A(S)(an) = A(S)(ns1) = 0,
then similarly dij(n) = 0. For the case that A(S)(a,) = 0 and A(S)(an+1) = 1, if
dy(n) > 0, then T1(S(™)(A,,) contains 1},,- Hence the maximum element of A, is 17, .
In the same way we can see that if d2(n) > 0 and By,4+1 # ), then the minimum element

of Bpy1is 02, 4. O

4.2 Determining the Newton polygons of generic specializa-

tions for 1/2-separated Newton polygons

In this section, we show Proposition 4.9. In Section 6.2, we will show Theorem 1.8, which
is a complete answer to Problem 1.7, by induction. Proposition 4.9 is a key proposition

to be applied the induction step.

Proposition 4.9. Let £ be a 1/2-separated Newton polygon. Assume that £ # (0,1) +
(1,0). For every element w of B(&), there exist a generic specialization w™ of w and a
segment p = (¢, d) such that

w =uw Dw,, (4.6)

with w’ € B(¢'), where £ = (m1 —c¢,n1 —d) + (ma,na) or & = (m1,n1) + (ma2 — ¢, ne — d):
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so that the area of the triangle surrounded by &, & and p is one.

The next proposition (Proposition 4.10) is more concretely described in terms of ABS
than Proposition 4.9. We shall prove Proposition 4.10. Let us fix some notations. Let
& = (my,n1) + (me, n2) be a 1/2-separated Newton polygon. Let S = S; @ Sy be the ABS
of £, and let S~ denote the generic full modification obtained by the small modification
by OZ1 and 1?. By the result of Section 4.1, we may assume that m; < i < n; and
1 < j < no. Constructing the full modification, we obtain the A-sequence and the B-
sequence Ay, ..., Aq, Bo, ..., By and ABS’s SO .. §@+h) where S0 = &/ We write
an = 7(0}) and B, = 71'”(1?), where 7 = II(S(). As with Section 4.1, let ¢; and
1; denote the inverse images of OZ1 and 1? by the bijection map 7 respectively. Using
Proposition 4.9, we obtain Theorem 1.8 by induction. In the following proposition, we

give a concrete construction method to obtain (4.6) from every generic full modification.

Proposition 4.10. For the 1/2-separated Newton polygon & satisfying that 0 < Ay <
1/2 < A1 < 1, let S7~ denote the ABS corresponding to a specialization w™~ for a generic

specialization w of wg. Then this w™ satisfies (4.6) if
(i) for the case n; > mj + 1,

(a) S™ is the full modification obtained by the small modification S~ by 0}, 1

1
and 1;, , or

b) S~ is the full modification obtained by the small modification S~ by 0} , and
( y y 1—1

2
17,
(ii) for the case ny =my + 1,

(c) S~ is the full modification obtained by the small modification S~ by 02, .,

2
and 17,

(d) S~ is the full modification obtained by the small modification S~ by 0} and

1? 11, Or
(e) S~ is the full modification obtained by the small modification S~ by 0}, 1.,
and 1%2 Y1

In the cases (a) and (b), the Newton polygon & of (4.6) is of the form & = (mq —
f,n1—g) + (m2,n2). On the other hand, in the cases (c¢) and (d) we have £’ = (my,n1) +
(mg — f,ma2 — g). In particular, in the case (e) we determine the Newton polygons p and

& by p=(1,1) and & = (my — Ly — 1) + (mz, na).

30



First we show Proposition 4.10 in case (i). We use some notation of Definition 4.5. By
construction, in T'(S~) we have 0} ; < 1? since if 1j2~ <0}, inT(S™)and 0} , < 1]2 in
T(S("_l)) for some n, then a,, = 0}71 and the set A, _; contains v;. This contradicts the
condition of generic full modifications as shown in Theorem 4.1. To treat the case (a), we

shall show that 0}, ,; <1}, in T(S7). To do this, we introduce

m1

Notation 4.11. For an ABS S, let t € T'(S). Put 7 = II(.S). We often express the subset
{t,m(t), 72(t),...,7"(t)} of T(S) as

t— () — 7 (t) — - = 7(t), (4.7)

and we call such a diagram pass. We often call an element of a pass a vertex of the pass.

Proposition 4.12. For the generic full modification S~, we have 0}, 1 < 1L .- Moreover,

there exists no non-negative integer n such that a,, = O}nl_H with n < a.

Proof. In the ABS S; corresponding to the first segment of £, binary expansions of 171n1

and 0}, |, are obtained by

b(1y,,) = 0.biba---by_01, (4.8)
b(Opys1) = 0.biby---bp 210, (4.9)

where h = mj +ny. In T(S™) we have two paths

0f — = 1, (4.10)
0l == 0h 4 (4.11)

Clearly 0}, belongs to Ag. Moreover H(S(O))“(O%H), which is equal to 0, |, belongs to
I1(S©)(A,_1). By the construction of the A-sequences, we have 0341 < L}, in T(S7).
Let us see the latter statement. Assume that o, = 0,171 41 for some n. Then A, contains

ap_1, and this contradicts Proposition 3.19. ]

Notation 4.13. For the ABS 51, we define paths P and @ of T'(S1) by

P o1 =00 = = 0 4, (4.12)
Q : 01— 11—+ —05,. (4.13)

These paths P and @ are useful. For instance, in the case (a) of Proposition 4.10, for

the ABS S, associated to the segment p, the set T'(S,) is equal to P. Moreover, we have
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Lemma 4.14. The set C is contained in Q.

Proof. Take 0} € C. If 0} belongs to P, then there exists a natural number n such that
I1(S)™(0f) = 07, with n < a. This contradicts Proposition 4.12. O

Definition 4.15. We define a set C; (resp. C3) to be the subset of C’ consisting of
elements 01'1 satisfying that for the generic full modification S~ obtained by OZ-1 and 1?, we

obtain (4.6) of Proposition 4.9 by S~ of (a) (resp. (b)).

Clearly if ¢! = C1 U Cy, then we complete the proof of Proposition 4.10 (i). From
now on, for each element of C, we not only show that the element belongs to C; U Cs but
also determine which of C; or Cy the element belongs to. The goal is Proposition 4.22.
To do this, let us see the construction of the ABS S~ of (a) and (b) in Proposition 4.9
concretely. Using a path, the ABS S~ obtained by 0} and 1? is described as

1 1 1 2
o<~ ... 1m1 02m1 . ()z 0j+m2
\L Telements of So (414)
1 1 1 2
0—)---—>02m1+1—)Oml+1—>---—>oi+m1 4>1]4>

First let us treat the case (a) of Proposition 4.9: S~ is the full modification of S~
obtained by exchanging 01, 41 and 171711. By construction, the full modification obtained

by (0% 1L ) for S~ is

mi+1s ~my

1 1 1 2
o< =1L <xo0f ... 0! 02, <
\L T \L Telements of So (415)
1 1 1 2
0%---—)027’”1_’_1 'X'>Om1+1%'“%01+m1 4>1J4>

which consists of two components. It is easy to see that the former component consists
of elements of P. This component is associated to w, with a segment p = (f,g). As this
component is equal to the component obtained from S; applying [2, Lemma 5.6] to 1,1711
and O}mH, we have fn; — gm; = 1. Next we deal with the case (b) of Proposition 4.9,
i.e., let us treat the ABS S~ which is the full modification of S~ obtained by (0} _;, 1j2)
This ABS S™ is described as

o<—---%O%ﬁl<————x———0}71+ml -~ . <— @
l T l (4.16)
¢ OH'ml X . 1] elements of Ss 07’

This S~ consists of two components. By construction, the latter component contains
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elements which are of the form I1(S7)"(0}) for non-negative integers n with n < a. The
former component is the ABS corresponding to w, with a segment p = (f, g). Since this
component coincides with the ABS obtained from S; by applying [2, Lemma 5.6] to 0}71
and 0}, we have fn; —gmj = 1. Thus for cases (a) and (b), We can write S~ = Ry & S,,
where the latter is associated to a Newton polygon p of one slope. We shall show that
there exists a Newton polygon & such that the other component Ry of S~ corresponds
to a generic specialization w’ of wg satisfying that (4.6) of Proposition 4.9, i.e., for the

Newton polygon &', we have Ry = R~ with the ABS R corresponding to w:.

Proposition 4.16. If Ry contains no clement ¢ satisfying that 0}, ,; <t < 1} (resp.
0}, <t< 1?) in T(S7), then 0} belongs to Cy (resp. C2).

Proof. Let S” be the full modification of S~ obtained by exchanging 0}, ,; and 1}, . To
see that Ry corresponds to a specialization of wg for some Newton polygon &', we consider

the small modification R(()O) of Ry by (1?, 0!). Here we define the sets

Ag={t e T(R\) | ap < t and TI(RV)(t) < a1 in T(RY”) with A(R)(t) =0} (4.17)
and
Bo={teT(R") | Bo < t and II(R\)(t) < By in T(R”) with A(R\)(t) = 1}, (4.18)

where o, = H(R(()O))"(Oil) and 3, = H(R(()O))”(li). For ABS’s R(()O),...,R(()n_l) and for

ordered sets Ag,...,A,_1, we construct an ABS R((Jn)

T(RY) = T(R{"™) as sets. Put I(RYY) = M(R{"™) and ARY) = ARI"™). Let

us define an order on T (R(()n)). For t < ¢ in T(R(()n_l)), we have ¢ > ¢ if and only if

H(R(()n_l))(tmm) <t<a,inT (R(()"_l)) and t' = a,, where t,;, is the minimum element

of A,—1. Thus we obtain the ABS R(()n). Let A,, be a subset of T' (R[()n)) defined by

and a set A, as follows. Set

Ap = {t | on <tand 7(t) < ang in T(R) with 5(t) = 6(an)}, (4.19)

where 7 = H(R(()n)) and § = A(R(()n)). By hypothesis, we have A, = A, — T(S,),
whence there exists a non-negative integer a’ such that A, = 0. Next, for ABS’s
R(()a/), ces ,R((]a,+n_1) and for ordered sets By,...,B,_1, to construct the ABS R(()a’-i—n)’ let
T(RY ) = T(R{ Y as sets. Put IRV ™) = MR ™) and ARY™) =
A(R(()aurn_l)). The ordering of T(R(()aurn)) is given so that for ¢t < ¢’ in T(R(()aurn_l)), set
t >t if and only if 3, < t' < H(R[()a,+n))(tnlax) in T(R(()al+n_1)) and t = 3, where tay iS

the maximum element of B,,_1. This ordering determines the ABS R(()a’—i—n)’ and we define
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a subset B, of T(Réa/+")) by
By ={t|t<Byand 1 < w(t) in T(RY ™) with 6(t) = 5(8n)} (4.20)

where ™ = H(R(()aurn)) and § = A(Réaurn)). By hypothesis, we have B,, = B,, for all n.
Hence we see that By is empty with b’ = b. It is easy to see that R((]aurbl) is the ABS
associated to & = (my — f,n1 — g) + (2, na), and that £(R@+¥)) = ¢(Ry) + 1. It induces

that Ry correspondts to a specialization of wg:. O
We give a condition for ¢ € C' to belong to Ca:

Proposition 4.17. For 0! € C and 1? € D', there exists an element ¢t € T'(S™) of the
generic full modification satisfying 01-1_1 <t < 1? if and only if there is a non-negative

integer n such that the maximum element of TI(S™)(A,,) is 0}_,.

Proof. For the ABS S clearly T'(S(?)) has no element ¢ satisfying 0l <t< 1?. Hence
if there exists an element ¢ such that 0} ;| < t < 1? in T(S)) for some m, then this ¢
is TI(S©@)™(0}) with n < m. By construction, the maximum element of TI(S(™)(4,,) is
0. O

(2

After this we assume that C' is not empty. We first introduce an ordering of C', which

plays an important role to divide the set C' into C; and Cj.

Notation 4.18. Put ¢ = |C|. For x = 1,...,¢, let iy be the natural number such that
my < iy < mi+nq and 0}1 is the element of C' appearing in the z-th vertex in the path

Q. In other words, we set

(7T (0}), ..., % (0})) = (0} 0}), (4.21)

7 410 0 Vi,

where 7 = TI(S), for elements 79 (0}),...,7%(0}) of C' with non-negative integers q; <

Here we give a characterization of “the first element of C” Oz-ll.

Lemma 4.19. If there exists a minimum number x such that the element ¢ = II(S)* (0%, )

of Q satisfies 0}, .| < ¢ <0}, in T(S1), then t = 0} .
Proof. To show the assertion, first let us see that the sets A, do not contain 0,1711 11
Assume that A, contains 0}, ,; for some n. Then II(S™))"*1(0}) < 1}, and this is a

contradiction.
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To see that the element ¢ belongs to C, let us construct the full modification by (¢, 13)
with 1? € D'. Suppose that the set A,, contains the inverse image 1; of 1? for some n, and
let us lead a contradiction. In T'(S1), this ¢; is the inverse image of ¢t. Clearly 1); belongs
to Q. Let ¢’ be the element of S(*) such that TI(S(®)"(#') = 1;. Then this ¢’ belongs to Ao
by Proposition 3.18. Now we treat elements Ty1, with 7 = 0 or 1, of the path Q between
0L

. 1 . .
mi+1 and ¢, Le., elements 7, appearing in

Or,

1+1_>"'_>Ty1_>"'_>t_>"'—>05m1' (422)

By the minimality of z, these elements T?} satisfy that y < mq or n; < y. It implies
that these elements do not belong to Ag as Ay is a subset of {0}, ,1,...,05, }. Hence ¢/
belongs to P, and there exists a natural number m such that II(S©)™(#) = 05,1~ This

contradicts the statement of the first paragraph. O

Notation 4.20. For an element OZ1 of C’, we often write A; ,, for sets A,, obtained by the
full modification of the small modification by (02-1, 13) to avoid confusion. Moreover, we
often write a; for the minimum integer a satisfying A4; , = 0. We put F; = I1(S©)(A4; 4,—1)

for all i. This set consists of all elements ¢ satisfying that 0}, | <t <1, in T(57).

Proposition 4.21. Put i = ny — ~, with v = |E;;|. Then 0} belongs to C. Moreover
E;, = B

Proof. Since E;, is a subset of {0, .1,...,0} } as sets, we have |E;,| < ny —my for all
elements O}z of C. Tt implies that m; < i < ny. To show that 0} belongs to C, consider
the full modification of the small modification by 0} and 132. It suffices to see that there
exists a natural number m such that A;¢ = A;, . Indeed, if there exists such a number
m, then A;, = A, min for all n. Put a = ﬂmfl(Ozll) with 7 = H(S(O)). Note that this
o is the inverse image of 0} in the sets T(S™). By Proposition 3.19, sets A, ;u+n do not
contain . Hence the sets A; , do not contain the inverse image of 02-1, and we are done.
Let us show that existence of such m. By the definition of v and Lemma 4.8, there exists
a natural number m’ such that A;, ,, = {11171177“, cel 1},“}. We have then A; /40 =
A, 0, whence we obtain the desired m by m = m' + 2. ]

Let d be the natural number such that iy = n; — . We fix the notations of d and ~.
To divide the set C” into C7 and Cy, these numbers play an important role as we can see

below.
Proposition 4.22. Let = be a natural number satisfying 1 < z < |C|. Then

(1) if # < d, then 0} belongs to C1,
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(2) if x > d, then 0}1 belongs to Cj.
If we accept this proposition, we can show Proposition 4.10 (i).

Proof of Proposition 4.10 (i). Let S~ denote the generic full modification obtained by 0}
and 1]2. By Proposition 4.22, it only remains to treat the case ¢ = ny. In this case we
have Ay = (), and there exists no element ¢ of T(S™) satisfying 0} | <t < 1?. Hence 0},
belongs to Cs. O

To prove Proposition 4.22, let us show some properties of sets F;, of natural numbers

d and 7.
Proposition 4.23. We have the following properties:

(1) If x < y, then E;, CE;

y?

(ii) for all non-negative integers n with n < a;,, we have |A;, | = 7,
(iii) for all x and n with n < a;,, we have |A;, »| > 7,

(iv) E;, C E;, for all x with z > d,

(v) E;, = E;, if and only if z < d.

Proof. (i): Put 7 = II(S™) for the small modification by (05, 1j2) Then there exists
a non-negative integer n such that ﬂ”(O}z) = ()z-ly with n < a;,. We have then A; , =
{O%yﬂ, ...,01} with z < ny. Clearly 4;, , is a subset of 4;, ¢, and it induces that Ej, is
a subset of Ej .

(ii): It is obvious that |A,| > |A,41] for all n. By the definition of d and v, we have
| A, 0l = 7. Moreover (i) implies that ’Aid,aid‘ >~ and hence |4;,0| == ’Aid’aid‘ = .

(iii): By (i) and the definition of v, we have |E; | > « for all  and hence |4;, | > v
for all n.

(iv): Fix a natural number x with x > d. It suffices to see that |E; | > ~v. To
lead a contradiction, assume |E; | = . Then we have A4; , = {171n1_7+1, ...,1, } and
(0} ) = 171711*7 for some u, where 7 = II(S(®)). Since ﬂ”(O%d) = 0;, for some v, we have
mUTut2(0] ) = 0} with u+v + 2 < my + ny. This is a contradiction.

(v): This statement follows from (i), (iv) and Proposition 4.21. O

Proposition 4.24. Let £' = {z e N|1 <z < |C|}. We define a set L by

£ ={z € £’ | the maximum element of A;,, is 0 _; for some n}. (4.23)
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Assume that £ is not empty. Let d’ denote the maximum number of £. We have then

£=1{1,2,....d%

Proof. Fix a natural number x with z < d’. Let us show that O}x_l belongs to A;, , for
some n. Let u be the minimum number such that A;,, has the maximum element Ozld,_l.

Consider the path consisting of maximum elements of 4;,,, with 0 < v < w.

Op, — - —0; (4.24)

’Ld/fl'

Comparing this path to the path of Q:

Opygt = Ly = Oy = - = 0, = - =0}, (4.25)
we see that (4.24) contains 0j _;. O

Proposition 4.25. Assume that the set £ of Proposition 4.24 is not empty. Then we
have d’' < d.

Proof. First, note that there exists no non-negative integer n such that the maximum

. 1 . . 1 o .
element of A;,, is 1,,, ;. Indeed, if A;,, contains 1, _; for some n, then the minimum

1

element of A;, , is 1m177, and A;, ,+1 contains the inverse image 0} of O}d. This is a

tqg+m1
contradiction.

Assume d < d’. Fix a natural number = with d < z < d’. Let us consider the
generic full modification obtained by Oild and 1?. By Proposition 4.24, we obtain the path

consisting of maximum elements of sets A;, , and E;,:

Op, = - = 0}y = TI(SO)(0F 1) = - = 0}, 1 (4.26)

Let us consider the path of T'(S7)
02'11—1 - H(Sl)(ozlz—l) — 0$n1+ry+1~ (4.27)
By the claim of the first paragraph, as the path (4.26) does not contain 1;1171, the

path (4.27) does not contain 171711. Now let us consider the generic full modification
RO ... R+ by 0; and 1J2-. There exists a natural number n such that H(R(O))”(O%w) =
O}nlJﬂH with n < a;, by (4.27). On the other hand, Proposition 4.23 (iv) implies that

E;, contains 0}, +~7+1- This contradicts Proposition 3.19. [

Proof of Proposition 4.22. Let S© .. 5@+t he the ABS’s obtained by the small modi-

fication obtained by (0}, 1?), and let S~ = S(®*) be the generic full modification. Recall
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that the specialization S~ obtained by (a) or (b) of Proposition 4.10 is of the form
ST =Ry ®S,, where S, is the ABS associated to p = (f,g), and Ry is a full modifica-
tion of the ABS corresponding to the Newton polygon & = (my — f,n1 — g) + (ma, ng).
Note that in the case (a) of Proposition 4.10, the set T'(S,) consists of all elements of the
path P. See Notation 4.13 for the definition of P and Q. First let us see the case (1).
To apply Proposition 4.16, we shall show that if < d, then by the full modification by
(051, 41> 13, ), all elements of Ej, other than 0;,, ., belong to T'(S,). By Proposition 4.23
(v), it suffices to show that all elements of E;, belong to P = T'(S,). We divide the path
Q into two paths as follows:

0f — -+ — 03, (4.28)

1 1
Omat1 = = Ojy oy

It follows from Proposition 3.19 that all elements I1(S)™(0}) with m < a;, of the latter
component of (4.28) does not belong to Ej;,. The property of i1, which is shown in
Lemma 4.19, implies that all elements of the former component of (4.28) other than 0},
do not belong to E;; C {0, 4 1,---,05, }. Hence we see that all elements ¢ of S~ satisfying
that 0}, |, <t <1}, belong to T(S,).

Next, let us see the case (2). Fix an integer x with « > d. We consider the full
modification by 0195_1 and 1? for S~. By Proposition 4.16, it suffices to show that there
exists no element ¢ with O}w_l <t< 1? in T(S7). To lead a contradiction, assume the
existence of ¢ between 0} _, and 1?. By Proposition 4.17, the maximum element of 7(A4;, ,)
is Oz-lm_1 for some v, where 7 = II(S(®)). Here we have the path consisting of maximum
elements of A;,0,...,Ai a—1,Fi:

0y, = —0,

ER (4.29)

We define the non-negative integer m to be A, m = {15, _ys1:---» 13y, } withu = |7(A;, o).
Then m < v, and the set A;, ;42 has the maximum element O;l. We treat the path
O : O,ll1 — e = O}x_l consisting of maximum elements of A;, 42, Ai, m+3,-. ., T(Ai,0)-
If the path O can be regarded as a sub-path of (4.29), we complete the proof. It suffices

If 0} belongs to O, then |E;, | < v holds, and

0l
to check that O does not contain 0 a4y

mi+y-
this contradicts with Proposition 4.23 (v). Hence O is contained in (4.29), and it implies
that Ollw_1 is the maximum element of A;,, for some n. This contradicts the definition of

d. O

It remains to show Proposition 4.10 in case (ii): n; = mj + 1 for the Newton polygon

& = (my,n1) + (ma,n2). The proof of Proposition 4.10 in case (ii) is given in the same
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way as the proof of Proposition 4.10 in case (i). As with Proposition 4.12, in a generic full
modification, 02, ,; < 12, holds. In the case ny = my + 1, we have C’ = {0}, }. We now

suppose that D is not empty.

Notation 4.26. We define paths P’ and Q" of T'(S2) as follows:

P 1 =0, 12 12 (4.30)
Q : 02,1 —11>12 12 (4.31)

Clearly the set T'(S2) is the disjoint union of P’ and @'.

In the proof of Proposition 4.10 (ii), the above P’ and @’ play a important role as the
paths P and @ do so in the proof of Proposition 4.10 (i). In the case (c) of Proposition 4.10,
the ABS S, corresponding to the segment p = (f, g) consists of all the elements of @’

Lemma 4.27. For the above sets, D is a subset of P’. Moreover, let J1s---,Jip| be
natural numbers such that 1?1 is the z-th element of D appearing in the z-th in P/, i.e.,
for D = {7 (12,),...,74PI(12 )}, we have (7% (12,),...,74PI(12 ) = (13'1""’1?@)

with ¢ <--- < gp and 7 = I1(S©). We have then j; = no.

Proof. For the former part, in the same way as Proposition 4.12 we have no non-negative
integer n with n < b such that W”(l?) = 12, for every element 1? of D. As with
Lemma 4.14, we can see D C P’. Let us show the latter part. By the former part, if

17211 belongs to D, then we immediately obtain j; = no. Consider a full modification by

(01,12 ,) with 0! € C’, and assume that the set B,, contains the inverse image Ofnz tny Of
0} in S(@*+") for some n. We have then 02,4, < 77”(1?) in S(@+7=1_ Since 02,4+ n, is the
maximum element of 7'(S()), this is a contradiction. O

Notation 4.28. Let D; (resp. D) be the subset of D consisting of 1? such that by the
generic full modification S~ obtained by Oi1 and 1?, we obtain (4.6) of Proposition 4.9 by
(c) (resp. (d)) of Proposition 4.10.

To show Proposition 4.10, we will show D = Dy U Dy. To divide the set D into D;

and Do, we shall introduce a key element of D in Proposition 4.30.

Notation 4.29. For an element 1J2- of D', we write Bj, for B, obtained by the full
modification by (0}, 13) For sets Bj, ..., Bjy, we define E; = 7m(Bjp—1) withm = H(S(O)).

Note that this set consists of all elements ¢ satisfying 0%12 41 <t<12 in S~. Moreover

m2

we denote by b; the non-negative integer b.
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Proposition 4.30. Put j = 1+ p with g = |E} |. Then 132' belongs to D. Let e be the

natural number satisfying j = je. Then £} = E .

2

o +u} for some non-negative integer

Proof. By Lemma 4.8, we have Bj, , = {03@“, ...,0
n. Then Bj, ,11 = Bjo. We can show the statement in the same way as Proposition 4.21.

O
This number e divides the set D into D and Dy as follows.
Proposition 4.31. Let = be a natural number with < |D|. Then
(1) if x < e, then 1?95 belongs to D1,
(2) if 2 > e, then 1?98 belongs to Ds.

Proof. First let us see the statement (1). Let S~ denote the generic full modification
obtained by 0} and 1J2~. For this S, the ABS S™~ of (c) or (d) of Proposition 4.10 consists
of two components Ry and S,, where S, is associated to a Newton polygon p = (f,g).
For these S™, since it coincides with the component obtained from Sy by applying [2,
Lemma 5.6] to the adjacent 1,2n2 OanH and 1? 1]2-_H respectively, we have gm; — fno = 1.
In the same way as Proposition 4.16, we obtain the property: If there exists no element ¢
of T(Ry) satisfying that 02, | <t <12, (resp. 0] <t < 1§+1) in 7, then 1? belongs to

Dy (resp. D2). By the same way as Proposition 4.23, we have
3 3 / /
(i) if <y, then £} C E;
(ii) for all n with n < bj,, we have |Bj, »| = p,
(iii) for all  and all n with n < b;,, we have |Bj, »| > p,

(iv) £/ C E; holds for all x with x > e,

(v) B, =FE; ifand only if z <e.

By (v), to show the statement (1), it suffices to consider the case x = 1. Note that in this
case, T'(S,) consists of all elements of '. We claim that there exists no element ¢ of P’
satisfying that 03n2+1 <t< 172n2 in S~. Indeed, if we divide the path P’ into two paths:

12, — 03 12 =12 (4.32)

ma+ng? J1 mo—no+1>

2

% atny» these t do not satisfy 02, <t < 12 in S~. Moreover,

clearly for ¢t =12, or 0
since each element of the latter component is of the form 77”(1?1) for some n with n < b,

by Proposition 3.22, these elements do not belong to E;l. Hence we see that all elements
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in between O'?ng—l—l and 1,2712 in S~ do not belong to T'(Ry), i.e., if ¢t belongs to Ej,'p then
this ¢ is an element of T'(S2) — P' = T'(S,).
Next let us show the statement (2). We define the non-negative integer ¢’ to be the

maximum number of the set
M={zxeM| 1§x+1 is the maximum element of Bj_,, for some n} (4.33)

with M’ = {z € N| 1 <z < |D|}. By the same way as the proof of Proposition 4.25, if M
is not empty, then ¢/ < e. A proof is given in the same way as the proof of Proposition 4.22

2). O

Proof of Proposition 4.10 (ii). By Proposition 4.31, it remains to the case j = 1. If ng > 1,
we have then 0} < 1§+1, and there exists no element ¢ of T(S™) satisfying 0} <t < 1?+1.

Hence 1? belongs to Do. Next suppose ne = 1. In this case, for S~, we construct the

full modification by (0,12, 1)- Then for S~ = Ry ® S, the latter component S,
is described as 12 O}nl +ny> and Rp is a full modification of the ABS corresponding to the

Newton polygon (m; — 1,171 — 1) + (m2,n2). Hence in this case we obtain (4.6) by (e). O

Proof of Proposition 4.9. By Proposition 4.10, it remains only to show the case Ay =1 or
Ao = 0. For the case \; = 1, using Proposition 4.10, we get the required we by (c) or
(d). If A2 = 0, then we obtain w, ~ by (a) or (b). O

Example 4.32. Let £ = (2,5) + (3,2). Let S denote the ABS corresponding to £. In
Example 4.4, we obtain the generic full modification S~ of .S obtained by (0}1, 1%) Consider
the full modification by (03,13) for S~. Then this full modification can be described as

N5 ™ N

110} 12 11 of of 07 12 02 @ 11 0} 0}, (4.34)

N XN

The first component is a specialization of N(j 3)4(32), and we have p = (1,2). For the first
component, let us consider the full modification by (0%, 1%) We have then the specializa-
tion N(7173)+(271) @ N(1,1)- Thus, constructing a specialization of N(I,1)+(1,1)’ we obtain the
Newton polygon ¢ by ¢ = 2(1,2) 4+ 3(1,1).
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Chapter 5

The case of Newton polygons

consisting of two segments

In this chapter, we treat all Newton polygons consisting of two segments, and reduce
Problem 1.4 to the case that the Newton polygon & is 1/2-separated, i.e., we reduce the
problem to the case of Chapter 4. Moreover, we show Proposition 5.9 which is a key
statement to show Theorem 1.8. This proposition is a generalization of Proposition 4.9.
In Section 6, we will see that it suffices to deal with Newton polygons £ consisting of two
segments to classify generic specializations of H(¢), and to determine its Newton polygons

for an arbitrary &.

5.1 Euclidean algorithm for Newton polygons

We denote by NP the set of Newton polygons whose all segments are not the same. Let
NP*¢P be the subset of NP consisting of Newton polygons (mq,n1)+(ma, ng)+- - -+(m,,n,)
withn,/(m,+n.) < 1/2 < ny1/(my+n1). In this section, we introduce Fuclidean algorithm
for Newton polygons ® : NP — NP*P which is used for reducing Problems 1.4 and 1.7 to
the case that the Newton polygon & is 1/2-separated. Moreover, using this map, we will
show some properties of the ABS’s corresponding to minimal DM;’s, see Lemma 5.5 and
Proposition 5.7.

First, we introduce two operations of Newton polygons to construct the map ¢ : NP —
NPP. See Section 2.1 (2.3) for the notation of Newton polygons. For a Newton polygon
¢ =>"7_,(mi,n;), we define the Newton polygon &P by

z

§D = Z(nz—i—&-lamz—i—l—l). (51)

i=1
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We call this €P the dual of £&. Moreover, for a Newton polygon ¢ satisfying m; < n; for all
i, we define the Newton polygon £ by

€9 =Y "(mi,ni —my), (5.2)
=1

and we call this £© the curtailment of &.

Example 5.1. Let & = (5,3) + (2,1) + (7,2). Then & = (2,7) + (1,2) + (3,5). For
gl - 5(1)37 we have 5? = (275) + (17 1) + (372)

Example 5.2. Let £ = (2,5) + (3,2). Then the ABS S corresponding to N¢ is described

D00 G NN

S— 1111 ol ob ot 1212 0f ob 12 02 02. (5.3)
S X
The dual P of € is ¢P = (2,3) + (5,2). The ABS SP associated to the minimal DM; of

P is described as

as

Y
SP =11 13 o} 13 13 o} of 12 12 12 0% 02. (5.4)

AN eV

Using the above operations C and D, let us construct a map ® : NP — NP*P. Propo-
sition 5.7 and Lemma 6.1 below are properties of ABS’s corresponding to minimal ABS’s
N¢ for arbitrary Newton polygons . Thanks to the map ®, proofs of these claims are
reduced to the case that the Newton polygons belong to NP*P.

For a Newton polygon { = )7 ,(m;,n;), we define the height of & by ht(§) = m1 +
ny+mo+ng +---+m, +n,. First, let us construct the image ®(§) of a Newton polygon
¢ in NP with two segments. If £ belongs to NP*P, then we define ®(£) = £. Otherwise,
the Newton polygon & = (m1,n1) + (ma, ng) satisfies that m; < n; for i = 1,2, or n;, < m;
for i = 1,2. For the former case, we define the image ®(¢) of ¢ to be the image of £€ by
®. For the latter case, we define the image ®(¢) of ¢ to be the image of ¢P€ by ®. Let
us show this map ® is well defined. Tt is clear that ht(¢€) < ht(¢) and ht(£P) = ht(€). If
ht(€) = 2, then since & has two types of segments, we see that £ = (0,1) + (1,0) which
belongs to NP*P.

For the case z > 2, let n = (m1,n1) + (mz,n,). let W denote the word of C and D
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such that ®(n) = n"V. For this W, we define the image ®(&) of ¢ by ¢€V. We call this map
® : NP — NP*°P Buclidean algorithm for Newton polygons.

Remark 5.3. By the above construction, the Newton polygon ®(¢) is described as ®(&) =
£ Q2Qm where Q; is either the operation C or the operation D for every i. Thus by the
duality and Theorem 1.6, for all Newton polygons £ consisting of two segments, we obtain

a bijection from B(&) to B(®(€)).

Example 5.4. As seen in Example 5.1, for the Newton polygon £ = (5,3)+(2,1) + (7, 2),
we have ®(§) = (2,5) + (1,1) 4+ (3,2).

Let S (resp. R) be the ABS of ¢ (resp. £©). Next, we describe a relation between S
and R. In the following lemma, we show that the set T'(R) can be regarded as a subset of

T(S) as ordered sets. This relation is used for the proofs of Lemma 6.1 and Theorem 1.6.

Lemma 5.5. Let £ = (mq,n1)+ (mg,n2) be a Newton polygon consisting of two segments
with m; < n; for i = 1,2. Let S and R be the ABS of ¢ and &£€ respectively. Then T'(R)

is contained in T'(S) as an ordered set. We have
{t e T(R) | A(R)(E) = 1} = {t € T(S) | A(S)(t) = 1} (5.5)
and
T(S)—T(R) ={IL(S)(t) | t € T(S) with A(S)(t) = 1}. (5.6)
Let ¢t be an element of T'(R). We also regard ¢ as an element of 7'(S). Then

II(S)(t if A(R)(t) =0,
o LC RN .
I1(S)%(t) otherwise.

holds.

Proof. Since € = (m1,m1 — mq1) + (mg,n2 — myg), it is clear that T'(R) is a subset of
T(S) as sets, and there is the standard one-to-one correspondence between sets {t €
T(R) | A(R)(t) = 1} and {t € T(S) | A(S)(t) = 1}. Let us show these sets coincide as
ordered sets. Take elements ¢ and s in T(R). Let ¢’ and s’ denote the elements of T'(S)
corresponding ¢ and s by the standard one-to-one correspondence respectively. Then for
binary expansions b(t) and b(s), we see b(t) < b(s) if and only if b(¢') < b(s"). Thus we
obtain the equality (5.5), and this induces that T'(R) is a subset of T'(S). We immediately
obtain (5.6) and (5.7). O
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Example 5.6 below is an example of Lemma 5.5.

Example 5.6. Let £ = (2,7) 4+ (3,5). Let S and R be the ABS’s corresponding to & and
€€ respectively. We have then

(KN T IRRTIRITRRINN
HIONTRRNN

R = 1! 1} of o} ol 12 12 0} 0! 12 02 02. (5.9)

/

One can check that these S and R satisfy (5.5), (5.6) and (5.7).

Proposition 5.7. Let S be the ABS of a minimal DM; N¢ with £ = Y7 | (m;,n;). For

natural numbers r and g with r < ¢ < z, we have
(i) 17 <19,

< 07

(11) OT mg+ng’

My+ny
(ili) 07,41 < O?nq-i-l
in the set T'(5).

Proof. Note that (iii) follows from (i). Indeed, 0;, |, and ngq 41 are the inverse image of
17 and 17 by II(S) respectively.

It suffices to treat the case z = 2. For a Newton polygon £, we denote by P(&)
the assertion: The ABS associated to the minimal DMy N¢ satisfies (i) and (ii). By
Proposition 3.7, if £ satisfies that A2 < 1/2 < Ay, then P(£) holds. To show that P(¢) is

true for all Newton polygons £ consisting of two segments, we claim
(A) If P(¢P) holds, then P(£) also holds,
(B) If m; < n; for all i and P(£€) holds, then P(¢) also holds.

By the duality, the claim (A) is obvious. Let us show that the claim (B) follows from
Lemma 5.5. Let R denote the ABS corresponding to Nec. By Lemma 5.5, it is clear that
1} < 1% in T(S). Moreover, since 0}, < 02, in T((R), we see that 0 < 02 which

nz mi+niy ma+ng?

are the inverse images of 0}, and 02, by II(S), holds in T°(S). The assertion of the lemma

ni

follows from (A), (B) and the map ® : NP — NP*P, O
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5.2 Classifying generic specializations for Newton polygons

consisting of two segments

In this section, we give a proof of Theorem 1.6. This theorem is a key statement to
classify all generic specializations of H(§) with a Newton polygon & consisting of two
segments. The notation is as Chapter 3. For a Newton polygon £, we have the one-to-one
correspondence between B(¢) and B(£P), see the paragraph after Theorem 1.6. Moreover,

to get a bijection between B(¢) and B(£€), we use Lemma 5.5.

Proof of Theorem 1.6. The assertion is paraphrased as follows: Let S (resp. R) denote the
ABS associated to ¢ (resp. £C). The map from a generic full modification S' of S obtained
by the small modification by (0}, 13) to the generic full modification R’ of R obtained by

the small modification by (0}, 1?) is bijective. The set T(R) can be regarded as a subset

of T'(S). By Lemma 5.5, we have
{(05,1) eT(9)? |0 < 12in T(S)} = {(0',1%) e T(R)? | 0' < 12 in T(R)}.  (5.10)

Suppose that the full modification S of S by the small modification by (0}, 1?) is generic.

Consider the small modifications S and R(® by the same (o}, 1?) For non-negative
integers n, let {A,} (resp. {A}) be the A-sequence obtained by Definition 3.15 for the
small modification by (0}, 1?) for S (resp. R). Clearly we have Ay = Al and £(S()) =
¢(R©). For a non-negative integer n, suppose that A, = A’ and £(S(™) = ¢(RM). If
elements t of A, satisfy that A(S)(t) = 0, then by Lemma 5.5 we see that A, 1 = A],
£(S™*D)) = (R™*D). Moreover, if elements t of A,, satisfy A(S)(t) = 1, then it follows

from Lemma 5.5 that A,4o = A/, and £(S™+2)) = ¢(R(")). Since the full modification

1 and

S’ is generic, by the above, there exist non-negative integers a and o’ such that A, = ()
and A/, = (). Similarly, for the B-sequences {B,} and {B,} obtained by Definition 3.16,
we have By = B{. For a non-negative integer n, we suppose that B, = Bj,. Similarly as

above, we have

Bnt1 = Bl and £(S©@+n+Dy = ¢(R@Hn+1)) if A(S)(t) = 0 for t € B, (5.11)

By42 = Bj,, and £(Slatn+2)y — g(R@ 1)) otherwise.

Thus we see that £(S’) = £(S) — 1 if and only if /(R') = ¢(R) — 1. This completes the
proof. ]

Let € be a Newton polygon consisting of two segments. By Theorem 1.6, we obtain a
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one-to-one correspondence between B(£) and B(¢C). Moreover, we have a bijection from
B(€) to B(£P), see the paragraph after Theorem 1.6. Thus, using Euclidean algorithm for
Newton polygons ® : NP — NP*P given in Section 5.1, to classify generic specializations

of the minimal p-divisible group H (&), we may assume that £ satisfies Ao < 1/2 < Aq.

Example 5.8. For the Newton polygon £ = (2,7) + (3,5) of Example 3.11, we have
®(€) =(2,5) + (3,2). Let S be the ABS associated to ®(§). For this ABS

B 0.0 ¢ NANN

S= 1} 15 0} o} of 12 12 of 0oF 12 0% 02, (5.12)

K/

the full modification S’ obtained by the small modification by 0} and 13 is

D\ /757N N

§' = 1! o} 11 12 of 12 0o} o} 0ol 02 1% 02. (5.13)
SO XL

For the small modification by (01,13), we have sets Ag = {01}, A; = 0, By = {13}
and By = (). Thus we have a = 1 and b = 1. One can check that these S and S’ satisfy
¢(S") = £(S)—1. Moreover, the sets of pairs (0}, 1?) constructing generic full modifications
for ABS’s corresponding to £ and ®(&) are both

{(0},1%), (0},13), (02,1%), (01,1%), (0¢,13), (01, 1%)}. (5.14)

5.3 Determining Newton polygons of generic specializations

for Newton polygons consisting of two segments

Theorems 1.5 and 6.6 say that it suffices to see the case that the Newton polygons of central
streams consist of two segments in order to determine Newton polygons of generic spe-
cializations. From now on, we mainly treat Newton polygons consisting of two segments.
Proposition 5.9 below implies that Proposition 4.9 is true for any Newton polygons &

consisting of two segments. This proposition is a key step to prove Theorem 1.8.

Proposition 5.9. Let £ = (mq,n1) + (m2,n2) be a Newton polygon consisting of two

segments. Assume that mony — ming is greater than 1. For every element w of B(§),
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there exist a generic specialization w™ of w and a segment p = (¢, d) such that
w =uw D w,, (5.15)

with w’ € B(¢'), where £ = (mq —c¢,n1 —d) + (ma,na) or & = (my,n1) + (ma2 — ¢, n2 — d):

so that the area of the triangle surrounded by &, & and p is one.

Proof. For a Newton polygon & = (my,n1) + (mg,n2), the height ht(£) of £ is defined by
ht(§) = mq +n1 +ma + na2. Let us prove the statement by induction on the height of . If
¢ is 1/2-separated, then by Proposition 4.9, we are done. It remains to see the case that

& satisfies either
e m; <n;fori=1,2, or
® N, Sml for i = 1,2.

If ¢ satisfies the latter, then we replace ¢ with P, and we may assume that & satisfies
the former. Put n = ¢©. Take w € B(£). We denote by w® the image of the map

B(&) — B(n) obtained in Theorem 1.6. Clearly we have ht(n) < ht(£). By the hypothesis

of induction, there exist a generic specialization (w®)~ of w® and a segment 7 such that

(w®)™ = vPw, with v € B(n'), where 7/ is uniquely determined by 7 and 7 so that the area

of the triangle surrounded by 7, 1’ and 7 is one. Let us show that there exists a generic

specialization w™ of w such that w™ consists of two components v’ and w, with (w’ ¥ =w

and p© = 7. Let S (resp. R) denote the ABS corresponding to w (resp. w®). Assume

that the full modification R~ of R by the small modification by (0}, 13) corresponds to
(w®)™ = v @ w,. Let us see that the full modification S~ of S by the small modification
by (0}, 1?) corresponds to the required w~. By Theorem 1.6, if we write {s; < -+ < sp}
(resp. {s] < --- < s},}) for the ordered set T'(S) (resp. T(R)), with h = ht(&) and
R’ = ht(n), then s, = s, for z = 1,...,h'. Moreover, if A(S)(s;) = 1 for an integer x,
then T1(S)%(s;) = I(R)(s,). If we denote by {t; <’ --- <’ t;,} and {t}| <’ --- <’ #},} the
ordered sets T'(S™) and T(R™) respectively, then t, = ¢/, for x = 1,...,h’. Moreover,
if A(S7)(tz) = 1 for an integer z, then T1(S7)2(t,) = H(R7)(t,). Thus we see that S~

C

corresponding to w™ = w’ ® w,, with (w')¢ =v and p© = 7. O
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Example 5.10. Let £ = (2,7) + (3,5). In Example 3.11 we obtain the full modification
of S’ by 0} and 13. The full modification of S’ by 0} and 1} is described as

D/ AV

1} 0i 13 13 of of 02 12 02 o 02 02 02 @ 15 0} 0l 0f. (5.16)
\//

The former component corresponds to a specialization of N(i4)1(35), and we have the
Newton polygon p = (1,3). We obtain the required Newton polygon ¢ by ¢ = 2(1,3) +
3(1,2). Compare with Example 4.32.
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Chapter 6

Reduction to the two segments

case

In this chapter, first we will prove Theorem 1.5. Thanks to this theorem, the problem of
classification of generic specializations (Problem 1.4) is reduced to the case that the Newton
polygon of a central stream consists of two slopes. Moreover, we will show Theorem 1.8

in Section 6.2. This theorem gives a complete answer to Proposition 1.7.

6.1 Classifying generic specializations for any Newton poly-

gons

The main purpose of this section is to prove Theorem 1.5. Let S be the ABS corresponding
to a Newton polygon €. Let S(© denote the small modification by (07, 1;1-). Lemma 6.1 and
Proposition 6.2 below imply that to classify generic full modifications, we may suppose
q = 7+ 1; see Corollary 6.3. Note that the condition ¢ = r + 1 implies that the r-th

segment of £ is adjacent to the ¢-th segment.

Lemma 6.1. Let S be the ABS associated to Ne with & = 37, (m;, n;) a Newton polygon.
Let 0" and 19 be elements of T'(S) satisfying that ¢ —r > 1 and 0" < 17 in T'(S). Then
there exists an element t* of T'(S) such that r < x < ¢ and 0" < t* < 14.

Proof. For a Newton polygon £, we write Q(§) for the assertion: For elements 0" and 17 of
the ABS associated to N¢ satisfying that ¢ —r > 1 and 0" < 19, there exists an element t*
such that r < x < q and 0" < t* < 19. It suffices to treat the case z =3, r =1 and ¢ = 3.
If A\; = A2 (resp. Ay = A3) holds, then we immediately have the desired element ¢* since

for elements 0} < 1?, the element 07 (resp. 13) satisfies 0} < 0? < 13? (resp. 0} < 1? < 15’)
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From now on, we assume that the slopes are different from each other. Now we treat

Newton polygons satisfying one of the following;:
(i) )\3<1/2§>\2<)\1,
(ii) )\3<)\2§1/2<)\1.

By the duality, if Q(&) is true for all £ satisfying (i), then Q(&) holds for all £ satisfying
(ii). Suppose that & satisfies (i). Put hy = my + n, for all xz. By Lemma 3.7, in the

ABS corresponding to the DMy N there exists no element t satisfying that

mi,n1)+(msa,nz)>
0}“ <t<1jor O}Ll <t < 123“. Hence it is enough to show that there exist elements ¢2
and t; such that 0}“ <t2 <13 and O}Ll < tz2/ < 133+1. If A2 > 1/2, then these elements are

n

obtained by 2 = 02 and t12/ = 0,212. Indeed, by Proposition 5.7 (ii), we have O}H < 07212 and

n2

0,111 < 0,212. Moreover, by the construction of the ABS of Ny, pn,)4( we have 07212 <13

m3,n3)
and 0,212 < 1%3 +1- If Ag = 1/2, then the required elements ¢2 and tz are obtained by 12 and
02.

Now we claim that
(A) If Q(£P) holds, then Q(€) also holds,
(B) If m; < n; for all 4 and Q(£C) holds, then Q(¢) also holds.

If the claim (A) and (B) are true, then by Euclidean algorithm for Newton polygons
® : NP — NP*P defined in Section 5.1, the proposition is reduced to the case (i) or (ii),
and this completes the proof. The claim (A) is obvious. Let us show (B). Let S (resp. R)
denote the ABS associated to & (resp. £¢). We can regard T(R) as a subset of T(S), see
Lemma 5.5. Let U (resp. V') be the subset of T'(R) x T'(R) (resp. T'(S) x T'(S)) consisting
of pairs (0%, 13) of elements of T(R) (resp. T(S)) satisfying 0! < 13. Again by Lemma 5.5
we have U =V, whence (B) holds. O

In Proposition 6.2 and Corollary 6.3 below, we give necessary conditions for full mod-
ifications to be generic. For the definition of the sets Ay and By, see Definition 3.15 and

Definition 3.16 respectively.

Proposition 6.2. For the small modification by (07, 1;1-), if either of the following asser-

tions
(i) the set Ay contains an element 0* with r < z, or
(ii) the set By contains an element 1% with = < ¢,

holds, then the full modification by this small modification is not generic.
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Proof. Let S( be the small modification by (0F, 1%). Put m = I(S©). Set a,, = 7™(0F)
and (8, = ﬂ"(l?). By Proposition 3.20 and Proposition 3.23, we may assume that there

(@+8) by the small modification by (07,1%). Let B} be the

exists the full modification S i1

subset of T(S(®) defined by
B, ={teT(5")| By <tand 7(t) < B1 in S with 6(t) = 1}. (6.1)

For this set, £(S) — £(S®) = |Ao| + |Bj| + 1. For non-negative integers n, we have
0(S DY — ¢(S™M) < d(n), where

Al — A, if n <a,
D (EH R o)
|Bp| — |Bp+1| ifn>a.

We have then £(S™+1)) — ¢(S(M) < d(n) for all n. Clearly £(S") — £(S©) < |Ag| + | Bo|
holds. First, let us see that £(S') — £(S©)) < |Ag| + |Bj|. Let I denote the subset of By
consisting of elements which are of the form «,,. We have then |By| < |B{| + |I|. For a
non-negative integer m, if a,,+1 belongs to I, then A,, contains the inverse image of Sy.
We have then £(S(Mm+1)) — ¢(S(™)) = d(m) — 1. Hence we see £(S®) —£(S©)) < |Aq| —|I|.
Moreover, we have £(S’) — £(S(®) = |By|. Thus we get the desired inequality.

Let us see that in the case (i) the full modification is not generic. Let m be the
minimum number such that the set A,, contains no element ¢* with » < z. Fix an element
t* of App—1. Put t = w(t*). Now we claim that 6(¢) = 1 and §(«,,) = 0. If §(¢) = 0 and
§(cuy) = 1 is true, then there exists an element 1% satisfying oy, < 1% < t in T(S(™~1),
Indeed, if 12 < ayy, holds in T(S(™~V) for all n, then we have 1%, < 17 with r < . By
Proposition 5.7 this is a contradiction. Thus we see that the set A,, contains the element
1*. This contradicts the minimality of m. Hence we have §(¢) = 1 and d(ay,) = 0, and it
implies that £(S(™) — ¢(S(m~1) < d(m), and we have £(S@) — (SO < |4Ag| — |1|.

Let us treat the case (ii). In the same way as the case (i), if By contains an element
t* with 2 < ¢, then there exists a non-negative integer m such that £(S™) — £(S(m=1) <
d(m). Indeed, for the minimum number m such that B, contains no element ¢* with
x < ¢, fix an element t* of B,,_1. Then for t = 7(t*), we have §(¢) = 0 and §(6p,) =1
since if d(t) = 1 and 6(B,,) = 0 is true, then there exists an element 0% of T/(S(™~1)
satisfying that ¢ < 0% < §,, by Proposition 5.7. It implies that B,, contains an element
0%, and this is a contradiction. Thus we obtain £(S") — £(S(®) < |By|.

By the above, in the case (i) and (ii), we have £(S") — £(S©) < |Ao| + |BY|, and it
follows that ¢(S”) < £(S) — 1. O
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Corollary 6.3. If ¢ — r > 2, then the full modification is not generic.

Proof. Put § = A(S). For a small modification by (0",1%), by Lemma 6.1, there exists
an element t* of T'(S) such that 0" < ¢t* < 1?2 and r < = < ¢. If §(t*) = 0, then the
element t* belongs to Ag, and the assertion follows from Proposition 6.2. Let us see the
case 0(t*) = 1. If the set By contains ¢*, then Proposition 6.2 completes the proof. Let us
see the case that By does not contain t*. For the set B as the proof of Proposition 6.2,
this t* belongs to Bj. We have a > d/, where a’ is the minimum number satisfying that
ag = fo since we have |By| < |Bgj| only if a > a’. Then |By| < |Bj| + |I| holds, where the
set [ is the same as the proof of Proposition 6.2. Hence we see £(S") < ¢(S) — 1. O

Example 6.4. For the ABS S of £ = (2,7)+(1,2)+(3,5), consider the small modification
by (04,13). Then the ABS S is

NN TSR

S© =11 11 0o} 13 o} 13 13 o) 0f 0f 03 13 03 03 0% 04 02 03 02 03. (6.3)

We have Ay = {0}} and A; = (). Thus we see a = 1. We have the set By = {1},13} and
By = {03,0%} with the ABS S®

By the ABS S(®), we obtain the set By = {03} and the ABS

X

AV

Similarly, we obtain Bz = {12}, By = {03} and Bs = §) with the ABS’s S®), §©) and S©).
Hence we have b = 5, and the full modification S is equal to S’ of Example 3.12.
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Let £ =37, (mi,n;) be a Newton polygon. Let S be the ABS of the DM; N¢. Recall
that the ABS S is described as S = @;1 S; for ABS’s S; corresponding to the DMy Ny, ;-
We say a full modification S’ is generic if ¢(S") = ¢(S) — 1. Propositions 3.20 and 3.23
imply that all generic full modifications are given by full modifications. Now let us show
Theorem 1.5, which implies that to determine generic specializations of H (&), it is enough

to deal with Newton polygons consisting of two segments.

Proof of Theorem 1.5. Let S be the ABS of £. We will construct a bijection map

z|_|1{generic full modifications of R;} — {generic full modifications of S}, (6.6)

i=1
where R; denotes the ABS of the two slopes Newton polygon (m;,n;) + (mit1,mi41).
Since we can regard T(R,) as a subset of T'(S) as ordered sets, we write ¢] the i-th
element of the first component of R,. Similarly we denote by t;“ the j-th element of
the second component of R,. By Corollary 6.3, it suffices to show the claim: Let r be
a natural number with r < z. The full modification of S by the small modification by
(or, 1;“) is generic if and only if the full modification of R, = S, & Sy+1 by the small
modification by the same 0] and 1;“ is generic. Put R = R,. Let R be a generic
full modification of R obtained by the small modification by (0, 1;“), and let S be
the full modification of S by the small modification by (07, 1;“). We shall show that
0(S) —£(S") = ¢(R) — L(R’). For the small modification by 0] and 1;“ of S, we use the
same notations as Definition 3.15 and Definition 3.16. Let E (resp. F') denote the subset
of Ay (resp. By) consisting of elements 0% (resp, 1Y) with x # r (resp. y # r + 1). Then

we have £(S) — £(S©) = ¢(R) — £(R©) + |E| + |F|. So it suffices to show that
08" = £(S) = R — ((RV) + |E| + |F|. (6.7)

Let m be the minimum number such that a,, = 17, . Let Co,C1,... be the A-sequence

. Since R’ is generic, there exists a non-negative integer a’

associated to R, 0] and 1;“

such that C, = ). Let us show the following three claims:
(a) for every element 0% of E, we have z < r,
(b) there exists no element t* of A,, such that = # r,

(c) there exists a non-negative integer a satisfying A, = (), and

0(8 @) — ¢(SO) = ¢(R)) — ¢(RO) + |E|. (6.8)
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Put ¢ = r + 1. To simplify, set 7 = I1(S(®) and § = A(S(). To show (a), assume r < =
for an element 0% of E. In T(S®), we have 0® < 07. Thus 0° < 1? holds in T'(S) by
definition. Then it is clear that 05, ,; < Ognq +1- By Proposition 5.7, we have x < ¢. Since
r is adjacent to ¢, this is a contradiction, and we have shown (a). To show (b), assume
that an element t* belongs to A,,—1 with x # r. We have then z < r by Proposition 3.18
and (a). Then we have §(m(t*)) = 0. Indeed, if 0(w(t*)) = 1, then 1}, < 17 holds
since o, < w(t*) in T(SU™). As z < r, this is a contradiction. Since the values of
d(am) and 0(w(t;)) are different from each other, we obtain (b). Let us show (c). Let
E, ={t* € A, | x # r} for all n. Note that the sets A, equal C},, U E,, for all n. Thus by

(b), there exists a non-negative integer a such that A, is empty. We shall show
oS D) — p(SM) = ¢(RYY — ¢(R™) + |B,,| (6.9)

for all n. If it is true, then by (b) we obtain the equation (6.8). Let us show (6.9). Let
n be a non-negative integer, and assume that for an element t* of E,,, the element m(¢*)
does not belong to A,,4+1. Then §(a,+1) = 1 and d(7(¢*)) = 0. Note that by the definition
of A-sequences, the values d(ay,+1) and §(7w(t*)) are different from each other. To make a
contradiction, suppose that d(can41) = 0 and §(7(t*)) = 1. We have then 17, < 17, with
x < r. This is a contradiction, and hence (6.9) holds.

In the same way we have the “dual” of (a), (b) and (c¢). Let m’ be the minimum

number such that £, = Ofnq +1- Then
(d) for every element 1Y of F'; we have ¢ < vy,
(e) there exists no element t¥ of By, such that y # g,

(f) we have

0(8") — 6(8' 9y = U(R) — (R + |F|. (6.10)

By (6.8) and (6.10) we get (6.7). Thus we see that if the generic full modification R’ of
R by the small modification by (07, 1;“) is generic, then the full modification S” of S by

the small modification (07,17"!) is generic. Similarly, one can see that if the generic full

177
modification S’ of S by the small modification by (07, 1;“) is generic, then so is the full
modification R’ of R by the small modification by (0, 1;“). O

Example 6.5 below is an example of Theorem 1.5.

Example 6.5. For a Newton polygon &, let G(&) be the set consisting of pairs (0], 1;1-) such
that the full modification obtained by 0] and 1? is generic. Set £ = (2,7) + (3,5) + (2,1).
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We have then

G(E) = {(05,12), (04,13), (0,13, (04,13), (04, 12), (0% 13), (02,13), (03, 13), (03,13))}.

(6.11)

Let & (resp. &) denote the Newton polygon (2,7) + (3,5) (resp. (3,5)+ (2,1)). Then we
get

G(&) = {(04,12), (0,13, (04, 13)}, (6.12)

and we can regard G(&) as the disjoint union of G(&1) and G(&2). See also Example 4.7.

6.2 Determining Newton polygons of generic specializations

for any Newton polygons

By the following theorem, Problem 1.7 is reduced to the case that £ consists of two

segments.

Theorem 6.6. If Theorem 1.8 is true for £ with two segments, then Theorem 1.8 holds
for any £.

Proof. Let & =7 (m;,n;) be a Newton polygon. For the Newton polygon & = (m;,n;)+
(mis1,ni41) and a generic specialization w’ of wg,, if we have a Newton polygon ¢’ =
(ci,di)+(ciy1, diy1) satistying (i) and (ii) of Theorem 1.8, then for the generic specialization
w of wg corresponding to w’ by Theorem 1.5, we obtain required Newton polygon ¢ by

¢=(my,n1) + -+ (mi—1,ni-1) + ¢ + (Miga, nig2) + - + (M2, n2). O
Thanks to Proposition 5.9, we can show Theorem 1.8.

Proof of Theorem 1.8. By Theorem 6.6, we may assume that £ consists of two segments.
Let us show the statement by induction on the value mon; — minsg. If the value is one,
then the only element w of B(§) is the type of w¢ with ¢ the segment (m1 +ma,n1 +n2),
and ¢ < ¢ is saturated. Indeed, if £ = (0,1) + (1,0), then it is clear that the specialization
of w € B(§) corresponds to w¢ with ¢ = (1,1). For the other Newton polygons, we can
show the claim in the same way as Proposition 5.9.

Assume that the value mgn; — ming is greater than one. Let w € B(£). By Propo-
sition 5.9, there exists a generic specialization w™ of w and a segment p such that
w” = w @ w,, with v’ € B({'), where & = (m/,n) + (mh,n5) is uniquely determined
by & and p so that the area of the triangle surrounded by &, & and p is one. Note that

mbn) — minb, < many — miny. By the hypothesis of induction, for the Newton polygon
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& we have a Newton polygon ¢’ such that ¢’ satisfies the condition (i) and (ii) of the
statement for {'. Put ¢ = (' + p. Then ¢ < ¢ is saturated, and w¢ is a specialization of
w. O
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