博士論文

On the boundary components of central streams and determining their Newton polygons

Central streamの境界成分およびその Newton polygonの決定について

国立大学法人 横浜国立大学大学院環境情報学府
樋口 伸宏
Nobuhiro Higuchi

2021年3月

Contents

1 Introduction 2
2 Preliminaries 7
$2.1 \quad p$-divisible groups and Dieudonné modules 7
2.2 Specializations 11
2.3 Classification of BT_{1} 's 12
3 Arrowed binary sequences 14
3.1 The definition of arrowed binary sequences 14
3.2 Constructing full modifications combinatorially 21
4 The case of $1 / 2$-separated Newton polygons 25
4.1 Classifying generic specializations for $1 / 2$-separated Newton polygons 25
4.2 Determining the Newton polygons of generic specializations for 1/2-separated Newton polygons 29
5 The case of Newton polygons consisting of two segments 42
5.1 Euclidean algorithm for Newton polygons 42
5.2 Classifying generic specializations for Newton polygons consisting of two segments 46
5.3 Determining Newton polygons of generic specializations for Newton poly- gons consisting of two segments 47
6 Reduction to the two segments case 50
6.1 Classifying generic specializations for any Newton polygons 50
6.2 Determining Newton polygons of generic specializations for any Newton polygons 56

Chapter 1

Introduction

In [12], Oort introduced the notion of leaves on a family of p-divisible groups. Note that p divisible groups are often called Barsotti-Tate groups, to study the moduli space of abelian varieties in positive characteristic. Let p be a prime number. Fix an algebraically closed field k of characteristic p. Let S be a noetherian scheme over k. For a p-divisible group Y over k, in $[12,2.1]$, Oort defined $\mathcal{C}_{Y}(\mathrm{~S})$ by a locally closed subset of S for a p-divisible group \mathcal{Y} over S characterized by s belongs to $\mathcal{C}_{Y}(\mathrm{~S})$ if and only if \mathcal{Y}_{s} is isomorphic to Y over an algebraically closed field containing $k(s)$ and k; see the first paragraph of Section 2.1 for a review. We call $\mathcal{C}_{Y}(\mathrm{~S})$ the central leaf associated to Y and \mathcal{Y}, if $\mathcal{Y} \rightarrow \mathrm{S}$ is a universal family over a deformation space or a moduli space.

In [12, 2.2] Oort showed that $\mathcal{C}_{Y}(\mathrm{~S})$ is closed in an open Newton polygon stratum. We regard $\mathcal{C}_{Y}(\mathrm{~S})$ as a locally closed subscheme of S by giving the induced reduced scheme structure. We are interested in the boundaries of leaves on the deformation space, and in the next paragraph we state this as a problem. In [12, 6.10], Oort treated this question in the polarized case, i.e., the case that p-divisible groups associated to polarized abelian varieties.

Let us formulate the problem on the boundaries of central leaves. Let X_{0} be a p divisible group over k. Put $\mathfrak{D e f}\left(X_{0}\right)=\operatorname{Spf}(\Gamma)$ the deformation space of X_{0}. This deformation space is the formal scheme pro-representing the functor Art $_{k} \rightarrow$ Sets which maps R to the set of isomorphism classes of p-divisible groups X over R such that $X_{k} \simeq X_{0}$. We denote by Art_{k} the category of local Artinian rings with residue field k. Let $\mathfrak{X}^{\prime} \rightarrow \operatorname{Spf}(\Gamma)$ be the universal p-divisible group. In [6, 2.4.4] de Jong showed that there exists an equivalence of categories between the category of p-divisible groups over $\operatorname{Spf}(\Gamma)$ and the category of the p-divisible groups over $\operatorname{Spec}(\Gamma)=: \operatorname{Def}\left(X_{0}\right)$. Let \mathfrak{X} be the p-divisible group over $\operatorname{Def}\left(X_{0}\right)$ obtained from \mathfrak{X}^{\prime} by this equivalence. In [12, 2.7] Oort studied $\mathcal{C}_{X_{0}}\left(\operatorname{Def}\left(X_{0}\right)\right)$. We are interested in $\mathcal{C}_{Y}(\operatorname{Def}(X))$ for $X \neq Y$ with $\mathcal{Y}=\mathfrak{X}$. Here is a basic problem:

Problem 1.1. Let Y be a p-divisible group over k. Classify p-divisible groups X over k such that $\mathcal{C}_{Y}(\operatorname{Def}(X)) \neq \emptyset$. Here $\mathcal{C}_{Y}(\operatorname{Def}(X)) \neq \emptyset$ means that X appears as a specialization of a family of p-divisible groups whose geometric fibers are isomorphic to Y.

Since the general case looks difficult, In this paper we discuss the case that the p divisible group Y is "minimal". Oort introduced the notion of minimal p-divisible groups in $[13,1.1]$, and he showed in $[13,1.2]$ that the property: Let X and Y be p-divisible groups over k. Suppose that X is minimal. If the kernel of the p-multiplication on X is isomorphic to that of Y, then X and Y are isomorphic. For a Newton polygon ξ, we obtain the minimal p-divisible group $H(\xi)$. See the third and fourth paragraphs of Section 2.1 for the definitions of Newton polygons and minimal p-divisible groups.

We call $\mathcal{C}_{Y}\left(\operatorname{Def}\left(X_{0}\right)\right)$ with Y a minimal p-divisible group a central stream. This notion is a "central" tool in the theory of foliations. For instance, it is known that the difference between central leaves and central streams comes from isogenies of p-divisible groups. Thus to study boundaries of general leaves, it is natural to start with investigating boundaries of central streams.

Let ξ be a Newton polygon. For the notation as above, we may treat the problem:
Problem 1.2. Classify p-divisible groups X over k such that $\mathcal{C}_{H(\xi)}(\operatorname{Def}(X)) \neq \emptyset$.
Let us translate this problem into the terminology of the Weyl group of $G L_{h}$. We denote by $W=W_{h}$ the Weyl group of $G L_{h}$. We identify this W with the symmetric group \mathfrak{S}_{h} in the usual way. Define $J=J_{c}$ by $J_{c}=\left\{s_{1}, \ldots, s_{h}\right\}-\left\{s_{c}\right\}$, with simple reflections $s_{i}=(i, i+1)$. Put $d=h-c$. Then there exists a one-to-one correspondence between the isomorphism classes of BT_{1} 's of rank p^{h} and dimension d over k and the subset ${ }^{J} W$ of W, see Section 2.3. Let X be a p-divisible group. Let $w \in{ }^{J} W$. We say w is the (p-kernel) type of $X[p]$ if the $\mathrm{BT}_{1} X[p]$ corresponds to w by this bijection.

In Proposition 2.1 we will show that: Let X and Y be p-divisible groups over k with $\mathcal{C}_{H(\xi)}(\operatorname{Def}(X)) \neq \emptyset$ and $X[p] \simeq Y[p]$. Then $\mathcal{C}_{H(\xi)}(\operatorname{Def}(Y)) \neq \emptyset$. Thanks to this proposition, Problem 1.2 is reduced to

Problem 1.3. Classify elements w of ${ }^{J} W$ such that
(\diamond) there exists a p-divisible group X over k such that w is the type of $X[p]$ and $\mathcal{C}_{H(\xi)}(\operatorname{Def}(X)) \neq \emptyset$.

In this paper, we treat the following problem:

Problem 1.4. Classify $w \in{ }^{J} W$ satisfying (\diamond) and $\ell(w)=\ell(H(\xi)[p])-1$.

Theorem 1.5 and Theorem 1.6 reduce Problem 1.4 to the case that Newton polygons ξ consisting of two slopes satisfying that one slope is less than $1 / 2$ and the other slope is greater than $1 / 2$. In Section 4, we solve the problem for that case.

Before we state the main theorems, we explain the above formulations using specializations of p-divisible groups. For p-divisible groups X and Y over k, we say X is a specialization of Y if there exists a family of p-divisible group $\mathfrak{X} \rightarrow \operatorname{Spec}(R)$ with discrete valuation ring R in characteristic of p such that \mathfrak{X} is isomorphic to Y over an algebraically closed field containing L and k, and \mathfrak{X}_{k} is isomorphic to X over an algebraically closed field containing K and k, where L is the field of fractions of R, and $K=R / \mathfrak{m}$ is the residue field of R. Note that X is a specialization of Y if and only if $\mathcal{C}_{Y}(\operatorname{Def}(X)) \neq \emptyset$ holds. For a p-divisible group X, we define the length $\ell(X[p])$ of the p-kernel by the length of the element of the Weyl group which is the type of $X[p]$. It is known that for the p-divisible group X_{0}, the length $\ell\left(X_{0}[p]\right)$ is equal to the dimension of the locally closed subscheme of $\operatorname{Def}\left(X_{0}\right)$ obtained by giving the induced reduced structure to the subset of $\operatorname{Def}\left(X_{0}\right)$ consisting of points $s \in \operatorname{Def}\left(X_{0}\right)$ such that $\mathfrak{X}_{s}^{\prime}[p]$ is isomorphic to $X_{0}[p]$ over an algebraically closed field; see $[15,6.10]$ and $[8,3.1 .6]$. We say a specialization X of Y is generic if $\ell(X[p])=\ell(Y[p])-1$.

Let ξ be a Newton polygon. We define $B(\xi)$ by

$$
\begin{equation*}
B(\xi)=\left\{\text { types of } X_{s}[p] \mid X_{\bar{\eta}}=H(\xi) \text { and } \ell\left(X_{s}[p]\right)=\ell\left(X_{\bar{\eta}}[p]\right)-1 \text { for some } X \rightarrow \mathrm{~S}\right\}, \tag{1.1}
\end{equation*}
$$

where $\mathrm{S}=\operatorname{Spec}(R)$ with a discrete valuation ring $(R, \mathfrak{m}), s=\operatorname{Spec}(\kappa)$ and $\bar{\eta}=\operatorname{Spec}(\bar{K})$ with $\kappa=R / \mathfrak{m}$ and $K=\operatorname{frac}(R)$. Problem 1.4 asks us to determine the set $B(\xi)$. We call $B(\xi)$ the set of boundary components of the central stream associated to ξ. The first result is:

Theorem 1.5. Let $\xi=\sum_{i=1}^{z}\left(m_{i}, n_{i}\right)$ be a Newton polygon. Let $\xi_{i}=\left(m_{i}, n_{i}\right)+\left(m_{i+1}, n_{i+1}\right)$ be the Newton polygon consisting of two adjacent segments for $i=1, \ldots, z-1$. For any $w \in B\left(\xi_{i}\right)$, the direct sum $w_{\zeta^{(i)}} \oplus w$ is contained in $B(\xi)$, where $w_{\zeta^{(i)}}$ is the type of $H\left(\zeta^{(i)}\right)$ with $\zeta^{(i)}=\left(m_{1}, n_{1}\right)+\cdots+\left(m_{i-1}, n_{i-1}\right)+\left(m_{i+2}, n_{i+2}\right)+\cdots+\left(m_{z}, n_{z}\right)$. Moreover the obtained map

$$
\begin{equation*}
\bigsqcup_{i=1}^{z-1} B\left(\xi_{i}\right) \rightarrow B(\xi) \tag{1.2}
\end{equation*}
$$

which sends $w \in B\left(\xi_{i}\right)$ to $w_{\zeta^{(i)}} \oplus w$ is bijective.
This theorem implies that the problem of determining boundary components of cen-
tral streams is reduced to the case that the Newton polygon consists of two segments. Moreover, for the two segments case, we will show the following result:

Theorem 1.6. Let $\xi=\left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)$ be a Newton polygon satisfying that $n_{1} /\left(m_{1}+\right.$ $\left.n_{1}\right)>n_{2} /\left(m_{2}+n_{2}\right) \geq 1 / 2$. Put $\xi^{\mathrm{C}}=\left(m_{1}, n_{1}-m_{1}\right)+\left(m_{2}, n_{2}-m_{2}\right)$. Then the map sending w to $\left.w\right|_{\left\{1, \ldots, n_{1}+n_{2}\right\}}$ gives a bijection from $B(\xi)$ to $B\left(\xi^{\mathrm{C}}\right)$.

For a Newton polygon $\xi=\left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)$, we set $\xi^{\mathrm{D}}=\left(n_{2}, m_{2}\right)+\left(n_{1}, m_{1}\right)$. By the duality, it is easy to see that the map sending w to $i \mapsto l-w(l-i)$, with $l=$ $m_{1}+n_{1}+m_{2}+n_{2}+1$, gives a bijection from $B(\xi)$ to $B\left(\xi^{\mathrm{D}}\right)$. Using repeatedly this duality and Theorem 1.6, we can reduce Problem 1.4 to the case of [5], i.e., to the case that the Newton polygon ξ consists of two slopes such that one slope is less than $1 / 2$ and the other slope is greater than $1 / 2$. In this paper, we treat this case in Chapter 4. There results give a complete answer to Problem 1.4.

Next, we formulate a problem on determining the Newton polygon of each boundary component in $B(\xi)$. Let ξ and ζ be Newton polygons. We write $\zeta \prec \xi$ if each point of ζ is above or on ξ with $\zeta \neq \xi$. We say $\zeta \prec \xi$ is saturated if there exists no Newton polygon η such that $\zeta \supsetneqq \eta \supsetneqq \xi$. We denote by w_{ξ} the element of the Weyl group corresponding to $H(\xi)[p]$. Our next problem is

Problem 1.7. Let ξ be a Newton polygon. We fix a generic specialization X of $H(\xi)$. Show that the existence of a Newton polygon ζ such that
(*) $H(\zeta)$ appears as a specialization of X and $\zeta \prec \xi$ is saturated,
and determine this ζ.
Note that for the Newton polygon $\mathrm{np}(X)$ of X, since $\zeta \prec \xi$ is saturated, we have that $\mathrm{np}(X)=\zeta$, and in particular $\mathrm{np}(X) \prec \xi$ is saturated, if the above problem is affirmatively solved. see [5, Corollary 1.2].

Let us translate this problem to the terminology of the Weyl group of $G L_{h}$. We say that w^{\prime} is a specialization of w, denoted by $w^{\prime} \subset w$, if there exists a discrete valuation ring R of characteristic p such that there exists a finite flat commutative group scheme G over R satisfying that $G_{\bar{\kappa}}$ is a BT_{1} of the type w^{\prime}, and $G_{\bar{L}}$ is a BT_{1} of the type w, where L (resp. κ) is the fractional field of R (resp. is the residue field of R). A generic specialization w^{\prime} of w is a specialization of w satisfying $\ell\left(w^{\prime}\right)=\ell(w)-1$. For these notations, our main result is

Theorem 1.8. Let ξ be any Newton polygon. Let $w \in{ }^{J} W$ be a generic specialization of w_{ξ}. Then there exists a Newton polygon ζ such that
(i) $\zeta \prec \xi$ is saturated, and
(ii) $w_{\zeta} \subset w$.

By Theorem 1.5, to show Theorem 1.8, the case that ξ consists of two segments is essential, see Theorem 6.6 and its proof.

For the two-slopes case, using the map given in Theorem 1.6, we have:
Theorem 1.9. Let $\xi=\left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)$ be a Newton polygon satisfying that $n_{1} /\left(m_{1}+\right.$ $\left.n_{1}\right)>n_{2} /\left(m_{2}+n_{2}\right) \geq 1 / 2$. Put $\xi^{\mathrm{C}}=\left(m_{1}, n_{1}-m_{1}\right)+\left(m_{2}, n_{2}-m_{2}\right)$. For a generic specialization $w \in B(\xi)$, let $w^{\prime} \in B\left(\xi^{\mathrm{C}}\right)$ be the generic specialization corresponding to w by the map of Theorem 1.6. Then a Newton polygon $\zeta=\sum\left(c_{i}, d_{i}\right)$ satisfies (i) and (ii) of Theorem 1.8 for w_{ξ} and w if and only if the Newton polygon $\zeta^{\mathrm{C}}=\sum\left(c_{i}, d_{i}-c_{i}\right)$ satisfies (i) and (ii) for $w_{\xi^{\mathrm{C}}}$ and w^{\prime}.

This paper is organized as follows. In Chapter 2, we recall the notions of p-divisible groups, Newton polygons and truncated Dieudonné modules of level one, and we review the classification of BT_{1} 's. In Chapter 3, we introduce arrowed binary sequences, and show some properties of ABS's corresponding to minimal DM_{1} 's. We mainly use this notion to show the main results. In Chapter 4, we treat central streams corresponding to Newton polygons satisfying that the one slope is greater than $1 / 2$ and the other is less than $1 / 2$. We will solve Problem 1.4 for such Newton polygons ξ. Moreover, we show a key statement to solve Problem 1.7, see Proposition 4.9. In Chapter 5, we introduce Euclidean algorithm for Newton polygons. Using this algorithm, we solve Problem 1.4 and Problem 1.7 for all Newton polygons ξ consisting of two segments by reducing the problems to the case of Chapter 3. Finally, in Chapter 6, we solve the problems for all Newton polygons.

I would like to express my deepest appreciation to Professor Shushi Harashita for his assistance.

Chapter 2

Preliminaries

In this chapter, first we recall the notions of p-divisible groups, leaves and Dieudonné modules. Next, in Section 2.3, we review the definition of truncated Barsotti-Tate groups of level one and a classification of BT_{1} 's.

2.1 p-divisible groups and Dieudonné modules

Fix a prime number p. Let S be a scheme in characteristic p. Let h be a non-negative integer. A p-divisible group (Barsotti-Tate group) of height h over S is an inductive system $\left(G_{v}, i_{v}\right)_{v \geq 1}$, where G_{v} is a finite locally free commutative group scheme over S of order $p^{v h}$, and for every v, there exists the exact sequence of commutative group schemes

$$
\begin{equation*}
0 \longrightarrow G_{v} \xrightarrow{i_{v}} G_{v+1} \xrightarrow{p^{v}} G_{v+1}, \tag{2.1}
\end{equation*}
$$

with canonical inclusion i_{v}, i.e., $G_{v} \simeq G_{v+1}\left[p^{v}\right]$ for all v. Let $X=\left(G_{v}, i_{v}\right)$ be a p-divisible group over S. Since $G_{v+1} \simeq G_{v+2}\left[p^{v+1}\right]$, we see that G_{v+1} is killed by p^{v+1}. Hence the multiplication by $p: G_{v+1} \rightarrow G_{v+1}$ can be regarded as $p: G_{v+1} \rightarrow G_{v+1}\left[p^{v}\right] \simeq G_{v}$. Thus we get maps $j_{v}: G_{v+1} \rightarrow G_{v}$. Let G^{t} denote the inductive system $\left(D_{S}\left(G_{v}\right), D_{S}\left(j_{v}\right)\right)_{v \geq 1}$, where $D_{S}(-)$ is the Cartier dual. We call this G^{t} the Serre dual of G. Moreover, let T be a scheme over S . Then we have the p-divisible group X_{T} over T, which is defined as ($G_{v} \times{ }_{\mathrm{S}} T, i_{v} \times \mathrm{id}$). For the case T is a closed point s over S , we call the p-divisible group X_{s} the fiber of X over s. Let k be an algebraically closed field of characteristic p. Let $Y \rightarrow \operatorname{Spec}(k)$ be a p-divisible group, and let $\mathcal{Y} \rightarrow \mathrm{S}$ be a p-divisible group over S . In [12, 2.1] Oort defined a leaf by

$$
\begin{equation*}
\mathcal{C}_{Y}(\mathrm{~S})=\left\{s \in \mathrm{~S} \mid \mathcal{Y}_{s} \text { is isomorphic to } Y \text { over an algebraically closed field }\right\}, \tag{2.2}
\end{equation*}
$$

as a set. He showed that $\mathcal{C}_{Y}(\mathrm{~S})$ is closed in a Newton stratum (cf. [12, 2.2]). We regard $\mathcal{C}_{Y}(\mathrm{~S})$ as a locally closed subscheme of S by giving the induced reduced structure on it.

Let K be a perfect field of characteristic p. Let $W(K)$ denote the ring of Witt-vectors with coefficients in K. Let σ be the Frobenius over K. We denote by the same symbol σ the Frobenius over $W(K)$ if no confusion can occur. A Dieudonné module over K is a finite $W(K)$-module M equipped with σ-linear homomorphism $\mathrm{F}: M \rightarrow M$ and σ^{-1}-linear homomorphism $\mathrm{V}: M \rightarrow M$ satisfying that $\mathrm{F} \circ \mathrm{V}$ and $\mathrm{V} \circ \mathrm{F}$ equal the multiplication by p. For each p-divisible group X, we have the Dieudonné module $\mathbb{D}(X)$ using the covariant Dieudonné functor. The covariant Dieudonné theory says that the functor \mathbb{D} induces a canonical categorical equivalence between the category of p-divisible groups over K and that of Dieudonné modules over K which are free as $W(K)$-modules. Moreover, there exists a categorical equivalence from the category of finite commutative group schemes over K to that of Dieudonné modules over K which are of finite length.

Let $\left\{\left(m_{i}, n_{i}\right)\right\}_{i=1, \ldots, z}$ be a set of a finite number of pairs of coprime non-negative integers satisfying that if $i<j$, then $\lambda_{i} \geq \lambda_{j}$ with $\lambda_{i}=n_{i} /\left(m_{i}+n_{i}\right)$ for each i. A Newton polygon is a lower convex polygon in \mathbb{R}^{2}, which breaks on integral coordinates and consists of slopes λ_{i}. We write

$$
\begin{equation*}
\sum_{i=1}^{z}\left(m_{i}, n_{i}\right) \tag{2.3}
\end{equation*}
$$

for the Newton polygon. We call each coprime pair $\left(m_{i}, n_{i}\right)$ the i-th segment of the Newton polygon. For a Newton polygon $\xi=\sum_{i}\left(m_{i}, n_{i}\right)$, we define the p-divisible group $H(\xi)$ by

$$
\begin{equation*}
H(\xi)=\bigoplus_{i} H_{m_{i}, n_{i}} \tag{2.4}
\end{equation*}
$$

where $H_{m, n}$ is the p-divisible group over \mathbb{F}_{p}, which is of dimension n and its Serre-dual is of dimension m. Moreover the Dieudonné module $\mathbb{D}\left(H_{m, n}\right)$ is described as

$$
\begin{equation*}
\mathbb{D}\left(H_{m, n}\right)=\bigoplus_{i=1}^{m+n} W\left(\mathbb{F}_{p}\right) e_{i} \tag{2.5}
\end{equation*}
$$

where with respect to the basis $\left\{e_{i}\right\}_{i}$, the operations F and V satisfy that $\mathrm{F} e_{i}=e_{i-m}$ and Ve $e_{i}=e_{i-n}$ with $e_{i-(m+n)}=p e_{i}$. Note that $W\left(\mathbb{F}_{p}\right)$ is isomorphic to the ring \mathbb{Z}_{p} of p-adic integers .

We say a p-divisible group X is minimal if X is isomorphic to $H(\xi)$ over an algebraically closed field for a Newton polygon ξ. For a p-divisible group X, the p-kernel $X[p]$ is obtained by the kernel of the multiplication by p. It is known that the Dieudonné module of $H(\xi)[p]$ makes a truncated Dieudonné module of level one (abbreviated as $\left.\mathrm{DM}_{1}\right) \mathbb{D}(H(\xi)[p])$. A DM_{1} over K of height h is the triple ($N, \mathrm{~F}, \mathrm{~V}$) consisting of a K-vector space N of height h, a σ-linear map F : N $\rightarrow N$ and a σ^{-1}-linear map $\mathrm{V}: N \rightarrow N$ satisfying that $\operatorname{ker} \mathrm{F}=\operatorname{im} \mathrm{V}$ and $\operatorname{im} \mathrm{F}=\operatorname{ker} \mathrm{V}$.

Let $\xi=\sum\left(m_{i}, n_{i}\right)$ be a Newton polygon. We denote by N_{ξ} the DM_{1} associated to $H(\xi)[p]$. Then N_{ξ} is described as

$$
\begin{equation*}
N_{\xi}=\bigoplus N_{m_{i}, n_{i}} \tag{2.6}
\end{equation*}
$$

where $N_{m, n}$ is the DM_{1} corresponding to the p-kernel of $H_{m, n}$. We call such $\mathrm{DM}_{1} N_{\xi}$ a minimal $D M_{1}$.

We use the same notation as in Chapter 1. The following proposition would be wellknown to the specialists, but as any good reference cannot be found, we give a proof for the reader's convenience. In the polarized case, a proof is given in [11, 12.5].

Proposition 2.1. Let ξ be a Newton polygon. Put $Y=H(\xi)$. Let X and X^{\prime} be p divisible groups over an algebraically closed field of characteristic p. If $\mathcal{C}_{Y}(\operatorname{Def}(X)) \neq \emptyset$ and $X[p] \simeq X^{\prime}[p]$, then $\mathcal{C}_{Y}\left(\operatorname{Def}\left(X^{\prime}\right)\right) \neq \emptyset$.

Proof. Let h and c be positive integers such that $X[p]$ is the type of $w \in{ }^{J} W$ with $W=W_{h}$ and $J=J_{m}$. Put $n=h-m$. Let F (resp. V) denote the σ-linear map (resp. σ^{-1}-linear map) of the $\mathrm{DM}_{1} \mathbb{D}(X[p])=\mathbb{D}(X) / p \mathbb{D}(X)$ with σ the Frobenius. Take a basis $\bar{z}_{n+1}, \ldots, \bar{z}_{h}$ of the image of V , and choose $\bar{z}_{1}, \ldots, \bar{z}_{n} \in \mathbb{D}(X[p])$ so that $\bar{z}_{1}, \ldots, \bar{z}_{h}$ is a basis of $\mathbb{D}(X[p])$. We choose lifts z_{1}, \ldots, z_{h} of $\bar{z}_{1}, \ldots, \bar{z}_{h}$ to $\mathbb{D}(X)$. Then $\left\{z_{1}, \ldots, z_{h}\right\}$ is a basis of $\mathbb{D}(X)$. We write

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

for the display of X with respect to the basis $\left\{z_{1}, \ldots, z_{h}\right\}$, where A is the $n \times n$ matrix, and D is the $(h-n) \times(h-n)$ matrix. See [10] for the construction of the display. Then for the Dieudonné module $\mathbb{D}(X)$ of X equipped with the operations F and V , we have

$$
\left(\mathrm{F} z_{1}, \ldots, \mathrm{~F} z_{h}\right)=\left(z_{1}, \ldots, z_{h}\right)\left(\begin{array}{cc}
A & p B \\
C & p D
\end{array}\right)
$$

and

$$
\left(\mathrm{V} z_{1}, \ldots, \mathrm{~V} z_{h}\right)=\left(z_{1}, \ldots, z_{h}\right)\left(\begin{array}{cc}
p \alpha & p \beta \\
\gamma & \delta
\end{array}\right)^{\sigma^{-1}}
$$

where

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)
$$

is the inverse matrix of the display of X. The operations F and V on $\mathbb{D}(X[p])$ satisfy that

$$
\left(\mathrm{F} \bar{z}_{1}, \ldots, \mathrm{~F} \bar{z}_{h}\right)=\left(\bar{z}_{1}, \ldots, \bar{z}_{h}\right)\left(\begin{array}{cc}
\bar{A} & 0 \\
\bar{C} & 0
\end{array}\right)
$$

and

$$
\left(\mathrm{V} \bar{z}_{1}, \ldots, \mathrm{~V} \bar{z}_{h}\right)=\left(\bar{z}_{1}, \ldots, \bar{z}_{h}\right)\left(\begin{array}{cc}
0 & 0 \\
\bar{\gamma} & \bar{\delta}
\end{array}\right)^{\sigma^{-1}} .
$$

For the p-divisible group $\mathfrak{X} \rightarrow \operatorname{Spec}(R)$ corresponding to $\operatorname{Spec}(R) \rightarrow \mathcal{C}_{Y}(\operatorname{Def}(X)) \subset$ $\operatorname{Def}(X)$, the display of \mathfrak{X} induces that

$$
\left(\mathrm{F} \bar{z}_{1}, \ldots, \mathrm{~F} \bar{z}_{h}\right)=\left(\bar{z}_{1}, \ldots, \bar{z}_{h}\right)\left(\begin{array}{cc}
\bar{A}+\bar{T} \bar{C} & 0 \\
\bar{C} & 0
\end{array}\right)
$$

and

$$
\left(\mathrm{V} \bar{z}_{1}, \ldots, \mathrm{~V} \bar{z}_{h}\right)=\left(\bar{z}_{1}, \ldots, \bar{z}_{h}\right)\left(\begin{array}{cc}
0 & 0 \\
\bar{\gamma} & -\bar{\gamma} \bar{T}+\bar{\delta}
\end{array}\right)^{\sigma^{-1}}
$$

where \bar{T} is an $(h-n) \times n$ matrix on R. On the other hand, we denote by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

the display of X^{\prime}. Using the isomorphism from $X[p]$ to $X^{\prime}[p]$, we have the basis $\bar{e}_{1}, \ldots, \bar{e}_{h}$ of $\mathbb{D}\left(X^{\prime}[p]\right)=\mathbb{D}\left(X^{\prime}\right) / p \mathbb{D}\left(X^{\prime}\right)$. We have then

$$
\left(\mathrm{F} \bar{z}_{1}, \ldots, \mathrm{~F} \bar{z}_{h}\right)=\left(\bar{z}_{1}, \ldots, \bar{z}_{h}\right)\left(\begin{array}{ll}
\bar{a} & 0 \\
\bar{c} & 0
\end{array}\right)
$$

and

$$
\left(\mathrm{V} \bar{z}_{1}, \ldots, \mathrm{~V} \bar{z}_{h}\right)=\left(\bar{z}_{1}, \ldots, \bar{z}_{h}\right)\left(\begin{array}{cc}
0 & 0 \\
\bar{\gamma}^{\prime} & \bar{\delta}^{\prime}
\end{array}\right)^{\sigma^{-1}}
$$

for the inverse matrix

$$
\left(\begin{array}{ll}
\alpha^{\prime} & \beta^{\prime} \\
\gamma^{\prime} & \delta^{\prime}
\end{array}\right)
$$

of the display of X^{\prime}. Let \mathcal{Y} be the p-divisible group having

$$
\left(\begin{array}{ll}
1 & T \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

as its display, where T is a matrix such that $T \bmod p$ equal \bar{T}. Then for the display of $\mathcal{Y}[p]$, we see

$$
\left(\mathrm{F} \bar{z}_{1}, \ldots, \mathrm{~F} \bar{z}_{h}\right)=\left(\bar{z}_{1}, \ldots, \bar{z}_{h}\right)\left(\begin{array}{cc}
\bar{a}+\bar{T} \bar{c} & 0 \\
\bar{c} & 0
\end{array}\right)
$$

and

$$
\left(\mathrm{V} \bar{z}_{1}, \ldots, \mathrm{~V} \bar{z}_{h}\right)=\left(\bar{z}_{1}, \ldots, \bar{z}_{h}\right)\left(\begin{array}{cc}
0 & 0 \\
\bar{\gamma}^{\prime} & -\overline{\gamma^{\prime}} \bar{T}+\bar{\delta}^{\prime}
\end{array}\right)^{\sigma^{-1}}
$$

whence \mathcal{Y} belongs to $\mathcal{C}_{Y}\left(\operatorname{Def}\left(X^{\prime}\right)\right)$.

2.2 Specializations

Let R be a commutative ring of positive characteristic p. Let σ be the frobenius endomorphism on R defined by $\sigma(a)=a^{p}$.

Definition 2.2. $\mathrm{A} \mathrm{DM}_{1}$ over R of height h is a quintuple $\mathcal{N}=\left(\mathcal{N}, C, D, F, V^{-1}\right)$, where
(1) \mathcal{N} is a free R-module of rank h,
(2) C and D are submodules of \mathcal{N} which are locally direct summands of \mathcal{N},
(3) $F:(\mathcal{N} / C) \otimes_{R, \sigma} R \rightarrow D$ and $V^{-1}: C \otimes_{R, \sigma} R \rightarrow \mathcal{N} / D$ are R-linear isomorphisms.

Let k be an algebraically closed field of characteristic p, and let $R=k \llbracket t \rrbracket$ be the ring of formal power series over k. For an arbitrary $\mathrm{DM}_{1} \mathcal{N}$ over R, we can consider $\mathcal{N}_{k}:=\mathcal{N} \otimes_{R} k$, which is a DM_{1} over k. Hence we have the canonical map

$$
\left\{\mathrm{DM}_{1} \text { over } R\right\} \longrightarrow\left\{\mathrm{DM}_{1} \text { over } k\right\}
$$

sending \mathcal{N} to \mathcal{N}_{k}. We call this the specialization map.

2.3 Classification of BT_{1} 's

In this section, we work over an algebraically closed field k. Let us review the classification of truncated Barsotti-Tate groups of level one.

Fix a prime number p. Let S be a scheme of characteristic p. We denote by frob $: \mathrm{S} \rightarrow$ S the absolute Frobenius morphism of S . Let $\pi: N \rightarrow \mathrm{~S}$ be a finite commutative group scheme. We define $\pi^{(p)}: N^{(p)} \rightarrow \mathrm{S}$ to be the pull-back of $\pi: N \rightarrow \mathrm{~S}$ via frobs. Using the cartesian product, we obtain the map $N \rightarrow N^{(p)}$. We write this map for $\mathrm{F}=\mathrm{F}_{N}$. For the dual N^{D} of N, we have $\mathrm{F}_{N^{D}}: N^{D} \rightarrow\left(N^{D}\right)^{(p)} \cong\left(N^{(p)}\right)^{D}$. We define V by the dual $\mathrm{V}_{N}: N^{(p)} \rightarrow N$ of $\mathrm{F}_{N^{D}}$.

Definition 2.3. A truncated Barsotti-Tate group of level one $\left(\mathrm{BT}_{1}\right)$ is a commutative, finite and flat group scheme N over a scheme in characteristic p satisfying properties $[p]_{N}=0$, and

$$
\begin{align*}
\operatorname{im}\left(\mathrm{V}: N^{(p)} \rightarrow N\right) & =\operatorname{ker}\left(\mathrm{F}: N \rightarrow N^{(p)}\right), \tag{2.7}\\
\operatorname{im}\left(\mathrm{F}: N \rightarrow N^{(p)}\right) & =\operatorname{ker}\left(\mathrm{V}: N^{(p)} \rightarrow N\right) . \tag{2.8}
\end{align*}
$$

A DM_{1} appears as a Dieudonné module of a BT_{1}. Let $W=W_{h}$ be the Weyl group of the general linear group $G L_{h}$ as Chapter 1. This W can be identified with the symmetric group \mathfrak{S}_{h}. Let Ω denote the standard generator of $W=\mathfrak{S}_{h}$. We write s_{i} for the simple reflection $(i, i+1)$. We define $J=J_{c}$ by $J_{c}=\Omega-\left\{s_{c}\right\}$. Put $d=h-c$. For the set $W_{J}:=W_{c} \times W_{d}$, let ${ }^{J} W$ be the set consisting of elements $w \in W_{h}$ such that w is the shortest element of $W_{J} \cdot w$, see [1, Chap. IV, Ex. §1 (3)]. Then we have

Theorem 2.4. There exists a one-to-one correspondence

$$
\begin{equation*}
{ }^{J} W \longleftrightarrow\left\{\mathrm{BT}_{1} \text { 's over } k \text { of height } h \text { of dimension } d\right\} / \cong . \tag{2.9}
\end{equation*}
$$

Moreover, running over all d, we have

$$
\begin{equation*}
\bigsqcup_{d}^{J} W \longleftrightarrow\{0,1\}^{h} \tag{2.10}
\end{equation*}
$$

Kraft [7], Oort [11] and Moonen-Wedhorn [9] show the existence of a one-to-one correspondence:

$$
\begin{equation*}
\{0,1\}^{h} \longleftrightarrow\left\{\mathrm{DM}_{1} \text { 's over } k \text { of height } h\right\} / \cong \tag{2.11}
\end{equation*}
$$

For $\nu \in\{0,1\}^{h}$, we construct the $\mathrm{DM}_{1} D(\nu)$ as follows. We write $\nu(i)$ for the i-th coordinate of ν. Set $N=k e_{1} \oplus \cdots \oplus k e_{h}$. We define the maps F and V as follows:

$$
\mathrm{F} e_{i}= \begin{cases}e_{j}, j=\#\{l \mid \nu(l)=0, l \leq i\} & \text { for } \nu(i)=0 \tag{2.12}\\ 0 & \text { otherwise }\end{cases}
$$

Let j_{1}, \ldots, j_{c} be the natural numbers satisfying $\nu\left(j_{l}\right)=1$ with $j_{1}<\cdots<j_{c}$. Put $d=h-c$. Then the map V is defined by

$$
\mathrm{V} e_{i}= \begin{cases}e_{j l}, l=i-d & \text { for } i>d \tag{2.13}\\ 0 & \text { otherwise }\end{cases}
$$

Therefore the $\mathrm{DM}_{1} D(\nu)$ is given by the triple $D(\nu)=(N, \mathrm{~F}, \mathrm{~V})$. Thus we can identify DM_{1} 's with sequences consisting of 0 and 1 .

Let us construct a bijection between ${ }^{J} W$ and the set of isomorphism classes of DM_{1} 's over k of height h and dimension d. For an element w of ${ }^{J} W$, we define $\nu(j)=0$ if and only if $w(j)>c$ for $j=1, \ldots, h$, and we obtain the element $(\nu(1), \nu(2), \ldots, \nu(h))$ of $\{0,1\}^{h}$. This gives a one-to-one correspondence between ${ }^{J} W$ and the subset of $\{0,1\}^{h}$ consisting of elements ν satisfying $\#\{j \mid \nu(j)=0\}=d$.

Here, we show a lemma used for the construction of generic specializations. We define $x \in W$ by $x(i)=i+d$ if $i \leq c$ and $x(i)=i-c$ otherwise. Let θ be the map from W to itself defined by $\theta(u)=x u x^{-1}$. By [14, 4.10], we have $w^{\prime} \subset w$ if and only if there exists $u \in W_{J}$ such that $u^{-1} w^{\prime} \theta(u) \leq w$ with the Bruhat order \leq.

Lemma 2.5. Let $w \in{ }^{J} W$. Let w^{\prime} be a specialization of w. If w^{\prime} is generic, then there exist $v \in W$ and $u \in W_{J}$ such that
(i) $v=w s$ for a transposition s,
(ii) $\ell(v)=\ell(w)-1$,
(iii) $w^{\prime}=u v \theta\left(u^{-1}\right)$.

Proof. Let $w \in{ }^{J} W$. Let $w^{\prime} \in{ }^{J} W$ satisfying that $w^{\prime} \subset w$ and $\ell\left(w^{\prime}\right)=\ell(w)-1$. Choose an element u of W_{J} satisfying that $u^{-1} w^{\prime} \theta(u)<w$. Set $v=u^{-1} w^{\prime} \theta(u)$. Let us show (ii). Since w^{\prime} belongs to ${ }^{J} W$, we have $\ell(v) \geq \ell\left(u^{-1} w^{\prime}\right)-\ell\left(\theta(u)^{-1}\right)=\ell(u)+\ell\left(w^{\prime}\right)-\ell(\theta(u))$. Moreover, we have $\ell(u)+\ell\left(w^{\prime}\right)-\ell(\theta(u))=\ell\left(w^{\prime}\right)$ since for all element u^{\prime} of W_{J} we have $\ell\left(u^{\prime}\right)=\ell\left(\theta\left(u^{\prime}\right)\right)$ by the definition of θ. As $v<w$, we have $\ell(v)<\ell(w)$. Thus we see (ii). Let $w=s_{i_{1}} s_{i_{2}} \ldots s_{i_{l}}$ be a reduced expression of w with $v=s_{i_{1}} \ldots s_{i_{q-1}} s_{i_{q+1}} \ldots s_{i_{l}}$. Set $s=\left(s_{i_{l}} \ldots s_{i_{q+1}}\right) s_{i_{q}}\left(s_{i_{q+1}} \ldots s_{i_{l}}\right)$. Then s is a transposition, and this s satisfies $v=w s$.

Chapter 3

Arrowed binary sequences

In this chapter we introduce arrowed binary sequences as a generalization of classifying data ${ }^{J} W$ of BT_{1} 's. Arrowed binary sequences are a main tool to prove the main theorems. For instance, in Section 3.2, we introduce a combinatorial method to construct specializations of minimal DM_{1} 's.

3.1 The definition of arrowed binary sequences

Definition 3.1. An arrowed binary sequence (we often abbreviate as ABS) is the triple (T, Δ, Π) consisting of a totally ordered finite set $T=\left\{t_{1}<t_{2}<\cdots<t_{h}\right\}$, a map $\Delta: T \rightarrow\{0,1\}$ and a bijection $\Pi: T \rightarrow T$. For an ABS S, let $T(S)$ denote the totally ordered finite set of S. Similarly, we denote by $\Delta(S)$ (resp. $\Pi(S)$) the map from $T(S)$ to $\{0,1\}$ (resp. the map from $T(S)$ to itself). For an ABS S, we define the length $\ell(S)$ of S by

$$
\begin{equation*}
\ell(S)=\#\left\{\left(t, t^{\prime}\right) \in T(S) \times T(S) \mid t<t^{\prime} \text { with } \Delta(S)(t)=0 \text { and } \Delta(S)\left(t^{\prime}\right)=1\right\} \tag{3.1}
\end{equation*}
$$

Remark 3.2. Let $N=(N, \mathrm{~F}, \mathrm{~V})$ be a DM_{1}. We construct the arrowed binary sequence (Λ, δ, π) associated to N as follows. Let ν be the element of $\{0,1\}^{h}$ corresponding to N. For a totally ordered set $\Lambda=\left\{t_{1}, \ldots, t_{h}\right\}$, let $\delta: \Lambda \rightarrow\{0,1\}$ be the map which sends t_{i} to the i-th coordinate of ν. Using the basis of N satisfying (2.12) and (2.13), we define the $\operatorname{map} \pi: \Lambda \rightarrow \Lambda$ by $\pi\left(t_{i}\right)=t_{j}$, where j is uniquely determined by

$$
\begin{cases}\mathrm{F} e_{i}=e_{j} & \text { if } \delta\left(t_{i}\right)=0 \tag{3.2}\\ \mathrm{~V} e_{j}=e_{i} & \text { otherwise }\end{cases}
$$

We say an ABS is admissible if it is associated to some DM_{1} by the above correspondence.
Remark 3.3. For the $\mathrm{DM}_{1} N_{m, n}$ corresponding to the p-divisible group $H_{m, n}$, we get the ABS S as follows. Set $T(S)=\left\{t_{1}, \ldots, t_{m+n}\right\}$. The map $\Delta(S)$ is defined by $\Delta(S)\left(t_{i}\right)=1$ if $i \leq m$, and $\Delta(S)\left(t_{i}\right)=0$ otherwise. The map $\Pi(S)$ is defined by $\Pi(S)\left(t_{i}\right)=t_{i+n}$ if $i \leq m$, and $\Pi(S)\left(t_{i}\right)=t_{i-m}$ otherwise.

Let S be an ABS. Put $\delta=\Delta(S)$ and $\pi=\Pi(S)$. The binary expansion $b(t)$ of $t \in T(S)$ is the real number $b(t)=0 . b_{1} b_{2} \ldots$, where $b_{i}=\delta\left(\pi^{-i}(t)\right)$.

Proposition 3.4. Let S be an admissible ABS. For elements t_{i} and t_{j} of $T(S)=$ $\left\{t_{1}, t_{2}, \ldots, t_{h}\right\}$, the following holds.
(i) Suppose $\Delta(S)\left(t_{i}\right)=\Delta(S)\left(t_{j}\right)$. Then $t_{i}<t_{j}$ if and only if $\Pi(S)\left(t_{i}\right)<\Pi(S)\left(t_{j}\right)$.
(ii) Suppose $b\left(t_{i}\right) \neq b\left(t_{j}\right)$. Then $b\left(t_{i}\right)<b\left(t_{j}\right)$ if and only if $i<j$.

Proof. (i) follows from the construction of admissible ABS's. Let us see (ii). Put $\delta=\Delta(S)$ and $\pi=\Pi(S)$. By the construction of admissible ABS's, for elements t and t^{\prime} of $T(S)$, if $\delta(t)=1$ and $\delta\left(t^{\prime}\right)=0$, then $\pi\left(t^{\prime}\right)<\pi(t)$. First, assume $b\left(t_{i}\right)<b\left(t_{j}\right)$. Then there exists a non-negative integer u such that $\delta\left(\pi^{-v}\left(t_{i}\right)\right)=\delta\left(\pi^{-v}\left(t_{j}\right)\right)$ for $0 \leq v<u$ and $\delta\left(\pi^{-u}\left(t_{i}\right)\right)=0$, $\delta\left(\pi^{-u}\left(t_{j}\right)\right)=1$. We have then $\pi^{-u+1}\left(t_{i}\right)<\pi^{-u+1}\left(t_{j}\right)$, and the assertion follows from (i). Next, assume $i<j$. To lead a contradiction, we suppose that $b\left(t_{j}\right)<b\left(t_{i}\right)$. Then there exists a non-negative integer u such that $\delta\left(\pi^{-u}\left(t_{j}\right)=0\right.$ and $\delta\left(\pi^{-u}\left(t_{i}\right)\right)=1$, and for nonnegative integers v satisfying $v<u$, we have $\delta\left(\pi^{-v}\left(t_{j}\right)=\delta\left(\pi^{-v}\left(t_{i}\right)\right)\right.$. This implies that $\pi^{-u+1}\left(t_{j}\right)<\pi^{-u+1}\left(t_{i}\right)$, and this is a contradiction.

Next, in Definition 3.5, we introduce the direct sum of ABS's. The construction of the direct sum is induced from the direct sum of corresponding DM_{1} 's.

Definition 3.5. Let S_{1} and S_{2} be ABS's. We define the direct sum $S=S_{1} \oplus S_{2}$ of S_{1} and S_{2} as follows. Let $T(S)=T\left(S_{1}\right) \sqcup T\left(S_{2}\right)$ as sets. We define the map $\Delta(S): T(S) \rightarrow\{0,1\}$ to be $\left.\Delta(S)\right|_{T\left(S_{i}\right)}=\Delta\left(S_{i}\right)$ for $i=1,2$. Let $\Pi(S)$ be the map from $T(S)$ to itself satisfying that $\left.\Pi(S)\right|_{T\left(S_{i}\right)}=\Pi\left(S_{i}\right)$ for $i=1,2$. We define the order on $T(S)$ so that for elements t and t^{\prime} of $T(S)$,
(i) if $b(t) \leq b\left(t^{\prime}\right)$, then $t<t^{\prime}$;
(ii) $t<t^{\prime}$ if and only if $\Pi(S)(t)<\Pi(S)\left(t^{\prime}\right)$ when $\Delta(S)(t)=\Delta(S)\left(t^{\prime}\right)$.

Notation 3.6. Let N_{ξ} be the minimal DM_{1} of a Newton polygon $\xi=\sum_{i=1}^{z}\left(m_{i}, n_{i}\right)$. Let S be the ABS associated to N_{ξ}. Then S is described as $S=\bigoplus_{i=1}^{z} S_{i}$, where S_{i} is the ABS
associated to the $\mathrm{DM}_{1} N_{m_{i}, n_{i}}$. If an element t of $T(S)$ belongs to $T\left(S_{r}\right)$, then we denote by t^{r} or τ^{r} this element t with $\tau=\Delta(S)(t)$. If we want to say that the element t^{r} is the i-th element of $T\left(S_{r}\right)$, we write t_{i}^{r} for the element t^{r}. Furthermore, we often write τ_{i}^{r} for the element t_{i}^{r} of $T(S)$ with $\tau=\Delta(S)\left(t_{i}^{r}\right)$.

For certain Newton polygons ξ, the ABS associated to N_{ξ} is described as follows:
Lemma 3.7. Let N_{ξ} be the minimal DM_{1} of $\xi=\left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)$ with $\lambda_{2}<1 / 2<\lambda_{1}$. For the above notation, the sequence S associated to N_{ξ} is obtained by the following:

$$
\begin{equation*}
\underbrace{1_{1}^{1} \cdots 1_{m_{1}}^{1}}_{m_{1}} \underbrace{0_{m_{1}+1}^{1} \cdots 0_{n_{1}}^{1}}_{n_{1}-m_{1}} \underbrace{1_{1}^{2} \cdots 1_{n_{2}}^{2}}_{n_{2}} \underbrace{\underbrace{1}_{n_{1}+1} \cdots 0_{h_{1}}^{1}}_{m_{1}} \underbrace{\underbrace{2}_{n_{2}+1} \cdots 1_{m_{2}}^{2}}_{m_{2}-n_{2}} \underbrace{0_{m_{2}+1}^{2} \cdots 0_{h_{2}}^{2}}_{n_{2}} . \tag{3.3}
\end{equation*}
$$

Proof. See [2], Proposition 4.20.
We denote by $\mathcal{H}^{\prime}(h, d)$ the set of admissible ABS's whose corresponding DM_{1} 's are of height h and dimension d. We have a natural bijection from ${ }^{J} W$ to $\mathcal{H}^{\prime}(h, d)$. Via this bijection, the ordering \subset on ${ }^{J} W$ defines an ordering on $\mathcal{H}^{\prime}(h, d)$.

We shall give a method to construct a typical specialization of ABS's. It will turns out to correspond to specializations $w^{\prime} \subset w$ with $v=w s<w$ and $w^{\prime}=u v \theta\left(u^{-1}\right)$, where s denotes a transposition and $u \in W_{J}$.

Definition 3.8. Let S be an admissible ABS with $T(S)=\left\{t_{1}<\cdots<t_{h}\right\}$. Let i and j be natural numbers with $i<j$. We define an ABS $S^{(0)}$ as follows. We set $T\left(S^{(0)}\right)=$ $\left\{t_{1}^{\prime}<^{\prime} \cdots<^{\prime} t_{h}^{\prime}\right\}$ to be $t_{z}^{\prime}=t_{f(z)}$ for $f=(i, j)$ transposition. Let $\Delta\left(S^{(0)}\right)=\Delta(S)$. For a natural number z with $1 \leq z \leq h$, we denote by $g(z)$ the natural number satisfying $\Pi(S)\left(t_{z}\right)=t_{g(z)}$. We define $\Pi\left(S^{(0)}\right): T\left(S^{(0)}\right) \rightarrow T\left(S^{(0)}\right)$ by

$$
\Pi\left(S^{(0)}\right)\left(t_{z}^{\prime}\right)= \begin{cases}t_{g(j)}^{\prime} & \text { if } z=i \tag{3.4}\\ t_{g(i)}^{\prime} & \text { if } z=j \\ t_{g(z)}^{\prime} & \text { otherwise }\end{cases}
$$

Thus we obtain an ABS $S^{(0)}$. We call this ABS the small modification by $\left(t_{i}, t_{j}\right)$.
For an ABS S, we often describe th map $\Pi(S)$ using the arrows:

where \bullet are elements of $\Delta(S)$.

Example 3.9. Let $\xi=(2,7)+(3,5)$. Let S be the ABS corresponding to the $\mathrm{DM}_{1} N_{\xi}$. Then S is described as

Moreover, the small modification $S^{(0)}$ by $\left(0_{4}^{1}, 1_{2}^{2}\right)$ is described as

Definition 3.10. Let S be an admissible ABS. Let $S^{(0)}$ be the small modification by $\left(t_{i}, t_{j}\right)$. Put $T\left(S^{(0)}\right)=\left\{t_{1}<\cdots<t_{h}\right\}$. An ABS is a full modification of $S^{(0)}$ if
(i) $T\left(S^{\prime}\right)=T\left(S^{(0)}\right)$ as sets,
(ii) $\Delta\left(S^{\prime}\right)=\Delta\left(S^{(0)}\right)$,
(iii) $\Pi\left(S^{\prime}\right)=\Pi\left(S^{(0)}\right)$, and
(iv) $<^{\prime}$ is an ordering of $T\left(S^{\prime}\right)$ to be $t_{x}<^{\prime} t_{y} \Rightarrow b\left(t_{x}\right) \leq b\left(t_{y}\right)$
for elements t_{x} and t_{y} of $T\left(S^{\prime}\right)$. We denote by S^{\prime} a full modification obtained by $S^{(0)}$. We say a full modification S^{\prime} of $S^{(0)}$ is generic if $\ell\left(S^{\prime}\right)=\ell(S)-1$.

By construction, for a small modification $S^{(0)}$ of an ABS S, there exists at least one full modification S^{\prime}. Put $T\left(S^{\prime}\right)=\left\{t_{1}^{\prime}<^{\prime} \cdots<^{\prime} t_{h}^{\prime}\right\}$. Full modifications are not always unique but the sequence $\Delta\left(S^{\prime}\right)\left(t_{1}^{\prime}\right), \ldots, \Delta\left(S^{\prime}\right)\left(t_{h}^{\prime}\right)$ is unique, see Example 3.13. Moreover, if the full modification S^{\prime} of S by $\left(0_{i}^{1}, 1_{j}^{2}\right)$ is unique, then this corresponds to a specialization of w, where w is the element of ${ }^{J} W$ corresponding to S. In Proposition 3.20 and Proposition 3.23, we will see that if full modifications are not unique, then these are not generic for an ABS S corresponding to a Newton polygon ξ.

Let us see some examples of constructing full modifications.

Example 3.11. Let us see an example of constructing a full modification. Let $\xi=$ $(2,7)+(3,5)$, and let S be the ABS associated to N_{ξ}. Let S^{\prime} denote the full modification
of the small modification obtained by 0_{4}^{1} and 1_{2}^{2}. Then S^{\prime} is described as

One can see that these S and S^{\prime} satisfy $\ell\left(S^{\prime}\right)=\ell(S)-1$, i.e., this S^{\prime} is a generic full modification of S.

Example 3.12. Next, let us treat a Newton polygon consisting of three segments. Let $\xi=(2,7)+(1,2)+(3,5)$. Then the ABS S corresponding to N_{ξ} is

For this S, the full modification S^{\prime} of the small modification obtained by exchanging 0_{4}^{1} and 1_{2}^{3} is

We see that this S^{\prime} is not generic.

Example 3.13. Let $\xi=(3,4)+(3,2)$. Then the ABS S corresponding to ξ is described as

Let us consider the full modification of the small modification obtained by 0_{4}^{1} and 1_{3}^{2}. For
elements t of the small modification $T\left(S^{(0)}\right)$, binary expansions $b(t)$ are obtained by

$$
b(t)= \begin{cases}0.010101 \cdots & \text { if } \Delta(S)(t)=1 \tag{3.12}\\ 0.101010 \cdots & \text { otherwise }\end{cases}
$$

Thus in this case, full modifications are not unique. However the DM_{1} is uniquely determined as N_{ζ} with $\zeta=6(1,1)$.

Remark 3.14. Let $S \in \mathcal{H}^{\prime}(h, d)$. Let S^{\prime} be a full modification of the small modification $S^{(0)}$ obtained by exchanging t_{i} and t_{j} with $T\left(S^{\prime}\right)=\left\{t_{1}^{\prime}<^{\prime} \cdots<^{\prime} t_{h}^{\prime}\right\}$. We denote by w the element of ${ }^{J} W$ corresponding to S. Put $s=(i, j)$ transposition. Maps $\Pi(S)$ and $\Pi\left(S^{\prime}\right)$ can be regarded as elements of W. We have then $\Pi(S)=x w$. For the small modification $S^{(0)}$ with $T\left(S^{(0)}\right)=\left\{t_{1}^{(0)}<\cdots<t_{h}^{(0)}\right\}$, we define $\varepsilon \in W$ to be $t_{z}^{(0)}=t_{\varepsilon(z)}^{\prime}$. Since $b\left(t_{z}^{(0)}\right)<0.1$ if $z \leq d$ and $b\left(t_{z}^{(0)}\right)>0.1$ otherwise, ε stabilizes $\{1,2, \ldots, d\}$. Put $v=w s$. Then $w^{\prime}=u v \theta\left(u^{-1}\right)$ corresponds to S^{\prime} for $u=x^{-1} \varepsilon^{-1} x \in W_{J}$. The map $\Pi\left(S^{\prime}\right)$ is obtained by $\varepsilon^{-1} \Pi(S) s \varepsilon$.

After this, S denotes the ABS corresponding to a Newton polygon ξ. In Definitions 3.15 and 3.16 below, we introduce sets A_{n}, B_{n} and a method to construct full modifications S^{\prime} of S combinatorially. Using these sets and the method, we can calculate the lengths of full modifications, and classify generic full modifications. For instance, in Proposition 6.2 and Corollary 6.3, using this construction, we give a necessary condition for a full modification to be generic.

Definition 3.15. Let S be the ABS of a minimal DM_{1}. Let $S^{(0)}$ be the small modification by $\left(0_{i}^{r}, 1_{j}^{q}\right)$. Set $\delta=\Delta\left(S^{(0)}\right)$ and $\pi=\Pi\left(S^{(0)}\right)$. For non-negative integers n, we write α_{n} for $\pi^{n}\left(0_{i}^{r}\right)$. We define a subset A_{0} of $T\left(S^{(0)}\right)$ to be

$$
\begin{equation*}
A_{0}=\left\{t \in T\left(S^{(0)}\right) \mid t<\alpha_{0} \text { and } \alpha_{1}<\pi(t) \text { in } T\left(S^{(0)}\right), \text { with } \delta(t)=0\right\} \tag{3.13}
\end{equation*}
$$

endowed with the order induced from $T\left(S^{(0)}\right)$. Let n be a natural number. We construct an ABS $S^{(n)}$ and a set A_{n} from the ABS $S^{(n-1)}$ and the set A_{n-1} as follows. Let $T\left(S^{(n)}\right)=$ $T\left(S^{(n-1)}\right)$ as sets. We define the order on $T\left(S^{(n)}\right)$ so that for $t<t^{\prime}$ in $S^{(n-1)}$, we have $t>t^{\prime}$ if and only if $\alpha_{n}<t^{\prime} \leq \pi\left(t_{\max }\right)$ and $t=\alpha_{n}$ in $S^{(n-1)}$. Here $t_{\max }$ is the maximum element of A_{n-1}. We define the set A_{n} by

$$
\begin{equation*}
A_{n}=\left\{t \in T\left(S^{(n)}\right)-T\left(S_{q}\right) \mid t<\alpha_{n} \text { and } \alpha_{n+1}<\pi(t) \text { in } T\left(S^{(n)}\right) \text { with } \delta(t)=\delta\left(\alpha_{n}\right)\right\} \tag{3.14}
\end{equation*}
$$

endowed with the order induced from $S^{(n)}$. Thus we obtain the ABS $S^{(n)}=\left(T\left(S^{(n)}\right), \delta, \pi\right)$ and the set A_{n}. We call these sets $\left\{A_{n}\right\} A$-sequence associated to $S, 0_{i}^{r}$ and 1_{j}^{q}.

Proposition 3.20 implies that if a full modification obtained by a small modification is generic, then there exists a non-negative integer a such that $A_{a}=\emptyset$. Now we suppose that there exists such an integer a. Then we can define the following ABS's and sets.

Definition 3.16. For the ABS S corresponding to a minimal DM_{1}, let $S^{(0)}$ be the small modification by $\left(0_{i}^{r}, 1_{j}^{q}\right)$. We write δ for $\Delta\left(S^{(0)}\right)$ and π for $\Pi\left(S^{(0)}\right)$. Put $\beta_{n}=\pi^{n}\left(1_{j}^{q}\right)$ for non-negative integers n. Assume that there exists the minimum non-negative integer a such that $A_{a}=\emptyset$, we define a set B_{0} by

$$
\begin{equation*}
B_{0}=\left\{t \in T\left(S^{(a)}\right) \mid \beta_{0}<t \text { and } \pi(t)<\beta_{1} \text { in } T\left(S^{(a)}\right) \text { with } \delta(t)=1\right\} \tag{3.15}
\end{equation*}
$$

endowed with the order induced from $T\left(S^{(a)}\right)$. For the $\operatorname{ABS} S^{(a+n-1)}$ and the set B_{n-1}, we define an ABS $S^{(a+n)}$ as follows. Let $T\left(S^{(a+n)}\right)=T\left(S^{(a+n-1)}\right)$ as sets. Let $\Delta\left(S^{(a+n)}\right)=$ $\Delta\left(S^{(a+n-1)}\right)$ and $\Pi\left(S^{(a+n)}\right)=\Pi\left(S^{(a+n-1)}\right)$. The ordering of $T\left(S^{(a+n)}\right)$ is given so that for $t<t^{\prime}$ in $S^{(a+n-1)}$, we have $t>t^{\prime}$ if and only if $\pi\left(t_{\min }\right) \leq t<\beta_{n}$ and $t^{\prime}=\beta_{n}$, where $t_{\min }$ is the minimum element of B_{n-1}. We define the set B_{n} as

$$
\begin{equation*}
B_{n}=\left\{t \in T\left(S^{(a+n)}\right) \mid \beta_{n}<t \text { and } \pi(t)<\beta_{n+1} \text { in } T\left(S^{(a+n)}\right) \text { with } \delta(t)=\delta\left(\beta_{n}\right)\right\} \tag{3.16}
\end{equation*}
$$

with the ordering obtained from the order on $S^{(a+n)}$. Thus we obtain the ABS $S^{(a+n)}$ and the set B_{n}. We call these sets $\left\{B_{n}\right\} B$-sequence associated to $S, 0_{i}^{r}$ and 1_{j}^{q}.

For a small modification by $\left(0_{i}^{r}, 1_{j}^{q}\right)$, if there exists non-negative integers a and b such that $A_{a}=\emptyset$ and $B_{b}=\emptyset$, then the ABS $S^{(a+b)}$ is the full modification by $\left(0_{i}^{r}, 1_{j}^{q}\right)$. In Proposition 3.23 , we will see that if a full modification is generic, then for the above sets B_{n}, there exists a non-negative integer b such that $B_{b}=\emptyset$, i.e., a generic full modification is obtained by the $\operatorname{ABS} S^{(a+b)}$ for some integers a and b.

Example 3.17. Let $\xi=(2,7)+(3,5)$. Let S be the ABS of ξ. The small modification $S^{(0)}$ by $\left(0_{4}^{1}, 1_{2}^{2}\right)$ constructed in Example 3.9, we have sets $A_{0}=\left\{00_{5}^{1}\right\}$ and $A_{1}=\emptyset$. The $\mathrm{ABS} S^{(1)}$ is obtained by

By the above $B_{0}=\left\{1_{1}^{2}\right\}$. We have $B_{1}=\left\{0_{7}^{2}\right\}$ with the ABS

Clearly $B_{2}=\emptyset$. Hence we see $a=1$ and $b=1$. One can check that the full modification $S^{(3)}$ is equal to S^{\prime} of Example 3.11.

3.2 Constructing full modifications combinatorially

In this section, using Definitions 3.15 and 3.16 , we construct full modifications combinatorially.

We use the notation of Notation 3.6. Furthermore, we fix the following notation. Let S be the ABS associated to N_{ξ}. Let $S^{(0)}$ be the small modification by $\left(0_{i}^{r}, 1_{j}^{q}\right)$. Then we obtain arrowed binary sequences $S^{(1)}, S^{(2)}, \ldots$ and the A-sequence A_{0}, A_{1}, \ldots by Definition 3.15. Put $\delta=\Delta\left(S^{(0)}\right)$ and $\pi=\Pi\left(S^{(0)}\right)$. We set $\alpha_{n}=\pi^{n}\left(0_{i}^{r}\right)$ and $\beta_{n}=\pi^{n}\left(1_{j}^{q}\right)$ for non-negative integers n.

Proposition 3.18. Let n be a natural number with $n<a^{\prime}$, where a^{\prime} is the minimum number such that $\alpha_{a^{\prime}}=\beta_{0}$. The set A_{n} is equal to

$$
\begin{equation*}
\left\{\pi(t) \mid t \in A_{n-1}, \pi(t) \notin T\left(S_{q}\right) \text { and } \delta(\pi(t))=\delta\left(\alpha_{n}\right)\right\} \tag{3.19}
\end{equation*}
$$

Proof. Note that for elements t and t^{\prime} of $T\left(S^{(n)}\right)$, with $n<a^{\prime}$, we have $t<t^{\prime}$ and $\pi\left(t^{\prime}\right)<\pi(t)$ with $\delta(t)=\delta\left(t^{\prime}\right)$ if and only if $t \in A_{n}$ and $t^{\prime}=\alpha_{n}$, or $t=\beta_{0}$ and $t^{\prime} \in B_{0}^{\prime}=$ $\left\{t \in T\left(S^{(0)}\right) \mid \beta_{0}<t\right.$ and $\pi(t)<\beta_{1}$ with $\left.\delta(t)=1\right\}$. First take an element $\pi(t)$ of the set (3.19). Let us show that this $\pi(t)$ belongs to A_{n}. The part of $S^{(n-1)}$ can be described as

Since A_{n-1} contains t, we see $\alpha_{n}<\pi(t)$ in $T\left(S^{(n-1)}\right)$. As $\delta(\pi(t))=\delta\left(\alpha_{n}\right)$, we have $\alpha_{n+1}<\pi(\pi(t))$ in $T\left(S^{(n-1)}\right)$. In the set $T\left(S^{(n)}\right)$, the element α_{n} is located in the right
side of the maximum element of $\pi\left(A_{n-1}\right)$. By construction, the part of $S^{(n)}$ is described as

We have then $\pi(t)<\alpha_{n}$ and $\alpha_{n+1}<\pi(\pi(t))$ in $T\left(S^{(n)}\right)$. Hence we see that A_{n} contains $\pi(t)$.

Conversely, let t^{\prime} be an element of A_{n}. Let t be an element of $T\left(S^{(n)}\right)$ such that $\pi(t)=t^{\prime}$. It is enough to show that t belongs to A_{n-1}. By the definition of A_{n}, this t satisfies that $\pi(t)<\alpha_{n}$ and $\alpha_{n+1}<\pi(\pi(t))$ in $T\left(S^{(n)}\right)$. As $\delta(\pi(t))=\delta\left(\alpha_{n}\right)$, we have $\alpha_{n+1}<\pi(\pi(t))$ and $\alpha_{n}<\pi(t)$ in $T\left(S^{(n-1)}\right)$. To make a contradiction, let us suppose $\alpha_{n-1}<t$ in $T\left(S^{(n-1)}\right)$. Then for the maximum element $t_{\max }$ of A_{n-1}, we have $\alpha_{n}<\pi(t)$ in $T\left(S^{(n)}\right)$ since $\alpha_{n}<\pi\left(t_{\max }\right)<\pi(t)$ in $T\left(S^{(n-1)}\right)$. This contradicts the definition of A_{n}. Thus we have shown $t<\alpha_{n-1}$ in $T\left(S^{(n-1)}\right)$, and it implies that t belongs to A_{n-1}. Hence this t is an element of the set (3.19).

Proposition 3.19. A_{n} does not contain elements α_{m} for $m \leq n$.

Proof. Note that for all non-negative integers n, sets A_{n} do not contain the inverse image of α_{0}, which is an the element of $T\left(S_{q}\right)$. Here S_{q} is the ABS corresponding to the DM_{1} $N_{m_{q}, n_{q}}$. Let us show the assertion by induction on n. The case $n=0$ is obvious. For a natural number n, suppose that A_{n} contains α_{m} for a non-negative integer m with $m \leq n$. By Proposition 3.18 , then A_{n-1} contains α_{m-1}. This contradicts the hypothesis of induction.

Proposition 3.20. If there exists no non-negative integer a such that $A_{a}=\emptyset$, then every full modification S^{\prime} of the small modification $S^{(0)}$ is not generic.

Proof. First, let us construct a full modification combinatorially. Let a^{\prime} be the minimum number satisfying $\alpha_{a^{\prime}}=\beta_{0}$. Let B_{0}^{\prime} be the set

$$
B_{0}^{\prime}=\left\{t \in T\left(S^{(0)}\right) \mid \beta_{0}<t \text { and } \pi(t)<\beta_{1} \text { in } T\left(S^{(0)}\right) \text { with } \delta(t)=1\right\}
$$

We can describe a part of $S^{\left(a^{\prime}-1\right)}$ as

Assume that $\pi\left(A_{a^{\prime}-1}\right)$ is contained in B_{0}^{\prime}. Then there exists no element s of $T\left(S^{\left(a^{\prime}\right)}\right)$ such that $s<\alpha_{a^{\prime}}$ and $\alpha_{a^{\prime}+1}<\pi(s)$ since $t^{\prime \prime}<\beta_{0}$ and $\pi\left(t^{\prime \prime}\right)<\beta_{1}$ in $T\left(S^{\left(a^{\prime}\right)}\right)$ for all $t^{\prime \prime} \in \pi\left(A_{a^{\prime}-1}\right)$. Thus there exists an element t^{\prime} of $A_{a^{\prime}-1}$ such that $\beta_{0}<\pi\left(t^{\prime}\right)$ and $\beta_{1}<\pi\left(\pi\left(t^{\prime}\right)\right)$ in $T\left(S^{\left(a^{\prime}-1\right)}\right)$ with $\delta\left(\beta_{0}\right)=\delta\left(\pi\left(t^{\prime}\right)\right)$. Then for all elements s of B_{0}^{\prime}, we have $s<\pi\left(t^{\prime}\right)$ since if $\pi\left(t^{\prime}\right)<s$, then $\pi\left(t^{\prime}\right)<s$ and $\pi(s)<\pi\left(\pi\left(t^{\prime}\right)\right)$ holds with $\delta(s)=\delta\left(\pi\left(t^{\prime}\right)\right)$. This is a contradiction. Thus there exists no element u of $T\left(S^{\left(a^{\prime}\right)}\right)$ such that $\beta_{0}<u$ and $\pi(u)<\beta_{1}$. Let m be a non-negative integer such that $\left|A_{m}\right|=\left|A_{m+1}\right|=\cdots$. Then for elements u and u^{\prime} of $T\left(S^{(m)}\right)$, we have $u<u^{\prime}$ if $b(u) \leq b\left(u^{\prime}\right)$, where $b(u)$ is the binary expansion of u, see the paragraph before Proposition 3.4 for the definition of binary expansions. Hence a full modification S^{\prime} of S is obtained by $\left(S^{(m)}, \delta, \pi\right)$.

Let us compare lengths of S and S^{\prime}. One can see that $\ell(S)-\ell\left(S^{(0)}\right)=\left|A_{0}\right|+\left|B_{0}^{\prime}\right|+1$. Since $\ell\left(S^{(m)}\right)-\ell\left(S^{(0)}\right) \leq\left|A_{0}\right|-\left|A_{m}\right|$, we see $\ell\left(S^{\prime}\right)<\ell(S)-1$.

By Proposition 3.20, we may assume that there exists a non-negative integer a such that A_{a} is an empty set to classify generic full modifications of arrowed binary sequences.

In Proposition 3.23, we will show that to classify generic full modifications, it suffices to consider the case there exists a non-negative integer b such that $B_{b}=\emptyset$. Let us see some properties of sets B_{n}, which is used for the proof of Proposition 3.23.

Proposition 3.21. Let n be a natural number. The set B_{n} is obtained by

$$
\begin{equation*}
B_{n}=\left\{\pi(t) \mid t \in B_{n-1} \text { and } \delta(\pi(t))=\delta\left(\beta_{n}\right)\right\} \tag{3.20}
\end{equation*}
$$

Proof. A proof is given in the same way as Proposition 3.18.
Proposition 3.22. B_{n} does not contain elements β_{m} for $m \leq n$.
Proof. A proof is given in the same way as Proposition 3.19.
Proposition 3.23. If there exists no non-negative integer b such that $B_{b}=\emptyset$, then every full modification of the small modification $S^{(0)}$ is not generic.

Proof. In this hypothesis, there exists a non-negative integer m such that $\left|B_{m}\right|=\left|B_{m+1}\right|=$ \cdots. Then the elements of $T\left(S^{(a+m)}\right)$ are ordered by these binary expansions. Thus we obtain a full modification $S^{\prime}=\left(T\left(S^{(a+m)}\right), \delta, \pi\right)$.

Let us compare the lengths of S and S^{\prime}. It is clear that $\ell(S)-\ell\left(S^{(0)}\right)=\left|A_{0}\right|+\left|B_{0}^{\prime}\right|+1$, where the set B_{0}^{\prime} is as in Proposition 3.20. Let a^{\prime} be as in Proposition 3.20. If the nonnegative integer a satisfies $a \geq a^{\prime}$, then $\left|B_{0}\right|<\left|B_{0}^{\prime}\right|$, see the proof of Proposition 3.20.

Since $\ell\left(S^{(a)}\right)-\ell\left(S^{(0)}\right) \leq\left|A_{0}\right|$ and $\ell\left(S^{\prime}\right)-\ell\left(S^{(a)}\right) \leq\left|B_{0}\right|-\left|B_{m}\right|$, we see that S^{\prime} is not generic in this case. Let us see the case $a<a^{\prime}$. For a natural number n such that $\delta\left(\alpha_{n}\right)=1$ and A_{n-1} contains the inverse image of β_{0}, one can see that β_{0} belongs to B_{0}. Let I denote the set consisting of such α_{n}. We have then $B_{0}=B_{0}^{\prime} \cup I$. If α_{n} belongs to I, then $\ell\left(S^{(n)}\right)-\ell\left(S^{(n-1)}\right)=\left|A_{n-1}\right|-\left|A_{n}\right|-1$ since A_{n} does not contain β_{0}. Thus we have $\ell\left(S^{(a)}\right)-\ell\left(S^{(0)}\right) \leq\left|A_{0}\right|-|I|$. Since $\ell\left(S^{\prime}\right)-\ell\left(S^{(a)}\right) \leq\left|B_{0}\right|-\left|B_{m}\right|$, we see $\ell\left(S^{\prime}\right)-\ell(S) \leq\left|A_{0}\right|+\left|B_{0}^{\prime}\right|-\left|B_{m}\right|$, and it implies that S^{\prime} is not generic.

By Propositions 3.20 and 3.23, we construct the full modifications for all small modifications. Moreover, these propositions imply that, to classify generic full modifications, we may suppose that there exist non-negative integers a and b such that $A_{a}=\emptyset$ and $B_{b}=\emptyset$ for a small modification. For the $\operatorname{ABS} S^{(a+b)}$, if elements t and t^{\prime} of $T\left(S^{(a+b)}\right)$ satisfy that $t<t^{\prime}$ and $\delta(t)=\delta\left(t^{\prime}\right)$, then $\pi(t)<\pi\left(t^{\prime}\right)$ holds. Thus we see that by Definitions 3.15 and 3.16, for a small modification, we get a full modification S^{\prime} of S by $S^{(a+b)}$. We call this ABS $S^{(a+b)}$ the full modification by $\left(0_{i}^{r}, 1_{j}^{q}\right)$.

Chapter 4

The case of $1 / 2$-separated Newton polygons

In this chapter, we treat Newton polygons ξ satisfying the condition

- ξ consists of two segments satisfying that one slope is less than $1 / 2$ and the other is greater than $1 / 2$.

We call such a Newton polygon a 1/2-separated Newton polygon, i.e., a Newton polygon $\xi=\left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)$ is $1 / 2$-separated if $n_{2} /\left(m_{2}+n_{2}\right)<1 / 2<n_{1} /\left(m_{1}+n_{1}\right)$. In this chapter, we solve Problem 1.4 for these $1 / 2$-separated Newton polygons. Moreover, we shall show a key proposition (Proposition 4.9) to solve Problem 1.7 for the case that the Newton polygon ξ is $1 / 2$-separated.

4.1 Classifying generic specializations for $1 / 2$-separated Newton polygons

In this section we classify generic full modifications for ABS's corresponding to $1 / 2$ separated Newton polygons. Let ξ be a $1 / 2$-separated Newton polygon, say $\xi=\left(m_{1}, n_{1}\right)+$ $\left(m_{2}, n_{2}\right)$. Let S be the ABS corresponding to ξ. Let S^{\prime} be a full modification obtained by the small modification by a pair $\left(0_{i}^{1}, 1_{j}^{2}\right)$ with $m_{1}<i \leq n_{1}$ and $1 \leq j \leq m_{2}$. Then we obtain the A-sequence and B-sequence A_{0}, \ldots, A_{a} and B_{0}, \ldots, B_{b}, where a (resp. b) is the smallest integer such that $A_{a}=\emptyset$ (resp. $B_{b}=\emptyset$). Note that, by Propositions 3.20 and 3.23 , we may assume that there exist non-negative integers a and b such that $A_{a}=\emptyset$ and $B_{b}=\emptyset$ to classify generic full modifications of S. Moreover, we have ABS's $S^{(0)}, \ldots, S^{(a+b)}$ with $S^{(a+b)}=S^{\prime}$. Theorem 4.1 below gives a classification of generic specializations of w_{ξ} with $1 / 2$-separated Newton polygons ξ. We denote by the element ϕ_{i} (resp. ψ_{j}) of
$T\left(S^{(0)}\right)$ the inverse image of 0_{i}^{1} (resp. 1_{j}^{2}) by the map $\Pi\left(S^{(0)}\right)$. Since $T\left(S^{(n)}\right)$ for all n are the same as sets, we use the same symbol $\phi_{i}\left(\right.$ resp. ψ_{j}) for the same element of $T\left(S^{(n)}\right)$ corresponding to the element ϕ_{i} (resp. ψ_{j}) of $T\left(S^{(0)}\right)$.

Theorem 4.1. Let ξ be a $1 / 2$-separated Newton polygon. Let S be the ABS corresponding to N_{ξ}. A full modification S^{\prime} obtained by the small modification by 0_{i}^{1} and 1_{j}^{2} is generic if and only if the subsets A_{n} of $T\left(S^{(n)}\right)$ (resp. B_{n} of $T\left(S^{(a+n)}\right)$) do not contain ϕ_{i} (resp. $\left.\psi_{j}\right)$ for all n.

By Lemma 3.7, for 0_{i}^{1} and 1_{j}^{2}, we can consider the following three cases:
(i) $m_{1}<i \leq n_{1}$ and $1 \leq j \leq n_{2}$,
(ii) $m_{1}<i \leq n_{1}$ and $n_{2}<j \leq m_{2}$,
(iii) $n_{1}<i \leq m_{1}+n_{1}$ and $n_{2}<j \leq m_{2}$.

By the duality, it suffices to deal with cases (i) and (ii). We fix some notations. Put $\alpha_{n}=$ $\Pi(S)^{n}\left(0_{i}^{1}\right)$ and $\beta_{n}=\Pi(S)^{n}\left(1_{j}^{2}\right)$. For non-negative integers n, set $e(n)=\ell\left(S^{(n+1)}\right)-\ell\left(S^{(n)}\right)$. Moreover, we write $d_{1}(n)=\left|A_{n}\right|-\left|A_{n+1}\right|$ and $d_{2}(n)=\left|B_{n}\right|-\left|B_{n+1}\right|$.

Propositions 4.2 and 4.3, which compare values $e(n)$ and $d_{x}(n)$, are key propositions to give a criterion of generic full modifications.

Proposition 4.2. For all non-negative integers n with $n<a$, we have $e(n) \leq d_{1}(n)$. Moreover, the equality holds for all n if and only if there exists no non-negative integer n such that A_{n} contains ψ_{j}.

Proof. By Definition 3.15, we clearly have $e(n) \leq d_{1}(n)$ for all n. If for all n the sets A_{n} do not contains ψ_{j}, then $e(n)=d_{1}(n)$ holds for all n. Conversely, assume that A_{n} contains ψ_{j} for some n. Since $m_{1}<i \leq n_{1}$, the inverse image of 1_{j}^{2} is $0_{i+m_{1}}^{1}$ in $S^{(n)}$. If $\Delta(S)\left(\alpha_{n}\right)=1$, then $e(n)=d_{1}(n)-1$. On the other hand, if $\Delta(S)\left(\alpha_{n}\right)=0$, then we have $e(n)=-1$ and $d_{1}(n)=1$. This completes the proof.

Recall that the set I is the subset of B_{0} consisting of elements which are of the form α_{m}, see the proof of Proposition 3.23.

Proposition 4.3. For all non-negative integers n with $a \leq n<a+b$, we have $e(n) \leq d_{2}(n)$. Moreover, for the case $1 \leq j \leq n_{2}$, the equality holds if and only if
(i) there exists no non-negative integer n such that B_{n} contains ϕ_{i}, and
(ii) $I=\emptyset$.

Proof. By Definition 3.16, clearly the inequality $e(n) \leq d_{2}(n)$ holds, and if B_{n} do not contain ϕ_{i} for all n, then $e(n)=d_{2}(n)$ holds. In the case $1 \leq j \leq n_{2}$, the inverse image of 0_{i}^{1} is $0_{j+m_{2}}^{2}$. Assume that B_{n} contains $0_{j+m_{2}}^{2}$ for some n. Then $e(n)=-1$ and $d_{2}(n)=1$ since $\delta(\pi(t))=1$ for elements t of B_{n} except $0_{j+m_{2}}^{2}$, where $\delta=\Delta\left(S^{(n)}\right)$ and $\pi=\Pi\left(S^{(n)}\right)$. Next, suppose $I \neq \emptyset$. We divide the proof into two cases depending on values of $\delta\left(\beta_{1}\right)$. If $\delta\left(\beta_{1}\right)=1$, then as $e(0)=-|I|$ and $d_{2}(0)=|I|$. On the other hand, if $\delta\left(\beta_{1}\right)=0$, then $e(1)=-|I|$ and $d_{2}(1)=|I|$.

Proof of Theorem 4.1. First, let us treat the case $m_{1}<i \leq n_{1}$ and $1 \leq j \leq n_{2}$. In this case, we have $\ell\left(S^{(0)}\right)-\ell(S)=-\left(n_{1}-i+j\right)$. Note that if there exists no non-negative integer n such that A_{n} contains ψ_{j}, then the set I is empty. By definition we have $\sum_{n=0}^{a-1} d_{1}(n)=$ $n_{1}-i$ and $\sum_{n=a}^{a+b-1} d_{2}(n)=j-1$. Thus, if the subsets A_{n} of $T\left(S^{(n)}\right)\left(\right.$ resp. B_{n} of $\left.T\left(S^{(a+n)}\right)\right)$ do not contain $\phi_{i}\left(\right.$ resp. $\left.\psi_{j}\right)$ for all n, then by Proposition 4.2 and Proposition 4.3, we obtain $\ell\left(S^{\prime}\right)-\ell\left(S^{(0)}\right)=n_{1}-i+j-1$. Hence S^{\prime} is generic. Let us consider the converse. If I is empty, then we have $\sum_{n=0}^{a-1} e(n)<n_{1}-i$ or $\sum_{n=a}^{a+b-1} e(n)<j-1$ with $\ell\left(S^{(0)}\right)-\ell(S)=n_{1}-i+j$. On the other hand, if $I \neq \emptyset$, then $\sum_{n=0}^{a-1} e(n) \leq n_{i}-i-|I|$. Moreover, by the proof of Proposition 4.3 we have $\sum_{n=a}^{a+b-1} e(n)<j-1$.

Next, suppose that $m_{1}<i \leq n_{1}$ and $n_{2}<j \leq m_{2}$. We have then $\ell(S)-\ell\left(S^{(0)}\right)=$ $m_{1}+n_{1}-i+j$. In this case, $\sum_{n=0}^{a-1} e(n)<m_{1}+n_{1}-i$ since A_{0} contains the ψ_{j}. Moreover, $\sum_{n=1}^{a+b-1} e(n) \leq j-1$, and hence S^{\prime} is not generic.

Example 4.4. Here let us see an example of constructing a generic full modification for a $1 / 2$-separated Newton polygon. Let $\xi=(2,5)+(3,2)$. For the ABS S

corresponding to ξ, let us construct the full modification from the small modification by $\left(0_{4}^{1}, 1_{2}^{2}\right)$. The ABS $S^{(0)}$ is described as

We have the set $A_{0}=\left\{0_{5}^{1}\right\}$ and the $\operatorname{ABS} S^{(1)}$:

We see that A_{1} is an empty set. Moreover, the set B_{0} is $\left\{1_{1}^{2}\right\}$. Since B_{1} is empty, the ABS $S^{(2)}$ is the full modification S^{\prime}. We obtain the full modification S^{\prime} by

One can see that this full modification is generic.
Here we state some properties of generic full modifications S^{\prime} of S. Note that for a small modification of S, the full modification is unique if it is generic. These properties are useful for constructing Newton polygons of generic specializations w of w_{ξ}. By the proof of Theorem 4.1, to study generic specializations, it suffices to deal with full modifications obtained by the small modification by 0_{i}^{1} and 1_{j}^{2} with $m_{1}<i \leq n_{1}$ and $1 \leq j \leq n_{2}$. Let $S=S_{1} \oplus S_{2}$ be the ABS associated to a $1 / 2$-separated Newton polygon, where S_{i} corresponds to i-th segment of the Newton polygon. For a generic full modification, by Theorem 4.1, the sets A_{n} (resp. B_{n}) only depend on i (resp. j) since A_{n} (resp. B_{n}) are subsets of $T\left(S_{1}\right)$ (resp. $T\left(S_{2}\right)$) as sets. Thus we can define the following sets.

Definition 4.5. Set

$$
G_{1}=\left\{\left(0_{i}^{1}, 1_{j}^{2}\right) \mid S^{\prime} \text { obtained by } 0_{i}^{1} \text { and } 1_{j}^{2} \text { is generic with } m_{1}<i \leq n_{1} \text { and } 1 \leq j \leq n_{2}\right\} .
$$

By the above, we can describe this set G_{1} as $G_{1}=C^{\prime} \times D^{\prime}$, with $C^{\prime} \subset T\left(S_{1}\right)$ and $D^{\prime} \subset T\left(S_{2}\right)$. Put $C=C^{\prime}-\left\{0_{n_{1}}^{1}\right\}$ and $D=D^{\prime}-\left\{1_{1}^{2}\right\}$.

Remark 4.6. By the duality, the set

$$
G_{2}=\left\{\left(0_{i}^{1}, 1_{j}^{2}\right) \mid S^{\prime} \text { obtained by } 0_{i}^{1} \text { and } 1_{j}^{2} \text { is generic, } n_{1}<i \leq h_{1} \text { and } n_{2}<j \leq m_{2}\right\},
$$

wheret $h_{1}=m_{1}+n_{1}$, can be described as $G_{2}=C^{\prime \prime} \times D^{\prime \prime}$, with $C^{\prime \prime} \subset T\left(S_{1}\right)$ and $D^{\prime \prime} \subset T\left(S_{2}\right)$. Moreover, the set G consisting of pairs $\left(0_{i}^{1}, 1_{j}^{2}\right)$ such that the full modifications S^{\prime} obtained
by 0_{i}^{1} and 1_{j}^{2} are generic is equal to $G_{1} \cup G_{2}$.
This definition says that a full modification obtained by the small modification by 0_{i}^{1} and 1_{j}^{2} is generic if and only if 0_{i}^{1} belongs to C^{\prime} and 1_{j}^{2} belongs to D^{\prime}. Note that in [4], we treated the generic full modification obtained by the small modification by $0_{n_{1}}^{1}$ and 1_{1}^{2}.

Example 4.7. Let $\xi=(2,5)+(3,2)$. Let S be the ABS corresponding to ξ. Then the set G is obtained by

$$
\begin{equation*}
G=\left\{\left(0_{4}^{1}, 1_{1}^{2}\right),\left(0_{4}^{1}, 1_{2}^{2}\right),\left(0_{5}^{1}, 1_{1}^{2}\right),\left(0_{5}^{1}, 1_{2}^{2}\right),\left(0_{6}^{1}, 1_{3}^{2}\right),\left(0_{7}^{1}, 1_{3}^{2}\right)\right\} . \tag{4.5}
\end{equation*}
$$

Lemma 4.8. Let n be a non-negative integer. For a generic full modification, if $d_{1}(n)>0$ (resp. $d_{2}(n)>0$) and A_{n+1} (resp. B_{n+1}) is not empty, then the maximum element of A_{n+1} (resp. the minimum element of B_{n+1}) is $1_{m_{1}}^{1}\left(\right.$ resp. $0_{m_{2}+1}^{2}$).

Proof. For a non-negative integer n satisfying that $d_{1}(n)>0$ and $A_{n+1} \neq \emptyset$, if $\Delta(S)\left(\alpha_{n}\right)=$ 1, then $A_{n+1}=\Pi\left(S^{(n)}\right)\left(A_{n}\right)$ and $d_{1}(n)=0$. Moreover, if $\Delta(S)\left(\alpha_{n}\right)=\Delta(S)\left(\alpha_{n+1}\right)=0$, then similarly $d_{1}(n)=0$. For the case that $\Delta(S)\left(\alpha_{n}\right)=0$ and $\Delta(S)\left(\alpha_{n+1}\right)=1$, if $d_{1}(n)>0$, then $\Pi\left(S^{(n)}\right)\left(A_{n}\right)$ contains $1_{m_{1}}^{1}$. Hence the maximum element of A_{n+1} is $1_{m_{1}}^{1}$. In the same way we can see that if $d_{2}(n)>0$ and $B_{n+1} \neq \emptyset$, then the minimum element of B_{n+1} is $0_{m_{2}+1}^{2}$.

4.2 Determining the Newton polygons of generic specializations for $1 / 2$-separated Newton polygons

In this section, we show Proposition 4.9. In Section 6.2, we will show Theorem 1.8, which is a complete answer to Problem 1.7, by induction. Proposition 4.9 is a key proposition to be applied the induction step.

Proposition 4.9. Let ξ be a $1 / 2$-separated Newton polygon. Assume that $\xi \neq(0,1)+$ $(1,0)$. For every element w of $B(\xi)$, there exist a generic specialization w^{-}of w and a segment $\rho=(c, d)$ such that

$$
\begin{equation*}
w^{-}=w^{\prime} \oplus w_{\rho}, \tag{4.6}
\end{equation*}
$$

with $w^{\prime} \in B\left(\xi^{\prime}\right)$, where $\xi^{\prime}=\left(m_{1}-c, n_{1}-d\right)+\left(m_{2}, n_{2}\right)$ or $\xi^{\prime}=\left(m_{1}, n_{1}\right)+\left(m_{2}-c, n_{2}-d\right)$:

so that the area of the triangle surrounded by ξ, ξ^{\prime} and ρ is one.
The next proposition (Proposition 4.10) is more concretely described in terms of ABS than Proposition 4.9. We shall prove Proposition 4.10. Let us fix some notations. Let $\xi=\left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)$ be a $1 / 2$-separated Newton polygon. Let $S=S_{1} \oplus S_{2}$ be the ABS of ξ, and let S^{-}denote the generic full modification obtained by the small modification by 0_{i}^{1} and 1_{j}^{2}. By the result of Section 4.1, we may assume that $m_{1}<i \leq n_{1}$ and $1 \leq j \leq n_{2}$. Constructing the full modification, we obtain the A-sequence and the B sequence $A_{0}, \ldots, A_{a}, B_{0}, \ldots, B_{b}$ and ABS's $S^{(0)}, \ldots, S^{(a+b)}$, where $S^{(a+b)}=S^{\prime}$. We write $\alpha_{n}=\pi^{n}\left(0_{i}^{1}\right)$ and $\beta_{n}=\pi^{n}\left(1_{j}^{2}\right)$, where $\pi=\Pi\left(S^{(0)}\right)$. As with Section 4.1, let ϕ_{i} and ψ_{j} denote the inverse images of 0_{i}^{1} and 1_{j}^{2} by the bijection map π respectively. Using Proposition 4.9, we obtain Theorem 1.8 by induction. In the following proposition, we give a concrete construction method to obtain (4.6) from every generic full modification.

Proposition 4.10. For the $1 / 2$-separated Newton polygon ξ satisfying that $0<\lambda_{2}<$ $1 / 2<\lambda_{1}<1$, let S^{--}denote the ABS corresponding to a specialization w^{-}for a generic specialization w of w_{ξ}. Then this w^{-}satisfies (4.6) if
(i) for the case $n_{1}>m_{1}+1$,
(a) S^{--}is the full modification obtained by the small modification S^{-}by $0_{m_{1}+1}^{1}$ and $1_{m_{1}}^{1}$, or
(b) S^{--}is the full modification obtained by the small modification S^{-}by 0_{i-1}^{1} and 1_{j}^{2},
(ii) for the case $n_{1}=m_{1}+1$,
(c) S^{--}is the full modification obtained by the small modification S^{-}by $0_{m_{2}+1}^{2}$ and $1_{m_{2}}^{2}$,
(d) S^{--}is the full modification obtained by the small modification S^{-}by 0_{i}^{1} and 1_{j+1}^{2}, or
(e) S^{--}is the full modification obtained by the small modification S^{-}by $0_{m_{1}+n_{1}}^{1}$ and $1_{n_{2}+1}^{2}$.

In the cases (a) and (b), the Newton polygon ξ^{\prime} of (4.6) is of the form $\xi^{\prime}=\left(m_{1}-\right.$ $\left.f, n_{1}-g\right)+\left(m_{2}, n_{2}\right)$. On the other hand, in the cases (c) and (d) we have $\xi^{\prime}=\left(m_{1}, n_{1}\right)+$ ($m_{2}-f, n_{2}-g$). In particular, in the case (e) we determine the Newton polygons ρ and ξ^{\prime} by $\rho=(1,1)$ and $\xi^{\prime}=\left(m_{1}-1, n_{1}-1\right)+\left(m_{2}, n_{2}\right)$.

First we show Proposition 4.10 in case (i). We use some notation of Definition 4.5. By construction, in $T\left(S^{-}\right)$we have $0_{i-1}^{1}<1_{j}^{2}$ since if $1_{j}^{2}<0_{i-1}^{1}$ in $T\left(S^{(n)}\right)$ and $0_{i-1}^{1}<1_{j}^{2}$ in $T\left(S^{(n-1)}\right)$ for some n, then $\alpha_{n}=0_{i-1}^{1}$ and the set A_{n-1} contains ψ_{j}. This contradicts the condition of generic full modifications as shown in Theorem 4.1. To treat the case (a), we shall show that $0_{m_{1}+1}^{1}<1_{m_{1}}^{1}$ in $T\left(S^{-}\right)$. To do this, we introduce

Notation 4.11. For an ABS S, let $t \in T(S)$. Put $\pi=\Pi(S)$. We often express the subset $\left\{t, \pi(t), \pi^{2}(t), \ldots, \pi^{n}(t)\right\}$ of $T(S)$ as

$$
\begin{equation*}
t \rightarrow \pi(t) \rightarrow \pi^{2}(t) \rightarrow \cdots \rightarrow \pi^{n}(t) \tag{4.7}
\end{equation*}
$$

and we call such a diagram pass. We often call an element of a pass a vertex of the pass.

Proposition 4.12. For the generic full modification S^{-}, we have $0_{m_{1}+1}^{1}<1_{m_{1}}^{1}$. Moreover, there exists no non-negative integer n such that $\alpha_{n}=0_{m_{1}+1}^{1}$ with $n \leq a$.

Proof. In the ABS S_{1} corresponding to the first segment of ξ, binary expansions of $1_{m_{1}}^{1}$ and $0_{m_{1}+1}^{1}$ are obtained by

$$
\begin{align*}
b\left(1_{m_{1}}^{1}\right) & =0 . b_{1} b_{2} \cdots b_{h-2} 01 \tag{4.8}\\
b\left(0_{m_{1}+1}^{1}\right) & =0 . b_{1} b_{2} \cdots b_{h-2} 10 \tag{4.9}
\end{align*}
$$

where $h=m_{1}+n_{1}$. In $T\left(S^{-}\right)$we have two paths

$$
\begin{align*}
0_{i}^{1} & \rightarrow \cdots \rightarrow 1_{m_{1}}^{1} \tag{4.10}\\
0_{i+1}^{1} & \rightarrow \cdots \rightarrow 0_{m_{1}+1}^{1} . \tag{4.11}
\end{align*}
$$

Clearly 0_{i+1}^{1} belongs to A_{0}. Moreover $\Pi\left(S^{(0)}\right)^{a}\left(0_{i+1}^{1}\right)$, which is equal to $0_{m_{1}+1}^{1}$, belongs to $\Pi\left(S^{(0)}\right)\left(A_{a-1}\right)$. By the construction of the A-sequences, we have $0_{m_{1}+1}^{1}<1_{m_{1}}^{1}$ in $T\left(S^{-}\right)$. Let us see the latter statement. Assume that $\alpha_{n}=0_{m_{1}+1}^{1}$ for some n. Then A_{a-1} contains α_{n-1}, and this contradicts Proposition 3.19.

Notation 4.13. For the ABS S_{1}, we define paths P and Q of $T\left(S_{1}\right)$ by

$$
\begin{align*}
& P: 1_{m_{1}}^{1} \rightarrow 0_{m_{1}+n_{1}}^{1} \rightarrow \cdots \rightarrow 0_{2 m_{1}+1}^{1}, \tag{4.12}\\
& Q: \tag{4.13}\\
& 0_{m_{1}+1}^{1} \rightarrow 1_{1}^{1} \rightarrow \cdots \rightarrow 0_{2 m_{1}}^{1} .
\end{align*}
$$

These paths P and Q are useful. For instance, in the case (a) of Proposition 4.10, for the $\mathrm{ABS} S_{\rho}$ associated to the segment ρ, the set $T\left(S_{\rho}\right)$ is equal to P. Moreover, we have

Lemma 4.14. The set C is contained in Q.
Proof. Take $0_{i}^{1} \in C$. If 0_{i}^{1} belongs to P, then there exists a natural number n such that $\Pi(S)^{n}\left(0_{i}^{1}\right)=0_{m_{1}+1}^{1}$ with $n<a$. This contradicts Proposition 4.12.

Definition 4.15. We define a set C_{1} (resp. C_{2}) to be the subset of C^{\prime} consisting of elements 0_{i}^{1} satisfying that for the generic full modification S^{-}obtained by 0_{i}^{1} and 1_{j}^{2}, we obtain (4.6) of Proposition 4.9 by S^{--}of (a) (resp. (b)).

Clearly if $C^{\prime}=C_{1} \cup C_{2}$, then we complete the proof of Proposition 4.10 (i). From now on, for each element of C, we not only show that the element belongs to $C_{1} \cup C_{2}$ but also determine which of C_{1} or C_{2} the element belongs to. The goal is Proposition 4.22. To do this, let us see the construction of the ABS S^{--}of (a) and (b) in Proposition 4.9 concretely. Using a path, the $\mathrm{ABS} S^{-}$obtained by 0_{i}^{1} and 1_{j}^{2} is described as

First let us treat the case (a) of Proposition 4.9: S^{--}is the full modification of S^{-} obtained by exchanging $0_{m_{1}+1}^{1}$ and $1_{m_{1}}^{1}$. By construction, the full modification obtained by $\left(0_{m_{1}+1}^{1}, 1_{m_{1}}^{1}\right)$ for S^{-}is

which consists of two components. It is easy to see that the former component consists of elements of P. This component is associated to w_{ρ} with a segment $\rho=(f, g)$. As this component is equal to the component obtained from S_{1} applying [2, Lemma 5.6] to $1_{m_{1}}^{1}$ and $0_{m_{1}+1}^{1}$, we have $f n_{1}-g m_{1}=1$. Next we deal with the case (b) of Proposition 4.9, i.e., let us treat the ABS S^{--}which is the full modification of S^{-}obtained by $\left(0_{i-1}^{1}, 1_{j}^{2}\right)$. This ABS S^{--}is described as

This S^{--}consists of two components. By construction, the latter component contains
elements which are of the form $\Pi\left(S^{-}\right)^{n}\left(0_{i}^{1}\right)$ for non-negative integers n with $n \leq a$. The former component is the ABS corresponding to w_{ρ} with a segment $\rho=(f, g)$. Since this component coincides with the ABS obtained from S_{1} by applying [2, Lemma 5.6] to 0_{i-1}^{1} and 0_{i}^{1}, we have $f n_{1}-g m_{1}=1$. Thus for cases (a) and (b), We can write $S^{--}=R_{0} \oplus S_{\rho}$, where the latter is associated to a Newton polygon ρ of one slope. We shall show that there exists a Newton polygon ξ^{\prime} such that the other component R_{0} of S^{--}corresponds to a generic specialization w^{\prime} of $w_{\xi^{\prime}}$ satisfying that (4.6) of Proposition 4.9, i.e., for the Newton polygon ξ^{\prime}, we have $R_{0}=R^{-}$with the ABS R corresponding to $w_{\xi^{\prime}}$.

Proposition 4.16. If R_{0} contains no element t satisfying that $0_{m_{1}+1}^{1}<t<1_{m_{1}}^{1}$ (resp. $\left.0_{i-1}^{1}<t<1_{j}^{2}\right)$ in $T\left(S^{-}\right)$, then 0_{i}^{1} belongs to C_{1} (resp. C_{2}).

Proof. Let $S^{\prime \prime}$ be the full modification of S^{-}obtained by exchanging $0_{m_{1}+1}^{1}$ and $1_{m_{1}}^{1}$. To see that R_{0} corresponds to a specialization of $w_{\xi^{\prime}}$ for some Newton polygon ξ^{\prime}, we consider the small modification $R_{0}^{(0)}$ of R_{0} by $\left(1_{j}^{2}, 0_{i}^{1}\right)$. Here we define the sets

$$
\begin{equation*}
\mathcal{A}_{0}=\left\{t \in T\left(R_{0}^{(0)}\right) \mid \alpha_{0}<t \text { and } \Pi\left(R_{0}^{(0)}\right)(t)<\alpha_{1} \text { in } T\left(R_{0}^{(0)}\right) \text { with } \Delta\left(R_{0}^{(0)}\right)(t)=0\right\} \tag{4.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{B}_{0}=\left\{t \in T\left(R_{0}^{(0)}\right) \mid \beta_{0}<t \text { and } \Pi\left(R_{0}^{(0)}\right)(t)<\beta_{1} \text { in } T\left(R_{0}^{(0)}\right) \text { with } \Delta\left(R_{0}^{(0)}\right)(t)=1\right\}, \tag{4.18}
\end{equation*}
$$

where $\alpha_{n}=\Pi\left(R_{0}^{(0)}\right)^{n}\left(0_{i}^{1}\right)$ and $\beta_{n}=\Pi\left(R_{0}^{(0)}\right)^{n}\left(1_{j}^{2}\right)$. For ABS's $R_{0}^{(0)}, \ldots, R_{0}^{(n-1)}$ and for ordered sets $\mathcal{A}_{0}, \ldots, \mathcal{A}_{n-1}$, we construct an $\operatorname{ABS} R_{0}^{(n)}$ and a set \mathcal{A}_{n} as follows. Set $T\left(R_{0}^{(n)}\right)=T\left(R_{0}^{(n-1)}\right)$ as sets. Put $\Pi\left(R_{0}^{(n)}\right)=\Pi\left(R_{0}^{(n-1)}\right)$ and $\Delta\left(R_{0}^{(n)}\right)=\Delta\left(R_{0}^{(n-1)}\right)$. Let us define an order on $T\left(R_{0}^{(n)}\right)$. For $t<t^{\prime}$ in $T\left(R_{0}^{(n-1)}\right)$, we have $t>t^{\prime}$ if and only if $\Pi\left(R_{0}^{(n-1)}\right)\left(t_{\text {min }}\right) \leq t<\alpha_{n}$ in $T\left(R_{0}^{(n-1)}\right)$ and $t^{\prime}=\alpha_{n}$, where $t_{\text {min }}$ is the minimum element of \mathcal{A}_{n-1}. Thus we obtain the $\operatorname{ABS} R_{0}^{(n)}$. Let \mathcal{A}_{n} be a subset of $T\left(R_{0}^{(n)}\right)$ defined by

$$
\begin{equation*}
\mathcal{A}_{n}=\left\{t \mid \alpha_{n}<t \text { and } \pi(t)<\alpha_{n+1} \text { in } T\left(R_{0}^{(n)}\right) \text { with } \delta(t)=\delta\left(\alpha_{n}\right)\right\}, \tag{4.19}
\end{equation*}
$$

where $\pi=\Pi\left(R_{0}^{(n)}\right)$ and $\delta=\Delta\left(R_{0}^{(n)}\right)$. By hypothesis, we have $\mathcal{A}_{n}=A_{n}-T\left(S_{\rho}\right)$, whence there exists a non-negative integer a^{\prime} such that $\mathcal{A}_{a^{\prime}}=\emptyset$. Next, for ABS's $R_{0}^{\left(a^{\prime}\right)}, \ldots, R_{0}^{\left(a^{\prime}+n-1\right)}$ and for ordered sets $\mathcal{B}_{0}, \ldots, \mathcal{B}_{n-1}$, to construct the ABS $R_{0}^{\left(a^{\prime}+n\right)}$, let $T\left(R_{0}^{\left(a^{\prime}+n\right)}\right)=T\left(R_{0}^{\left(a^{\prime}+n-1\right)}\right)$ as sets. Put $\Pi\left(R_{0}^{\left(a^{\prime}+n\right)}\right)=\Pi\left(R_{0}^{\left(a^{\prime}+n-1\right)}\right)$ and $\Delta\left(R_{0}^{\left(a^{\prime}+n\right)}\right)=$ $\Delta\left(R_{0}^{\left(a^{\prime}+n-1\right)}\right)$. The ordering of $T\left(R_{0}^{\left(a^{\prime}+n\right)}\right)$ is given so that for $t<t^{\prime}$ in $T\left(R_{0}^{\left(a^{\prime}+n-1\right)}\right)$, set $t>t^{\prime}$ if and only if $\beta_{n}<t^{\prime} \leq \Pi\left(R_{0}^{\left(a^{\prime}+n\right)}\right)\left(t_{\max }\right)$ in $T\left(R_{0}^{\left(a^{\prime}+n-1\right)}\right)$ and $t=\beta_{n}$, where $t_{\max }$ is the maximum element of \mathcal{B}_{n-1}. This ordering determines the $\operatorname{ABS} R_{0}^{\left(a^{\prime}+n\right)}$, and we define
a subset \mathcal{B}_{n} of $T\left(R_{0}^{\left(a^{\prime}+n\right)}\right)$ by

$$
\begin{equation*}
\mathcal{B}_{n}=\left\{t \mid t<\beta_{n} \text { and } \beta_{n+1}<\pi(t) \text { in } T\left(R_{0}^{\left(a^{\prime}+n\right)}\right) \text { with } \delta(t)=\delta\left(\beta_{n}\right)\right\} \tag{4.20}
\end{equation*}
$$

where $\pi=\Pi\left(R_{0}^{\left(a^{\prime}+n\right)}\right)$ and $\delta=\Delta\left(R_{0}^{\left(a^{\prime}+n\right)}\right)$. By hypothesis, we have $\mathcal{B}_{n}=B_{n}$ for all n. Hence we see that $\mathcal{B}_{b^{\prime}}$ is empty with $b^{\prime}=b$. It is easy to see that $R_{0}^{\left(a^{\prime}+b^{\prime}\right)}$ is the ABS associated to $\xi^{\prime}=\left(m_{1}-f, n_{1}-g\right)+\left(m_{2}, n_{2}\right)$, and that $\ell\left(R^{\left(a^{\prime}+b^{\prime}\right)}\right)=\ell\left(R_{0}\right)+1$. It induces that R_{0} correspondts to a specialization of $w_{\xi^{\prime}}$.

We give a condition for $t \in C$ to belong to C_{2} :
Proposition 4.17. For $0_{i}^{1} \in C$ and $1_{j}^{2} \in D^{\prime}$, there exists an element $t \in T\left(S^{-}\right)$of the generic full modification satisfying $0_{i-1}^{1}<t<1_{j}^{2}$ if and only if there is a non-negative integer n such that the maximum element of $\Pi\left(S^{(n)}\right)\left(A_{n}\right)$ is 0_{i-1}^{1}.

Proof. For the ABS $S^{(0)}$, clearly $T\left(S^{(0)}\right)$ has no element t satisfying $0_{i-1}^{1}<t<1_{j}^{2}$. Hence if there exists an element t such that $0_{i-1}^{1}<t<1_{j}^{2}$ in $T\left(S^{(m)}\right)$ for some m, then this t is $\Pi\left(S^{(0)}\right)^{n}\left(0_{i}^{1}\right)$ with $n \leq m$. By construction, the maximum element of $\Pi\left(S^{(n)}\right)\left(A_{n}\right)$ is 0_{i-1}^{1}.

After this we assume that C is not empty. We first introduce an ordering of C, which plays an important role to divide the set C into C_{1} and C_{2}.

Notation 4.18. Put $c=|C|$. For $x=1, \ldots, c$, let i_{x} be the natural number such that $m_{1}<i_{x} \leq m_{1}+n_{1}$ and $0_{i_{x}}^{1}$ is the element of C appearing in the x-th vertex in the path Q. In other words, we set

$$
\begin{equation*}
\left(\pi^{q_{1}}\left(0_{i}^{1}\right), \ldots, \pi^{q_{c}}\left(0_{i}^{1}\right)\right)=\left(0_{i_{1}}^{1}, \ldots, 0_{i_{c}}^{1}\right), \tag{4.21}
\end{equation*}
$$

where $\pi=\Pi(S)$, for elements $\pi^{q_{1}}\left(0_{i}^{1}\right), \ldots, \pi^{q_{c}}\left(0_{i}^{1}\right)$ of C with non-negative integers $q_{1}<$ $\cdots<q_{c}$.

Here we give a characterization of "the first element of C " $0_{i_{1}}^{1}$.
Lemma 4.19. If there exists a minimum number x such that the element $t=\Pi(S)^{x}\left(0_{m_{1}+1}^{1}\right)$ of Q satisfies $0_{m_{1}+1}^{1}<t<0_{n_{1}}^{1}$ in $T\left(S_{1}\right)$, then $t=0_{i_{1}}^{1}$.

Proof. To show the assertion, first let us see that the sets A_{n} do not contain $0_{m_{1}+1}^{1}$. Assume that A_{n} contains $0_{m_{1}+1}^{1}$ for some n. Then $\Pi\left(S^{(n)}\right)^{n+1}\left(0_{i}^{1}\right)<1_{1}^{1}$, and this is a contradiction.

To see that the element t belongs to C, let us construct the full modification by $\left(t, 1_{j}^{2}\right)$ with $1_{j}^{2} \in D^{\prime}$. Suppose that the set A_{n} contains the inverse image ψ_{j} of 1_{j}^{2} for some n, and let us lead a contradiction. In $T\left(S_{1}\right)$, this ψ_{j} is the inverse image of t. Clearly ψ_{j} belongs to Q. Let t^{\prime} be the element of $S^{(0)}$ such that $\Pi\left(S^{(0)}\right)^{n}\left(t^{\prime}\right)=\psi_{j}$. Then this t^{\prime} belongs to A_{0} by Proposition 3.18. Now we treat elements τ_{y}^{1}, with $\tau=0$ or 1 , of the path Q between $0_{m_{1}+1}^{1}$ and t, i.e., elements τ_{y}^{1} appearing in

$$
\begin{equation*}
0_{m_{1}+1}^{1} \rightarrow \cdots \rightarrow \tau_{y}^{1} \rightarrow \cdots \rightarrow t \rightarrow \cdots \rightarrow 0_{2 m_{1}}^{1} . \tag{4.22}
\end{equation*}
$$

By the minimality of x, these elements τ_{y}^{1} satisfy that $y<m_{1}$ or $n_{1}<y$. It implies that these elements do not belong to A_{0} as A_{0} is a subset of $\left\{0_{m_{1}+1}^{1}, \ldots, 0_{n_{1}}^{1}\right\}$. Hence t^{\prime} belongs to P, and there exists a natural number m such that $\Pi\left(S^{(0)}\right)^{m}\left(t^{\prime}\right)=0_{m_{1}+1}^{1}$. This contradicts the statement of the first paragraph.

Notation 4.20. For an element 0_{i}^{1} of C^{\prime}, we often write $A_{i, n}$ for sets A_{n} obtained by the full modification of the small modification by $\left(0_{i}^{1}, 1_{j}^{2}\right)$ to avoid confusion. Moreover, we often write a_{i} for the minimum integer a satisfying $A_{i, a}=\emptyset$. We put $E_{i}=\Pi\left(S^{(0)}\right)\left(A_{i, a_{i}-1}\right)$ for all i. This set consists of all elements t satisfying that $0_{m_{1}+1}^{1} \leq t<1_{m_{1}}^{1}$ in $T\left(S^{-}\right)$.

Proposition 4.21. Put $i=n_{1}-\gamma$, with $\gamma=\left|E_{i_{1}}\right|$. Then 0_{i}^{1} belongs to C. Moreover $E_{i_{1}}=E_{i}$.

Proof. Since $E_{i_{x}}$ is a subset of $\left\{0_{m_{1}+1}^{1}, \ldots, 0_{n_{1}}^{1}\right\}$ as sets, we have $\left|E_{i_{x}}\right|<n_{1}-m_{1}$ for all elements $0_{i_{x}}^{1}$ of C. It implies that $m_{1}<i<n_{1}$. To show that 0_{i}^{1} belongs to C, consider the full modification of the small modification by 0_{i}^{1} and 1_{j}^{2}. It suffices to see that there exists a natural number m such that $A_{i, 0}=A_{i_{1}, m}$. Indeed, if there exists such a number m, then $A_{i, n}=A_{i_{1}, m+n}$ for all n. Put $\alpha=\pi^{m-1}\left(0_{i_{1}}^{1}\right)$ with $\pi=\Pi\left(S^{(0)}\right)$. Note that this α is the inverse image of 0_{i}^{1} in the sets $T\left(S^{(n)}\right)$. By Proposition 3.19, sets $A_{i_{1}, m+n}$ do not contain α. Hence the sets $A_{i, n}$ do not contain the inverse image of 0_{i}^{1}, and we are done.

Let us show that existence of such m. By the definition of γ and Lemma 4.8, there exists a natural number m^{\prime} such that $A_{i_{1}, m^{\prime}}=\left\{1_{m_{1}-\gamma+1}^{1}, \ldots, 1_{m_{1}}^{1}\right\}$. We have then $A_{i_{1}, m^{\prime}+2}=$ $A_{i, 0}$, whence we obtain the desired m by $m=m^{\prime}+2$.

Let d be the natural number such that $i_{d}=n_{1}-\gamma$. We fix the notations of d and γ. To divide the set C^{\prime} into C_{1} and C_{2}, these numbers play an important role as we can see below.

Proposition 4.22. Let x be a natural number satisfying $1 \leq x \leq|C|$. Then
(1) if $x \leq d$, then $0_{i_{x}}^{1}$ belongs to C_{1},
(2) if $x>d$, then $0_{i_{x}}^{1}$ belongs to C_{2}.

If we accept this proposition, we can show Proposition 4.10 (i).
Proof of Proposition 4.10 (i). Let S^{-}denote the generic full modification obtained by 0_{i}^{1} and 1_{j}^{2}. By Proposition 4.22 , it only remains to treat the case $i=n_{1}$. In this case we have $A_{0}=\emptyset$, and there exists no element t of $T\left(S^{-}\right)$satisfying $0_{i-1}^{1}<t<1_{j}^{2}$. Hence $0_{n_{1}}^{1}$ belongs to C_{2}.

To prove Proposition 4.22 , let us show some properties of sets E_{i}, of natural numbers d and γ.

Proposition 4.23. We have the following properties:
(i) If $x<y$, then $E_{i_{x}} \subset E_{i_{y}}$,
(ii) for all non-negative integers n with $n<a_{i_{d}}$, we have $\left|A_{i_{d}, n}\right|=\gamma$,
(iii) for all x and n with $n<a_{i_{x}}$, we have $\left|A_{i_{x}, n}\right| \geq \gamma$,
(iv) $E_{i_{d}} \subsetneq E_{i_{x}}$ for all x with $x>d$,
(v) $E_{i_{x}}=E_{i_{d}}$ if and only if $x \leq d$.

Proof. (i): Put $\pi=\Pi\left(S^{(n)}\right)$ for the small modification by $\left(0_{i_{x}}^{1}, 1_{j}^{2}\right)$. Then there exists a non-negative integer n such that $\pi^{n}\left(0_{i_{x}}^{1}\right)=0_{i_{y}}^{1}$ with $n<a_{i_{x}}$. We have then $A_{i_{x}, n}=$ $\left\{0_{i_{y}+1}^{1}, \ldots, 0_{z}^{1}\right\}$ with $z \leq n_{1}$. Clearly $A_{i_{x}, n}$ is a subset of $A_{i_{y}, 0}$, and it induces that $E_{i_{x}}$ is a subset of $E_{i_{y}}$.
(ii): It is obvious that $\left|A_{n}\right| \geq\left|A_{n+1}\right|$ for all n. By the definition of d and γ, we have $\left|A_{i_{d}, 0}\right|=\gamma$. Moreover (i) implies that $\left|A_{i_{d}, a_{i_{d}}}\right| \geq \gamma$ and hence $\left|A_{i_{d}, 0}\right|=\cdots=\left|A_{i_{d}, a_{i_{d}}}\right|=\gamma$.
(iii): By (i) and the definition of γ, we have $\left|E_{i_{x}}\right| \geq \gamma$ for all x and hence $\left|A_{i_{x}, n}\right| \geq \gamma$ for all n.
(iv): Fix a natural number x with $x>d$. It suffices to see that $\left|E_{i_{x}}\right|>\gamma$. To lead a contradiction, assume $\left|E_{i_{x}}\right|=\gamma$. Then we have $A_{i_{x}, u}=\left\{1_{m_{1}-\gamma+1}^{1}, \ldots, 1_{m_{1}}^{1}\right\}$ and $\pi^{u}\left(0_{i_{x}}^{1}\right)=1_{m_{1}-\gamma}^{1}$ for some u, where $\pi=\Pi\left(S^{(0)}\right)$. Since $\pi^{v}\left(0_{i_{d}}^{1}\right)=0_{i_{x}}^{1}$ for some v, we have $\pi^{v+u+2}\left(0_{i_{d}}^{1}\right)=0_{i_{d}}^{1}$ with $u+v+2<m_{1}+n_{1}$. This is a contradiction.
(v): This statement follows from (i), (iv) and Proposition 4.21.

Proposition 4.24. Let $\mathcal{L}^{\prime}=\{x \in \mathbb{N}|1 \leq x \leq|C|\}$. We define a set \mathcal{L} by

$$
\begin{equation*}
\mathcal{L}=\left\{x \in \mathcal{L}^{\prime} \mid \text { the maximum element of } A_{i_{d}, n} \text { is } 0_{i_{x}-1}^{1} \text { for some } n\right\} . \tag{4.23}
\end{equation*}
$$

Assume that \mathcal{L} is not empty. Let d^{\prime} denote the maximum number of \mathcal{L}. We have then $\mathcal{L}=\left\{1,2, \ldots, d^{\prime}\right\}$.

Proof. Fix a natural number x with $x \leq d^{\prime}$. Let us show that $0_{i_{x}-1}^{1}$ belongs to $A_{i_{d}, n}$ for some n. Let u be the minimum number such that $A_{i_{d}, n}$ has the maximum element $0_{i_{d^{\prime}}-1}^{1}$. Consider the path consisting of maximum elements of $A_{i_{d}, u^{\prime}}$ with $0 \leq u^{\prime} \leq u$.

$$
\begin{equation*}
0_{n_{1}}^{1} \rightarrow \cdots \rightarrow 0_{i_{d^{\prime}}-1}^{1} . \tag{4.24}
\end{equation*}
$$

Comparing this path to the path of Q :

$$
\begin{equation*}
0_{m_{1}+1}^{1} \rightarrow 1_{m_{1}}^{1} \rightarrow 0_{n_{1}+1}^{1} \rightarrow \cdots \rightarrow 0_{i_{x}}^{1} \rightarrow \cdots \rightarrow 0_{i_{d^{\prime}}}^{1}, \tag{4.25}
\end{equation*}
$$

we see that (4.24) contains $0_{i_{x}-1}^{1}$.
Proposition 4.25. Assume that the set \mathcal{L} of Proposition 4.24 is not empty. Then we have $d^{\prime} \leq d$.

Proof. First, note that there exists no non-negative integer n such that the maximum element of $A_{i_{d}, n}$ is $1_{m_{1}-1}^{1}$. Indeed, if $A_{i_{d}, n}$ contains $1_{m_{1}-1}^{1}$ for some n, then the minimum element of $A_{i_{d}, n}$ is $1_{m_{1}-\gamma}^{1}$, and $A_{i_{d}, n+1}$ contains the inverse image $0_{i_{d}+m_{1}}^{1}$ of $0_{i_{d}}^{1}$. This is a contradiction.

Assume $d<d^{\prime}$. Fix a natural number x with $d<x \leq d^{\prime}$. Let us consider the generic full modification obtained by $0_{i_{d}}^{1}$ and 1_{j}^{2}. By Proposition 4.24, we obtain the path consisting of maximum elements of sets $A_{i_{d}, n}$ and $E_{i_{d}}$:

$$
\begin{equation*}
0_{n_{1}}^{1} \rightarrow \cdots \rightarrow 0_{i_{x}-1}^{1} \rightarrow \Pi\left(S^{(0)}\right)\left(0_{i_{x}-1}^{1}\right) \rightarrow \cdots \rightarrow 0_{m_{1}+\gamma}^{1} \tag{4.26}
\end{equation*}
$$

Let us consider the path of $T\left(S_{1}\right)$

$$
\begin{equation*}
0_{i_{x}-1}^{1} \rightarrow \Pi\left(S_{1}\right)\left(0_{i_{x}-1}^{1}\right) \rightarrow \cdots \rightarrow 0_{m_{1}+\gamma+1}^{1} . \tag{4.27}
\end{equation*}
$$

By the claim of the first paragraph, as the path (4.26) does not contain $1_{m_{1}-1}^{1}$, the path (4.27) does not contain $1_{m_{1}}^{1}$. Now let us consider the generic full modification $R^{(0)}, \ldots, R^{(a+b)}$ by $0_{i_{x}}^{1}$ and 1_{j}^{2}. There exists a natural number n such that $\Pi\left(R^{(0)}\right)^{n}\left(0_{i_{x}}^{1}\right)=$ $0_{m_{1}+\gamma+1}^{1}$ with $n<a_{i_{x}}$ by (4.27). On the other hand, Proposition 4.23 (iv) implies that $E_{i_{x}}$ contains $0_{m_{1}+\gamma+1}^{1}$. This contradicts Proposition 3.19.

Proof of Proposition 4.22. Let $S^{(0)}, \ldots, S^{(a+b)}$ be the ABS's obtained by the small modification obtained by $\left(0_{i}^{1}, 1_{j}^{2}\right)$, and let $S^{-}=S^{(a+b)}$ be the generic full modification. Recall
that the specialization S^{--}obtained by (a) or (b) of Proposition 4.10 is of the form $S^{--}=R_{0} \oplus S_{\rho}$, where S_{ρ} is the ABS associated to $\rho=(f, g)$, and R_{0} is a full modification of the ABS corresponding to the Newton polygon $\xi^{\prime}=\left(m_{1}-f, n_{1}-g\right)+\left(m_{2}, n_{2}\right)$. Note that in the case (a) of Proposition 4.10, the set $T\left(S_{\rho}\right)$ consists of all elements of the path P. See Notation 4.13 for the definition of P and Q. First let us see the case (1). To apply Proposition 4.16, we shall show that if $x \leq d$, then by the full modification by $\left(0_{m_{1}+1}^{1}, 1_{m_{1}}^{1}\right)$, all elements of $E_{i_{x}}$ other than $0_{m_{1}+1}^{1}$ belong to $T\left(S_{\rho}\right)$. By Proposition 4.23 (v), it suffices to show that all elements of $E_{i_{1}}$ belong to $P=T\left(S_{\rho}\right)$. We divide the path Q into two paths as follows:

$$
\begin{equation*}
0_{m_{1}+1}^{1} \rightarrow \cdots \rightarrow 0_{i_{1}+m_{1}}^{1}, \quad 0_{i_{1}}^{1} \rightarrow \cdots \rightarrow 0_{2 m_{1}}^{1} . \tag{4.28}
\end{equation*}
$$

It follows from Proposition 3.19 that all elements $\Pi(S)^{m}\left(0_{i}^{1}\right)$ with $m<a_{i_{1}}$ of the latter component of (4.28) does not belong to $E_{i_{1}}$. The property of i_{1}, which is shown in Lemma 4.19, implies that all elements of the former component of (4.28) other than $0_{m_{1}+1}^{1}$ do not belong to $E_{i_{1}} \subset\left\{0_{m_{1}+1}^{1}, \ldots, 0_{n_{1}}^{1}\right\}$. Hence we see that all elements t of S^{-}satisfying that $0_{m_{1}+1}^{1}<t<1_{m_{1}}^{1}$ belong to $T\left(S_{\rho}\right)$.

Next, let us see the case (2). Fix an integer x with $x>d$. We consider the full modification by $0_{i_{x}-1}^{1}$ and 1_{j}^{2} for S^{-}. By Proposition 4.16, it suffices to show that there exists no element t with $0_{i_{x}-1}^{1}<t<1_{j}^{2}$ in $T\left(S^{-}\right)$. To lead a contradiction, assume the existence of t between $0_{i_{x}-1}^{1}$ and 1_{j}^{2}. By Proposition 4.17, the maximum element of $\pi\left(A_{i_{x}, v}\right)$ is $0_{i_{x}-1}^{1}$ for some v, where $\pi=\Pi\left(S^{(0)}\right)$. Here we have the path consisting of maximum elements of $A_{i_{d}, 0}, \ldots, A_{i_{d}, a-1}, E_{i_{d}}$:

$$
\begin{equation*}
0_{n_{1}}^{1} \rightarrow \cdots \rightarrow 0_{m_{1}+\gamma}^{1} . \tag{4.29}
\end{equation*}
$$

We define the non-negative integer m to be $A_{i_{x}, m}=\left\{1_{m_{1}-u+1}^{1}, \ldots, 1_{m_{1}}^{1}\right\}$ with $u=\left|\pi\left(A_{i_{x}, v}\right)\right|$. Then $m<v$, and the set $A_{i_{x}, m+2}$ has the maximum element $0_{n_{1}}^{1}$. We treat the path $O: 0_{n_{1}}^{1} \rightarrow \cdots \rightarrow 0_{i_{x}-1}^{1}$ consisting of maximum elements of $A_{i_{x}, m+2}, A_{i_{x}, m+3}, \ldots, \pi\left(A_{i_{x}, v}\right)$. If the path O can be regarded as a sub-path of (4.29), we complete the proof. It suffices to check that O does not contain $0_{m_{1}+\gamma}^{1}$. If $0_{m_{1}+\gamma}^{1}$ belongs to O, then $\left|E_{i_{x}}\right| \leq \gamma$ holds, and this contradicts with Proposition 4.23 (v). Hence O is contained in (4.29), and it implies that $0_{i_{x}-1}^{1}$ is the maximum element of $A_{i_{d}, n}$ for some n. This contradicts the definition of d^{\prime}.

It remains to show Proposition 4.10 in case (ii): $n_{1}=m_{1}+1$ for the Newton polygon $\xi=\left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)$. The proof of Proposition 4.10 in case (ii) is given in the same
way as the proof of Proposition 4.10 in case (i). As with Proposition 4.12, in a generic full modification, $0_{m_{2}+1}^{2}<1_{m_{2}}^{2}$ holds. In the case $n_{1}=m_{1}+1$, we have $C^{\prime}=\left\{0_{n_{1}}^{1}\right\}$. We now suppose that D is not empty.

Notation 4.26. We define paths P^{\prime} and Q^{\prime} of $T\left(S_{2}\right)$ as follows:

$$
\begin{align*}
P^{\prime}: & 1_{m_{2}}^{2} \rightarrow 0_{m_{2}+n_{2}}^{2} \rightarrow 1_{n_{2}}^{2} \rightarrow \cdots \rightarrow 1_{m_{2}-n_{2}+1}^{2} \tag{4.30}\\
Q^{\prime}: & 0_{m_{2}+1}^{2} \rightarrow 1_{1}^{2} \rightarrow 1_{n_{2}+1}^{2} \rightarrow \cdots \rightarrow 1_{m_{2}-n_{2}}^{2} \tag{4.31}
\end{align*}
$$

Clearly the set $T\left(S_{2}\right)$ is the disjoint union of P^{\prime} and Q^{\prime}.

In the proof of Proposition 4.10 (ii), the above P^{\prime} and Q^{\prime} play a important role as the paths P and Q do so in the proof of Proposition 4.10 (i). In the case (c) of Proposition 4.10, the ABS S_{ρ} corresponding to the segment $\rho=(f, g)$ consists of all the elements of Q^{\prime}.

Lemma 4.27. For the above sets, D is a subset of P^{\prime}. Moreover, let $j_{1}, \ldots, j_{|D|}$ be natural numbers such that $1_{j_{x}}^{2}$ is the x-th element of D appearing in the x-th in P^{\prime}, i.e., for $D=\left\{\pi^{q_{1}}\left(1_{m_{2}}^{2}\right), \ldots, \pi^{q_{|D|}}\left(1_{m_{2}}^{2}\right)\right\}$, we have $\left(\pi^{q_{1}}\left(1_{m_{2}}^{2}\right), \ldots, \pi^{q_{|D|}}\left(1_{m_{2}}^{2}\right)\right)=\left(1_{j_{1}}^{2}, \ldots, 1_{j_{|D|}}^{2}\right)$ with $q_{1}<\cdots<q_{|D|}$ and $\pi=\Pi\left(S^{(0)}\right)$. We have then $j_{1}=n_{2}$.

Proof. For the former part, in the same way as Proposition 4.12 we have no non-negative integer n with $n \leq b$ such that $\pi^{n}\left(1_{j}^{2}\right)=1_{m_{2}}^{2}$ for every element 1_{j}^{2} of D. As with Lemma 4.14, we can see $D \subset P^{\prime}$. Let us show the latter part. By the former part, if $1_{n_{1}}^{2}$ belongs to D, then we immediately obtain $j_{1}=n_{2}$. Consider a full modification by $\left(0_{i}^{1}, 1_{n_{1}}^{2}\right)$ with $0_{i}^{1} \in C^{\prime}$, and assume that the set B_{n} contains the inverse image $0_{m_{2}+n_{2}}^{2}$ of 0_{i}^{1} in $S^{(a+n)}$ for some n. We have then $0_{m_{2}+n_{2}}^{2}<\pi^{n}\left(1_{j}^{2}\right)$ in $S^{(a+n-1)}$. Since $0_{m_{2}+n_{2}}^{2}$ is the maximum element of $T\left(S^{(0)}\right)$, this is a contradiction.

Notation 4.28. Let D_{1} (resp. D_{2}) be the subset of D consisting of 1_{j}^{2} such that by the generic full modification S^{-}obtained by 0_{i}^{1} and 1_{j}^{2}, we obtain (4.6) of Proposition 4.9 by (c) (resp. (d)) of Proposition 4.10.

To show Proposition 4.10, we will show $D=D_{1} \cup D_{2}$. To divide the set D into D_{1} and D_{2}, we shall introduce a key element of D in Proposition 4.30.

Notation 4.29. For an element 1_{j}^{2} of D^{\prime}, we write $B_{j, n}$ for B_{n} obtained by the full modification by $\left(0_{i}^{1}, 1_{j}^{2}\right)$. For sets $B_{j, 0}, \ldots, B_{j, b}$, we define $E_{j}^{\prime}=\pi\left(B_{j, b-1}\right)$ with $\pi=\Pi\left(S^{(0)}\right)$. Note that this set consists of all elements t satisfying $0_{m_{2}+1}^{2}<t \leq 1_{m_{2}}^{2}$ in S^{-}. Moreover we denote by b_{j} the non-negative integer b.

Proposition 4.30. Put $j=1+\mu$ with $\mu=\left|E_{j_{1}}^{\prime}\right|$. Then 1_{j}^{2} belongs to D. Let e be the natural number satisfying $j=j_{e}$. Then $E_{j_{1}}^{\prime}=E_{j_{e}}^{\prime}$.

Proof. By Lemma 4.8, we have $B_{j_{1}, n}=\left\{0_{m_{2}+1}^{2}, \ldots, 0_{m_{2}+\mu}^{2}\right\}$ for some non-negative integer n. Then $B_{j_{1}, n+1}=B_{j, 0}$. We can show the statement in the same way as Proposition 4.21 .

This number e divides the set D into D_{1} and D_{2} as follows.
Proposition 4.31. Let x be a natural number with $x \leq|D|$. Then
(1) if $x \leq e$, then $1_{j_{x}}^{2}$ belongs to D_{1},
(2) if $x>e$, then $1_{j_{x}}^{2}$ belongs to D_{2}.

Proof. First let us see the statement (1). Let S^{-}denote the generic full modification obtained by 0_{i}^{1} and 1_{j}^{2}. For this S^{-}, the ABS S^{--}of (c) or (d) of Proposition 4.10 consists of two components R_{0} and S_{ρ}, where S_{ρ} is associated to a Newton polygon $\rho=(f, g)$. For these S^{--}, since it coincides with the component obtained from S_{2} by applying [2, Lemma 5.6] to the adjacent $1_{m_{2}}^{2} 0_{m_{2}+1}^{2}$ and $1_{j}^{2} 1_{j+1}^{2}$ respectively, we have $g m_{1}-f n_{2}=1$. In the same way as Proposition 4.16, we obtain the property: If there exists no element t of $T\left(R_{0}\right)$ satisfying that $0_{m_{2}+1}^{2}<t<1_{m_{2}}^{2}$ (resp. $0_{i}^{1}<t<1_{j+1}^{2}$) in S^{-}, then 1_{j}^{2} belongs to D_{1} (resp. D_{2}). By the same way as Proposition 4.23, we have
(i) if $x<y$, then $E_{j_{x}}^{\prime} \subset E_{j_{y}}^{\prime}$,
(ii) for all n with $n<b_{j_{e}}$, we have $\left|B_{j_{e}, n}\right|=\mu$,
(iii) for all x and all n with $n<b_{j_{x}}$, we have $\left|B_{j_{x}, n}\right| \geq \mu$,
(iv) $E_{j_{e}}^{\prime} \subsetneq E_{j_{x}}^{\prime}$ holds for all x with $x>e$,
(v) $E_{j_{e}}^{\prime}=E_{j_{x}}^{\prime}$ if and only if $x \leq e$.

By (v), to show the statement (1), it suffices to consider the case $x=1$. Note that in this case, $T\left(S_{\rho}\right)$ consists of all elements of Q^{\prime}. We claim that there exists no element t of P^{\prime} satisfying that $0_{m_{2}+1}^{2}<t<1_{m_{2}}^{2}$ in S^{-}. Indeed, if we divide the path P^{\prime} into two paths:

$$
\begin{equation*}
1_{m_{2}}^{2} \rightarrow 0_{m_{2}+n_{2}}^{2}, \quad 1_{j_{1}}^{2} \rightarrow \cdots \rightarrow 1_{m_{2}-n_{2}+1}^{2} \tag{4.32}
\end{equation*}
$$

clearly for $t=1_{m_{2}}^{2}$ or $0_{m_{2}+n_{2}}^{2}$, these t do not satisfy $0_{m_{2}+1}^{2}<t<1_{m_{2}}^{2}$ in S^{-}. Moreover, since each element of the latter component is of the form $\pi^{n}\left(1_{j_{1}}^{2}\right)$ for some n with $n<b$, by Proposition 3.22 , these elements do not belong to $E_{j_{1}}^{\prime}$. Hence we see that all elements
in between $0_{m_{2}+1}^{2}$ and $1_{m_{2}}^{2}$ in S^{-}do not belong to $T\left(R_{0}\right)$, i.e., if t belongs to $E_{j_{1}}^{\prime}$, then this t is an element of $T\left(S_{2}\right)-P^{\prime}=T\left(S_{\rho}\right)$.

Next let us show the statement (2). We define the non-negative integer e^{\prime} to be the maximum number of the set

$$
\begin{equation*}
\mathcal{M}=\left\{x \in \mathcal{M}^{\prime} \mid 1_{j_{x}+1}^{2} \text { is the maximum element of } B_{j_{e}, n} \text { for some } n\right\} \tag{4.33}
\end{equation*}
$$

with $\mathcal{M}^{\prime}=\{x \in \mathbb{N}|1 \leq x \leq|D|\}$. By the same way as the proof of Proposition 4.25 , if \mathcal{M} is not empty, then $e^{\prime} \leq e$. A proof is given in the same way as the proof of Proposition 4.22 (2).

Proof of Proposition 4.10 (ii). By Proposition 4.31, it remains to the case $j=1$. If $n_{2}>1$, we have then $0_{i}^{1}<1_{j+1}^{2}$, and there exists no element t of $T\left(S^{-}\right)$satisfying $0_{i}^{1}<t<1_{j+1}^{2}$. Hence 1_{i}^{2} belongs to D_{2}. Next suppose $n_{2}=1$. In this case, for S^{-}, we construct the full modification by $\left(0_{m_{1}+n_{1}}^{1}, 1_{n_{2}+1}^{2}\right)$. Then for $S^{--}=R_{0} \oplus S_{\rho}$, the latter component S_{ρ} is described as $1_{1}^{2} 0_{m_{1}+n_{1}}^{1}$, and R_{0} is a full modification of the ABS corresponding to the Newton polygon $\left(m_{1}-1, n_{1}-1\right)+\left(m_{2}, n_{2}\right)$. Hence in this case we obtain (4.6) by (e).

Proof of Proposition 4.9. By Proposition 4.10, it remains only to show the case $\lambda_{1}=1$ or $\lambda_{2}=0$. For the case $\lambda_{1}=1$, using Proposition 4.10, we get the required w_{ξ}^{--}by (c) or (d). If $\lambda_{2}=0$, then we obtain w_{ξ}^{--}by (a) or (b).

Example 4.32. Let $\xi=(2,5)+(3,2)$. Let S denote the ABS corresponding to ξ. In Example 4.4, we obtain the generic full modification S^{-}of S obtained by $\left(0_{4}^{1}, 1_{2}^{2}\right)$. Consider the full modification by $\left(0_{3}^{1}, 1_{2}^{2}\right)$ for S^{-}. Then this full modification can be described as

The first component is a specialization of $N_{(1,3)+(3,2)}$, and we have $\rho=(1,2)$. For the first component, let us consider the full modification by $\left(0_{4}^{2}, 1_{3}^{2}\right)$. We have then the specialization $N_{(1,3)+(2,1)}^{-} \oplus N_{(1,1)}$. Thus, constructing a specialization of $N_{(1,1)+(1,1)}^{-}$, we obtain the Newton polygon ζ by $\zeta=2(1,2)+3(1,1)$.

Chapter 5

The case of Newton polygons consisting of two segments

In this chapter, we treat all Newton polygons consisting of two segments, and reduce Problem 1.4 to the case that the Newton polygon ξ is $1 / 2$-separated, i.e., we reduce the problem to the case of Chapter 4. Moreover, we show Proposition 5.9 which is a key statement to show Theorem 1.8. This proposition is a generalization of Proposition 4.9. In Section 6, we will see that it suffices to deal with Newton polygons ξ consisting of two segments to classify generic specializations of $H(\xi)$, and to determine its Newton polygons for an arbitrary ξ.

5.1 Euclidean algorithm for Newton polygons

We denote by NP the set of Newton polygons whose all segments are not the same. Let NP ${ }^{\text {sep }}$ be the subset of NP consisting of Newton polygons $\left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)+\cdots+\left(m_{z}, n_{z}\right)$ with $n_{z} /\left(m_{z}+n_{z}\right)<1 / 2<n_{1} /\left(m_{1}+n_{1}\right)$. In this section, we introduce Euclidean algorithm for Newton polygons $\Phi: \mathrm{NP} \rightarrow \mathrm{NP}^{\text {sep }}$ which is used for reducing Problems 1.4 and 1.7 to the case that the Newton polygon ξ is $1 / 2$-separated. Moreover, using this map, we will show some properties of the ABS's corresponding to minimal DM_{1} 's, see Lemma 5.5 and Proposition 5.7.

First, we introduce two operations of Newton polygons to construct the map Φ : NP \rightarrow $\mathrm{NP}^{\text {sep }}$. See Section 2.1 (2.3) for the notation of Newton polygons. For a Newton polygon $\xi=\sum_{i=1}^{z}\left(m_{i}, n_{i}\right)$, we define the Newton polygon ξ^{D} by

$$
\begin{equation*}
\xi^{\mathrm{D}}=\sum_{i=1}^{z}\left(n_{z-i+1}, m_{z-i+1}\right) . \tag{5.1}
\end{equation*}
$$

We call this ξ^{D} the dual of ξ. Moreover, for a Newton polygon ξ satisfying $m_{i} \leq n_{i}$ for all i, we define the Newton polygon ξ^{C} by

$$
\begin{equation*}
\xi^{\mathrm{C}}=\sum_{i=1}^{z}\left(m_{i}, n_{i}-m_{i}\right) \tag{5.2}
\end{equation*}
$$

and we call this ξ^{C} the curtailment of ξ.

Example 5.1. Let $\xi_{0}=(5,3)+(2,1)+(7,2)$. Then $\xi_{0}^{\mathrm{D}}=(2,7)+(1,2)+(3,5)$. For $\xi_{1}=\xi_{0}^{\mathrm{D}}$, we have $\xi_{1}^{\mathrm{C}}=(2,5)+(1,1)+(3,2)$.

Example 5.2. Let $\xi=(2,5)+(3,2)$. Then the ABS S corresponding to N_{ξ} is described as

The dual ξ^{D} of ξ is $\xi^{\mathrm{D}}=(2,3)+(5,2)$. The $\mathrm{ABS} S^{\mathrm{D}}$ associated to the minimal DM_{1} of ξ^{D} is described as

Using the above operations C and D , let us construct a map $\Phi: \mathrm{NP} \rightarrow \mathrm{NP}^{\mathrm{sep}}$. Proposition 5.7 and Lemma 6.1 below are properties of ABS's corresponding to minimal ABS's N_{ξ} for arbitrary Newton polygons ξ. Thanks to the map Φ, proofs of these claims are reduced to the case that the Newton polygons belong to NP ${ }^{\text {sep }}$.

For a Newton polygon $\xi=\sum_{i=1}^{z}\left(m_{i}, n_{i}\right)$, we define the height of ξ by $\mathrm{ht}(\xi)=m_{1}+$ $n_{1}+m_{2}+n_{2}+\cdots+m_{z}+n_{z}$. First, let us construct the image $\Phi(\xi)$ of a Newton polygon ξ in NP with two segments. If ξ belongs to NP ${ }^{\text {sep }}$, then we define $\Phi(\xi)=\xi$. Otherwise, the Newton polygon $\xi=\left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)$ satisfies that $m_{i} \leq n_{i}$ for $i=1,2$, or $n_{i} \leq m_{i}$ for $i=1,2$. For the former case, we define the image $\Phi(\xi)$ of ξ to be the image of ξ^{C} by Φ. For the latter case, we define the image $\Phi(\xi)$ of ξ to be the image of ξ^{DC} by Φ. Let us show this map Φ is well defined. It is clear that $\operatorname{ht}\left(\xi^{\mathrm{C}}\right)<\operatorname{ht}(\xi)$ and $\operatorname{ht}\left(\xi^{\mathrm{D}}\right)=\operatorname{ht}(\xi)$. If $\operatorname{ht}(\xi)=2$, then since ξ has two types of segments, we see that $\xi=(0,1)+(1,0)$ which belongs to NP ${ }^{\text {sep }}$.

For the case $z>2$, let $\eta=\left(m_{1}, n_{1}\right)+\left(m_{z}, n_{z}\right)$. let W denote the word of C and D
such that $\Phi(\eta)=\eta^{\mathrm{W}}$. For this W, we define the image $\Phi(\xi)$ of ξ by ξ^{W}. We call this map $\Phi: \mathrm{NP} \rightarrow \mathrm{NP}^{\mathrm{sep}}$ Euclidean algorithm for Newton polygons.

Remark 5.3. By the above construction, the Newton polygon $\Phi(\xi)$ is described as $\Phi(\xi)=$ $\xi^{\mathrm{Q}_{1} \mathrm{Q}_{2} \cdots \mathrm{Q}_{m}}$, where Q_{i} is either the operation C or the operation D for every i. Thus by the duality and Theorem 1.6, for all Newton polygons ξ consisting of two segments, we obtain a bijection from $B(\xi)$ to $B(\Phi(\xi))$.

Example 5.4. As seen in Example 5.1, for the Newton polygon $\xi=(5,3)+(2,1)+(7,2)$, we have $\Phi(\xi)=(2,5)+(1,1)+(3,2)$.

Let S (resp. R) be the ABS of ξ (resp. ξ^{C}). Next, we describe a relation between S and R. In the following lemma, we show that the set $T(R)$ can be regarded as a subset of $T(S)$ as ordered sets. This relation is used for the proofs of Lemma 6.1 and Theorem 1.6.

Lemma 5.5. Let $\xi=\left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)$ be a Newton polygon consisting of two segments with $m_{i} \leq n_{i}$ for $i=1,2$. Let S and R be the ABS of ξ and ξ^{C} respectively. Then $T(R)$ is contained in $T(S)$ as an ordered set. We have

$$
\begin{equation*}
\{t \in T(R) \mid \Delta(R)(t)=1\}=\{t \in T(S) \mid \Delta(S)(t)=1\} \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
T(S)-T(R)=\{\Pi(S)(t) \mid t \in T(S) \text { with } \Delta(S)(t)=1\} \tag{5.6}
\end{equation*}
$$

Let t be an element of $T(R)$. We also regard t as an element of $T(S)$. Then

$$
\Pi(R)(t)= \begin{cases}\Pi(S)(t) & \text { if } \Delta(R)(t)=0 \tag{5.7}\\ \Pi(S)^{2}(t) & \text { otherwise }\end{cases}
$$

holds.
Proof. Since $\xi^{\mathrm{C}}=\left(m_{1}, n_{1}-m_{1}\right)+\left(m_{2}, n_{2}-m_{2}\right)$, it is clear that $T(R)$ is a subset of $T(S)$ as sets, and there is the standard one-to-one correspondence between sets $\{t \in$ $T(R) \mid \Delta(R)(t)=1\}$ and $\{t \in T(S) \mid \Delta(S)(t)=1\}$. Let us show these sets coincide as ordered sets. Take elements t and s in $T(R)$. Let t^{\prime} and s^{\prime} denote the elements of $T(S)$ corresponding t and s by the standard one-to-one correspondence respectively. Then for binary expansions $b(t)$ and $b(s)$, we see $b(t)<b(s)$ if and only if $b\left(t^{\prime}\right)<b\left(s^{\prime}\right)$. Thus we obtain the equality (5.5), and this induces that $T(R)$ is a subset of $T(S)$. We immediately obtain (5.6) and (5.7).

Example 5.6 below is an example of Lemma 5.5.
Example 5.6. Let $\xi=(2,7)+(3,5)$. Let S and R be the ABS's corresponding to ξ and ξ^{C} respectively. We have then

One can check that these S and R satisfy (5.5), (5.6) and (5.7).
Proposition 5.7. Let S be the ABS of a minimal $\mathrm{DM}_{1} N_{\xi}$ with $\xi=\sum_{i=1}^{z}\left(m_{i}, n_{i}\right)$. For natural numbers r and q with $r<q \leq z$, we have
(i) $1_{1}^{r}<1_{1}^{q}$,
(ii) $0_{m_{r}+n_{r}}^{r}<0_{m_{q}+n_{q}}^{q}$,
(iii) $0_{m_{r}+1}^{r}<0_{m_{q}+1}^{q}$
in the set $T(S)$.
Proof. Note that (iii) follows from (i). Indeed, $0_{m_{r}+1}^{r}$ and $0_{m_{q}+1}^{q}$ are the inverse image of 1_{1}^{r} and 1_{1}^{q} by $\Pi(S)$ respectively.

It suffices to treat the case $z=2$. For a Newton polygon ξ, we denote by $\mathrm{P}(\xi)$ the assertion: The $A B S$ associated to the minimal $D M_{1} N_{\xi}$ satisfies (i) and (ii). By Proposition 3.7, if ξ satisfies that $\lambda_{2}<1 / 2<\lambda_{1}$, then $\mathrm{P}(\xi)$ holds. To show that $\mathrm{P}(\xi)$ is true for all Newton polygons ξ consisting of two segments, we claim
(A) If $\mathrm{P}\left(\xi^{\mathrm{D}}\right)$ holds, then $\mathrm{P}(\xi)$ also holds,
(B) If $m_{i} \leq n_{i}$ for all i and $\mathrm{P}\left(\xi^{\mathrm{C}}\right)$ holds, then $\mathrm{P}(\xi)$ also holds.

By the duality, the claim (A) is obvious. Let us show that the claim (B) follows from Lemma 5.5. Let R denote the ABS corresponding to $N_{\xi^{\mathrm{C}}}$. By Lemma 5.5 , it is clear that $1_{1}^{1}<1_{1}^{2}$ in $T(S)$. Moreover, since $0_{n_{1}}^{1}<0_{n_{2}}^{2}$ in $T(R)$, we see that $0_{m_{1}+n_{1}}^{1}<0_{m_{2}+n_{2}}^{2}$, which are the inverse images of $0_{n_{1}}^{1}$ and $0_{n_{2}}^{2}$ by $\Pi(S)$, holds in $T(S)$. The assertion of the lemma follows from (A), (B) and the map $\Phi: \mathrm{NP} \rightarrow \mathrm{NP}^{\text {sep }}$.

5.2 Classifying generic specializations for Newton polygons consisting of two segments

In this section, we give a proof of Theorem 1.6. This theorem is a key statement to classify all generic specializations of $H(\xi)$ with a Newton polygon ξ consisting of two segments. The notation is as Chapter 3. For a Newton polygon ξ, we have the one-to-one correspondence between $B(\xi)$ and $B\left(\xi^{\mathrm{D}}\right)$, see the paragraph after Theorem 1.6. Moreover, to get a bijection between $B(\xi)$ and $B\left(\xi^{\mathrm{C}}\right)$, we use Lemma 5.5.

Proof of Theorem 1.6. The assertion is paraphrased as follows: Let S (resp. R) denote the ABS associated to ξ (resp. ξ^{C}). The map from a generic full modification S^{\prime} of S obtained by the small modification by $\left(0_{i}^{1}, 1_{j}^{2}\right)$ to the generic full modification R^{\prime} of R obtained by the small modification by $\left(0_{i}^{1}, 1_{j}^{2}\right)$ is bijective. The set $T(R)$ can be regarded as a subset of $T(S)$. By Lemma 5.5 , we have

$$
\begin{equation*}
\left\{\left(0^{1}, 1^{2}\right) \in T(S)^{2} \mid 0^{1}<1^{2} \text { in } T(S)\right\}=\left\{\left(0^{1}, 1^{2}\right) \in T(R)^{2} \mid 0^{1}<1^{2} \text { in } T(R)\right\} . \tag{5.10}
\end{equation*}
$$

Suppose that the full modification S^{\prime} of S by the small modification by $\left(0_{i}^{1}, 1_{j}^{2}\right)$ is generic. Consider the small modifications $S^{(0)}$ and $R^{(0)}$ by the same $\left(0_{i}^{1}, 1_{j}^{2}\right)$. For non-negative integers n, let $\left\{A_{n}\right\}$ (resp. $\left\{A_{n}^{\prime}\right\}$) be the A-sequence obtained by Definition 3.15 for the small modification by $\left(0_{i}^{1}, 1_{j}^{2}\right)$ for S (resp. R). Clearly we have $A_{0}=A_{0}^{\prime}$ and $\ell\left(S^{(0)}\right)=$ $\ell\left(R^{(0)}\right)$. For a non-negative integer n, suppose that $A_{n}=A_{n}^{\prime}$ and $\ell\left(S^{(n)}\right)=\ell\left(R^{(n)}\right)$. If elements t of A_{n} satisfy that $\Delta(S)(t)=0$, then by Lemma 5.5 we see that $A_{n+1}=A_{n+1}^{\prime}$ and $\ell\left(S^{(n+1)}\right)=\ell\left(R^{(n+1)}\right)$. Moreover, if elements t of A_{n} satisfy $\Delta(S)(t)=1$, then it follows from Lemma 5.5 that $A_{n+2}=A_{n+1}^{\prime}$ and $\ell\left(S^{(n+2)}\right)=\ell\left(R^{(n+1)}\right)$. Since the full modification S^{\prime} is generic, by the above, there exist non-negative integers a and a^{\prime} such that $A_{a}=\emptyset$ and $A_{a^{\prime}}^{\prime}=\emptyset$. Similarly, for the B-sequences $\left\{B_{n}\right\}$ and $\left\{B_{n}^{\prime}\right\}$ obtained by Definition 3.16, we have $B_{0}=B_{0}^{\prime}$. For a non-negative integer n, we suppose that $B_{n}=B_{n}^{\prime}$. Similarly as above, we have

$$
\begin{cases}B_{n+1}=B_{n+1}^{\prime} \text { and } \ell\left(S^{(a+n+1)}\right)=\ell\left(R^{\left(a^{\prime}+n+1\right)}\right) & \text { if } \Delta(S)(t)=0 \text { for } t \in B_{n} \tag{5.11}\\ B_{n+2}=B_{n+1}^{\prime} \text { and } \ell\left(S^{(a+n+2)}\right)=\ell\left(R^{\left(a^{\prime}+n+1\right)}\right) & \text { otherwise. }\end{cases}
$$

Thus we see that $\ell\left(S^{\prime}\right)=\ell(S)-1$ if and only if $\ell\left(R^{\prime}\right)=\ell(R)-1$. This completes the proof.

Let ξ be a Newton polygon consisting of two segments. By Theorem 1.6, we obtain a
one-to-one correspondence between $B(\xi)$ and $B\left(\xi^{\mathrm{C}}\right)$. Moreover, we have a bijection from $B(\xi)$ to $B\left(\xi^{\mathrm{D}}\right)$, see the paragraph after Theorem 1.6. Thus, using Euclidean algorithm for Newton polygons $\Phi: \mathrm{NP} \rightarrow \mathrm{NP}^{\text {sep }}$ given in Section 5.1, to classify generic specializations of the minimal p-divisible group $H(\xi)$, we may assume that ξ satisfies $\lambda_{2}<1 / 2<\lambda_{1}$.

Example 5.8. For the Newton polygon $\xi=(2,7)+(3,5)$ of Example 3.11, we have $\Phi(\xi)=(2,5)+(3,2)$. Let S be the ABS associated to $\Phi(\xi)$. For this ABS

the full modification S^{\prime} obtained by the small modification by 0_{4}^{1} and 1_{2}^{2} is

For the small modification by $\left(0_{4}^{1}, 1_{2}^{2}\right)$, we have sets $A_{0}=\left\{0_{5}^{1}\right\}, A_{1}=\emptyset, B_{0}=\left\{1_{1}^{2}\right\}$ and $B_{1}=\emptyset$. Thus we have $a=1$ and $b=1$. One can check that these S and S^{\prime} satisfy $\ell\left(S^{\prime}\right)=\ell(S)-1$. Moreover, the sets of pairs $\left(0_{i}^{1}, 1_{j}^{2}\right)$ constructing generic full modifications for ABS's corresponding to ξ and $\Phi(\xi)$ are both

$$
\begin{equation*}
\left\{\left(0_{4}^{1}, 1_{1}^{2}\right),\left(0_{4}^{1}, 1_{2}^{2}\right),\left(0_{5}^{1}, 1_{1}^{2}\right),\left(0_{5}^{1}, 1_{2}^{2}\right),\left(0_{6}^{1}, 1_{3}^{2}\right),\left(0_{7}^{1}, 1_{3}^{2}\right)\right\} . \tag{5.14}
\end{equation*}
$$

5.3 Determining Newton polygons of generic specializations for Newton polygons consisting of two segments

Theorems 1.5 and 6.6 say that it suffices to see the case that the Newton polygons of central streams consist of two segments in order to determine Newton polygons of generic specializations. From now on, we mainly treat Newton polygons consisting of two segments. Proposition 5.9 below implies that Proposition 4.9 is true for any Newton polygons ξ consisting of two segments. This proposition is a key step to prove Theorem 1.8.

Proposition 5.9. Let $\xi=\left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)$ be a Newton polygon consisting of two segments. Assume that $m_{2} n_{1}-m_{1} n_{2}$ is greater than 1. For every element w of $B(\xi)$,
there exist a generic specialization w^{-}of w and a segment $\rho=(c, d)$ such that

$$
\begin{equation*}
w^{-}=w^{\prime} \oplus w_{\rho} \tag{5.15}
\end{equation*}
$$

with $w^{\prime} \in B\left(\xi^{\prime}\right)$, where $\xi^{\prime}=\left(m_{1}-c, n_{1}-d\right)+\left(m_{2}, n_{2}\right)$ or $\xi^{\prime}=\left(m_{1}, n_{1}\right)+\left(m_{2}-c, n_{2}-d\right)$:

so that the area of the triangle surrounded by ξ, ξ^{\prime} and ρ is one.
Proof. For a Newton polygon $\xi=\left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)$, the height $\mathrm{ht}(\xi)$ of ξ is defined by $\operatorname{ht}(\xi)=m_{1}+n_{1}+m_{2}+n_{2}$. Let us prove the statement by induction on the height of ξ. If ξ is $1 / 2$-separated, then by Proposition 4.9 , we are done. It remains to see the case that ξ satisfies either

- $m_{i} \leq n_{i}$ for $i=1,2$, or
- $n_{i} \leq m_{i}$ for $i=1,2$.

If ξ satisfies the latter, then we replace ξ with ξ^{D}, and we may assume that ξ satisfies the former. Put $\eta=\xi^{\mathrm{C}}$. Take $w \in B(\xi)$. We denote by w^{C} the image of the map $B(\xi) \rightarrow B(\eta)$ obtained in Theorem 1.6. Clearly we have $\operatorname{ht}(\eta)<\operatorname{ht}(\xi)$. By the hypothesis of induction, there exist a generic specialization $\left(w^{\mathrm{C}}\right)^{-}$of w^{C} and a segment τ such that $\left(w^{\mathrm{C}}\right)^{-}=v \oplus w_{\tau}$ with $v \in B\left(\eta^{\prime}\right)$, where η^{\prime} is uniquely determined by η and τ so that the area of the triangle surrounded by η, η^{\prime} and τ is one. Let us show that there exists a generic specialization w^{-}of w such that w^{-}consists of two components w^{\prime} and w_{ρ} with $\left(w^{\prime}\right)^{\mathrm{C}}=v$ and $\rho^{\mathrm{C}}=\tau$. Let S (resp. R) denote the ABS corresponding to w (resp. w^{C}). Assume that the full modification R^{-}of R by the small modification by $\left(0_{i}^{1}, 1_{j}^{2}\right)$ corresponds to $\left(w^{\mathrm{C}}\right)^{-}=v \oplus w_{\tau}$. Let us see that the full modification S^{-}of S by the small modification by $\left(0_{i}^{1}, 1_{j}^{2}\right)$ corresponds to the required w^{-}. By Theorem 1.6, if we write $\left\{s_{1}<\cdots<s_{h}\right\}$ (resp. $\left\{s_{1}^{\prime}<\cdots<s_{h^{\prime}}^{\prime}\right\}$) for the ordered set $T(S)$ (resp. $T(R)$), with $h=h t(\xi)$ and $h^{\prime}=\operatorname{ht}(\eta)$, then $s_{x}=s_{x}^{\prime}$ for $x=1, \ldots, h^{\prime}$. Moreover, if $\Delta(S)\left(s_{x}\right)=1$ for an integer x, then $\Pi(S)^{2}\left(s_{x}\right)=\Pi(R)\left(s_{x}^{\prime}\right)$. If we denote by $\left\{t_{1}<^{\prime} \cdots<^{\prime} t_{h}\right\}$ and $\left\{t_{1}^{\prime}<^{\prime} \cdots<^{\prime} t_{h^{\prime}}^{\prime}\right\}$ the ordered sets $T\left(S^{-}\right)$and $T\left(R^{-}\right)$respectively, then $t_{x}=t_{x}^{\prime}$ for $x=1, \ldots, h^{\prime}$. Moreover, if $\Delta\left(S^{-}\right)\left(t_{x}\right)=1$ for an integer x, then $\Pi\left(S^{-}\right)^{2}\left(t_{x}\right)=\Pi\left(R^{-}\right)\left(t_{x}^{\prime}\right)$. Thus we see that S^{-} corresponding to $w^{-}=w^{\prime} \oplus w_{\rho}$, with $\left(w^{\prime}\right)^{\mathrm{C}}=v$ and $\rho^{\mathrm{C}}=\tau$.

Example 5.10. Let $\xi=(2,7)+(3,5)$. In Example 3.11 we obtain the full modification of S^{\prime} by 0_{4}^{1} and 1_{2}^{2}. The full modification of S^{\prime} by 0_{3}^{1} and 1_{2}^{1} is described as

The former component corresponds to a specialization of $N_{(1,4)+(3,5)}$, and we have the Newton polygon $\rho=(1,3)$. We obtain the required Newton polygon ζ by $\zeta=2(1,3)+$ $3(1,2)$. Compare with Example 4.32.

Chapter 6

Reduction to the two segments

case

In this chapter, first we will prove Theorem 1.5. Thanks to this theorem, the problem of classification of generic specializations (Problem 1.4) is reduced to the case that the Newton polygon of a central stream consists of two slopes. Moreover, we will show Theorem 1.8 in Section 6.2. This theorem gives a complete answer to Proposition 1.7.

6.1 Classifying generic specializations for any Newton polygons

The main purpose of this section is to prove Theorem 1.5. Let S be the ABS corresponding to a Newton polygon ξ. Let $S^{(0)}$ denote the small modification by $\left(0_{i}^{r}, 1_{j}^{q}\right)$. Lemma 6.1 and Proposition 6.2 below imply that to classify generic full modifications, we may suppose $q=r+1$; see Corollary 6.3. Note that the condition $q=r+1$ implies that the r-th segment of ξ is adjacent to the q-th segment.

Lemma 6.1. Let S be the ABS associated to N_{ξ} with $\xi=\sum_{i=1}^{z}\left(m_{i}, n_{i}\right)$ a Newton polygon. Let 0^{r} and 1^{q} be elements of $T(S)$ satisfying that $q-r>1$ and $0^{r}<1^{q}$ in $T(S)$. Then there exists an element t^{x} of $T(S)$ such that $r<x<q$ and $0^{r}<t^{x}<1^{q}$.

Proof. For a Newton polygon ξ, we write $\mathrm{Q}(\xi)$ for the assertion: For elements 0^{r} and 1^{q} of the ABS associated to N_{ξ} satisfying that $q-r>1$ and $0^{r}<1^{q}$, there exists an element t^{x} such that $r<x<q$ and $0^{r}<t^{x}<1^{q}$. It suffices to treat the case $z=3, r=1$ and $q=3$. If $\lambda_{1}=\lambda_{2}$ (resp. $\lambda_{2}=\lambda_{3}$) holds, then we immediately have the desired element t^{x} since for elements $0_{i}^{1}<1_{j}^{3}$, the element 0_{i}^{2} (resp. 1_{j}^{2}) satisfies $0_{i}^{1}<0_{i}^{2}<1_{j}^{3}\left(\right.$ resp. $0_{i}^{1}<1_{j}^{2}<1_{j}^{3}$).

From now on, we assume that the slopes are different from each other. Now we treat Newton polygons satisfying one of the following:
(i) $\lambda_{3}<1 / 2 \leq \lambda_{2}<\lambda_{1}$,
(ii) $\lambda_{3}<\lambda_{2} \leq 1 / 2<\lambda_{1}$.

By the duality, if $\mathrm{Q}(\xi)$ is true for all ξ satisfying (i), then $\mathrm{Q}(\xi)$ holds for all ξ satisfying (ii). Suppose that ξ satisfies (i). Put $h_{x}=m_{x}+n_{x}$ for all x. By Lemma 3.7, in the ABS corresponding to the $\mathrm{DM}_{1} N_{\left(m_{1}, n_{1}\right)+\left(m_{3}, n_{3}\right)}$, there exists no element t satisfying that $0_{n_{1}}^{1}<t<1_{1}^{3}$ or $0_{h_{1}}^{1}<t<1_{n_{3}+1}^{3}$. Hence it is enough to show that there exist elements t_{x}^{2} and t_{y}^{2} such that $0_{n_{1}}^{1}<t_{x}^{2}<1_{1}^{3}$ and $0_{h_{1}}^{1}<t_{y}^{2}<1_{n_{3}+1}^{3}$. If $\lambda_{2}>1 / 2$, then these elements are obtained by $t_{x}^{2}=0_{n_{2}}^{2}$ and $t_{y}^{2}=0_{h_{2}}^{2}$. Indeed, by Proposition 5.7 (ii), we have $0_{n_{1}}^{1}<0_{n_{2}}^{2}$ and $0_{h_{1}}^{1}<0_{h_{2}}^{2}$. Moreover, by the construction of the ABS of $N_{\left(m_{2}, n_{2}\right)+\left(m_{3}, n_{3}\right)}$ we have $0_{n_{2}}^{2}<1_{1}^{3}$ and $0_{h_{2}}^{2}<1_{n_{3}+1}^{3}$. If $\lambda_{2}=1 / 2$, then the required elements t_{x}^{2} and t_{y}^{2} are obtained by 1_{1}^{2} and 0_{2}^{2}.

Now we claim that
(A) If $\mathrm{Q}\left(\xi^{\mathrm{D}}\right)$ holds, then $\mathrm{Q}(\xi)$ also holds,
(B) If $m_{i} \leq n_{i}$ for all i and $\mathrm{Q}\left(\xi^{\mathrm{C}}\right)$ holds, then $\mathrm{Q}(\xi)$ also holds.

If the claim (A) and (B) are true, then by Euclidean algorithm for Newton polygons $\Phi: \mathrm{NP} \rightarrow \mathrm{NP}^{\text {sep }}$ defined in Section 5.1, the proposition is reduced to the case (i) or (ii), and this completes the proof. The claim (A) is obvious. Let us show (B). Let S (resp. R) denote the ABS associated to ξ (resp. ξ^{C}). We can regard $T(R)$ as a subset of $T(S)$, see Lemma 5.5. Let U (resp. V) be the subset of $T(R) \times T(R)$ (resp. $T(S) \times T(S)$) consisting of pairs $\left(0^{1}, 1^{3}\right)$ of elements of $T(R)($ resp. $T(S))$ satisfying $0^{1}<1^{3}$. Again by Lemma 5.5 we have $U=V$, whence (B) holds.

In Proposition 6.2 and Corollary 6.3 below, we give necessary conditions for full modifications to be generic. For the definition of the sets A_{0} and B_{0}, see Definition 3.15 and Definition 3.16 respectively.

Proposition 6.2. For the small modification by $\left(0_{i}^{r}, 1_{j}^{q}\right)$, if either of the following assertions
(i) the set A_{0} contains an element 0^{x} with $r<x$, or
(ii) the set B_{0} contains an element 1^{x} with $x<q$,
holds, then the full modification by this small modification is not generic.

Proof. Let $S^{(0)}$ be the small modification by $\left(0_{i}^{r}, 1_{j}^{q}\right)$. Put $\pi=\Pi\left(S^{(0)}\right)$. Set $\alpha_{n}=\pi^{n}\left(0_{i}^{r}\right)$ and $\beta_{n}=\pi^{n}\left(1_{j}^{q}\right)$. By Proposition 3.20 and Proposition 3.23, we may assume that there exists the full modification $S^{(a+b)}$ by the small modification by $\left(0_{i}^{r}, 1_{j}^{q}\right)$. Let B_{0}^{\prime} be the subset of $T\left(S^{(0)}\right)$ defined by

$$
\begin{equation*}
B_{0}^{\prime}=\left\{t \in T\left(S^{(0)}\right) \mid \beta_{0}<t \text { and } \pi(t)<\beta_{1} \text { in } S^{(0)} \text { with } \delta(t)=1\right\} . \tag{6.1}
\end{equation*}
$$

For this set, $\ell(S)-\ell\left(S^{(0)}\right)=\left|A_{0}\right|+\left|B_{0}^{\prime}\right|+1$. For non-negative integers n, we have $\ell\left(S^{(n+1)}\right)-\ell\left(S^{(n)}\right) \leq d(n)$, where

$$
d(n)= \begin{cases}\left|A_{n}\right|-\left|A_{n+1}\right| & \text { if } n<a \tag{6.2}\\ \left|B_{n}\right|-\left|B_{n+1}\right| & \text { if } n \geq a\end{cases}
$$

We have then $\ell\left(S^{(n+1)}\right)-\ell\left(S^{(n)}\right) \leq d(n)$ for all n. Clearly $\ell\left(S^{\prime}\right)-\ell\left(S^{(0)}\right) \leq\left|A_{0}\right|+\left|B_{0}\right|$ holds. First, let us see that $\ell\left(S^{\prime}\right)-\ell\left(S^{(0)}\right) \leq\left|A_{0}\right|+\left|B_{0}^{\prime}\right|$. Let I denote the subset of B_{0} consisting of elements which are of the form α_{m}. We have then $\left|B_{0}\right| \leq\left|B_{0}^{\prime}\right|+|I|$. For a non-negative integer m, if α_{m+1} belongs to I, then A_{m} contains the inverse image of β_{0}. We have then $\ell\left(S^{(m+1)}\right)-\ell\left(S^{(m)}\right)=d(m)-1$. Hence we see $\ell\left(S^{(a)}\right)-\ell\left(S^{(0)}\right) \leq\left|A_{0}\right|-|I|$. Moreover, we have $\ell\left(S^{\prime}\right)-\ell\left(S^{(a)}\right)=\left|B_{0}\right|$. Thus we get the desired inequality.

Let us see that in the case (i) the full modification is not generic. Let m be the minimum number such that the set A_{m} contains no element t^{x} with $r<x$. Fix an element t^{x} of A_{m-1}. Put $t=\pi\left(t^{x}\right)$. Now we claim that $\delta(t)=1$ and $\delta\left(\alpha_{m}\right)=0$. If $\delta(t)=0$ and $\delta\left(\alpha_{m}\right)=1$ is true, then there exists an element 1^{x} satisfying $\alpha_{m}<1^{x}<t$ in $T\left(S^{(m-1)}\right)$. Indeed, if $1_{n}^{x}<\alpha_{m}$ holds in $T\left(S^{(m-1)}\right)$ for all n, then we have $1_{m_{x}}^{x}<1_{m_{r}}^{r}$ with $r<x$. By Proposition 5.7 this is a contradiction. Thus we see that the set A_{m} contains the element 1^{x}. This contradicts the minimality of m. Hence we have $\delta(t)=1$ and $\delta\left(\alpha_{m}\right)=0$, and it implies that $\ell\left(S^{(m)}\right)-\ell\left(S^{(m-1)}\right)<d(m)$, and we have $\ell\left(S^{(a)}\right)-\ell\left(S^{(0)}\right)<\left|A_{0}\right|-|I|$.

Let us treat the case (ii). In the same way as the case (i), if B_{0} contains an element t^{x} with $x<q$, then there exists a non-negative integer m such that $\ell\left(S^{(m)}\right)-\ell\left(S^{(m-1)}\right)<$ $d(m)$. Indeed, for the minimum number m such that B_{m} contains no element t^{x} with $x<q$, fix an element t^{x} of B_{m-1}. Then for $t=\pi\left(t^{x}\right)$, we have $\delta(t)=0$ and $\delta\left(\beta_{m}\right)=1$ since if $\delta(t)=1$ and $\delta\left(\beta_{m}\right)=0$ is true, then there exists an element 0^{x} of $T\left(S^{(m-1)}\right)$ satisfying that $t<0^{x}<\beta_{m}$ by Proposition 5.7. It implies that B_{m} contains an element 0^{x}, and this is a contradiction. Thus we obtain $\ell\left(S^{\prime}\right)-\ell\left(S^{(a)}\right)<\left|B_{0}\right|$.

By the above, in the case (i) and (ii), we have $\ell\left(S^{\prime}\right)-\ell\left(S^{(0)}\right)<\left|A_{0}\right|+\left|B_{0}^{\prime}\right|$, and it follows that $\ell\left(S^{\prime}\right)<\ell(S)-1$.

Corollary 6.3. If $q-r \geq 2$, then the full modification is not generic.

Proof. Put $\delta=\Delta(S)$. For a small modification by $\left(0^{r}, 1^{q}\right)$, by Lemma 6.1 , there exists an element t^{x} of $T(S)$ such that $0^{r}<t^{x}<1^{q}$ and $r<x<q$. If $\delta\left(t^{x}\right)=0$, then the element t^{x} belongs to A_{0}, and the assertion follows from Proposition 6.2. Let us see the case $\delta\left(t^{x}\right)=1$. If the set B_{0} contains t^{x}, then Proposition 6.2 completes the proof. Let us see the case that B_{0} does not contain t^{x}. For the set B_{0}^{\prime} as the proof of Proposition 6.2, this t^{x} belongs to B_{0}^{\prime}. We have $a \geq a^{\prime}$, where a^{\prime} is the minimum number satisfying that $\alpha_{a^{\prime}}=\beta_{0}$ since we have $\left|B_{0}\right|<\left|B_{0}^{\prime}\right|$ only if $a \geq a^{\prime}$. Then $\left|B_{0}\right|<\left|B_{0}^{\prime}\right|+|I|$ holds, where the set I is the same as the proof of Proposition 6.2. Hence we see $\ell\left(S^{\prime}\right)<\ell(S)-1$.

Example 6.4. For the ABS S of $\xi=(2,7)+(1,2)+(3,5)$, consider the small modification by $\left(0_{4}^{1}, 1_{2}^{3}\right)$. Then the $\operatorname{ABS} S^{(0)}$ is

We have $A_{0}=\left\{0_{5}^{1}\right\}$ and $A_{1}=\emptyset$. Thus we see $a=1$. We have the set $B_{0}=\left\{1_{1}^{2}, 1_{1}^{3}\right\}$ and $B_{1}=\left\{0_{3}^{2}, 0_{6}^{3}\right\}$ with the $\operatorname{ABS} S^{(2)}$

By the $\operatorname{ABS} S^{(2)}$, we obtain the set $B_{2}=\left\{0_{2}^{2}\right\}$ and the ABS

Similarly, we obtain $B_{3}=\left\{1_{1}^{2}\right\}, B_{4}=\left\{0_{3}^{2}\right\}$ and $B_{5}=\emptyset$ with the ABS's $S^{(4)}, S^{(5)}$ and $S^{(6)}$. Hence we have $b=5$, and the full modification $S^{(6)}$ is equal to S^{\prime} of Example 3.12.

Let $\xi=\sum_{i=1}^{z}\left(m_{i}, n_{i}\right)$ be a Newton polygon. Let S be the ABS of the $\mathrm{DM}_{1} N_{\xi}$. Recall that the ABS S is described as $S=\bigoplus_{i=1}^{z} S_{i}$ for ABS's S_{i} corresponding to the DM $N_{m_{i}, n_{i}}$. We say a full modification S^{\prime} is generic if $\ell\left(S^{\prime}\right)=\ell(S)-1$. Propositions 3.20 and 3.23 imply that all generic full modifications are given by full modifications. Now let us show Theorem 1.5, which implies that to determine generic specializations of $H(\xi)$, it is enough to deal with Newton polygons consisting of two segments.

Proof of Theorem 1.5. Let S be the ABS of ξ. We will construct a bijection map

$$
\begin{equation*}
\bigsqcup_{i=1}^{z-1}\left\{\text { generic full modifications of } R_{i}\right\} \longrightarrow\{\text { generic full modifications of } S\} \tag{6.6}
\end{equation*}
$$

where R_{i} denotes the ABS of the two slopes Newton polygon $\left(m_{i}, n_{i}\right)+\left(m_{i+1}, n_{i+1}\right)$. Since we can regard $T\left(R_{r}\right)$ as a subset of $T(S)$ as ordered sets, we write t_{i}^{r} the i-th element of the first component of R_{r}. Similarly we denote by t_{j}^{r+1} the j-th element of the second component of R_{r}. By Corollary 6.3, it suffices to show the claim: Let r be a natural number with $r<z$. The full modification of S by the small modification by $\left(0_{i}^{r}, 1_{j}^{r+1}\right)$ is generic if and only if the full modification of $R_{r}=S_{r} \oplus S_{r+1}$ by the small modification by the same 0_{i}^{r} and 1_{j}^{r+1} is generic. Put $R=R_{r}$. Let R^{\prime} be a generic full modification of R obtained by the small modification by $\left(0_{i}^{r}, 1_{j}^{r+1}\right)$, and let S^{\prime} be the full modification of S by the small modification by $\left(0_{i}^{r}, 1_{j}^{r+1}\right)$. We shall show that $\ell(S)-\ell\left(S^{\prime}\right)=\ell(R)-\ell\left(R^{\prime}\right)$. For the small modification by 0_{i}^{r} and 1_{j}^{r+1} of S, we use the same notations as Definition 3.15 and Definition 3.16. Let E (resp. F) denote the subset of A_{0} (resp. B_{0}) consisting of elements 0^{x} (resp, 1^{y}) with $x \neq r$ (resp. $y \neq r+1$). Then we have $\ell(S)-\ell\left(S^{(0)}\right)=\ell(R)-\ell\left(R^{(0)}\right)+|E|+|F|$. So it suffices to show that

$$
\begin{equation*}
\ell\left(S^{\prime}\right)-\ell\left(S^{(0)}\right)=\ell\left(R^{\prime}\right)-\ell\left(R^{(0)}\right)+|E|+|F| \tag{6.7}
\end{equation*}
$$

Let m be the minimum number such that $\alpha_{m}=1_{m_{r}}^{r}$. Let C_{0}, C_{1}, \ldots be the A-sequence associated to $R, 0_{i}^{r}$ and 1_{j}^{r+1}. Since R^{\prime} is generic, there exists a non-negative integer a^{\prime} such that $C_{a^{\prime}}=\emptyset$. Let us show the following three claims:
(a) for every element 0^{x} of E, we have $x<r$,
(b) there exists no element t^{x} of A_{m} such that $x \neq r$,
(c) there exists a non-negative integer a satisfying $A_{a}=\emptyset$, and

$$
\begin{equation*}
\ell\left(S^{(a)}\right)-\ell\left(S^{(0)}\right)=\ell\left(R^{\left(a^{\prime}\right)}\right)-\ell\left(R^{(0)}\right)+|E| \tag{6.8}
\end{equation*}
$$

Put $q=r+1$. To simplify, set $\pi=\Pi\left(S^{(0)}\right)$ and $\delta=\Delta\left(S^{(0)}\right)$. To show (a), assume $r<x$ for an element 0^{x} of E. In $T\left(S^{(0)}\right)$, we have $0^{x}<0_{i}^{r}$. Thus $0^{x}<1_{j}^{q}$ holds in $T(S)$ by definition. Then it is clear that $0_{m_{x}+1}^{x}<0_{m_{q}+1}^{q}$. By Proposition 5.7, we have $x<q$. Since r is adjacent to q, this is a contradiction, and we have shown (a). To show (b), assume that an element t^{x} belongs to A_{m-1} with $x \neq r$. We have then $x<r$ by Proposition 3.18 and (a). Then we have $\delta\left(\pi\left(t^{x}\right)\right)=0$. Indeed, if $\delta\left(\pi\left(t^{x}\right)\right)=1$, then $1_{m_{r}}^{r}<1_{m_{x}}^{x}$ holds since $\alpha_{m}<\pi\left(t^{x}\right)$ in $T\left(S^{(m)}\right)$. As $x<r$, this is a contradiction. Since the values of $\delta\left(\alpha_{m}\right)$ and $\delta\left(\pi\left(t_{x}\right)\right)$ are different from each other, we obtain (b). Let us show (c). Let $E_{n}=\left\{t^{x} \in A_{n} \mid x \neq r\right\}$ for all n. Note that the sets A_{n} equal $C_{n} \cup E_{n}$ for all n. Thus by (b), there exists a non-negative integer a such that A_{a} is empty. We shall show

$$
\begin{equation*}
\ell\left(S^{(n+1)}\right)-\ell\left(S^{(n)}\right)=\ell\left(R^{(n+1)}\right)-\ell\left(R^{(n)}\right)+\left|E_{n}\right| \tag{6.9}
\end{equation*}
$$

for all n. If it is true, then by (b) we obtain the equation (6.8). Let us show (6.9). Let n be a non-negative integer, and assume that for an element t^{x} of E_{n}, the element $\pi\left(t^{x}\right)$ does not belong to A_{n+1}. Then $\delta\left(\alpha_{n+1}\right)=1$ and $\delta\left(\pi\left(t^{x}\right)\right)=0$. Note that by the definition of A-sequences, the values $\delta\left(\alpha_{n+1}\right)$ and $\delta\left(\pi\left(t^{x}\right)\right)$ are different from each other. To make a contradiction, suppose that $\delta\left(\alpha_{n+1}\right)=0$ and $\delta\left(\pi\left(t^{x}\right)\right)=1$. We have then $1_{m_{r}}^{r}<1_{m_{x}}^{x}$ with $x<r$. This is a contradiction, and hence (6.9) holds.

In the same way we have the "dual" of (a), (b) and (c). Let m^{\prime} be the minimum number such that $\beta_{m^{\prime}}=0_{m_{q}+1}^{q}$. Then
(d) for every element 1^{y} of F, we have $q<y$,
(e) there exists no element t^{y} of $B_{m^{\prime}}$ such that $y \neq q$,
(f) we have

$$
\begin{equation*}
\ell\left(S^{\prime}\right)-\ell\left(S^{(a)}\right)=\ell\left(R^{\prime}\right)-\ell\left(R^{\left(a^{\prime}\right)}\right)+|F| \tag{6.10}
\end{equation*}
$$

By (6.8) and (6.10) we get (6.7). Thus we see that if the generic full modification R^{\prime} of R by the small modification by $\left(0_{i}^{r}, 1_{j}^{r+1}\right)$ is generic, then the full modification S^{\prime} of S by the small modification $\left(0_{i}^{r}, 1_{j}^{r+1}\right)$ is generic. Similarly, one can see that if the generic full modification S^{\prime} of S by the small modification by $\left(0_{i}^{r}, 1_{j}^{r+1}\right)$ is generic, then so is the full modification R^{\prime} of R by the small modification by $\left(0_{i}^{r}, 1_{j}^{r+1}\right)$.

Example 6.5 below is an example of Theorem 1.5.

Example 6.5. For a Newton polygon ξ, let $G(\xi)$ be the set consisting of pairs $\left(0_{i}^{r}, 1_{j}^{q}\right)$ such that the full modification obtained by 0_{i}^{r} and 1_{j}^{q} is generic. Set $\xi=(2,7)+(3,5)+(2,1)$.

We have then
$\left.G(\xi)=\left\{\left(0_{4}^{1}, 1_{1}^{2}\right),\left(0_{4}^{1}, 1_{2}^{2}\right),\left(0_{5}^{1}, 1_{1}^{2}\right),\left(0_{5}^{1}, 1_{2}^{2}\right),\left(0_{6}^{1}, 1_{3}^{2}\right),\left(0_{7}^{1}, 1_{3}^{2}\right),\left(0_{5}^{2}, 1_{1}^{3}\right),\left(0_{6}^{2}, 1_{2}^{3}\right),\left(0_{8}^{2}, 1_{2}^{3}\right)\right)\right\}$.

Let ξ_{1} (resp. ξ_{2}) denote the Newton polygon $(2,7)+(3,5)$ (resp. $\left.(3,5)+(2,1)\right)$. Then we get

$$
\begin{equation*}
G\left(\xi_{2}\right)=\left\{\left(0_{5}^{1}, 1_{1}^{2}\right),\left(0_{6}^{1}, 1_{2}^{2}\right),\left(0_{8}^{1}, 1_{2}^{2}\right)\right\}, \tag{6.12}
\end{equation*}
$$

and we can regard $G(\xi)$ as the disjoint union of $G\left(\xi_{1}\right)$ and $G\left(\xi_{2}\right)$. See also Example 4.7.

6.2 Determining Newton polygons of generic specializations for any Newton polygons

By the following theorem, Problem 1.7 is reduced to the case that ξ consists of two segments.

Theorem 6.6. If Theorem 1.8 is true for ξ with two segments, then Theorem 1.8 holds for any ξ.

Proof. Let $\xi=\sum_{i=1}^{z}\left(m_{i}, n_{i}\right)$ be a Newton polygon. For the Newton polygon $\xi_{i}=\left(m_{i}, n_{i}\right)+$ $\left(m_{i+1}, n_{i+1}\right)$ and a generic specialization w^{\prime} of $w_{\xi_{i}}$, if we have a Newton polygon $\zeta^{\prime}=$ $\left(c_{i}, d_{i}\right)+\left(c_{i+1}, d_{i+1}\right)$ satisfying (i) and (ii) of Theorem 1.8, then for the generic specialization w of w_{ξ} corresponding to w^{\prime} by Theorem 1.5, we obtain required Newton polygon ζ by $\zeta=\left(m_{1}, n_{1}\right)+\cdots+\left(m_{i-1}, n_{i-1}\right)+\zeta^{\prime}+\left(m_{i+2}, n_{i+2}\right)+\cdots+\left(m_{z}, n_{z}\right)$.

Thanks to Proposition 5.9, we can show Theorem 1.8.

Proof of Theorem 1.8. By Theorem 6.6, we may assume that ξ consists of two segments. Let us show the statement by induction on the value $m_{2} n_{1}-m_{1} n_{2}$. If the value is one, then the only element w of $B(\xi)$ is the type of w_{ζ} with ζ the segment $\left(m_{1}+m_{2}, n_{1}+n_{2}\right)$, and $\zeta \prec \xi$ is saturated. Indeed, if $\xi=(0,1)+(1,0)$, then it is clear that the specialization of $w \in B(\xi)$ corresponds to w_{ζ} with $\zeta=(1,1)$. For the other Newton polygons, we can show the claim in the same way as Proposition 5.9.

Assume that the value $m_{2} n_{1}-m_{1} n_{2}$ is greater than one. Let $w \in B(\xi)$. By Proposition 5.9 , there exists a generic specialization w^{-}of w and a segment ρ such that $w^{-}=w^{\prime} \oplus w_{\rho}$, with $w^{\prime} \in B\left(\xi^{\prime}\right)$, where $\xi^{\prime}=\left(m_{1}^{\prime}, n_{1}^{\prime}\right)+\left(m_{2}^{\prime}, n_{2}^{\prime}\right)$ is uniquely determined by ξ and ρ so that the area of the triangle surrounded by ξ, ξ^{\prime} and ρ is one. Note that $m_{2}^{\prime} n_{1}^{\prime}-m_{1}^{\prime} n_{2}^{\prime}<m_{2} n_{1}-m_{1} n_{2}$. By the hypothesis of induction, for the Newton polygon
ξ^{\prime} we have a Newton polygon ζ^{\prime} such that ζ^{\prime} satisfies the condition (i) and (ii) of the statement for ξ^{\prime}. Put $\zeta=\zeta^{\prime}+\rho$. Then $\zeta \prec \xi$ is saturated, and w_{ζ} is a specialization of w.

Bibliography

[1] N. Bourbaki: Lie groups and Lie algebras. Chapters 4-6. Translated from the 1968 French original by Andrew Pressley. Elements of Mathematics (Berlin). SpringerVerlag, Berlin, 2002.
[2] S. Harashita: Configuration of the central streams in the moduli of abelian varieties. Asian J. Math. 13 (2009), no. 2, 215-250.
[3] S. Harashita: The supremum of Newton polygons of p-divisible groups with a given p-kernel type. Geometry and Analysis of Automorphic Forms of Several Variables, Proceedings of the international symposium in honor of Takayuki Oda on the occasion of his 60th birthday, Series on Number Theory and Its Applications, Vol. 7, (2011), pp. 41-55.
[4] N. Higuchi and S. Harashita: On specializations of minimal p-divisible groups. Yokohama Math. J., 64 (2018), 1-20.
[5] N. Higuchi: On the boundary components of central streams in the two slopes case. Kodai Math. J., 43, Number 2 (2020), 366-408.
[6] A. J. de Jong: Crystalline Dieudonne module theory via formal and rigid geometry. Inst. Hautes Études Sci. Publ. Math. No. 82 (1995), 5-96 (1996).
[7] H. Kraft: Kommutative algebraische p-Gruppen. Sonderforschungsbereich. Bonn, September 1975. Ms. 86 pp.
[8] B. Moonen: A dimension formula for Ekedahl-Oort strata. Ann. Inst. Fourier 54 (2004), 666-698.
[9] B. Moonen and T. Wedhorn: Discrete invariants of varieties in positive characteristic. Int. Math. Res. Not. 2004, no. 72, 3855-3903.
[10] P. Norman and F. Oort: Moduli of abelian varieties. Ann. of Math. 112 (1980), 413-439.
[11] F. Oort: A stratification of a moduli space of abelian varieties. in: Moduli of Abelian Varieties (Ed. C. Faber, G. van der Geer, F. Oort), Progr. Math., 195, Birkhäuser, Basel, 2001; pp. 345-416.
[12] F. Oort: Foliations in moduli spaces of abelian varieties. J. Amer. Math. Soc. 17 (2004), no.2, 267-296.
[13] F. Oort: Minimal p-divisible groups. Ann. of Math. (2) 161 (2005), 1021-1036.
[14] E. Viehmann and T. Wedhorn: Ekedahl-Oort and Newton strata for Shimura varieties of PEL type. Math. Ann. 356 (2013), 1493-1550.
[15] T. Wedhorn: The dimension of Oort strata of Shimura varieties of PEL-type. Moduli of abelian varieties (Ed. C. Faber, G. van der Geer, F. Oort), Progress in Math. 195, Birkhäuser Verlag 2001; pp. 441-471.

