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Abstract

With the spread of communication devices such as IoT (Internet of Things) and
mobile devices as well as improving the functionality of the web, cyber attacks on
the Internet have been becoming more complex and sophisticated. Cyber attacks
can be divided into two types: attacks targeting specific groups or individuals,
and attacks against many and unspecified users or devices. This thesis focuses on
the latter type of attacks, which affect a wider range of users. Current existing
countermeasures against this type of attack are effective against individual attacks,
but reactive and limited to these attack techniques. These countermeasures will
not respond to changes in attack techniques and the evolution of devices in the
future. In order to prevent the attacks continuously and proactively, it is necessary
to estimate the attackers’ purposes and to follow the attack vectors early on. In
this thesis, we propose methods for observing cyber attacks targeting many and
unspecified users and devices on the Internet by combining passive and active
observation. Correlation analysis of the observation from two perspectives allows
us for a faster and more comprehensive collection of cyber attacks in the wild.
Unlike existing methods that are limited to observing the surface of individual
attacks, our methods analyze attackers’ purposes and attack vectors, thus enabling
long-term observations that are robust to changes in attack techniques and the
evolution of network devices.

First, we propose a system for collecting and detecting multi-step social engi-
neering (SE) attacks on the web. Modern web-based attacks use social engineering
to make users download malware and leak sensitive information. Some SE attacks
leverage a sequence of web pages to psychologically manipulate users to lead them
to attackers’ purposes. We call them multi-step SE attacks in this study. Our
system actively follows the sequences of web pages by automating a web browser
and detects multi-step SE attacks by extracting features from the entire sequence.
We used our system for a large scale measurement and revealed the psychologi-
cal tactics of attackers to deceive and persuade users. We also analyzed domain
names associated with multi-step SE attacks using passively collected user access
statistics and found that a large number of users are affected by these attacks.

Then, we propose a system for identifying malicious web pages that trick users
to install fake antivirus software. Fake antivirus (AV) software is a type of malware
that disguises as legitimate antivirus software and infects users’ devices. Fake
removal information advertisement (FRAD) sites, which introduce fake removal
information for cyber threats, have emerged as platforms for distributing fake AV
software. Although FRAD sites seriously threaten users who have been suffering
from cyber threats and need information for dealing with them, little attention
has been given to understanding these sites. To shed light on the pervasiveness of
this type of attack, we performed a comprehensive analysis of both passively and
actively collected data. Our system actively collected a large amount of FRAD
sites written in multiple languages. We show that FRAD sites occupy search results



when users search for cyber threats, thus preventing the users from obtaining the
correct information.

Finally, we propose a method for detecting network packets sent by malware
and network scanning tools that implement their network stack. Network packets
created by such malware and network scanning tools have unique characteristics
in their header fields. We created signatures based on the active analysis of mal-
ware and tools. We evaluated our method by using passively collected large-scale
network traffic. We found that there was a large amount of network scanning activ-
ities using some network scanning tools and reconnaissance activities by attackers
to find vulnerable devices on the Internet.
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Chapter 1

Introduction

1.1 Motivation and Contribution

Nowadays, the Internet is an essential infrastructure in communication. Unfor-
tunately, while technology becomes sophisticated, it also attracts cybercriminals.
Such threats, cyber attacks, can be divided into two types: attacks targeting spe-
cific groups or individuals, and attacks against many and unspecified users or
devices. This thesis focuses on the latter type of attacks, which affect a wider
range of users. A typical example of these attacks is a malicious web page that
displays fake virus alerts or rewards messages to psychologically induce users com-
ing from public channels such as search engines and social media. Another example
is network scanning by malware and attackers to find vulnerable devices. Many
previous studies have proposed methods for effectively preventing and reducing
this type of cyber attacks. However, with the evolution of devices and attack
techniques, existing methods will not be able to cover new cyber attacks. This is
because they are reactive and limited to individual attack techniques and vectors.
In order to prevent attacks continuously and proactively, it is necessary to estimate
the attackers’ purposes and to follow the attack vectors early on. By capturing
the attackers’ purposes and attack vectors, we can sensitively identify changes in
attack methods and targets and predict possible future attacks.

In this thesis, we focus on methods for observing cyber attacks that target a
large number of unspecified users and devices on the Internet. Observing cyber
attacks is an essential starting point to understand cyber attacks in detail. It can
be divided into two methods: passive and active observation. Many of the previ-
ous studies have chosen active or passive observations to conduct detailed analysis
specific to individual attacks. However, there is a lack of understanding the at-
tackers’ purposes and attack vectors in those studies. We combine passive and
active observations to address the following three main challenges in exploring the
attackers’ purposes and attack vector. The three challenges are (i) matching the
individual cyber attack to the actual scale of the damage, (ii) collecting detailed
behavioral information of victims, (iii) linking observed cyber attacks to the im-
plementation of their sources. Correlation analysis of the observation from active
and passive perspectives allows us for a faster and more comprehensive collection
of attacks in the wild than previous studies. Also, we can develop robust defenses
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against attacks targeting new devices and infrastructure in advance based on the
analysis of attackers’ purposes and attack vector.

In chapter 3, we propose a system for collecting and detecting multi-step social
engineering (SE) attacks on the web. Web-based social engineering (SE) attacks
manipulate users to perform specific actions, such as downloading malware and
exposing personal information. Aiming to effectively lure users, some SE attacks,
which we call multi-step SE attacks, constitute a sequence of web pages starting
from a landing page and require browser interactions at each web page. Also,
different browser interactions executed on a web page often branch to multiple
sequences to redirect users to different SE attacks. Although common systems
analyze only landing pages or conduct browser interactions limited to a specific
attack, little effort has been made to follow such sequences of web pages to collect
multi-step SE attacks. We propose StraySheep, a system to automatically crawl
a sequence of web pages and detect diverse multi-step SE attacks. We evaluate
the effectiveness of StraySheep’s three modules (landing-page-collection, web-
crawling, and SE-detection) in terms of the rate of collected landing pages leading
to SE attacks, the efficiency of web crawling to reach more SE attacks, and accuracy
in detecting the attacks. Our experimental results indicate that StraySheep can
lead to 20% more SE attacks than Alexa top sites and search results of trend
words, crawl five times more efficiently than a simple crawling module, and detect
SE attacks with 95.5% accuracy. We demonstrate that StraySheep can collect
various SE attacks, not limited to a specific attack. We also clarify attackers’
techniques for tricking users and browser interactions, redirecting users to attacks.

In chapter 4, we present a system for identifying malicious web pages that trick
users to install fake antivirus software. Fake antivirus (AV) software is a type of
malware that disguises as legitimate antivirus software and causes harm to users
and their devices. Fake removal information advertisement (FRAD) sites, which
introduce fake removal information for cyber threats, have emerged as platforms
for distributing fake AV software. Although FRAD sites seriously threaten users
who have been suffering from cyber threats and require information for removing
them, little attention has been given to revealing these sites. We develop a system
to automatically crawl the web and identify FRAD sites. To shed light on the
pervasiveness of this type of attack, we performed a comprehensive analysis of
both passively and actively collected data. Our system collected 2,913 FRAD
sites in 31 languages, which have 73.5 million visits per month in total. We show
that FRAD sites occupy search results when users search for cyber threats, thus
preventing the users from obtaining the correct information.

In chapter 5, we propose a method for detecting network packets created by
malware and network scanning tools. Some malware and network scanning tools
implement their original network stack to quickly generate network packets instead
of using sockets provided by operating systems. Network packets created by such
malware and network scanning tools have unique characteristics in their header
fields. By actively analyzing network packets sent by the malware and tools, we
created signatures to identify them. We evaluated our method by using passively
collected large-scale network traffic. We found that there was a large amount of
network scanning activities using some network scanning tools and reconnaissance
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activities by attackers to find vulnerable devices on the Internet.
The contributions of this dissertation are as follows.

• We propose a system called StraySheep to collect and detect multi-step SE
attacks. StraySheep automates web browsers and recursively follows se-
quences of web pages. This system identifies malicious web pages by applying
machine learning to crawling results. StraySheep allows us to automati-
cally find malicious web pages hiding deep in the sequence of web pages.

• We present a system for crawling and identifying FRAD sites, which intro-
duce fake information of malware removal to users infected with malware.
This system extracts the linguistic, visual, and structural features of web
pages and uses machine learning to detect FRAD sites. We reveal an ecosys-
tem of a new malware distribution model by analyzing passively collected
user access statistics and actively crawled web pages.

• We propose a method to detect network packets sent by malware and net-
work tools that implement their network stack. This method can identify
reconnaissance and intrusive network packets from the large number of pack-
ets flowing through the network. We clarify that some types of malware and
network scaning tools

1.2 Organization

The rest of this dissertation is organized as follows. Chapter 2 presents the back-
ground on the observation of cyber attacks and discuss challenges on observing
cyber attacks on the Internet. Chapter 3 proposes a system for collecting and
detecting multi-step social engineering attacks on the web. Chapter 4 presents
a system for identifying malicious web pages that trick users infected with mal-
ware to install fake antivirus software. Chapter 5 proposes a method for identifying
malware and network tools that implement their network stack by leveraging char-
acteristics of network packets’ header fields. Chapter 6 concludes this dissertation.
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Chapter 2

Observing Cyber Attacks on the
Internet

2.1 Passive Observation

This section explains methods of passively observing cyber attacks on the Internet.
Observing cyber attacks is an essential starting point for capturing their traces and
mechanisms. Passive observation is a way of simply monitoring the circumstances
of cyber attacks without interfering with them (i.e., accessing attackers’ servers or
executing malware). A typical method of passive observation is to analyze network
traffic at servers and transfer points between networks. On the other hand, inter-
acting with an attackers’ infrastructure or malware to induce the attacks is called
active observation, which will be discussed in detail in the next section. Many
studies observed network packets passing through IDS and proxy servers to follow
the trail of malware and attack tools [1, 2]. These studies extract network packets
and payloads that characterize malware and tools from a large amount of network
traffic to analyze trends of cyber attacks and block them. By observing the dark-
net, which consists of unused IP addresses, we can capture the signs of an attack
and exploration activities of attackers [3, 4]. Since it is unusual for normal users
to communicate to IP addresses where none of the servers are located, network
packets arriving on the darknet are the result of a system malfunction or malicious
behavior. Also, we can identify malware behavior and malicious sites indirectly
by observing DNS cache servers. Some studies analyzed malicious activities on
the Internet in real-time and at low cost by using passive DNS, which integrates
traffic observed at multiple servers, rather than observing only a single DNS cache
server [5, 6, 7]. The advantage of passive observation is that by continuously mon-
itoring the same point, we can identify cyber attacks by the slight differences that
imply activities of attackers or malware. It is also unlikely that these methods will
make the attackers aware that they are being observed, or that our experiments
will cause unintended harm to other users. On the other hand, its disadvantage is
that the desired observation result cannot always be obtained because we do not
control the occurrence of the attacks.

4



2.2 Active Observation

We explain methods of actively observing cyber attacks. As opposed to passive
observations, which only collect network traffic flowing through the same point,
active observations deliberately generate and monitor malicious network traffic. In
other words, active observations intentionally generate attacks or trigger accesses
from attackers by analyzing attackers’ tools and simulating the environment of
victims. For example, attack packets and network scanning can be generated by
executing malware and network tools on the sandbox (testing environment for
malware analysis). This analysis allows us to access attackers’ infrastructure such
as malicious web pages and command-and-control (C&C) servers. Previous stud-
ies identify malicious network packets by actually running malware and capturing
network traffic from them to create signatures [8, 9]. Other studies detect drive-by
download attacks by accessing malicious web pages and simulate the victim’s vul-
nerable environment, which is called a client honeypot [10, 11]. There are other
active observation methods that automate web browser and crawl web pages to
identify cyber attacks that use social engineerings, such as fake virus warning
and fake reward [12, 13, 14, 15, 16]. It is also effective to wait for access from
attackers in the decoy environment that simulates user devices or servers work-
ing as attack springboards. By deploying web server honeypots on the Internet,
we can lure attackers and observe their attack methods in detail [17, 18]. Also,
the DRDoS honeypot, which is a honeypot for observing some types of DDoS
(Denial-of-service) attacks that uses amplification of the response from servers to
attack a target, can be deployed on the Internet and collect these attacks in the
wild [19, 20]. The advantage of the active methods is that we can observe cyber
attacks more accurately in a shorter time than passive observations that monitor
a large number of network packets. By intentionally causing malicious activities
and accessing malicious servers to simulate victims, we can collect detailed and
direct information. However, attackers may be aware of our experiments. Our
experiments may inadvertently cause negative effects to other users, so we need to
conduct them carefully.

2.3 Challenges on Observing Cyber Attacks on

the Internet

In this section, we discuss our roadmap and challenges on observing cyber attacks.
Cyber attacks can be divided into two types: attacks targeting specific groups or
individuals [21], and attacks against many and unspecified users or devices. Our
ultimate goal is to analyze all of those attacks and reveal attackers’ purposes and
attack vectors. In this thesis, as a starting point for our roadmap, we focus on
the latter attacks. In particular, we analyze and reveal malicious activities on the
network and attackers’ psychological strategies on the web, which are threatening
to many and unspecified victims in recent years.

Each of the passive and active observation is usually used to analyze cyber
attacks in previous studies. We have explained the advantages of each observation
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method in the above section. Previous studies, which counter cyber attacks that
target an unspecified but a large amount of users and devices, were designed to
be limited to individual types of cyber attacks. They are useful to tackle indi-
vidual attacks at the moment, however, they cannot respond immediately to the
emergence of new cyber attacks. In order to prevent attacks continuously and
proactively, it is necessary to estimate the attackers’ purposes and to follow the
attack vectors early on. Attackers’ puposess are the reasons for attackers to ma-
nipulate and harm users and their devices to achieve attackers’ goal, e.g., stealing
users’ money and personal information. By revealing them, we can understand
not only the mechanism of the attack, but also the possible actions of the attacker
during certain phases of the attack. Attack vectors are intrusion routes used by
attackers or malware, and traps set by the attackers to deceive users. By under-
standing the attack vectors in detail at each step of the attacks, we can develop
strong defenses. This thesis proposes methods of passive and active observation,
and compensate for the disadvantages of previous methods. We can anticipate and
defend against possible attack techniques by designing a versatile approach that is
robust to the aforementioned changes. Correlation analysis combining these two
methods provides comprehensive attack observation.

Here, we address the following three challenges by combining passive and active
observations to reveal attackers’ purposes and attack vectors. The first challenge
is to match the individual cyber attack to the actual scale of the damage, which is
necessary to prioritize countermeasures. Active methods are often used to identify
cyber attacks in detail. For example, in analyzing cyber attacks on the web that
require user interactions, previous studies [13, 12] used active methods, which is
automating web browsers, to analyze malicious web pages. However, these studies
did not reveal how many users reached each of the identified malicious web pages
and how many were affected. The active methods of observing cyber attacks
on the web are uncertain in terms of effectiveness and comprehensiveness due
to the lack of objective information to measure the threat level of the collected
attacks. To address this challenge, in Chapter 3, we propose a system for actively
collecting malicious web pages by simulating behaviors of victims and passively
analyze statistical data of user accesses to estimate the threat impact of each web
page.

The second challenge is to collect detailed behavioral information of users af-
fected by cyber attacks, i.e., the route of accessing each malicious web page and
what actions of users caused the attack. Attackers use illegal ways of gaining ac-
cess to their web pages such as Blackhat SEO (search engine optimization) and
abuse social media postings. Such web pages not only exploit users directly and
take control of them but also try to profit from redirecting traffic to other mali-
cious web pages by using their web pages as relay points. The active methods of
analyzing these web pages by crawling them can discover possible paths to the web
pages and observe types of attacks that arise from them. However, they cannot
identify what paths actual users mainly take to reach the malicious web pages
and what kind of psychological stimulus leads users to the cyber attacks. This is
because the active methods do not reveal which of the multiple paths are effective
in tricking users. Thus, Chapter 4 focuses on the infrastructure of distributing
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fake antivirus (AV) software, which is involved in more than half of all malware
distribution on the web [22]. We propose a system to actively collect and detect
new infrastructure of distributing fake AV software, called FRAD (fake removal
information advertisement) sites. We also analyze user access traffic passively to
identify the most effective psychological tactics and path of guiding users, and
understand the ecosystem of malware distributions.

The third challenge is to link observed cyber attacks to the implementation
of their sources. Previous studies, which passively observed cyber attacks on the
Internet and identified malicious traffic, did not link observed attacks to the causes
of the traffic. While passive observation can detect traces of cyber attacks from
a large amount of traffic, it is difficult to link them to an actual source of the
attacks (e.g., specific families of malware and network tools). Also, when there
is abnormal traffic in the network, sometimes it is hard to distinguish whether
a malicious activity or a system failure. The reason for those disadvantages is
the lack of detailed profiles of malware and network tools. Therefore, Chapter 5
proposes a method for detecting malicious packets based on the analysis of actively
and passively observed traffic. We can identify the causes that contribute to DDoS
attacks and network scanning activities, allowing us to understand cyber attack
trends and take countermeasures, e.g., takedowns of specific malware families.

In summary, this thesis addresses each of the three challenges with combina-
tions of active and passive observations and analysis in Chapter 3, 4, and 5.
These observations not only compensates for the disadvantages of each method,
but are also robust to changes in attack vectors and targeted systems (e.g., devices,
operating systems, and web browsers). This is because it provides continuous ob-
servations of current cyber attacks from both passive and active perspectives. In
this thesis, we focus on cyber attacks against many and unspecified users/devices.
Once the effectiveness of our methods are confirmed, they will be a stepping stone
to passive and active observation of all attacks, including attacks targeting specific
groups and individuals. We can conduct a large-scale and long-term analysis of
cyber attacks in the future.
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Chapter 3

An Analysis of Multi-step Social
Engineering Attacks on the Web

3.1 Introduction

Attackers use social engineering (SE) techniques to lure users into taking specific
actions. Modern web-based attacks leverage SE for malware infections [23, 24]
and online frauds [25, 14, 12], which are called web-based SE attacks (or simply SE
attacks). Attackers skillfully guide a user’s browser interaction through attractive
web content or warning messages to make users download malware or leak sensitive
information. For example, to download pirated games, a user clicks a download
button on an illegal downloading web page. Then, a popup window with a virus-
infection alert is displayed. A user who believes the fake information clicks a
“confirm” button and downloads fake anti-virus software [26].

Common systems to automatically collect SE attacks involve accessing web
pages collected from search engines [13, 14, 12]. These systems use a web browser
to crawl web pages and identify a particular SE attack by extracting features only
from each web page. However, some types of SE attacks constitute a sequence
of web pages starting from a landing page and require browser interaction (e.g.,
clicking an HTML element) at each web page to reach the attacks, which we call
multi-step SE attacks. This is because each web page gradually convinces a user
by using different psychological tactics [24]. Also, different browser interactions
executed on a web page often branch to multiple sequences, redirecting users to
different SE attacks, because there are multiple attack scenarios corresponding
to a user’s interests or psychological vulnerabilities. Although current systems
analyze only landing pages or conduct browser interactions limited to a specific
attack, little effort has been made to follow such sequences of web pages to collect
multi-step SE attacks.

We propose StraySheep, a system to automatically crawl the sequence of
web pages and detect diverse multi-step SE attacks derived from a landing page.
StraySheep is based on two key ideas. The first idea is to simulate the multi-step
browsing behaviors of users, that is, intentionally follow the sequence of web pages
by selecting possible elements that psychologically attract users to lead them to
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SE attacks. StraySheep not only follows a single sequence of web pages but
also crawls multiple sequences derived from a landing page. The second idea is
to extract features from reached web pages as well as an entire sequence of web
pages. Unlike previous approaches that extract features from a single web page
they have visited [12, 14] or identify malicious URL chains automatically caused
without user interactions (i.e., URL redirections) [27, 28, 29], StraySheep ex-
tracts features from the entire sequence of web pages it has actively and recursively
followed. That is, StraySheep analyzes image and linguistic characteristics of
reached web pages, browser events (e.g., displaying popup windows and alerts)
that occurred before reaching the web page, and browser interactions that lead
users to SE attacks. These features represent common characteristics of all SE at-
tacks, i.e., persuading and deceiving users. Therefore, by combining these features
to classify sequences, StraySheep detects various multi-step SE attacks more
accurately. We implemented StraySheep with three distinct modules (landing-
page-collection, web-crawling, and SE-detection) to automatically collect landing
pages, crawl the web pages branching from them, and detect SE attacks using the
results of web crawling, respectively.

To determine the effectiveness of StraySheep’s three modules, we conducted
three evaluations: the rate of collected landing pages leading to SE attacks, the
efficiency of web crawling to reach more SE attacks, and accuracy in detecting the
attacks. The first evaluation demonstrated that landing pages gathered by the
landing-page-collection module led to 20% more SE attacks than Alexa top sites
and search results of trend words. The second evaluation demonstrated that the
web-crawling module is five times more efficient at crawling than simple crawling
modules. The third evaluation revealed that the SE-detection module identified
SE attacks with 95.5% accuracy.

We analyzed collected multi-step SE attacks StraySheep in detail. As a
result of categorizing SE attacks, we found that StraySheep reached a variety
of SE attacks such as malware downloads, unwanted browser extension installs,
survey scams, and technical support scams. We also found that 30% of SE attacks
were reached from 25 different advertising providers.

The main contributions of this chapter are as follows:

• We propose StraySheep, which detects multi-step SE attacks by auto-
matically and recursively crawling sequences of web pages branching from
landing pages. StraySheep can crawl and detect these attacks by simulat-
ing multi-step browsing behaviors of users and extracting features from an
entire sequence of web pages.

• We evaluated StraySheep’s three modules. The landing-page-collection
module led to 20% more SE attacks than Alexa top sites and search results
of trend words. The web-crawling module was five times more efficient at
crawling than a simple crawling module. The SE-detection module identified
SE attacks with 95.5% accuracy.

• We conducted a detailed analysis of multi-step SE attacks collected using
StraySheep. We found that StraySheep collected various SE attacks,
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Figure 3.1: Sequence of web pages in multi-step SE attacks and phases in each web
page.

not limited to a specific attack. We analyzed attackers’ techniques of luring
users and browser interactions leading users to attacks.

3.2 Background

SE is used to manipulate people into performing a particular action by exploit-
ing their psychology and has been widely used in various types of web-based
attacks, such as malware downloads [24, 30], malicious browser extension in-
stalls [31, 32, 33], survey scams [12], and technical support scams [25, 14]. Malware
downloads and malicious browser extension installs are achieved by masquerading
as legitimate software. Survey scams recruit users attracted by fake survey re-
wards to trick them into providing sensitive information and accessing web pages
controlled by attackers. Technical support scams are carried out by persuading
users to make a call to a fake technical support desk and install keystroke loggers,
remote access tools, or malware.

Multi-step SE attacks use multiple web pages leveraging different psychological
tactics to effectively lure users to the succeeding web page. Figure 3.1 shows a
sequence of web pages in multi-step SE attacks and three simplified phases in each
web page: user attraction, browser interaction, and web navigation. Therefore,
the three phases can be repeated multiple times, starting from a landing page,
which appears in response to clicking on a search-engine result or social-media
link. Different user interactions on a single web page also lead to different SE
attacks.

3.2.1 User Attraction

The user-attraction phase attracts a user psychologically by using the content of
the web page to deceive and persuade the user to induce browser interaction [24].
For example, these web pages advertise free downloads of video games, threaten
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users with fake virus warnings, and request bogus software updates. The main
purpose of this psychological attraction is to make the user interact with an HTML
element (e.g., a and div) that navigates to malware downloads or a web page
controlled by an attacker. We call such HTML elements lure elements. What is
common with lure elements is that they contain words or shapes indicating the
behavior or category of an element. A lure element is characterized by its visual
effects, such as easily understandable download buttons containing “Click here
to download” and movie play buttons containing “WATCH NOW” or a triangle
pointing right. A lure element is also characterized by containing words such
as “download-btn” and “video-play-link” in their text content and document
object model (DOM) attributes such as id, class, and alt. Multiple lure elements
may be arranged on a single web page. In this case, clicking these lure elements
results in different SE attacks.
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3.2.2 Browser Interaction

Users who are acted upon by the previous user-attraction phase are guided to inter-
act with lure elements on the web page. This browser-interaction phase is mainly
an explicit click on the lure element but also includes an unintended click [13]. For
example, unintended clicks include clicking an overlay on the entire web page, con-
text menu, and the browser’s back button. These clicks are forcibly generated by
JavaScript to redirect a user to a new web page or show a popup window against
the user’s intention.

3.2.3 Web Navigation

In the web-navigation phase, browser events occur as a result of browser interac-
tion. These browser events redirect to another web page in the current window
or a new window (popup), display alert dialogs, and download files. Web-page
redirection occurs in an intermediate step of a multi-step SE attack, guiding the
user to the next web page. On the next page, another user attraction, browser
interaction, and web navigation could occur again. The purpose of repeatedly
making a user reach multiple web pages without completing the attack on one web
page is to gradually convince the user and increase the success rate of the attack.
For example, to increase the attack-success rate of a user who watches a movie on
an illegal streaming site, attackers display a popup that offers a dedicated video
player with an alert dialog such as “Please install HD Player to continue.” instead
of providing an automatic software download on the first web page. Also, the
multiple sequences of web pages in a multi-step SE attack often branch from the
landing or intermediate web pages because such web pages contain two or more
lure elements leading to different pages.

3.2.4 Problems on Collecting SE Attacks

There are three approaches to automatically collect SE attacks: tracing web traffic,
archiving with a crawler, and crawling with a web browser. We give a brief intro-
duction of these approaches and their limitations then present the requirements of
collecting SE attacks.

The first approach is of reconstructing SE attacks from web traffic obtained
through passive network monitoring [24]. To take measures against SE attacks,
revealing a single SE attack reached from the landing page is useful, but uncovering
all attacks that branch from web pages is more critical. However, this approach
is used to observe only a single sequence of web pages accessed by the user. Also,
it cannot be used to observe SE attacks starting from arbitrary web pages. That
is, it cannot be used to observe attacks from which a user was not affected but
another user could be affected.

The second approach is to visit each web page using crawlers such as Her-
itrix [34] and GNU Wget. Such crawlers extract links from a downloaded HTML
source code of a web page and crawl them recursively. This approach can solve
the problem with the first approach, in which it cannot collect SE attacks that the
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user did not reach because it can input an arbitrary URL. However, these crawlers
can only execute simple content downloads and static content parsing. SE attacks
often use web content dynamically generated by JavaScript, which require user
interactions to navigate to the next pages; thus, these types of crawlers cannot
collect most SE attacks.

The third approach is of web-browser automation using a tool such as Sele-
nium [35]. Web-browser automation enables us to simulate user interaction to
all elements on each web page. With this approach, we can solve the problems
with the second approach. If we apply the idea of following all links with the
second approach to web-browser automation, that is, clicking all elements on each
web page, we can ideally collect all multi-step SE attacks derived from a landing
page. However, recursively following all elements takes a significant amount of
time because the browser requires time to run JavaScript and render web pages.

In summary, to efficiently observe multi-step SE attacks in a short time, the
number of elements to crawl must be reduced by selecting possible lure elements
from thousands of HTML elements on each web page. To analyze multi-step SE
attacks in detail, it is also necessary to recursively follow multiple sequences of
web pages that lead to SE attacks derived from a landing page rather than tracing
only a single sequence of web pages. Therefore, requirements for collecting and
analyzing multi-step SE attacks are crawling with the web-browser-automation
approach, selecting lure elements that will likely lead to SE attacks, and recursively
interacting with lure elements.

3.3 StraySheep

We propose a system called StraySheep that automatically collects landing pages
that lead to SE attacks, crawls web pages, and detects multi-step SE attacks.
StraySheep consists of three modules: landing-page-collection, web-crawling,
and SE-detection. An overview of StraySheep is shown in Fig. 3.2. The landing-
page-collection module gathers URLs of web pages leading to SE attacks by lever-
aging search engines and social media. The web-crawling module starts recursive
web crawling from the URLs collected by the landing-page-collection module, se-
lects and clicks on lure elements, and outputs a WebTree. A WebTree consists
of tree-like abstract data, including logs such as web navigation, browser interac-
tion, and snapshot (screenshot and HTML source code) observed at each web page
branching from a landing page. The SE-detection module extracts features from
a WebTree and identifies the multi-step SE attack using a classification model.

3.3.1 Landing-Page-Collection Module

The landing-page-collection module leverages search engines and social media to
find landing pages as input for the web-crawling module. Many SE attacks use web
pages that have copyright infringement, such as illegal downloads and free video
streaming, to draw the attention of incautious users [13, 36]. To induce a user
to access such web pages, attackers use search-engine-optimization techniques [37,
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11, 38] and post messages on social media, which include links to the landing
pages [39, 40, 41]. Examples of such social-media postings are an instruction video
for illegally installing software and a message introducing a free game download
site. To collect such landing pages effectively, the landing-page-collection module
uses a web-search-based approach consisting of two steps: generating search queries
and searching and scraping.

Generating Search Queries

The landing-page-collection module generates search queries to search the URLs
of possible landing pages leading to SE attacks. To generate the search queries, we
design the module so that it collects core keywords, which stand for a title or name
of paid content (e.g., “Godzilla” and “Microsoft Office”) and concatenates them
with predefined qualifiers (e.g., “free download,” “crack,” and “stream online”).
To collect core keywords, the module automatically scrapes popular electronic
commerce (EC) sites and online database sites by using predefined scraping logic
in accordance with each site and groups the core keywords by content category
(e.g., video, software, and music). These core keywords can regularly be updated
by recollecting ranking and new release information.

The aim of using qualifiers is (1) limiting the coverage of search results includ-
ing illegal downloads and streaming, not legitimate sites, and (2) increasing the
variation in search results. We manually prepare qualifiers in advance using auto-
suggest/related search functions on a search engine. When a user queries a certain
word in a search engine, these search functions provide a list of corresponding key-
word predictions. We input some titles of paid content to the search engine and
collect qualifiers for each category because the qualifiers we require vary depend-
ing on the core keyword’s category. For example, qualifiers of video are “stream”,
“movie”, and “online”. For another example, qualifiers of the software category
are “download”, “crack”, and “key”.

Searching and Scraping

This module retrieves URLs from a search engine or social media by using the
generated search queries. It inputs them into the search engine and search forms
on social media to widely collect corresponding URLs. Some social media do not
always provide comprehensive search results due to a minimum required search
function; thus, the module also uses a search engine to collect social-media post-
ings. Finally, it outputs the URLs collected from the search results and links
scraped from social media postings as input for the web-crawling module.

3.3.2 Web-Crawling Module

The web-crawling module automates a web browser to recursively crawl a URL col-
lected by the landing-page-collection module and outputs a WebTree as a crawling
result. Figure 3.3 shows a conceptual model of a WebTree representing sequences
of web pages derived from the landing page and visited by the web-clawing module.
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Figure 3.3: Conceptual model of WebTree.

The web-crawling module starts from the landing page, clicks on multiple lure el-
ements on the web pages, and recursively follows multiple web pages derived from
the landing page. The depth indicates the recursion count of web crawls. The
depth increases when this module reaches a web page that completes loading and
is waiting for browser interaction. This module uses Selenium and our original
browser extension to automatically control and monitor a web browser. For the
prototype of our system, we chose Google Chrome as a browser, but Selenium can
also control other web browsers; thus, the web-crawling module can use different
browsers. In the following section, we describe two components of the web-crawling
module: selecting and operating.

Selecting Component

The selecting component collects a lure element that causes web navigation lead-
ing to SE attacks by analyzing an HTML source code and a screenshot of a web
page. As mentioned in Section 3.2.1, a word representing the category or action
of an element tends to be used for the lure element’s DOM attributes, text con-
tent, and the text drawn inside the button graphic, for example, “download” in
“download-btn” of the class attribute and “click” in “Click Now” of the text
drawn inside a clickable button. To select elements containing such keywords as
lure elements, we design the selecting component so that it parses an HTML source
code and executes image processing of a web page’s screenshot. The purpose of
the selecting component is not to accurately detect elements leading to SE at-
tacks but to select possible lure elements to reduce the number of elements with
which to interact. By following only selected elements, the web-crawling module
can efficiently reach diverse SE attacks. Note that there could be multiple lure
elements on the same web page; thus, this component analyzes all elements on
the web page. The reason the selecting component also executes image processing
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is to complement the acquisition of character strings drawn in the button image
(i.e., img element), which cannot be acquired from the HTML source code. This
component also identifies lure elements by their shape such as the triangular video
play button.

We explain a statistical method of preparing keywords for selecting lure ele-
ments. We compare elements that have actually redirected users to SE attacks
(lure elements) with other elements that have not redirected users to any SE
attacks (non lure elements) and extract words specific to lure elements. More
specifically, we extract attribute, text content, and strings drawn on buttons from
the collected elements and divide these words into two documents: a document of
lure elements and one of non lure elements. We then calculate the term frequency-
inverse document frequency (tf-idf) of the two documents and manually choose
words that have high tf-idf values from the lure-element document. The process
of keyword selection is shown in Section 3.4.2.

In the analysis of HTML source codes, if an element matches at least one of
the following four rules, this component determines it to be a lure element.

• One of the keywords is used in the element’s text content.

• A keyword is set in id, class, or alt DOM attributes.

• A keyword is used as the file name indicated by the URL of the link (a
element) or image (img element).

• An executable file (e.g., .exe or .dmg) or a compressed file (e.g., .zip or
.rar) is used as a link extension.

The purpose of the analysis of image processing is to find rectangular but-
tons and video play buttons. This component extracts character strings written
in each element from the screenshot and matches keywords used in the HTML
source code analysis. This component leverages OpenCV to find rectangle con-
tours representing the button areas in the screenshot and identify the coordinates
and size of buttons. It also uses optical character recognition (OCR) using Tesser-
act OCR [42] to extract character strings from the rectangles the component found.
This component executes keyword matching with extracted character strings and
determines an element containing one of the keywords in the area to be a lure
element. To acquire video play buttons as lure elements, the module also finds
a triangle contour pointing right. Finally, the component outputs multiple lure
elements that may lead to SE attacks from the web page.

Operating Component

The operating component executes browser interactions (i.e., clicking on lure ele-
ments), monitors web navigation, and constructs a WebTree. It simulates clicking
on lure elements with the CTRL key pressed to open the web page in a new browser
tab because the current page may be transferred to another web page by a simple
clicking. As a result, links or popup windows can be opened in new tabs without
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changing the original tab. The operating module also clicks a body element, body
element with context click, and the browser’s back button to simulate unintended
clicks described in Section 3.2.2. When the new tab is opened, the selecting com-
ponent finds lure elements again, and the operating component executes browser
interactions with a depth-first order, unless it reaches a predetermined maximum
depth. We explain the maximum depth we used in the following experiment in
Section 3.4.2.

The operating component also monitors web navigation. For monitoring JavaScript
function calls, this component hooks the existing JavaScript function to detect the
executed JavaScript function name and its argument. The JavaScript functions to
be monitored by this component are alert(), window.open(), and the installa-
tion function of the browser extension (e.g., chrome.webstore.install()). The
function alert() is frequently used in SE attacks that threaten a user by sud-
denly displaying dialog with messages inducing user anxiety. The window.open()
function opens a new browser window and is used for popup advertisements. This
component also hooks the installation function of the browser extension and de-
tects what type of browser extension was installed from the argument. This com-
ponent also monitors URL redirection, which navigates a user to another URL.
URL redirection is divided into client-side redirection and server-side redirection.
A web browser may conduct client-side redirection such as JavaScript function
location.href when this component clicks the lure element. On the other hand,
a web server conducts server-side redirection to navigate to another web page be-
fore loading a web page. This component monitors the URLs the browser passed
during server-side redirection to identify the server that navigates users to SE
attacks, such as advertising providers.

The operating component conducts browser interactions and monitors web nav-
igation until it finishes clicking on all selected lure elements. This component ag-
gregates information from sequences of web pages (i.e., screenshots, the HTML
source codes of web pages, browser interactions, and web navigation) and finally
outputs a WebTree as input for the SE-detection module.

3.3.3 SE-Detection Module

The SE-detection module extracts features from a WebTree output by the web-
crawling module and identifies multi-step SE attacks using a classification model.
This module first extracts sequences from the WebTree. A sequence is defined as
a series of rendered web pages from the landing page (a root node) to the last
pages (leaf nodes). Note that the sequence does not represent a URL redirection
chain (an automatic process of forwarding a user to another URL multiple times)
but a series of displayed web pages through user interaction. This module then
extracts features from each sequence that reaches web pages of depth of two or
more. Unlike conventional methods that examine structural similarity of URL
redirection chains [27, 28, 29], this module extracts features specific to multi-step
SE attacks from the entire sequence: contents of web pages, browser interactions
that trigger page transitions, and web navigation. Finally, it identifies whether the
last page of each sequence is the SE page using a classifier and outputs URLs of

18



Table 3.1: List of features SE-detection module uses.

Target Feature # of dimensions

User attraction Last page Image features (Bag-of-visual-words) 128
Last page Color histogram 30
Last page Linguistic features (Doc2Vec) 300
Last page HTML tag histogram 40
Last page Length of text field 1
Previous page Image features (Bag-of-visual-words) 128
Previous page Color histogram 30
Previous page Linguistic features (Doc2Vec) 300
Previous page HTML tag histogram 40
Previous page Length of text field 1

Browser interaction Sequence # body clicks 1
Sequence # body context clicks 1
Sequence # left clicks 1
Sequence # back button clicks 1
Sequence # <a>tags clicked 1
Sequence # <iframe>tags clicked 1
Previous page Coordinates (x,y) 2
Previous page Size (width, height) 2

Web navigation Sequence Depth 1
Sequence # alert dialogues 1
Sequence # popup windows 1
Sequence # server side redirections 1
Sequence # client side redirections 1
Last page File downloads 1
Last page Extension installs 1
Previous page File downloads 1
Previous page Extension installs 1

A

D

C

Landing page

Previous page

Last page

Sequence

B

Figure 3.4: Example of extracting features from a sequence.

the detected web pages. Ground truth data for identifying SE attacks is explained
in Section 3.4.3.

Feature Extraction

To classify web pages that trick users into interacting, it is common to use infor-
mation that can be acquired after visiting the web page, such as image and HTML
features [13, 12]. However, if a classifier uses such features, it cannot detect an SE
page similar to the legitimate page, such as a fake software-update web page that
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closely resembles a legitimate Flash update page or fake infection-alert page using
the logo of security vendors. Therefore, we designed feature vectors using not only
features extracted from a single web page but also all features extracted from the
entire sequence. Specifically, it analyzes the last page of the sequence, page be-
fore the last page (previous page), and the entire sequence, as shown in Fig. 3.4.
Table 3.1 shows features extracted from each sequence and grouped into the three
phases of SE attacks: user attraction, browser interaction, and web navigation. To
the best of our knowledge, StraySheep is the first system that automatically col-
lects these features from the entire sequence by recursively crawling web pages from
the landing page. In terms of the user-attraction-based features, StraySheep ex-
tracts appearance, meaning of a document, and structure of HTML from the last
and previous pages. It then finds features based on browser interaction, such as
actions performed on the web pages and lure elements from the previous page
and entire sequence. The SE-detection module also analyzes web navigation that
occurred on the last page, the previous page, and the entire sequence. We explain
a feature extraction method for each SE-attack phase below in detail.
User Attraction The appearance of a web page and the semantic properties of
text content include the intention of the attacker to trick a user. The HTML doc-
ument structure is also an important indicator for analyzing the similarity of web
pages using the same document template. The SE-detection module extracts im-
age and linguistic features from the last and previous pages of the sequence. It also
calculates an HTML tag histogram, RGB color histogram, and the length of the
text field from both the last and previous pages. These features are useful for iden-
tifying web pages that use the same page templates and images as other malicious
web pages. To extract image features, we use AKAZE [43], which is a bag-of-visual
words algorithm that detects local image features. The SE-detection module ex-
tracts 128-dimensional image features from the screenshots of the last and previous
pages using a trained model we previously constructed. We use Doc2Vec [44] as a
document-modelling algorithm to extract linguistic features. The purpose of this
is to capture attackers’ intentions, such as deceiving or threatening users, based on
linguistic characteristics. The module extracts the 300-dimensional features from
the text content of the last and previous pages by using a doc2vec model trained
beforehand. The text content of a web-page document is extracted by cleaning
out HTML tags from an HTML source code. The SE-detection module also calcu-
lates a histogram of the RGB (red, green, and blue) values of the screenshot with
ten bins for each color and a histogram of HTML tags of the text content. This
module uses up to 40 HTML tags (e.g., a div, and img) frequently appearing on
the web pages we collected in advance. It counts the number of characters in the
text content.
Browser Interaction The SE-detection module analyzes lure elements and ac-
tions that caused SE attacks. Browser interaction is an important indicator that
characterizes multi-step SE attacks because the destination web pages change de-
pending on the types of actions taken by users and clicked elements. To extract
features from browser interactions, we design this module so that it counts the
number of left clicks and unintended clicks (body clicks, body-context clicks, and
back-button clicks) the web-crawling module performed in the sequence. This

20



module also counts the types of clicked lure elements (a and iframe) in the se-
quence and determines the size (x,y) and coordinates (width, height) of lure ele-
ments on the previous page.
Web Navigation The SE-detection module analyzes browser events that occurred
as a result of browser interaction. File downloads and extension install indicate
events that are directly related to SE attacks such as malware downloads and
unwanted extension installs. Since SE attacks are often delivered via advertising
providers, redirection has characteristics unique to SE attacks. The method of
navigation (e.g., redirection and popup window) is important for analyzing SE
attacks. This module determines whether file downloads and extension installs
occurred on the last and previous pages. It counts the times popup windows were
displayed and the number of URLs observed during server-side and client-side
redirection. It also checks the number of displayed alert dialogues and the length
of the sequence, i.e., crawling depth.

Classifier

We combine the features extracted from sequences to create features vectors and
construct a binary classifier to identify SE web pages. We use Random Forest
as a learning algorithm because we can measure the importance of each feature
that contributes to the classification. Evaluation results compared with other
algorithms are given in Section 3.4.5.
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3.4 Evaluation

We evaluated the three modules of StraySheep (landing-page-collection, web-
crawling, and SE-detection). We first evaluated the qualitative advantage of
StraySheep by comparing it with previous systems for collecting SE attacks.
We then evaluated the effectiveness of the landing-page-collection module by com-
paring its two collection methods (search engine and social media) to three baseline
URL-collection methods in terms of the number of landing pages leading to SE
attacks and total visited malicious pages and domain names. Also, we conducted
a crawling experiment to determine the efficiency of the web-crawling module by
comparing its crawling method with two baseline crawling methods in terms of the
number of malicious domain names reached per unit of time. Finally, we confirmed
the effectiveness of the SE-detection module in terms of detection accuracy.

3.4.1 Qualitative Evaluation

We qualitatively compared StraySheep with the previous systems to collect SE
attacks from five perspectives. Table 3.2 summarizes the results.
Collecting method. The previous systems [23, 24] for passively observing HTTP
traffic to analyze SE attacks, can only collect attacks triggered by users’ real
download events. On the other hand, actively crawling arbitrary web pages with
StraySheep enables us to proactively detect SE attacks before many users reach
the web pages.
Interacting with elements. To observe multi-step SE attacks, we need to inter-
act with HTML elements and recursively follow page transitions. Surveylance [12]
is a system to detect survey gateways, which are landing pages displaying survey
requests, and interact with their survey content and survey publisher sites. A sys-
tem proposed by Rafique et al. [13] detects free live streaming (FLIS) pages and
interacts with overlay video ads on them. While these systems focus on survey
scams or FLIS services, StraySheep can collect various SE attacks and observe
different types of survey scams originating from web pages deeper than the landing
pages (see Section 3.5.1).
Extracting features. As stated in Section 3.3.3, StraySheep extracts features
such as images, HTML structures, and linguistic context from reached web pages
and analyzes sequences to accurately detect multi-step SE attacks. As shown in
Table 3.2, none of the previous systems use all the features used in StraySheep.
Source of landing-page collection. StraySheep collects landing pages from
two common platforms: search engines and social media. StraySheep is the only
system that uses both platforms.
Type of SE attacks to collect. While the previous systems are limited to
detecting a specific attack, StraySheep collects various multi-step SE attacks by
following lure elements on each web page.

In summary, StraySheep is the first system to collect multi-step SE attacks
not limited to specific attacks by recursively following multiple lure elements on
web pages. StraySheep also detects multi-step SE attacks by extracting various
types of features from reached web pages and sequences.
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3.4.2 Experimental Setup

We implemented StraySheep for Google Chrome 69 with Ubuntu 16.04. It si-
multaneously ran up to 32 instances on a virtual machine assigned with Intel Xeon
32 logical processors and 256-GB RAM. For the browser setting, a user agent was
set as Google Chrome of Windows 7, and browser cookies were reset for every
landing-page access. Our crawling experiment spanned from November to Decem-
ber 2018, and StraySheep used a single IP address. We need to set a timeout for
performance evaluation because the two baseline web-crawling modules mentioned
in Section 3.4.4 require an enormous amount of time (a few weeks at most) to
complete web crawling. About 90% of web crawling conducted with StraySheep
finished within an hour in our preliminary experiment (similar results are shown
in Fig. 3.5); therefore, we set the timeout to one hour. To find the best maximum
depth for collecting the most malicious domain names when we used the timeout,
we changed the depth from two to six. The number of malicious domain names
monotonically increased up to depth four and decreased as the depth increased.
Therefore, we set the maximum depth to four in the following experiments.

To determine keywords for selecting lure elements, we followed the statistical
method described in Section 3.3.2. First, we manually browsed landing pages (e.g.,
game download, movie streaming, and torrent sites) and clicked on various HTML
elements. We also browsed intermediate pages navigated from them, such as fake
virus alerts, file downloading, and advertising pages served by URL shorteners. We
then gathered 1,447 lure elements from 978 web pages, which we confirmed finally
led to SE attacks. To determine if the reached web pages contained SE attacks, we
used URL/domain blacklists (Google Safe Browsing, Symantec DeepSight [45], and
hpHosts [46]) to match visited web pages and checked the MD5 hash values of the
downloaded binaries with VirusTotal. We defined an SE page, which matched the
blacklist whose label was associated with SE attacks (e.g., phishing, tech support
scam, and survey scam) or started downloading malware or potentially unwanted
programs (PUPs) [47, 48]. We used the same method of checking SE pages in the
following experiments. We randomly selected 5,000 non-lure elements that did not
redirect to any SE pages from the landing and intermediate pages. We created
lure and non-lure elements’documents containing words extracted from attributes
and text content to calculate tf-idf. Finally, we chose 31 keywords specific to the
lure elements by excluding proper nouns (e.g., game and movie titles) and words
with zero tf-idf values.

3.4.3 Effectiveness of URL Collection

To show the effectiveness of StraySheep’s landing-page-collection module, we
validated landing pages collected by this module; thus, we used the web-crawling
module to recursively crawl the landing pages and identified whether visited web
pages caused SE attacks. We compared the number of collected landing pages that
led to SE attacks across the five methods, i.e., the landing-page-collection module’s
two methods (search engine and social media) and three baseline methods (Alexa
top sites, trend words, and core keywords). We collected 5k landing pages for each
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method.
Search Engine (StraySheep’s Method) This method collected a total of 3k
core keywords from EC/database sites, such as amazon.com, steampowered.com,
billboard.com, and imdb.com, which we chose from Alexa top 500 sites. These core
keywords were divided into five categories: software (game and applications), video
(movie, animation, and TV series), music, eBook, and comic. We can increase the
variety of landing pages by collecting different types of core keywords, which are
often used in illegal sites to lure users. This method generated 90k search queries
by concatenating the core keywords with an average of 30 predefined qualifiers for
each category. When we search for only core keywords, many legitimate sites, such
as official sites of movies or games, are included in the search results. However, we
can collect more landings pages leading to SE attacks, including illegal sites, by
adding qualifiers to core keywords. It searched the queries using Microsoft Bing
Web Search API [49] (Bing API) and collected about 1M unique URLs. In that
web search, it gathered URLs from up to 30 search results for each search query.
Note that the search queries containing the same core keywords with different
qualifiers sometimes returned duplicate search results, and some search queries
returned less than 30 search results. Finally, we randomly sampled 5k URLs from
the collected 1M URLs to crawl for the crawling experiment.
Social Media (StraySheep’s Method) This method also searched seven social-
media platforms (Facebook, Twitter, Youtube, Dailymotion, Vimeo, Flickr, and
GoogleMap) using the same search queries as the above search-engine experiment.
Attackers post fake messages on social media such as free downloads of games
and streaming of movies to lure users into accessing their links. By collecting
such social media posts, we can also gather landing pages that do not appear in
search engine results. This method extracted links from posting messages (from
Facebook, Twitter, and Flickr), descriptions of uploaded video (from Youtube,
Dailymotion, and Vimeo), and descriptions of GoogleMap’s My Maps. It used
search forms on Youtube, Dailymotion, and Facebook because they have flexible
search mechanisms and searched Bing API for the other social-media platforms to
gather up to 30 social media postings for each search query. It searched for 10k
search queries (sampled from 90k search queries) for each social-media platform
and found a total of 130k unique social-media postings. These search queries often
returned less than 30 search queries. This method then gathered 45k unique links
by scraping these 130k social-media postings. Some social-media postings did not
include any links or included multiple links. Finally, we randomly sampled 5k
URLs from the 45k links for the crawling experiment.
Alexa Top Sites (Baseline Method) We gathered the top 5k domain names
from Alexa top sites and converted them to 5k URLs by adding “http://” to the
domain names.
Trend Words (Baseline Method)We searched the top 1k trend words collected
from Google Trends using Bing API and randomly selected 5k URLs from the 30k
search results (retrieved 30 results per query).
Core Keywords (Baseline Method) We simply searched the same set of 3k
core keywords we used for the above Search Engine method and randomly sampled
5k URLs from the 90k search results (retrieved 30 results per query).
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Table 3.4: Results for each web-crawling module.

StraySheep ElementCrawler LinkCrawler
SE pages Total SE pages Total SE pages Total

# of Total pages 9,374 (5.4%) 173,060 13,559 (2.4%) 562,708 19,241 (3.6%) 540,822
# of Unique visited pages 6,283 (8.5%) 73,906 5,998 (3.1%) 191,901 5,445 (3.0%) 180,920
# of Unique visited domains 513 (6.7%) 7,660 437 (3.2%) 13,545 335 (3.4%) 9,734

Table 3.3 lists the results of web crawling for each method. The landing pages
that led to SE attacks and collected with the search-engine and social-media meth-
ods accounted for 21.2 and 16.2% for each 5k landing pages. While, those of the
three baseline methods (Alexa top sites, trend words, and core keywords) were
much smaller, 0.7, 1.3, and 0.9%, respectively. From the results of the search-
engine and social-media methods, the numbers of unique visited URLs and domain
names were larger than those of the three baseline methods. Since StraySheep’s
methods, which use qualifiers, collected about 20 times as many landing pages lead
to SE attacks as the baseline method (Core Keywords) when using the same set
of core keywords, qualifiers are effective in collecting landing pages. The number
of malware samples reached from the URLs collected with the search-engine and
social-media methods was also larger than that of the other three methods.

3.4.4 Efficiency of Web Crawling

To evaluate the efficiency of StraySheep’s web-crawling module, especially the
function to follow lure elements selected by the selecting component, we compared
the ratio of SE pages in visited web pages and the time to reach SE attacks among
three web-crawling modules: that of StraySheep’s web-crawling module and two
baseline web-crawling modules. Then, we compared the crawling performance of
StraySheep with that of TrueClick [36].
Comparison of crawling performance with baseline web-crawling mod-
ules and StraySheepWe implemented the two baseline modules: ElementCrawler,
which extracts all visible elements on the web pages and simply clicks them, and
LinkCrawler, which purely selects all the link elements (HTML a tag with href at-
tribute) and clicks them. Note that elements selected by ElementCrawler contain
all those selected by LinkCrawler or StraySheep’s web-crawling module. Ele-
mentCrawler and LinkCrawler are alternative implementations of StraySheep’s
web-crawling module, which are implemented by replacing the selecting compo-
nent (see Section 3.3.2) with the function of selecting all elements or all links from
an HTML source code. The landing pages we input to the three modules were
the same 10k URLs as those collected by the landing-page-collection module, as
mentioned in Section 3.4.3, which are the 5k URLs collected from a search engine
and another 5k URLs collected from social media. We newly crawled the 10k
landing pages using ElementCrawler and LinkCrawler under the same condition
mentioned in Section 3.4.3. We compared these crawling results with those of the
above experiment in which StraySheep’s web-crawling module crawled the 10k
landing pages. In the same manner as the above experiment, we identified SE
pages using blacklists and VirusTotal.
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Figure 3.5: CDF of time taken to complete web crawling for each landing page within
a 1-hour timeout. Horizontal lines mean the percentage of web crawling
completed before timeout.

Table 3.4 shows the number of total pages, unique visited pages, and domain
names for each web-crawling module. The numbers of unique visited pages and
domain names of SE pages visited with StraySheep’s web-crawling module were
6,283 pages and 513 domain names, which were larger than those of the baseline
modules, and the percentages of pages and domain names of SE pages were also
larger than those of the baseline modules (8.5 and 6.7%, respectively). Although
the numbers of total pages of ElementCrawler and LinkCrawler were three times
larger than that with StraySheep’s web-crawling module, StraySheep’s web-
crawling module had the best percentage (5.4%) for all SE pages. This is because
StraySheep’s web-crawling module selected lure elements from thousands of el-
ements to crawl web pages likely to cause SE attacks, while ElementCrawler and
LinkCrawler simply took turns to click elements and reached many benign web
pages. In short, ElementCrawler may crawl all potential SE attacks by taking
an enormous amount of time; however, StraySheep can reach SE attacks in a
shorter time by selecting lure elements.

Next, we analyzed the efficiency of each web-crawling module by comparing
the time taken to complete visiting web pages branching from the landing page.
Figure 3.5 is a cumulative distribution function (CDF) of the time for each web-
crawling module, which shows the percentage of web crawling finished at a certain
time out of all web crawling starting from 10k landing pages. We found that 88.5%
of StraySheep’s web crawling module finished within one-hour timeout. In con-
trast, ElementCrawler finished only 22.8% of web crawling within the timeout,
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Table 3.5: Crawling efficiency of each web-crawling module.

StraySheep ElementCrawler LinkCrawler

# of unique domains of visited SE pages 513 437 335
Total crawling time [sec] 8,429,288 29,698,118 28,421,460
Crawling efficiency [/sec] 6.1 · 10−5 1.5 · 10−5 1.2 · 10−5

and LinkCrawler finished 29.9%. The average time to complete the web crawling
for each landing page was 14 minutes for StraySheep’s web-crawling module, 49
minutes for ElementCrawler, and 47 minutes for LinkCrawler.

To measure the web-crawling modules’ ability to reach SE attacks per total
crawling time, we calculated crawling efficiency.

Crawling Efficiency [/sec] =
# Unique domains of visited SE pages

Total crawling time [sec]
.

Crawling efficiency indicates the ability to reach the unique domain names of
SE pages per unit of time. Higher crawling efficiency implies that the module can
efficiently reach new SE pages.

We show the crawling efficiency for each web-crawling module in Table 3.5. To-
tal crawling time in Table 3.5 represents the sum of the times to complete crawling
10k landing pages. The crawling efficiency of StraySheep’s web-crawling module
was 4.1 times higher than that of ElementCrawler and 5.1 times higher than that
of LinkCrawler, making it the most efficient module to reach SE attacks. As de-
scribed in Section 3.3.2, since StraySheep’s web-crawling module detected lure
elements that led to SE pages by using the selecting component, it visited more
SE pages in less time than the two baseline modules.

We also examined the ability to visit SE attacks that can be reached via mul-
tiple web pages. Table 3.6 shows the number of unique domain names observed
at each depth. Note that each depth may have duplicate domains because the
web-crawling modules visited the same domains at different depths. Also, the
number of domain names observed at a depth of 1 was the same because each
module visited the same landing pages. The number of domains of SE pages show
that StraySheep’s web-crawling module efficiently visited more domains of SE
attacks at every depth than the baseline modules. As the depth became deeper,
the percentages of an SE page’s domains that ElementCrawler and LinkCrawler
detected decreased. On the contrary, the percentages of an SE page’s domains
that StraySheep’s web-crawling module visited were 5.5% at a depth of 2, 6.3%
at a depth of 3, and 9.4% at a depth of 4; thus, the deeper StraySheep’s web-
crawling module crawled, the more it efficiently visited SE pages. As described in
Section 3.3.2, StraySheep selects lure elements that lead to SE attacks so that
the web-crawling module can reach more of an SE page’s domains even though it
crawls deeper.
Comparison of crawling performance with TrueClick and StraySheep
We also conducted an additional experiment comparing the crawling performance
of StraySheep with that of TrueClick in terms of the ability to reach SE pages
and collect malware executables. TrueClick is a tool that distinguishes fake ad-
vertisement banners (trick banners) from genuine download links. TrueClick has
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Table 3.6: Unique domain names observed at each depth.

Depth StraySheep ElementCrawler LinkCrawler
SE Total SE Total SE Total

1 91 (2.2%) 4,187 91(2.2%) 4,187 91(2.2%) 4,187
2 223 (5.5%) 4,043 159 (4.1%) 3,882 126 (4.6%) 2,726
3 231 (6.3%) 3,692 171 (3.5%) 4,895 148 (3.9%) 3,844
4 348 (9.4%) 3,685 299 (2.8%) 10,694 303 (3.4%) 8,939

Table 3.7: Results of web crawling using StraySheep and TrueClick.

Unique visited pages
(domain names)

Unique visited SE pages
(domain names)

Unique malware samples

StraySheep 48,524 (5,809) 3,897 (219) 266
TrueClick 7,917 (2,978) 523 (78) 1

Table 3.8: Unique SE pages observed at each depth by using StraySheep and
TrueClick.

depth
SE pages crawled using StraySheep
(domain names)

SE pages crawled by TrueClick
(domain names)

1 97 (44) 97 (44)
2 845 (86) 356 (35)
3 1068 (104) 48 (12)
4 2302 (106) 25 (12)

Unique SE pages 3,897 (219) 523 (78)

148 672

StraySheep

TrueClick

Figure 3.6: Overlap of SE pages’ domain names observed using StraySheep and
TrueClick.

the similar purpose as StraySheep for finding HTML elements that are made
to deceive users and direct to a malicious site or malware executable, but it only
finds elements displayed by advertising providers regardless of the web site owner’s
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intention.
Since the source code of TrueClick has not been published, we re-implemented

TrueClick based on the implementation details of the paper [36] using a manually
collected dataset containing 87 trick banners and 51 genuine banners, which is
almost equivalent to the amount of the original dataset (165 trick banners and 94
genuine download links), to train a machine learning model. The trained model
identifies trick banners with 98.6% accuracy. We then created a baseline crawl-
ing module by replacing StraySheep’s selecting component (Section 3.3.2) with
TrueClick implementation.

To equivalently compare the crawling results under the same experimental
condition in terms of the period of landing-page collection and web crawling, we
have collected 5k URLs in the same manner as that mentioned in Section 3.4.4 and
crawled them using both StraySheep’s web-crawling module and the baseline
module as of November 2019. Since this experiment was conducted at a different
period than the one explained above, we newly collected 2.5k landing pages each
from a search engine and social media as input URLs. Table 3.7 summarizes the
results. StraySheep visited more SE pages than TrueClick because it follows
not only trick banners but also buttons and links intentionally placed by web
site owners to lead to SE attacks. While StraySheep successfully downloaded
266 malware samples, TrueClick downloaded only 1 malware sample. This is
because, in most cases, genuine download links distribute malware samples instead
of trick banners on web pages redirected from the first trick banners on landing
pages. Table 3.8 shows the number of unique SE pages observed at each depth.
Similar to the results in Table 3.6, Straysheep reached more SE attacks as
it crawled deeper. Conversely, the number of SE pages that TrueClick reached
considerably decreased deeper than depth three. The reason for this is that as
we crawl deeper from the landing page, the number of trick banners decreases.
Additionally, intentionally placed lure elements including genuine download links
mainly lead to SE attacks at deeper depths. Figure 3.6 shows the overlap of SE
pages ’domain names observed using each crawler. Although StraySheep did
not visit a small number of SE pages dynamically served by ads, it covered most
of the SE pages observed by TrueClick. In summary, to collect more multi-step
SE attacks, we need not only to detect trick banners but also follow lure elements.

3.4.5 Evaluating the SE Detection Module

We evaluated the effectiveness of StraySheep’s SE-detection module using Web-
Trees, which are the outputs of StraySheep’s web-crawling module. We used
30k WebTrees constructed from the results of web crawling starting from 30k
landing pages. These WebTrees consisted of the 10k landing pages crawled by
StraySheep’s web-crawling module (Section 3.4.4) and additional 20k landing
pages. The 20k landing pages were collected and randomly sampled in the same
manner as for the 10k landing pages mentioned in Section 3.4.3. We carried out
the web crawling in the same environment in the same period to output additional
20k WebTrees.

To create datasets for evaluation, we extracted malicious and benign sequences
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from the 30k WebTrees. The 30k WebTrees contained a total of 243,914 unique
web pages (13,415 unique domains) of visited web pages. To label these web
pages as SE pages, we used blacklists (same as in Sections 3.4.3 and 3.4.4) and
VirusTotal. We labeled 51,501 unique web pages (unique 1,066 domains) as SE
pages and extracted 1,066 sequences, which reached 1,066 different domain names
from distinct landing pages. We excluded unreachable or parking domain pages
and created 1,045 sequences as the malicious dataset. To create a benign dataset,
we randomly sampled 1,045 sequences that did not visit SE pages.

To evaluate the detection accuracy of the SE-detection module, we conducted
a 10-fold cross-validation (CV) on the labeled dataset. The SE-detection module
classified our dataset with a precision of 97.4%, recall of 93.5%, and accuracy of
95.5%. When we changed the learning algorithm from random forest to support
vector machine, logistic regression, and decision tree, their accuracies were 93.6%,
90.8%, and 90.7%, respectively. The percentage of feature importance accounted
for 65.2% of features extracted from the last page (last page features), 28.2%
of features extracted from the previous page (previous page features), and 6.6%
of features extracted from the entire sequence (sequence features), as shown in
Table 3.1.

Although the SE-detection module can accurately identify multi-step SE at-
tacks, the evaluation result contained some false positives and false negatives. We
discuss ideas for reducing these false positives and false negatives. The false posi-
tives included popular shopping and casino sites that were redirected from pop-up
ads triggered by unintended click. We can reduce these false positives by extract-
ing long-term stable and popular domain names from domain lists such as Alexa
to create a white list. We also found false negatives that were listed on blacklists
but not detected by the SE-detection module. Since we only trained web pages
written in English in this experiment, Some web pages written in non-English lan-
guages were included in false negatives. Ad providers may change web pages to
serve depending on the region of a source IP address. Therefore, we can accurately
detect multi-step SE attacks by automatically translating web pages to English or
by training web pages written in a specific language corresponding to the region
of the source IP address.

To show the relationship between detection accuracy and features, we divided
the features into four feature sets: last page, previous page, sequence, and the
combination of last and previous page (feature sets without our proposed sequence
features). We conducted 10-fold CVs using all feature sets and four divided feature
sets with the same dataset discussed in Section 3.4.5. Figure 3.7 shows the receiver
operating characteristic (ROC) curves for the classification results. The most
accurate result was the CV using all features in order of the combination of last and
previous page, last page, sequence, and previous page feature sets. The area under
the curve (AUC) for each result was 0.965, 0.955, 0.948, 0.923, and 0.829. This
experiment revealed that our original page-level features that analyzed linguistic,
image, and HTML characteristics were useful in detecting various types of SE
attacks, i.e., not limited to a specific SE attack. However, we can classify more
accurately by using the features of a previous page and sequence together that
StraySheep automatically collects.
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Figure 3.7: ROC curves of SE detection results for each feature set.

Some web pages had similar appearances to known SE pages but were not
blacklisted. To find such potentially unknown SE pages, we leveraged the SE-
detection module to classify the remaining 192,620 sequences of the 11,304 domain
names not used in the evaluation. As a result of manually excluding false posi-
tives (27 domains) from the classification results, we found 359 unknown domain
names associated with SE attacks. We not only detected web pages where page
contents were shared across multiple domain names to expand attack campaigns
(e.g., Fig 3.8 and Fig 3.9), but also discovered unreported domain names associ-
ated with technical support scams and survey scams. This process was conducted
by analyzing screenshots to check whether suggested software and extensions or
login pages are associated with legitimate services. One example of the false posi-
tives was a Facebook login page opened by a popup that redirected from an illegal
software-download blog by clicking a share button. Another example was a down-
load page of legitimate anti-virus products that transferred by clicking advertising
in an iframe. We finally found a total of 1,404 unique domain names (the 1,045
blacklisted domain names and newly detected 359 domain names), and 56,922 se-
quences reached the 1,404 domain names. The number of sequences’ steps (i.e., the
number of page transitions) from one to three is 11,855 (20.8%), 13,813 (24.3%),
and 31,254 (54.9%), respectively.
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Table 3.9: SE attack categories

Category SE domain names

PUP 566 (40.2%)
Malware 310 (22.1%)
Unwanted browser extension 181 (12.9%)
Multimedia scam 94 (6.7%)
Phishing 70 (5.0%)
Survey scam 25 (1.8%)
Tech support scam 20 (1.4%)
Fake browser history injection 16 (1.1%)
Malvertisement redirection 13 (0.9%)
Cryptojacking 3 (0.2%)
Other SE attacks 109 (7.8%)

Total 1,404 (100%)

3.5 Detailed Analysis of Detected Multi-step SE

Attacks

We conducted a detailed analysis of the collected multi-step SE attacks men-
tioned in Section 3.4.5 (1,404 domain names and 56,992 sequences). To show that
StraySheep found a wide variety of SE attacks, we categorized the observed
SE page’s domain names and investigated the attacker techniques to deceive and
persuade users for each SE attack category. We then analyzed the browser inter-
actions and advertising providers that led to SE pages to clarify the cause of SE
attacks. Finally, we investigated network infrastructures hosting SE attacks.

3.5.1 SE Attack Categories

To clarify the types of multi-step SE attacks detected by StraySheep, we cat-
egorized the 1,404 domain names into 11 categories, as shown in Table 3.9. We
used labels of blacklists (Google Safe Browsing, Symantec DeepSight, hpHosts)
and virus scan results of VirusTotal to categorize the attacks. We leveraged AV-
Class [50] to classify detected binaries as PUPs or malware. We also checked the
appearance of these domain names’ web pages to complement categorization.
PUP and Malware The most common categories we identified were PUP (566
domain names) and malware (310 domain names). These categories are SE at-
tacks where PUPs and malware were downloaded due to browser interactions.
StraySheep downloaded 6,924 unique binary executable files (e.g., .exe or .dmg).
For example, we found that these binaries were disguised as fake game installers,
fake anti-virus software, and fake Java/Flash updaters. Out of the 6,924 binaries,
we detected 1,591 unique binaries including 1,090 malware samples and 501 PUPs
by checking their MD5 hash in VirusTotal and using AVClass. We confirmed that
3,336 unique binaries were never uploaded to VirusTotal. Although the remain-
ing 1,997 unique binaries were already uploaded, they were not detected by any
anti-virus software in VirusTotal.

The 2,141 out of the 3,336 binaries that were not uploaded had 1,347 unique
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filenames, which were automatically set according to the previous page (e.g., “[the
title of the previous page].exe.rename”). Figure 3.8 shows examples of these web
pages. The web pages that downloaded these binaries contained instructions to
entice users to remove “.rename” and execute them. We found 504 unique do-
main names downloading these binaries. The 175 out of these 504 domain names
matched the blacklists and the other 329 domain names were newly detected by
StraySheep. The reason for making users change the file extension is to cir-
cumvent the download-protection function of web browsers. Since the hash values
of these binaries also changed at every downloading, none were ever uploaded to
VirusTotal. To check whether these binaries were malicious, we chose ten samples
from the binaries and uploaded them to VirusTotal. Then, all ten samples were
detected as “StartSurf” or “Prepscram” family names.
Unwanted Browser Extension We categorized 181 domain names as distribut-
ing unwanted browser extensions. We confirmed that these domain names were
detected as “Fake Browser Extension Download” or “Unwanted Extension”, which
led to install pages (https://chrome.google.com/webstore) of 128 unique Google
Chrome browser extensions. However, we found that 119 (93.0%) extensions were
still available on the browser extension install pages a month after the crawling. By
investigating these browser extensions, we found that 18 (14.1%) extensions were
search tool bars, and 14 (10.9%) extensions were file converters. Security vendor
blog postings and online forums stated that some extensions were malicious exten-
sions or browser hijackers that modify web browser settings, track user’s browsing,
and inject unwanted advertisements [51]. As a result of our dynamic analysis
of some browser extensions using a real browser, we observed suspicious behav-
ior such as displaying popup advertisements and changing the default browser’s
homepage and search engine to web pages hard coded in many malware samples.
To determine the popularity of these browser extensions, we searched each ex-
tension name on a search engine. We then found that the search results of 100
extensions (78.1%) consisted of one or more web pages explaining “How to remove
[browser extension name]” or “Virus removal guide”. Surprisingly, most of these
web pages introduced not only removal methods but also suggested yet more fake
removal tools, which were detected as PUPs or malware. Attackers prepared the
web pages for tricking technically unsophisticated users who disrupt these browser
extensions. Thus, even if the users successfully remove the unwanted browser
extensions, they also become victims of other SE attacks. StraySheep’s SE-
detection module newly found 21 domain names out of the 181 domain names we
categorized. StraySheep successfully finds unwanted browser extensions by ana-
lyzing distribution web pages and sequences that led to them instead of analyzing
their source codes and behaviors.
Multimedia Scam We found web pages (94 domain names) that ask for credit
card registration in exchange for offering free access to movies or music. Their
content, such as input forms, logos, and background images, were shared among
each other. We call them multimedia scams in this study. Only 27.7% (26/94)
of domain names were listed in blacklists; however, StraySheep’s SE-detection
module newly found 72.3% (68/94) domain names. Some security vendor blog
postings and online forums reported that these web pages fraudulently charge
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credit cards [52]. We found that some words (e.g., media, play, and book) were
frequently used in the domain names, such as etnamedia.net, kelpmedia.com,
dewymedia.com, parryplay.com, cnidaplay.com, and mossyplay.com.

Figure 3.9 shows examples of multimedia scams. These web pages suggest users
to register for free membership to obtain movies, music, or games. When users
are tricked to input their credit card numbers, the web pages fraudulently charge
them.
Phishing We observed 94 domain names detected as phishing, which were at-
tempting to steal user’s sensitive information such as email addresses or passwords.
Survey Scam We found 25 survey scam domain names, which spoofed famous
companies and promised rewards such as iPhones and gift cards. Although Sur-
veylance [12] only identified landing pages that have survey content and interacted
with them to reach survey scams, StraySheep recursively followed lure elements
to detect survey scams reached from landing pages that did not have survey con-
tent.
Tech Support Scam We observed 20 tech support scam domain names that
displayed fake virus-infection messages and telephone numbers of support centers
to urge users to call. StraySheep reached the scams from sequences of web pages
starting from the search engine’s results and social media postings, which are not
observed with other systems [25, 14].
Fake Browser History Injection We found 16 Fake browser history injection
attacks domain names, which injected URLs into the browser’s history to force
users to redirect to another SE page when the browser’s back button is clicked.
To interact with such attacks, StraySheep attempted clicking the back button
for each web page and determined that the action led to other SE pages.
Malvertisement Redirection We found 13 Malvertisement website redirect do-
mains [53, 54] that also led users to other SE pages.
Cryptojacking We found three Cryptojacking domain names that secretly used
user’s CPU resources to mine cryptocurrencies by injecting JavaScript codes.
Other SE Attacks We observed various SE attacks other than those mentioned
above, such as one just indicates the “Social engineering” label.

3.5.2 Common Infrastructures of Multi-step SE Attacks

To clarify the common infrastructures of multi-step SE attacks and attacker’s tech-
niques leading to the attacks, we analyzed the 56,922 sequences (see Section 3.5)
that led to SE pages.
SE Attacks Caused by Unintended Clicks We observed opening popup/pop-
under windows caused by unintended clicks such as clicking anywhere on a web
page and on the browser’s back button. Such popups are often set by JavaScript
codes provided by advertising providers to the web page’s owner. The follow-
ing three files are the most frequently loaded on web pages leading users to SE
pages: “c1.popads[.]net/pop.js”, “cdn.popcash[.]net/pop.js”, and “cdn.
cpmstar[.]com/cached/jspopunder\_v101.pack.js”. Since such advertisements
are common infrastructures for SE attack distribution, they are used in various web
pages. The sequences in which popups caused by unintended clicks occurred were
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20.0% (11,373/56,922) of all sequences. The sequences in which popups caused by
unintended clicks occurred in the landing pages were 8.7% (4,952/56,922) of all se-
quences. We also observed exit-driven redirections that were triggered by clicking
on the browser’s back button, which was 4.5% (2,578/56,922) of all sequences.
Alert Dialog Of all sequences, 2.9% (1,651/56,922) included a web page that
displayed more than one alert dialog. We found 66 distinct alert messages, such
as those of fake virus infection and fake rewards, which might strongly influence
user psychology. To investigate the relationship between the content of alert mes-
sages and SE attacks, we categorized the 66 alert messages into the three attack
classes of comply, alarm, and entice. These classes were defined in a previous
study [24]. We found 30 Comply alerts that were often used on fake Java/Flash
update web pages for luring users to install PUPs and malware, such as “Please
install Java to continue.” and “Your Flash Player might be out of date. Please
install update to continue.” We found 19 Entice alerts that made users input
sensitive information, such as “CONGRATULATIONS! Your IP address has been
selected to receive a Year of FREE Netflix!” We found 17 Alarm alerts that showed
warning messages such as “IMMEDIATE ACTION REQUIREDWe have detected
a trojan virus” with alert sounds in some cases (e.g., <audio src="alert.mp3"

autoplay>). Users were directed to install fake anti-virus software or call fake
technical support centers.
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Figure 3.8: Examples malware-distribution pages that require user to rename files and
execute them.
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Figure 3.9: Examples of multimedia scams.
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Table 3.11: Advertising provider domain names redirected to SE domain names.

Advertising provider # of unique SE domains redirected from ad provider

newstarads.com 155
traktrafficflow.com 134
mybestmv.com 123
revimedia.com 122
naganoadigei.com 99
doubleclick.net 90
googleadservices.com 80
adk2x.com 75
clksite.com 52
cobalten.com 41
bodelen.com 41
googlesyndication.com 36
cpmstar.com 29
go2affise.com 28
inclk.com 23
digitaldsp.com 21
dtiserv2.com 19
tradeadexchange.com 19
adf.ly 19
adreactor.com 19
friendlyduck.com 16
revcontent.com 16
servedbytrackingdesk.com 16
reimageplus.com 14
adnetworkperformance.com 14

All advertising provider 427

Advertising Domain Names Online advertising often results in SE attacks [24,
12]. To analyze SE attacks delivered by advertising providers, we extracted ad-
vertising providers’ domain names (ad domain) from server-side redirection on the
sequences. We leveraged public advertising provider lists [55] to identify ad do-
mains. Table 3.11 shows a list of ad domains and the number of unique domain
names of SE pages redirected from each ad domain. We found 25 ad domains
that led to SE attacks. Categories of SE attacks frequently distributed by ad do-
mains were multimedia scam, unwanted browser extension, fake anti-virus software
(PUP/malware category), and fake Java update (PUP/malware category). The ad
domain that redirected to the most SE page’s domain names was newstarads.com,
which led to 155 unique domain names. Two domain names (doubleclick.net
and googleadservices.com) redirected to 89 and 79 unique domain names of un-
wanted browser extension and they also redirected to the same phishing domain
names. We found that 30.4% (427/1,404) of the total SE domain names were
reached from these advertising domain names.
Prevalence of SE attacks We analyzed the statistics of user accesses to measure
how many users encountered multi-step SE attacks. We used SimilarWeb1, Alexa

1https://www.similarweb.com/

41



Table 3.12: Top 10
countries mapped

Country Percentage

UnitedStates 72.9%
Thailand 2.3%
Mexico 1.9%
Vietnam 1.9%
Canada 1.8%
Brazil 1.6%
Korea 1.4%
Indonesia 1.0%
Philippines 0.9%
Taiwan 0.8%

Table 3.13: Top 10 ASes hosting SE attacks

AS Percentage

Amazon.com, Inc. 50.5%
Google LLC 7.6%
Cloudflare Inc 2.9%
Uninet S.A. de C.V. 1.0%
VNPT Corp 1.0%
Level 3 Parent, LLC 0.6%
JasTel Network International Gateway 0.6%
Telefonica Brasil 0.6%
TOT Public Company Limited 0.6%
FPT 0.4%

Web Information Service (AWIS)2, and DNSDB3 to investigate website traffic
volumes of 1,404 domain names that StraySheep collected, as mentioned in
Section 3.4. SimilarWeb and AWIS provide website traffic statistics of domain
names. DNSDB is a passive DNS database that provides the total number of
DNS queries of domain names. Table 3.10 lists the numbers of unique domain
names newly observed at each depth in ascending order and statistics (minimum,
maximum, sum, mean) of website traffic and DNS queries. Note that # domain
names with valid data means the number of domain names excluding the data
that are zero or not available in the data sources. Since most SE pages ’domain
names were observed at depth two, there were still 44.9% (630) of domain names
observed at deeper depths. In other words, there are many domain names at
deeper depths that can only be reached by following multiple web pages with
StraySheep. The statistics of user accesses and DNS queries show that these
websites have the same level of population with domain names observed at shallow
depths, some of which are covered by previous systems. For example, the mean of
SimilarWeb’s total visits at depth four (5,676,195) is almost the same as that at
depth two (5,682,611) and is larger than that at depth one (4,740,811). Also, the
sum of AWIS’s pageviews per million at depths three and four is 511.27, which is

2https://awis.alexa.com/
3https://www.dnsdb.info/
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21.9% of the total. In the data of DNSDB, the number of valid domain names at
depth three (181) is less than depth two (425); however, the sum of DNS queries
(302,969,603) is larger than that at depth three (52,593,168). Therefore, we showed
that there are many malicious domain names that StraySheep reaches by following
multiple web pages from landing pages. Also, these domain names, which previous
systems cannot reach, have a large number of user accesses. One reason for this
is that these domain names are distributed by large-scale advertising providers, as
shown in Table 3.11.
IP Addresses Used for SE Attacks To analyze the relationship between each
SE page’s domain name, we leveraged DNSDB. The DNSDB enables us to find IP
addresses historically associated with domain names. If the same IP address is set
in the A record of different domain names, we assume that these domain names are
related. As a result of investigating the 1,404 domain names, we detected a total of
96,544 IP addresses associated with 1,349 domain names (55 domain names were
not found in the DNSDB). Note that multiple IP addresses were associated with
one domain name; thus, there are more IP addresses than domain names. We
found that 29.6% (28,617/96,544) of IP addresses were shared among more than
two domain names we detected, and these IP addresses (28,617) were associated
with 39.5% (554/1,404) of domain names. The 554 domain names were mainly used
for multimedia scams, PUP/malware distributions, survey scams, and unwanted
browser extension installs. We now focus on 94 multimedia scam domains and
their corresponding 20,589 IP addresses. We found that 87.8% (18,086/20,589) IP
addresses were shared among more than two multimedia scam domains. One of
these IP addresses was shared with 84 multimedia scam domains we detected.
Geographical Attribution We analyzed the geographical attribution of IP ad-
dresses used for SE attacks. We used the same 96,544 IP addresses as the above
analysis. We queried GeoIP2 Databases 4 for the country and Autonomous system
(AS) information associated with the IP addresses. Table 3.12 shows the top 10
countries whose IP addresses were used for distributing SE attacks. United States
accounted for 72.9% of all IP addresses, Thailand for 2.3%, Mexico for 1.9%, and
Vietnam for 1.9%. Table 3.13 shows the top 10 ASes. We confirmed CDNs and
cloud hosting providers are frequently abused for SE attacks. Amazon, Google,
and Cloudflare accounted for 50.5, 7.6, and 2.9%.

3.6 Discussion

In this section, we discuss the limitations of StraySheep and ethical considera-
tions during our study.

3.6.1 Limitations

There are limitations with StraySheep in terms of system environment, system
implementation, and evasion of our system.

4https://www.maxmind.com/en/geoip2-databases
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System Environment In the evaluation discussed in this chapter, StraySheep
was run in a single environment. Some SE pages may not serve the same web page
every time due to an ad network or cloaking technology. Specifically, a website
changes the web page to be delivered according to the source IP address, web-
browser environment, and browsing history. In this case, there are SE attacks
that cannot be reached in the current StraySheep environment. However, as
described in Section 3.3.2, StraySheep does not depend on the selected browser
environment and connection network. Thus, preparing multiple browser environ-
ments and connection networks enables us to collect environment-dependent SE
attacks.
System Implementation StraySheep implements web-search-based URL col-
lection methods; thus, attacks originating from other types of sources (e.g., email)
are out of its scope. Since SE attacks attempt to lure more users to their web pages,
attackers should prepare landing pages that can be easily visited from popular web
platforms, i.e., search engines and social media. StraySheep covered these plat-
forms and retrieve landing pages using easily customizable search queries. Since
interacting HTML forms are not implemented in StraySheep’s current web-
crawling module, it cannot crawl web pages that require login, account creation,
and survey. However, StraySheep’s SE-detection module can identify these web
pages because it uses not only features of the reached web page but also features
extracted from the entire sequence.
Evasion There may be an evasion technique against StraySheep’s web-crawling
module to create a web page that redirects users to SE attacks without preparing
any lure elements. This technique leads to a lowering of the collection efficiency of
SE attacks of StraySheep. There may be another evasion technique that intro-
duces CAPTCHA authentication in the middle of an SE attack. An SE attack with
CAPTCHA authentication cannot be collected with the current implementation
of StraySheep. However, these evasion techniques greatly reduce the number of
potential victims, which leads to a reduction in the success rate of attacks. There-
fore, we believe that it is unlikely that an attacker actually carries them out, as it
goes against the current trend of SE attacks.

There may also be an evasion technique against StraySheep’s SE-detection
module designed as a classification approach. Attackers modify an SE page’s
appearance to evade the future design and structure of web pages. However, this
module also extracts features from the entire sequence of web pages, such as the oc-
currence of popup windows displaying fake infection alerts and redirections caused
by a user’s unintended clicks. Thus, we believe it is still difficult for attackers to
evade because these features represent attackers’ effective techniques to lure users
to their web pages.

3.6.2 Ethical Consideration

Our study followed research ethics principles and best practices [56, 53, 54, 14].
While we conducted parallel crawling for various websites, each of our crawling ses-
sions sequentially traversed web content on the same website, so only a restricted
amount of traffic to the website was generated, which did not increase website
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workload. Our crawling carefully created web requests according to the manner of
a real web browser and did not create any harmful web requests breaking or ex-
ploiting websites. Due to using a real web browser, our crawling faithfully performs
according to the natural behavior of web browsers. Furthermore, the intention of
our automated crawling is not to thwart the monetization model of benign web
ads. There is no alternative and realistic way to directly observe SE attacks except
for active crawling; however, there is a risk of unexpectedly contributing to ma-
licious pay-per-click (PPC) or pay-per-install (PPI) monetization. Our crawling
did not intentionally concentrate on specific PPC or PPI services.

3.7 Related work

Web-based SE attacks and their defenses have been gaining the attention of re-
searchers. We review related work in terms of collecting these attacks and an-
alyzing the attack mechanisms. Duman et al. focused on the visual properties
of trick banners, which lure users into clicking on fake links [36]. They built a
Firefox browser extension called TrueClick to detect such trick banners based on
image processing and machine learning. StraySheep finds lure elements includ-
ing trick banners, and interacts with them to confirm whether they actually lead
users to SE attacks. Rafique et al. analyzed free live streaming services and their
ecosystems [13]. They found that users of these services are exposed to ads, mal-
ware, and unwanted browser extensions. Our analysis found that not only live
streaming services but also web pages showing illegal content, such as music and
games, use lure elements to lead users to malware and unwanted browser exten-
sions. Nelms et al. studied the sequences of visited web pages preceding malware
downloads in drive-by download and SE attacks [23]. They proposed a system
called WebWitness to passively trace back the visited web pages to analyze how
users reach the attacks. They also presented a systematic study on successful SE
attacks leading to malicious and unwanted software [24]. They categorized and
identified the tactics used in such SE attacks to gain users’ attention. While these
studies [23, 24] passively traced back real victim’s traffic, StraySheep actively
collects SE attacks and does not rely on real victims. Vadrevu et al. devel-
oped a specific web-browser system called ChromePic to enable the reconstruction
of SE attacks [30]. ChromePic introduces a detailed snapshot of logging into
Chromium to enable the investigation of SE attacks. Whereas ChromePic focuses
on forensics after users reached SE attacks, proactive and large-scale crawling of
the latest SE attacks. Miramirkhani et al. conducted the first systematic analysis
of technical-support-scam web pages [25]. Specifically, they developed a system
that can identify such web pages and collect them to show their prevalence, the
abused infrastructure, and illicit profits. Srinivasan et al. analyzed technical sup-
port scams by focusing on search-engine results and corresponding sponsored ad-
vertisements [14]. They generated technical-support-related special search-engine
queries to discover previously unknown technical support scams. StraySheep
also finds identified technical support scams based on search engine results, as well
as scams that require multiple interactions to reach. Kharraz et al. proposed a
system called Surveylance [12] to identify survey scams using search engines and
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a web-crawling approach. While this system identifies only landing pages having
survey content (e.g., advertisement in iframe), StraySheep also identifies survey
scams by clicking lure elements, which do not display survey content.

3.8 Conclusion

We proposed a system called StraySheep to crawl web pages and detect multi-
step SE attacks. Our key idea is based on (1) simulating multi-step browsing
behavior of users to efficiently crawl web pages leading to SE attacks and (2)
extracting features from reached web pages as well as the entire sequence of web
pages to accurately detect such attacks. Our experimental results indicate that
StraySheep can lead to 20% more SE attacks than Alexa top sites and search
results of trend words, crawl five times more efficiently than a simple crawling
module, and detect SE attacks with 95.5% accuracy. StraySheep will be useful
for security vendors, search engine providers, and social-media companies in terms
of analyzing trends in SE attacks.
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Chapter 4

Understanding the Fake Removal
Information Advertisement Sites

4.1 Introduction

Antivirus (AV) software is an essential tool for endpoint protection. The major AV
software market was valued at 3,770 million USD in 2018 [57], and attackers focus
on the needs of such pervasive AV software to gain financial benefits. Specifically,
fake AV software, which are rogue applications disguised as legitimate AV software,
is used to manipulate users’ devices and steal money or sensitive information [58,
22]. For example, once fake AV software is installed, the software displays fake
virus scan results to get users to purchase additional licenses [59, 60].

Fake AV software is a traditional cyber threat that can effectively spread mal-
ware and unwanted software on the web [61, 62]. To infect users and gain more
profit, attackers take advantage of online advertisements that target many people
to distribute fake AV software [63]. The web pages served by these advertise-
ments typically show fake virus infection alerts or messages claiming the necessity
of installing their software. These web pages also attract users with promises of
speeding up their machines [64]. Attackers use such social engineering techniques
that exploit users’ psychological vulnerabilities to lure users to download fake AV
software. These web pages are known to be major distribution paths for fake AV
software [65, 66, 67].

In this chapter, we focus on new techniques that psychologically encourage
users to install fake AV software from the web. Attackers create web pages that
introduce fake information for handling specific cyber threats, such as malware
infection or visits to malicious web pages, and suggest fake AV software. We
call these web pages fake removal information advertisement (FRAD) sites, which
target users who have already suffered from security problems and which make
them victims of another one. For example, users who notice their malware infection
try to search for removal information using the malware detection names given by
virus scanners, and they reach the FRAD sites from search results. Believing
the FRAD information, the users follow the instructions and inadvertently install
the suggested fake AV software. Although it is well known that attackers induce
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users to install fake AV software using scaring or attracting messages―such as
fake infection alerts or promises to speed up their machines―little attention has
been given to analyzing the FRAD sites.

Here, we propose a system that automatically crawls the web pages and de-
tects FRAD sites. Using the linguistic and visual features of the web pages, we
accurately identify FRAD sites with 98.8% true positives and only 3.3% false pos-
itives. We used our system for a large-scale collection of FRAD sites and found
2,913 distinct domain names of FRAD sites written in 31 languages. The total
user accesses to these FRAD sites was 73.5 million visits per month. We observed
that these FRAD sites are not adequately reported by existing blacklists.

To reveal the ecosystem of FRAD sites, we performed a measurement study
using both passively collected statistical data on user accesses and actively crawled
data. We first investigated the incoming traffic to FRAD sites to determine what
types of user behaviors are at risk of reaching FRAD sites. We found that many
users not only accessed these sites from search engines directly but also reached
FRAD sites from videos or messages posted on social media by attackers’ accounts.
To determine what kinds of attacks users encounter from FRAD sites, we then
analyzed the transferred web pages and downloaded files from the FRAD sites.
We confirmed that the FRAD sites led to 76 fake AV software families by directly
distributing installers and luring users to payment and distribution sites. Also, we
investigated search results for the names of specific cyber threats, and we found
that 82.6% of the top 10 search results were occupied by FRAD sites. In other
words, search results for information concerning cyber threats are poisoned by
FRAD sites, making it difficult for users to obtain correct removal information.
To the best of our knowledge, this is the first study that has revealed the prevalence
and ecosystem of FRAD sites.

In summary, our contributions are as follows:

• We propose a system to crawl the web and detect FRAD sites automati-
cally. By extracting linguistic and visual features from crawled web pages,
our system detected FRAD sites with 98.8% true positives and 3.3% false
positives.

• We performed a large-scale collection of FRAD sites on the web by leveraging
a search engine, which is the most common channel used to reach FRAD
sites. Using our system, we discovered 2,913 domain names of FRAD sites
written in 31 languages. We found that attackers widely deploy FRAD sites
targeting users in various countries to increase the number of page views.

• We conducted a comprehensive measurement study using both passively col-
lected statistics data and actively crawled data to reveal the ecosystem of
FRAD sites. Our measurement study also clarified the typical incoming
channels employed by users to reach FRAD sites and the types of potential
threats directed from the FRAD sites. We also found that it is difficult for
users who need removal information for specific cyber threats to reach cor-
rect information, because most of the search results concerning cyber threats
are poisoned by the FRAD sites.
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Figure 4.1: Overview of fake AV software distribution via FRAD sites.
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Figure 4.2: Common page structure of FRAD sites.

4.2 Background

We first consider an attack technique for distributing fake AV software via FRAD
sites. The purpose of the FRAD sites is to deceive users who need ways to deal
with cyber threats, i.e., malicious acts that damage the users’ devices and steal
their sensitive information. Examples of cyber threats include malware infection,
fraudulent popup messages, and malicious browser extensions. Attackers post
multiple entries on FRAD sites that introduce fake threat removal guides, using
the names of specific cyber threats, such as malware detection names or the domain
names of malicious sites. For instance, there can be more than 15k entries in a
single FRAD site, and dozens of new entries are added to the FRAD site every day.
Figure 4.2 shows a common structure of the entries of FRAD sites. FRAD sites
often include a phrase related to malware removal in domain names, URL paths,
titles, and textual content. They also show the package images of fake AV software
and logo images of security vendors and software certification companies. More
detailed characteristics of FRAD sites are discussed in Section 4.3.2. When users
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notice that they have security issues by looking at the results from legitimate
virus scanners or from suspicious alert messages on web pages, they search for
information to remove them. Users who reach FRAD sites and are deceived by
false information install fake AV software, which makes matters worse. We focus
on such scams on the web in this chapter.

Figure 4.1 shows an overview of the distribution of fake AV software via FRAD
sites. First, users who have security problems reach FRAD sites by searching for
the specific names of cyber threats they want to remove ( 1 ). Attackers leverage
search engine optimization (SEO) techniques that target specific names of cyber
threats to increase the web traffic to FRAD sites. Attackers also post fake videos
on YouTube that introduce ways to remove the threats, and they post similar
articles on Facebook and other social media to lure users to click on links to FRAD
sites. Forum and community sites where anyone can post messages are also used
by the attackers in the same manner. Thus, users not only visit FRAD sites
from results provided by search engines but also reach FRAD sites through social-
media postings and other web pages hit by the search results. The FRAD sites
contain detailed fake removal guides for individual threats as well as large buttons
or banners to direct users to fake AV software. The FRAD sites usually display
the logos of famous security vendors or third-party organizations (e.g., software
certification companies) to make them look as if they are legitimate web pages.
Users who click on the buttons or banners are navigated to software distribution
sites ( 2 ). Most of the software distribution sites use domain names containing
the names of the fake AV software and disguise themselves as official sites for
legitimate AV software by displaying product information and purchase menus.
These sites are also reachable through search engines and even provide customer
support such as web chats or toll-free calls. On these web pages, users follow the
payment and download instructions and then obtain fake AV software installers
( 2 ’). These installers can also be downloaded from the FRAD sites directly ( 3 ).
Users install the fake AV software and thus become victims of other cyber threats
( 4 ).

Some social engineering techniques are already known, such as threatening
users using fake infection alerts or attracting them by the prospect of improving
computer performance. However, it has not been clarified whether attackers use
techniques for distributing fake AV software that exploit the weaknesses of users
who have already suffered from cyber threats.

4.3 Method

In this section, we introduce our system for collecting and detecting FRAD sites
on the Internet automatically. The system consists of two steps: web crawling and
classification.
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Table 4.1: List of terms for each category; used to check the term’s frequency in the
title, URL paths, domain names, and text content of a web page.

Category Example terms

way “how to”, “guide”, “solution”, “tips”, “report”, “instruction”

removal
“remove”, “get rid of”, “uninstall”, “delete”, “fix”, “clean”, “kill”,
“block”, “repair”, “anti”, “entfernen”, “eliminar”, “verwijderen”,
“deinstallieren”, “desinstalar”, “supprimer”, “remuovere”, “usunac”

problem
“virus”, “malware”, “spyware”, “trojan”, “backdoor”, “adware”,
“threat”, “infection”, “ransom”, “error”, “pop up”, “redirect”

device “computer”, “pc”, “windows”, “mac”, “browser”

4.3.1 Web Crawling

The implementation of a web crawler that collects and stores browser-level infor-
mation from web pages is the first step in our system. The requirement of the
crawler is to extract linguistic and image features from a web page rendered by
a web browser and to compose a feature vector for the result. To analyze the
FRAD sites in detail, we also need to capture the network traffic to and perform
browser interactions on the web page. To achieve this, we designed and imple-
mented the crawler using Scrapy1, which is a web crawling framework for Python,
in order to develop functions for monitoring and managing logged data. We used
Selenium2 as the middleware for Scrapy to automate a real web browser. We used
Google Chrome as the default web browser for the crawler. To monitor network
traffic in detail, we used Chrome DevTools API3. This is necessary, because we
collect network-level information such as HTTP requests and responses that Sele-
nium API does not handle directly. The collected information such as screenshots,
HTML source codes, and network traffic are stored to MongoDB. We use those
kinds of information for the next step, classification.

4.3.2 Classification

In the second step, our system extracts features from the information collected
from the web pages and identifies FRAD sites using a supervised machine learning
approach. In particular, the system analyzes term frequencies in web pages and
URLs, the presence of logo images on screenshots, and HTML structures, such
as the number of tags, and combines them into a feature vector. We explain the
detail of each feature below.
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Term Frequencies

To capture the linguistic characteristics of FRAD sites, frequencies of terms are
used as a feature. To improve the SEO ranking and ensure an easy web page
topic for users to understand, FRAD sites use terms meaning for the removal of
cyber threats in the titles, URL paths, domain names, and text content of their
web pages. Examples of such titles are “Remove Trojan.Zerocleare (Virus Removal
Guide)” and “Remove Magiballs.com (Free Guide).” The URL paths include forms
such as “/2019/12/27/how-to-remove-my-login-hub-virus-removal-guide/”
and “/uninstall-nvux-xyz-from-windows-7-8-8-1-10.” Examples of domain
names are uninstallmalwarefrompc[.]example and virusremovalguide[.]example.
The text content of the web page is written with a summary of the cyber threat
and specific removal information for it.

Our key insight is that the FRAD sites must include a phrase composed of
the following four categories of terms: way, removal, problem, and device. Ta-
ble 4.1 shows a list of example terms. As the feature vector, we use the number
of occurrences of each term category in the following four fields: the title, URL
path, domain name, and text content. The terms in the four categories are in-
tended to capture phrases such as “how to remove Trojan.Zerocleare virus from my
PC.” Because the FRAD sites are created in many languages, we leverage machine
translation services such as Cloud Translation API4 and Amazon Translate5. We
translate the title and text content of the crawled web pages into English and then
calculate the frequencies of the terms.

To create the list of terms, we extracted all terms that match each category
from the title, URL paths, domain names, and text content of 300 FRAD sites
that were randomly selected from our created dataset, as discussed below in Sec-
tion 4.4. Some domain names include non-English terms in the removal category,
such as “entfernen” in German and “eliminar” in Spanish. Because these domain
names are difficult to translate, we manually obtained such terms as much as pos-
sible. To this end, we separated the domain names by “.” or “-” and used word
segmentation6 and then searched for the meaning of each extracted word.

Logo Images

We next consider features that specify logo images on the FRAD sites. The FRAD
sites include download buttons and software packages that may be shared among
multiple FRAD sites. The FRAD sites also display logos of security vendors, oper-
ating system (OS) vendors or software certification companies in order to pretend
to be legitimate sites. These logos are copied from vendors’ sites or used as image
files modified from the original images. To find such visual characteristics, our
system uses an image matching approach on the basis of our logo image database.

1https://scrapy.org/
2https://selenium.dev/
3https://developer.chrome.com/extensions/devtools
4https://cloud.google.com/translate/
5https://aws.amazon.com/translate/
6http://www.grantjenks.com/docs/wordsegment/
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Specifically, the system extracts images from img tags and crops images for which
the area matches a or button tag elements from screenshots. It calculates the
perceptual hash7 of these images and compares them to the image database. If
the target image is more than 85% similar to the image in the database, the system
determines it to be a logo image. Three types of images are stored in the database:
logos of security vendors or software certification company (19 images), package
images of fake AV software (33 images), and images of the download buttons (56
images). We extracted images belonging to the three types from the 300 FRAD
sites used in the above. Our system counts the number of images that match each
type to create feature vectors.

HTML Structure

Here, we explain the features extracted from the HTML structure that we use
for identifying FRAD sites. As with previous works that identify specific types
of malicious web pages [65, 68], the numbers of a and iframe tags are important
indicators of FRAD sites. Also, FRAD sites often re-use web page templates so
that they have similar structures of HTML source codes. In other words, the
frequency of HTML tags and combinations of those numbers characterize FRAD
sites. To find such features, the system counts the number of appearances of
HTML tags. The HTML tags to be counted are the top 30 tags frequently used
in the 300 FRAD sites mentioned above.

4.4 Data Collection

We explain the method used to collect FRAD sites in the wild in order to make the
dataset employed to evaluate our classification model. We first collected the names
of cyber threats. Then, we searched for and gathered candidates of FRAD sites
using the names of those cyber threats. Finally, we manually created a labeled
dataset for our evaluation experiment.

4.4.1 Collecting Cyber Threats

We collected the names of cyber threats to make search queries to find candidate
FRAD sites. As described in Section 4.2, FRAD sites prepare many entries that
introduce ways of removing specific cyber threats such as malware detection names
and malicious domain names. To collect such names efficiently, we crawled the
database pages of security vendors (e.g., Symantec Security Center8) and a security
community site (e.g., malwaretips[.]com) in October 2019. We collected 806 names
of threats, including 500 malware detection names, 200 malicious domain names,
and 106 popup messages.

7https://github.com/JohannesBuchner/imagehash
8https://www.symantec.com/security-center/a-z
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4.4.2 Web Search

We created search queries using the collected names of cyber threats and gathered
the URLs of web pages using a search engine. To collect FRAD sites efficiently, we
added “how to remove” to the name of the cyber threat to create the search query,
instead of searching only for the name of the threat. We found that we can collect
more FRAD sites by searching with “how to remove” in our experiment described
in Section 4.6.3. To collect search results systematically, we used Microsoft Bing
Web Search API 9 and gathered 34k URLs. We chose one URL for each domain
name from among the gathered URLs. As a result, we extracted 4,188 URLs with
4,188 unique domain names to crawl.

4.4.3 Creating the Dataset

We crawled 4,188 web pages using our system and created a labeled dataset. Since
there is no existing URL blacklist that accurately identifies FRAD sites, we manu-
ally labeled them by analyzing the crawled web pages and actually accessed them
as necessary. To efficiently conduct this process, we created a web application that
displays screenshots and buttons to choose labels (FRAD and non-FRAD sites).
This application extracts information about the crawled web pages from our Mon-
goDB database and generates the web pages for labeling. We implemented it using
Node.js and the Express10 framework. We labeled web pages as FRAD sites if they
satisfied following heuristic rules. If not, we labeled the web pages as non-FRAD
sites.

i. We check whether a web page introduces a removal guide for a specific cyber
threat. If so, we check rule ii.

ii. We check whether the web page has visual characteristics specific to FRAD
sites, as described in Section 4.3.2. Specifically, we check whether the web
page has an image of a fake AV software package or a logo of a security vendor
or a software certification company. We also check screenshots of the removal
instructions or download buttons, which are often shared with multiple FRAD
sites. If the web page has these characteristics, we identify it as an FRAD
site. If not, we further check rule iii.

iii. We confirm that clicking a download button on the web page triggers a down-
load of a fake AV software installer or initiates a web transition to a distri-
bution or payment site for fake AV software. We performed this process by
manually accessing the web page and clicking the download button.

From the 15-h labeling process, we obtained 804 web pages of FRAD sites with
804 unique domain names. To create a dataset, we randomly selected 800 web
pages from these FRAD sites. We also randomly selected 800 web pages from
non-FRAD sites, which are the web pages remaining after excluding the 804 web

9https://azure.microsoft.com/en-us/services/cognitive-services/
10https://expressjs.com/
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pages of FRAD sites. Since we collected the non-FRAD sites using the same search
queries as for the FRAD sites, they often introduce removal information for cyber
threats, details of malware, or introductions to legitimate AV software, just as
FRAD sites do. Thus, it is a challenging task to identify FRAD sites accurately
from these similar web pages.

4.5 Evaluation

We next evaluated the detection capability of our system in terms of its capability
to classify web pages accurately as FRAD sites or non-FRAD sites. We also
conducted an experiment to discover unknown FRAD sites in the wild using the
trained classification model.

4.5.1 Detection Accuracy

We first evaluated the detection accuracy of our system using the balanced dataset
including 800 FRAD sites and 800 non-FRAD sites. We used a random forest
classifier as the machine learning algorithm for two-class classification, because we
can easily tune it due to the small number of hyper parameters to be considered.
We conducted a 10-fold cross validation to determine how accurately our system
performed classifications. We found that our system classified web pages with a
98.8% true positive (TP) rate (= TP

TP+FN
), where FN = false negative, a 3.3%

false positive (FP) rate (= FP
FP+TN

), and with 96.8% precision (= TP
TP+FP

). The
system identified 26 non-FRAD sites as FRAD sites (FPs). Examples include
articles from security vendors that introduce malware information, ranking web
pages for legitimate AV software, and blog entries that describe correct removal
instructions. Five FPs were security vendors’ web pages that often appear in
search results when searching for removal information for cyber threats. We can
therefore reduce FPs by placing the domain names of major security vendors on a
whitelist. Examples of false negatives include web pages with domain names that
do not include words such as “remove” or “malware.” Other false negatives do
not contain visual features such as images of fake AV software packages or logos
of security vendors.

4.5.2 Detecting Unknown FRAD Sites

To collect unknown FRAD sites that have not been found in Section 4.5.1, we
conducted additional data collection and detection using our classification model,
which has high detection accuracy.

Additional Data Collection

We first describe additional data collection to find more FRAD sites in the wild,
such as non-English FRAD sites and FRAD sites with content copied from other
sites. In the process of creating the dataset described in Section 4.4, we found many
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FRAD sites written in various languages. Some of them were translated automati-
cally according to the browser’s language setting when the web pages were loaded.
Some web pages were also written in multiple languages to enable users to switch
languages. In addition, we found FRAD sites dedicated to certain languages. In
such cases, the domain names contain words in those languages (e.g., “entfernen”
in entfernen-spyware[.]example and “eliminar” in eliminarvirus[.]example), as de-
scribed in Section 4.3.2. We also found that FRAD sites are often copied from
other FRAD sites and from legitimate sites that introduce specific malware removal
information. These FRAD sites not only use the names of cyber threats extracted
from legitimate sites but also copy page titles or entire articles from them. To find
such FRAD sites, we collected page titles from legitimate sites (malwaretips[.]com
and malwarefixes[.]com) and from the 804 FRAD sites we labeled, which include
non-English sites, and we searched for the titles using Bing API. Although it is dif-
ficult to create search queries in multiple languages to collect non-English FRAD
sites, we can gather them efficiently in this way. We gathered 16k page titles from
these web pages and collected 836,731 URLs (111,161 domain names) from these
search. We extracted up to three URLs from each domain name and crawled them
(120,577 URLs) using our system.

Detection Result

As a result of the classification of additionally crawled web pages, we identified
6,130 URLs as FRAD sites. To find FPs, we manually checked web pages classified
as positive in the same way as described in Section 4.4.3. Examples of FPs include
the following. Some technical-support scam [69, 70] sites were falsely identified
as FRAD sites, because they offered support for malware removal and displayed
noticeable phone numbers and web-chat support. These FPs are not FRAD sites,
however, because they did not lead users to fake AV software but instead are actu-
ally malicious web pages themselves, which are listed in VirusTotal11. Moreover,
our system falsely detected pirate web pages that introduce free downloads of fake
AV software. Although such fake AV software is useless and not very well-known,
some web pages illegally offered such software. Other FPs include software review
and download sites, which distribute fake AV software as well as legitimate soft-
ware. We also found FPs similar to those described in Section 4.5.1. By excluding
these FPs, we finally determined 5,780 URLs (2,109 domain names) as FRAD
sites. The precision of this classification result was 94.3%. Although this precision
is somewhat less than the results obtained in Section 4.5.1, we accurately identi-
fied FRAD sites. The reason for this decrease in detection capability is that we
changed the search queries from “how to remove” and the name of threats (used in
Section 4.4.2) to page titles of known FRAD sites, so that the types of web pages
in the search results were somewhat changed.

11https://www.virustotal.com
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Summary of Collected FRAD Sites

Overall, in this chapter we have identified 2,913 domain names, including the newly
discovered 2,109 domain names, to be FRAD sites. To confirm the FRAD sites
already reported by security vendors, we searched for all 2,913 domain names in
VirusTotal. Of the total, 32.7% (952 domain names) of the domain names had
URLs that had already been detected by one or more vendors. We also found
21.5% (626/2,913) of the domain names had URLs that are sources of detected
files. Although some FRAD sites have been detected by a small number of security
vendors, most of the FRAD sites we found in this chapter have been unreported
to date. These FRAD sites are less likely to be filtered out from search results,
even if they were reported as malicious. Thus, most of these FRAD sites remain
easily accessible to users and remain threatening to them.

4.6 Measurement Study

We measured the ecosystem and risk of FRAD sites using both passively collected
statistical data of user accesses and actively crawled data. In the experiment
described above, we found FRAD sites using our system and simply checked the
detection status for each of them on VirusTotal. Here, we analyze deeply the 2,913
domain names of FRAD sites that we found in Section 4.5 in terms of incoming
traffic to those FRAD sites, the distribution of fake AV software from those sites,
and poisoned search results that are occupied by FRAD sites.

4.6.1 Incoming Traffic to FRAD Sites

To find out what browsing behaviors of users are at risk of reaching FRAD sites,
we analyzed the incoming channels (i.e., 1 in Figure 4.1 in Section 4.2) of the
FRAD sites that we found in Section 4.5. To this end, we need data on the history
of user accesses to and traffic volumes of those web pages. Thus, we leveraged the
statistical data provided by SimilarWeb12, which passively observes hundreds of
millions of global devices and covers over 220 countries and territories. Using this
approach, we collected statistical data from October to December in 2019 that we
used in the measurement studies described below.

Overview of Incoming Traffic

We first show an overview of seven types of incoming traffic to FRAD sites. We
investigated 1,451 domain names of FRAD sites for which data are available in
SimilarWeb (out of 2,913 domain names of the FRAD sites we discovered in this
study). Note that statistical data of web pages with few user accesses are not pro-
vided. These FRAD sites have 73.5 million visits per month in total. Figure 4.3
shows the percentage of traffic to the FRAD sites from each incoming channel.
The channels consist of seven labels: Search (accessed from a search engine), Di-
rect (directly accessed by entering URLs in a web browsers), Referral (accessed

12https://www.similarweb.com/
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Figure 4.3: Percentage of incoming traffic to FRAD sites from each channel.

from other web pages), Social media (accessed from Social Media), Paid search
(accessed from keyword advertisements on search engines), Display ad (accessed
from advertisements on web pages), and Mail (accessed from hyperlinks on email).
Note that the incoming traffic measured as Mail comes only from web mail. Incom-
ing traffic from email client software or other applications is measured as Direct.
The mean values of Search, Direct, Referral, and Social media were 76.7%, 16.5%,
1.7%, and 1.7%, respectively. The value for each of the other three channels is less
than 0.6%. Paid search, Display ad, and Mail have few data for further investi-
gation. Also, we only know the amount of incoming traffic that we have shown
here from the data of Direct. Therefore, in the following, we analyzed the detail
of three channels: Search, Referral, and Social media.

Search

To find out how users reached FRAD sites via search engines, we investigated the
statistics of the search queries. We extracted the top 10 English search queries
(4,510 unique queries in total) for each FRAD site and categorized them. Ta-
ble 4.2 shows the categories and the number of search queries. We found that
47.5% (2,143/4,510) of the search queries were related to the names of specific cyber
threats. They included malware detection names (e.g., trojan:win32/bearfoos.a!ml),
malicious domain names, and alert dialog messages (e.g., “your computer is in-
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Table 4.2: Search queries used by the users to reach FRAD sites.

Category Search query #

Cyber threats how to <remove><threat> 576
<remove><threat> 438
<threat> 849
is <threat> safe ? 27
what is <threat> 113
<error> 140

Download download <software> 421
crack <software> 101

Fake AV software <fake AV software> 66

Other <other> 1,802

Total 4,510

fected with dangerous viruses”). Among them, 12.8% (576/4,510) are search
queries combining “how to” with words meaning removal (e.g., “remove”, “delete”)
and the names of cyber threats. We found that 9.7% (438/4,510) of the search
queries combined words meaning removal with the names of cyber threats. Users
also searched for the names of cyber threats alone (18.8%, 849/4,510) of for soft-
ware or OS error messages (e.g., “MSVCP140.dll missing”). Thus, many users
reach FRAD sites by searching for cyber threats and corresponding removal guides.
The names of fake AV software were also used as search queries to reach FRAD
sites (66/1,802). We found that 11.6% (522/4,510) of the search queries were used
to search for downloads of software such as office software or video games and
guides of cracking them. Forty percent (1,802/4,510) of the search queries were
not included in these categories.

Social Media

We also analyzed incoming traffic from social media. We investigated 167 FRAD
sites for which statistical data for queries incoming from social media is available
from SimilarWeb. Table 4.3 shows the top 15 social media that led users to FRAD
sites and the number of FRAD sites to which users were redirected from each type
of social media. Users visited 95.8% (160/167) of FRAD sites from YouTube and
66.5% (111/167) of those from Facebook. Attackers create social-media accounts
for these FRAD sites and post videos or messages to lure users to FRAD sites.
These accounts pretended to be official accounts that use the web-site names or
domain names of FRAD sites. They introduce removal information for cyber
threats in the same way as entries for FRAD sites, and they put hyperlinks leading
to FRAD sites in the description of their videos and messages. We found that some
accounts post such instruction videos on YouTube several times a day. These
videos got as many as 700k views. We also found that attackers created such
accounts across multiple social media. In summary, attackers not only optimize
search results to lead users directly to FRAD sites, but also they use various social
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Table 4.3: Top 15 social media that led to FRAD sites.

Social media # of FRAD sites

Youtube 160
Facebook 111
Reddit 58
Quora 35
Pinterest 22
Pocket 9
Twitter 7
Linkedin 6
Instagram 5
WhatsApp 2
SoundCloud 2
Google Groups 2
DeviantArt 2
Yammer 2

Table 4.4: Categories of referral web pages to FRAD sites.

Category of referral web pages #

Computers Electronics and Technology 517
Games 29
News and Media 25
Science and Education 22
Business and Consumer Services 20
Arts and Entertainment 19
Hobbies and Leisure 8
Adult 8
Reference Materials 7
E-commerce and Shopping 6
Vehicles 2
Reference Materials 2
Gambling 2
Community and Society 2

media to increase user accesses to FRAD sites.

Referrals

In addition, we investigated referral traffic that leads users to FRAD sites. In
other words, we analyzed the incoming traffic to FRAD sites when users ac-
cessed them from other web pages, excluding search engines and social media.
We found that users visited 891 web pages belonging to various categories be-
fore reaching FRAD sites. Table 4.4 shows the SimilarWeb categories of these
referral web pages. The most common category of referral web page is Computers
Electronics and Technology, which includes forum and community sites such as so-
cial.technet.microsoft[.]com., ubuntuforums[.]org, and discussions.apple[.]com. In
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most cases, attackers abuse these sites, where anyone can post messages, to im-
personate good users who introduce removal information for cyber threats with
URLs of FRAD sites. The web pages categorized as Games (e.g., steamcommu-
nity[.]com) were used in the same manner. Attackers also posted FRAD sites’
URLs in comment sections in articles in News and Media and other categories. In
short, attackers leverage popular web pages where they can post comments and
hyperlinks to lure users to visit FRAD sites.

4.6.2 Downloads and Page Transitions from FRAD Sites

To identify threats that occur when users access FRAD sites, we performed an ad-
ditional crawling experiment. While we simply found FRAD sites using our system
in Section 4.5, and we investigated users’ incoming traffic to them in Section 4.6.1,
the malicious activity derived from them was not revealed by these experiments.
Therefore, we actively crawled the FRAD sites and collected installers of fake AV
software and their respective distribution sites. To this end, we added a function
to the crawler of our system to enable it to detect a download button on an FRAD
site and click it. Then we analyzed the downloaded files and transferred the web
pages from those FRAD sites.

Collecting File Downloads and Web-Page Transitions

We first describe the details of the new function that enables our crawler to interact
with the FRAD sites. The crawler crops images with areas that match the a tag
and img tag elements of FRAD sites. If the crawler finds a “download” string in
the images using optical character recognition, it clicks on that area. We used two
types of UserAgent with different OS (Windows 10 and macOS v10.14). This is
because FRAD sites change the fake AV software to be distributed according to
the UserAgent’s OS, typically Windows or Mac. To collect the URLs of FRAD
sites to crawl, we searched for the 2,913 domain names of FRAD sites using Bing
API and selected up to three URLs based on the search results for each domain
name. The reason for this is that web pages of FRAD sites with the same domain
names can lead to different destinations (e.g., different software distribution sites)
depending upon their URLs. To find more fake AV software, we collected 8,099
URLs and crawled them twice with two types of UserAgent. As a result, the
crawler downloaded 4,548 files with 594 unique MD5 hash values and reached 136
domain names (630 URLs) of web pages from FRAD sites. In the following, we
investigated the downloads of fake AV software originating from the FRAD sites
(i.e., 3 in Figure 4.1 in Section 4.2), web pages transferred from those sites (i.e.,
2 in Figure 4.1), and redirectors that relayed these downloads and web page
transitions.

Fake AV Software Downloaded from FRAD Sites

We analyzed the files that our crawler downloaded (see 3 in Figure 4.1) to identify
the installers of fake AV software. First, we checked 594 files with unique MD5
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hash values on VirusTotal and found that 89 of those files had been detected. To
specify fake AV software families from the detected files, we manually analyzed
and searched them using their filenames and metadata (e.g., product name, legal
copyright, and file description) read by ExifTool13. We examined whether the 89
files were related to malware removal, registry fix, or speed up based on the above
information and on the software distribution sites that we obtained from the search
results. We classified 84 files into 58 unique fake AV software families with different
software names. All 58 fake AV software families have software distribution sites
reachable from search engines. The software distribution sites profess to be official
sites for these fake AV software families. For example, these sites show download
and purchase menus and provide customer support such as web chats or toll-free
calls. The remaining five detected files were not fake AV software but instead
were malware that pretend to be installers of legitimate software, such as music-
production software and video games.

To find more fake AV software from the 505 undetected files, we compared their
filenames and metadata with those of the classified 58 fake AV software families.
As a result of determining files with the same strings as the fake AV software, we
additionally found 189 files to be fake AV software. Overall, we found 278 files (31
dmg files and 247 exe files) of the 58 fake AV software families.

Web Pages Transferred from FRAD Sites

We also analyzed the web pages of 136 domain names that our crawler reached after
clicking on download buttons (see 2 in Figure 4.1). In the above measurements,
we investigated fake AV software directly downloaded from FRAD sites. However,
FRAD sites also navigate users to software distribution sites that lure them to
purchase and download fake AV software. To find such web pages, we analyzed the
crawled data (e.g., screenshots of web pages) and manually classified the malicious
web pages. We first checked the 136 domain names on VirusTotal and found that
57 domain names were detected. We then specified the web pages that offered
license purchases of known fake AV software or were related to malware removal,
registry fixes, and speed-up from the web pages of the 57 detected domain names.
We found that 34 domain names were related to distributions of fake AV software,
including six domain names of payment sites and 27 domain names of software
distribution sites. The payment sites required inputting credit card numbers and
personal information to purchase fake AV software. Out of the 27 domain names,
we found that 18 domain names were distribution sites for 18 new fake AV software
families in addition to the measurements described above, where we found 58 fake
AV software families. Thus, we found 76 fake AV software families in total. The
detected domain names also included five domain names of FRAD sites that we
found in Section 4.5. That is, users may be transferred from one FRAD site to
another. We also found malicious web pages that distribute malicious Chrome
extensions. We found 14 domain names associated with such threats and four
domain names related to distributions of other types of malware.

13https://exiftool.org/
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Table 4.5: The percentage of FRAD sites included in search results.

threat name <threat name> remove <threat name> how to remove <threat name>

Malware 69.4% 87.9% 87.9%
Domain name 88.5% 93.5% 88.0%
Extension 36.1% 85.1% 87.2%

Total 70.6% 89.7% 87.8%

Redirectors

To reveal the network infrastructure related to the distribution of fake AV software,
we investigated the redirectors that relayed the above fake AV software downloads
and web page transitions. We analyzed the network traffic that our crawler cap-
tured and extracted redirectors for which the effective second-level domains (e2LD;
e.g., example.com is a e2LD of www.example.com) are different from those of the
source web pages (i.e., the FRAD sites) and destination web pages. We found 169
domain names (38 e2LD names) as redirectors of 1,048 URL redirections associ-
ated with fake AV software downloads and web transitions to software distribution
sites. Nine of these domain names were known advertising domain names listed in
EasyList14. In addition, we found a small number of redirectors that were involved
in many fake AV software distributions. For example, we found that 76.4% of the
URL redirections were associated with just two domain names: safecart[.]com and
revenuewire[.]net. These two redirectors navigated to 17 and 14 fake AV software
families, respectively. The domain name safecart[.]com not only is a redirector but
also is a payment web page that prompts users for their credit card numbers. Some
redirectors, such as reimageplus[.]com and paretologic[.]com, which are software
distribution sites, navigated to other software distribution sites.

4.6.3 Search Poisoning

We conducted a further measurement experiment to analyze the percentage of
FRAD sites in the search results. In Section 4.6.1, we used statistical data to in-
vestigate search queries that users used to reach FRAD sites. Then, we determined
the risk of users reaching these FRAD sites by actually searching with those search
queries and analyzing the search results. When users search for specific names of
cyber threats to find removal information, many FRAD sites prominently show
up in search results. To confirm these poisoned search results, we investigated 150
search queries, combining 50 cyber threats and three search patterns. The three
search patterns are those that users frequently use, as found in the measurements
in Section 4.6.1: “how to remove” and the name of a cyber threat, “remove” and
the name of a cyber threat, and only the name of a cyber threat. We extracted the
latest names of cyber threats from public lists: 20 malware detection names from
Symantec Security Center and 20 malicious domain names from malwaretips[.]com.
Also, we randomly chose 10 malicious browser extensions out of 14 browser ex-
tensions that we found in Section 4.6.2. We investigated the top 10 search results

14https://easylist.to/

63



for each search query, which are the top result pages from popular search engines
such as Google and Bing.

We collected 1,461 web pages from the top 10 search results for each of the
150 search queries in total. By matching the 2,913 domain names of the FRAD
sites collected in Section 4.5.2, we found that 1,207 web pages (82.6%) were FRAD
sites. Table 4.5 shows the percentages of FRAD sites included in the search results
for each search query and the names of the cyber threats. When we searched for
the names of cyber threats with “how to remove” or “remove,” the percentages
of FRAD sites were 87.8% and 89.7%, respectively. The FRAD sites were also
included at a high rate in the results of searching only for the names of cyber
threats. In particular, 88.5% of search results for the domain names were FRAD
sites. Search results for malicious browser extensions did not include many FRAD
sites (36.1%), but there was less useful information available for users to use to
remove the threats or determine whether they are malicious. We also found 22
YouTube web pages as search results, with videos and descriptions that introduced
FRAD sites. We found that 26.7% (40/150) of the search queries returned search
results for which the top 10 web pages were all FRAD sites. In summary, we found
that most of the search results were occupied by FRAD sites when users searched
for removal information for cyber threats, making it difficult for users to reach
correct information.

4.6.4 Distribution Sites of Fake AV software

We analyzed the incoming traffic to distribution sites of fake AV software using
SimilarWeb’s statistical data. From crawling results and manual web search, we
identified 76 distribution sites, which were web sites pretending to be the official
sites of the 76 fake AV software identified (Section 4.6.2). The purpose of this mea-
surement was to identify the channels other than FRAD sites through which users
accessed the distribution sites of fake AV software. We extracted 59 distribution
sites for which data are available in SimilarWeb. The total user access to these
sites was 22.6 million per month. Our analysis of the incoming traffic in terms of
referral web pages, ad networks, and ad publishers is presented in the following
sections.

Referrals

We first investigated referral web pages, which are web pages that the users reached
before reaching the distribution sites of fake AV software by clicking links or URL
redirections. We found 33 distribution sites with valid referral traffic in SimilarWeb
data. The traffic originates from 469 domains of referral web pages. In total, 66
domains of FRAD sites (14.1%) were included in the referral web pages. Note that
actually a greater incoming traffic may be associated with FRAD sites because in
some cases, users reach FRAD sites via intermediate sites such as ad networks and
payment sites. Forum (18 domain names) and community sites (5 domain names)
were also used to direct users to the distribution sites as in the case of the incoming
traffic to FRAD sites (Section 4.6.1). Attackers pretended to be legitimate users
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Table 4.6: Top 15 ad networks that redirected users to distribution sites of fake AV
software.

Ad network # of distribution sites

Google Display Network 12
Skimlinks 6
RevenueWire 6
AdSupply 4
Yahoo Advertising 3
Outbrain 3
ClickBank 3
Zedo 2
TripleLift 2
TrafficShop 2
TrafficHunt 2
TORO Advertising 2
PopMyAds 2
Impact 2
Digital River 2

to post links to the distribution sites on such forum and community sites.

Ad Networks

Our crawler often reached FRAD sites via advertising domain names (Section 4.6.2).
We analyzed the advertising traffic of distribution sites of fake AV software. We
examined the traffic delivered by ad networks and found that SimilarWeb reported
19 distribution sites that were accessed by users. Tables 4.6 lists the top 15 ad
networks. Even major ad networks (e.g., Google Display Network and Yahoo
Advertising) distributed some of the distribution sites of fake AV software. Mean-
while, some ad networks such as RevenueWire that distribute installers of fake AV
software were also involved in the delivery of multiple distribution sites of fake AV
software. Some ad networks (e.g., PopMyAds) that were reported to be associated
with malicious popup ads [63] were used to deliver the distribution sites.

Publishers

To identify the web pages that were the source of advertising traffic to distribution
sites of fake AV software, we examined publisher sites, which display advertise-
ments on their content, using SimilarWeb data. We found 528 domain names for
web pages showing ads that led to 20 distribution sites of fake AV software. Of
those domain names, 14 belonged to FRAD sites. We found that users accessed the
distribution sites from social media platforms such as YouTube (to 7 distribution
sites) and Reddit (to 3 distribution sites). Some legitimate web pages with heavy
traffic (e.g., play.google[.]com and mail.google[.]com) also had advertisements that
led to the distribution sites. Surprisingly, such advertisements were even placed on
the web pages of legitimate antivirus software such as norton[.]com, mcafee[.]com,
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Figure 4.4: Number of FRAD site domain names with the same URL paths.

and avg[.]com.

4.6.5 Structure and Content of FRAD Sites

In order to understand the FRAD site structure, duplication between FRAD sites,
and update frequency of these sites, we analyzed the sitemaps of FRAD sites.
The sitemaps provide structured listings of their web pages and page content. We
automatically crawled the sitemaps by accessing robots.txt and sitemap.xml at
the root of FRAD sites and collected the URLs and the date of last modification.
Out of the 2,913 domain names of FRAD sites that we discovered (Section 4.5),
only 1,833 domain names had sitemap pages. We analyzed in detail the information
on each of these FRAD sites.

Duplicate Entries across FRAD Sites

We determined the number of domain names with the same URL paths to find
shared page content between FRAD sites, as such shared content imply associ-
ations between FRAD sites. We extracted the URLs with identical paths com-
ponents at the end. For example, frad1[.]example/trojan/how-to-remove-
trojan-abc.html and frad2[.]example/2019/12/how-to-remove-trojan-abc.
html are considered to share a URL path. To exclude common URL paths (e.g.,
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index.html and contact.html), we ignored the paths with less than 10 characters
except for extensions (e.g., .html and .xml). Figure 4.4 shows a cumulative his-
togram of the domain names of FRAD sites that share one or more URL paths
with other domain names. We found that 1,438 domain names (78.5%) out of
1,833 domain names shared at least one URL path with other domain names and
that 340 domain names shared at most one URL path. We found that 522,261
URL paths of a certain FRAD site were used on one or more other FRAD sites.

Next, we compared the page content of FRAD sites with the same URL paths.
While the names of the cyber threats for which the FRAD sites introduce removal
methods were the same, the page titles and textual content of the sites did not
exactly match. However, we found a number of web pages with partial matches
of the textual content. These web pages were created by using synonyms and
alternative terms, for example, “Trojan.EXAMPLE1 is a highly vicious computer
infection that belongs to Trojan Horses family” and “Trojan.EXAMPLE2 is a
highly malicious computer infection that comes from Trojan Horses Family.” To
evade judgment as similar web pages by search engines, the owners of FRAD sites
first prepare multiple templates of the textual content for each category of cyber
threats such as Trojan, Browser Hijacker, and Ransomware. Then, they generate
page entries by using synonyms and similar-meaning phrases in the templates.

We found URL paths shared by many FRAD sites were also used in user posts
in SlideShare. For example, “www.slideshare[.]net/username/URLpath.” Such
web pages included the slide format converted from entries from the original FRAD
sites and displayed links of these sites. We found 2,680 posts on SlideShare with
the same URL paths of 300 FRAD sites.

Frequency of Posting Entries on FRAD Sites

Attackers post multiple entries for each cyber threat (e.g., malware detection
names and malicious domain names) on FRAD sites. We investigated the time
intervals between the posting of entries on FRAD sites by checking the date of
the last modification of each entry. Figure 4.5 shows cumulative histograms of the
mean and median values of time intervals between the two closest entries for each
FRAD site. On average, 69.0% of FRAD sites were updated at least once a day.
The median values are smaller than the mean values because many entries were
posted in succession in particular periods of the days. The median values with
time intervals less than 1 min were 10.1% of the total. Given the large number of
entries posted in a short period of time, FRAD sites may automatically generate
entries by using the names of cyber threats collected from the database pages of
security vendors and other FRAD sites.

Languages of FRAD Sites

We investigated the distribution of languages used on FRAD sites. We automati-
cally identified the languages of FRAD sites by applying langdetect15 to the textual
content of web pages accessed by our crawler. Note that these sites may support

15https://pypi.org/project/langdetect/

67



100 102 104 106 108

Time interval of new entries on FRAD sites [sec]

0%

20%

40%

60%

80%

100% 1 min 1 hour 1 day 10 days

Mean
Median

Figure 4.5: Mean and median values of time intervals between entries posted on FRAD
sites.

more languages than indicated by this result. This is so because users can choose
multiple languages on some FRAD sites, and these sites may be automatically
translated depending on the browser language setting of the user (Section 4.5.2).
Figure 4.6 shows the number of FRAD sites for each language. We found that
50.4% of the FRAD sites were written in English, and the remainder was com-
prised sites in as many as 30 languages in all, for example, German (6.3%), Spanish
(4.2%), French (3.6%), and Portuguese (3.0%). Thus, FRAD sites were deployed
in various languages to lure more users from all over the world. Attackers not only
prepare web pages in multiple languages for each FRAD site, but also create web
pages that specialize in particular languages by including terms in a particular
language in the domain names.

4.6.6 Infrastructure of FRAD Sites

We investigated infrastructure of FRAD sites that we discovered by querying
GeoIP2 databases [71] in terms of locations, ASes, and top-level domains (TLDs).
Figure 4.7 and Figure 4.8 show countries and organizations to which the IP ad-
dresses of the FRAD sites belong. We found that 78.4% of IP addresses were
located in the United States. This finding is attributed to the fact that the own-
ers of many FRAD sites use content delivery networks and hosting providers in
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Figure 4.6: Distribution of the languages used on FRAD sites.

the US (see Figure 4.8), such as Cloudflare and Google. The US is followed by
Germany (2.6%), Canada (1.8%), Netherlands (1.4%), and France (1.3%), which
together host 7.1% of the IP addresses. The remaining 14.5% of the IP addresses
were located across 37 countries. In summary, the IP addresses of FRAD sites
were owned by 195 organizations located across 42 countries. Figure 4.9 shows
top 20 FRAD sites in terms of the TLDs. We found that 59 TLDs were used for
FRAD sites; 78.1% of the FRAD sites had the .com TLD, of which 20.8% were
subdomains of blogspot[.]com, which is a blog-publishing service. Some TLDs of
FRAD sites provided useful information such as .info (33 domains), .guide (16
domains), and .help (1 domain).

4.7 Discussion

4.7.1 Ethical Considerations

We followed research ethics principles and best practices to conduct this study [56].
We analyzed users’ behavior to visit FRAD sites using anonymized statistical data
on user accesses for this study. We purchased a license to access data that is legally
collected based on SimilarWeb’s privacy policy. The information extracted from
the web pages we crawled is publicly available data. To reduce server load, our
experiment that interacted with download buttons was performed only once for
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Figure 4.7: Number of FRAD sites per top 20 countries where the IP addresses are
located.

each web page that we identified as an FRAD site.

4.7.2 Limitation

Although our system can accurately identify FRAD sites, there are some limi-
tations. Since our system is specialized for collecting and detecting FRAD sites,
which are the important platforms used by attackers to distribute fake AV software,
detecting software distribution sites is out of scope for this study. We identified
software distribution sites that pretended to be official sites for legitimate AV soft-
ware on the basis of detection results from VirusTotal and manual analysis. We
showed that we can visit various software distribution sites from FRAD sites by
clicking on the FRAD sites. We also found that these software distribution sites
share common network infrastructures, such as ad networks and redirectors. Thus,
further analyses focusing on the web pages arriving from the FRAD sites collected
by our system should support efficient collections of software distribution sites.

We then discussed a technique that can be used to evade our classification of
FRAD sites. Developers of FRAD sites employ phrases related to the removal
information for threats in domain names, URLs, titles, and text contents. This is
because they use the topic of the web pages to attract or persuade users. They
also place logos of trusted companies to disguise FRAD sites as legitimate sites.
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A possible evasion technique would be to remove these characteristics that psy-
chologically affect users. However, this also would reduce the interest of users
and the usefulness of the FRAD sites to the attackers. In addition, excluding
phrases related to malware removal lowers the SEO rankings of FRAD sites and
user accesses. Since our system relies on these characteristics to identify FRAD
sites, we can accurately detect high-risk FRAD sites that strongly affect the users’
psychology.

Since our collection of FRAD sites depends on search engine results, we have
not collected all FRAD sites on the Internet. To efficiently collect FRAD sites,
we used the names of the cyber threats that are mainly used by attackers to lure
users and leverage search engines, which are the most common channel to lead a
user to FRAD sites. As a result, our analysis found that FRAD sites are created
in many languages and have a large amount of user access. Our system is useful
for continuously collecting FRAD sites to create URL blacklists and for analyzing
trends for this type of attack.

4.8 Related Work

We have reviewed related work that investigated the distribution infrastructure
for fake AV software and the social engineering techniques attackers use to trick
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Figure 4.9: Number of FRAD sites per top 20 TLDs.

users. Using a combination of unsupervised, graph-based clustering, Cova et al.
analyzed the network infrastructure (e.g., domain registration information and IP
addresses) of fake AV software distributions to reveal their ecosystem and attack
campaigns [58]. Although they investigated the relationship of servers hosting
fake AV software, they did not discuss how users access these web pages. Ra-
jab et al. conducted a measurement study that discovered web pages related to
the distribution of fake AV software from data collected by Google [22]. They
showed the prevalence of fake AV software in malware distributions on the web.
Stone-Gross et al. proposed an economic model and estimated attackers’ revenue
by analyzing back-end servers that attackers used to support fake AV software
businesses [60]. They identified the incoming channels that users employ to reach
distribution sites, such as landing pages that exploit browsers to redirect users.
They also described the social engineering techniques used to install fake AV soft-
ware using web pages that display fake infection alerts. Although these studies
analyzed the infrastructure and traditional distribution techniques for fake AV
software―such as drive-by downloads and fake infection alerts―new distribution
tactics using FRAD sites have not been revealed. There is also related work that
describes case studies of fake AV software distribution from social engineering as-
pects [72, 59, 73, 74, 75, 76, 77, 78, 69, 66, 79, 2, 80, 70, 81, 67, 82, 83]. In most
studies, they analyzed fake infection alerts via advertisements that threaten or
attract users to install fake AV software. However, no previous study has focused
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on the FRAD sites or analyzed attackers’ techniques that exploit the psychological
weakness of users who are suffering security problems.

4.9 Conclusion

We developed a system that can automatically crawl the web and identify FRAD
sites, which lure users to install fake AV software by providing fake removal infor-
mation for cyber threats. Using our system, the first comprehensive measurement
study was conducted to disclose the ecosystem of distributing fake AV software via
FRAD sites. We have analyzed both passively collected statistical data on user
accesses and actively crawled data to clarify users’ risky behavior that leads them
to reach FRAD sites and which exposes them to attacks navigated from FRAD
sites. Our findings emphasize that it is very difficult for users who are suffering
from cyber threats to reach correct removal information, because search results
related to the specific cyber threats are poisoned by FRAD sites. Our system is
useful for search engine providers and security vendors for excluding and blocking
FRAD sites.
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Chapter 5

Detection Method for Malicious
Packets with Characteristic
Network Protocol Header

5.1 Introduction

Most operating systems provide network sockets for sending and receiving data
across the network. Network packets send by the network sockets may have unique
characteristics in their header fields. The OS Fingerprinting is a technique that
identifies the source operating system by analyzing these packet-level characteris-
tics. p0f [84], which is a typical software that implements this technique, passively
observes TCP packets and matches their original signatures to identifies operat-
ing systems that send the packets. Some types of malware have capabilities of
performing the Distributed Reflection Denial-of-Service (DRDoS) attacks [85] or
network scanning. Since such malware can implements its own network stack,
network packets send from it also have unique characteristics for each malware.
Previous studies proposed methods for identifying malicious packets with unusual
header values that are different from those generated by the network stack of op-
erating systems [8, 9]. However, little effort has been done to accurately identify
the specific type of malware based on characteristics of network packets.

In this chapter, we propose a method for identifying malware and network
tools, which implements their own network stack, by analyzing header fields of
network packets. This method uses original signatures and match values on header
fields extracted from each network packet in the same way as p0f, which identifies
operating systems from each network packet. We created 19 signatures based on
macro and micro analysis on network traffic generated by the malware and network
tools.

We conducted experiments that evaluate our method by using large-scale net-
work traffic. We used two signatures that identifies Morto malware and the network
scanning tool ZMap [86]. As a result of extracting network traffic that matches
these signatures, the traffic occurred at the same time as the appearance of the
malware and the release of tools.
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We report a measurement study of malicious activities observed in a large-
scale network traffic. We first analyzed network traffic observed by our honeypot
that is specialized in observing DRDoS attacks. We analyzed network traffic that
matches a signature of malware that is used in DRDoS attacks. The result shows
that attackers did not usually use the malware in the actual DRDoS attacks. We
then analyzed darknet traffic, which is traffic arriving at unused IP addresses, and
extracted network packets that matches a signature of IoT malware. We associated
the packets with intrusion and exploit methods of malware.

We also report long-term observations of a large-scale network using our method.
We implemented our method in NICTER (Network Incident Analysis Center for
Tactical Emergency Response) [87], a cyber-attack observation and analysis system
owned by the National Institute of Information and Communications Technology
(NICT). As a result of analyzing network-scanning packets related to DRDoS at-
takcs, we found attackers massively used ZMap to find vulnerable servers.

5.2 Feature Extraction of Packet Headers Using

Macro and Micro Analysis

In this section, we show that malware and network tools that implements their own
network stack send network packets with characteristics in their header fields. As
micro-analysis, we performed both static and dynamic malware analysis to analyze
their network stack. We also investigated source codes of network scanning tools.
As macro-analysis, we used traffic observed in the darknet, which consists of 65536
IP addresses and provided by NONSTOP (NICTER Open Network Security Test-
out Platform).

5.2.1 Morto

We performed dynamic analysis of Morto [88, 89] and analyzed network packets
created by it. Morto is malware that uses Remote Desktop Protocol (RDP) to
infect Windows devices. Security vendors reported that this malware occurred in
late August 2011. Once Morto is installed on devices, it starts scanning the local
network and the Internet to find devices listening for the RDP port (3389/TCP).
Then, Morto tries to remotely intrude other devices by performing dictionary
attacks, which use a list of possible password templates (e.g., root/admin) to log
in to the devices. We performed dynamic malware analysis and capture network
packets to extract features from them. The environment for the dynamic malware
analysis is the same as the one used in the previous study [90]. The access control
that only allows outgoing TCP SYN packets is configured to prevent exploiting
devices on the Internet.

• Malware hash value: 0475c97ddb96252febff864fb778b460 (MD5)

• Experimental period: August 26, 2012 (6 hours)

• Operating system: Windows XP SP2
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Figure 5.1: Number of network packets observed in 6 hours of analysis time.

In our dynamic malware analysis, network scanning traffic to the RDP port
(3389/TCP) is observed. The traffic is divided into two types of network scan-
ning: network scanning for the Internet and network scanning for local networks
around the IP address at which the malware was executed. Figure 5.1 shows the
number of network packets per minute. All TCP SYN packets that are send to
the local networks is identified as Windows XP by p0f. On the other hand, TCP
SYN packets to the global IP addresses can be divided into a small number of
packets with characteristics of Windows XP and a large number of packets with
no characteristics of any operating system. The latter packets have three fixed
header fields: the sequence number of the TCP header is 2406000322, the source
port number is 4935, and the ID value of the IP header is 9496. Common operat-
ing systems such as Windows and Linux dynamically set values for those header
fields. This result shows that Morto implements their original network stack for
fast network scanning for the Internet, which require creating more packets than
network scanning for local networks. Once Morto finds devices listening for the
RDP port, it tries to log in using the network stack of operating systems.

5.2.2 ZMap

We analyzed source codes of the network scanning tool ZMap to investigate its
network stack. ZMap is a open-source software developed by University of Michi-
gan for high-speed network scanning. We found that network packets created by
ZMap are always set to 54321 in the ID values of the IP header.

5.2.3 Masscan

We analyzed source codes of the network scanning tool Masscan, which is a open-
source software developed in 2013 [91]. Masscan can transmit 10 million packets
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per second using its original network stack. Previous study [92] showed Masscan
sets an exclusive logical combination of three values, the destination IP address,
the destination port number, and the sequence number, in the ID value of the IP
header of TCP SYN packets. We also found that Masscan sets the IP header’s
ID value of some types of UDP packets in the similar way as creating TCP SYN
packets. Network packets that are sent to three types of protocols using UDP,
DNS (53/UDP), NetBIOS (139/UDP), and SNMP (161/UDP), are generated by
replacing the TCP sequence number with the ID value of the DNS header, Net-
BIOS header, and SNMP header, respectively. The following is the method of
calculating the ID value of the IP header for each protocol.

Ip.id = Ip.dstaddr⊕ Tcp.dstport⊕ Tcp.seq. (5.1)

Ip.id = Ip.dstaddr⊕ Udp.dstport⊕Dns.id. (5.2)

Ip.id = Ip.dstaddr⊕ Udp.dstport⊕ Ntb.id. (5.3)

Ip.id = Ip.dstaddr⊕ Udp.dstport⊕ Snmp.id. (5.4)

5.2.4 Malware used for DRDoS attacks

We performed both static and dynamic malware analysis to investigated network
stack of two malware families IptabLes[93] and XOR botnet[94]. They occurred
in 2014 as botnets used for DRDoS attacks.

IptabLes

Iptables is a DRDoS botnet that targets Linux devices. We executed Iptables on
our dynamic malware analysis environment using Ubuntu 10.04. As a result, we
observed a large number of TCP SYN packets and DNS packets. The TCP SYN
packets do not have no characteristics of any operating systems, but have 848 byte
payloads, which should normally be zero byte. Also, their TCP sequence numbers
were all 848 and the ID values of the IP headers were all 0.

• Malware hash value: b826fb1253a52a3b53afa3b7543d7694 (MD5)

• Experimental period: July 17, 2014 - July 18, 2014 (25 hours)

• Operating system: Ubuntu10.04 (32bit)

On the other hand, we did not find any fixed values in header values of DNS
packets. Then, we performed static malware analysis (reverse engineering) and
identify the calculation method of packet creation. This analysis revealed that
this malware first generates a 2-byte random value for the ID value of the IP
header, and calculates the ID value of the DNS header and the UDP source port.
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Figure 5.2: Network packets targeting Linux devices.

These values are calculated as the following Eqs. 5.5, 5.6, and 5.7. The ID value
of the DNS header is also converted to network byte order after the calculation.

Ip.id = Random value. (5.5)

Dns.id = Random value & 0x2345. (5.6)

Udp.srcport = Random value % 4996 + 1400. (5.7)

XOR Botnet

We performed static malware analysis of XOR botnet and investigated the algo-
rithm for generating network packets.

• Malware hash value: 7c903107ebc28a2e98e3247dbde71f02 (MD5)

This analysis revealed that this malware also generate a 2-byte random value for
the ID value of the IP header, as well as the UDP source port and the ID value of
the DNS header.

Ip.id = Udp.srcport = Dns.id = Random value. (5.8)

5.2.5 Malicious Packets Targeting Linux Devices

We show network packets that were targeting Linux devices and were observed
by the darknet. Since February 16, 2014, we have observed a large number of
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TCP packets that were sent to 22/TCP (SSH), 23/TCP (Telnet), 8080/TCP,
32764/TCP, and 58455/TCP port of the darknet’s IP addresses. These packets
have the same characteristics: the TCP sequence number is 1112425812, the ID
value of the IP header is 0, and the TCP window size is 300. Figure 5.2 shows
the number of these packets and their source IP addresses per day observed in
the darknet between February 15 and March 15, 2014. Security vendors reported
that 32764/TCP port is a backdoor port of router intentionally created by the
manufacturer and 58455/TCP port is a backdoor port created by Linux.Darlloz, a
malware family targeting Linux devices, to control infected devices [95, 96]. The
network packets sent to these ports can be used for network scanning to find such
backdoors.

5.3 Method

In this section, we propose a method for identifying malware and network tools by
analyzing header fields of network packets.

5.3.1 Overview

We describe a brief overview of our proposed method in this section. P0f is a
tool for identifying operating systems by analyzing packet-capture data or traffic
through network interfaces and matching signatures. p0f extracts the Time to
live (TTL) value, the maximum segment size (MSS), the window scale value, and
TCP flag values from TCP SYN packets. As we shown in Section 5.2, network
packets created by some malware and network tools have unique characteristics
in their header fields that is dynamically set by operating systems, for example,
fixed values and unique calculation methods are used. These fields are normally
used by OS to manage connections between servers and clients. Some malware
and network tools designed to send network packets in a non-interactive manner,
such as DRDoS attacks and network scanning. Therefore, malware and network
tools that implements their own network stack can set those fields arbitrarily.

In this chapter, we propose a method for identifying malware and network tools
by analyzing the header fields used by p0f, as well as the fields dynamically set
by operating systems. We create signatures for each malware and network tool by
micro and macro analysis. Protocols that this method identifies are TCP, UDP
packett, and ICMP echo request. This method first extract header fields from a
network packet. Then, this method matches the extracted value with the signature
one by one or check the results of the calculation. Finally, this method determine
the packet to be positive if all fields match the signature.

The originality of this method is to check header values that is dinamically
set by operating systems and are not used by p0f. In addition, this method can
identify not only TCP packets, but also UDP packets and ICMP echo request
packets by analyzing their header values.
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Table 5.1: Signature format of TCP packets.

Header Field
IP header ID

TTL
TCP header Source port

Destination port
Sequence number
ACK number
Window size
Option

Table 5.2: Signature format of UDP packets.

Header Field
IP header ID

TTL
UDP header Source port

Destination port
Application protocol header (if exists) ID (DNS, SNMP, and NetBIOS)

Table 5.3: Signature format of ICMP echo request packets.

Header Field
IP header ID

TTL
ICMP echo request header ID

Sequence number

5.3.2 Creating Signatures

We explain the way to create signatures of TCP, UDP, and ICMP echo request
packets. Signatures constitute different formats for each protocol. Tables 5.1, 5.2,
and 5.3 show formats of each protocol’s signature. Since TCP packets constitute
IP headers and TCP headers, The signatures of TCP packets have two fields of
the IP header and 6 fields of the TCP header. The signatures of UDP packets
have two fields of the IP header, two fields of the UDP header, and one filed of
the application protocol header such as DNS and SNMP. The signatures of ICMP
packets consist of two fields of the IP header and two fields of the ICMP echo
request header.

We then explain the fields of signatures. When a fixed value is set in each
header field of a network packet created by malware or network tools, we set the
value such as a single value, any of multiple values, and a wild card (any of all
possible values) in the header filed. On the other hand, when a header field is
calculated by a specific method that uses other header fields, we set the equation
to match the signature.

5.3.3 Limitation

The purpose of this method is limited to identify network packets created by
malware and network scanning tools that implements their original network stacks.
Malware that implements the network stack which does not set a fixed value in
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Table 5.4: TCP Signatures.

Signature IP header TCP header
ID TTL Sequence

number
ACK
num-
ber

Source
port

Destination
port

Window
size

Option

Morto scan 9496 0-64 2406000322 0 4935 3389 65535
Morto scan NAT 9496 0-64 2406000322 0 * 3389 65535
Dark dst3389 1 256 65-128 1210253312 0 * 3389 16384
Dark dst3389 2 256 65-128 2284205602 0 * 3389 512
Dark embedded linux 1 0 0-64 1112425812 0 22, 23,

8080,
32764,
and
58455

300 *

Zmap tcp 54321 129-255 * 0 * * 65535
Dark ipid0 1 0 0-64 * 0 * 0 8192
Iptables tcp 1 0 129-229 848 0 * * 16000-

18999
848byte
payload

Srizbi 1 * 65-128 6509 0 4099 24000 0x1F219A
Linuxddos1 tcp 1 0 129-255 0 0 * * 6000 960-

980byte
payload

Masscan tcp Eq. 5.1 129-255 * 0 * * 1024
Dark scan 1 256 65-128 * 0 12200 * 8192

Table 5.5: UDP Signatures.

Signature IP header UDP header Application protocol header
ID TTL Source port Destination port

Zmap udp 54321 129-255 * *
Masscan dns Eq. 5.2 129-255 * 53
Masscan ntb Eq. 5.3 129-255 * 139
Masscan snmp Eq. 5.4 129-255 * 161
Iptables dns Eq. 5.5 129-255 5.7 53 Eq. 5.6 (DNS header’s ID)
Xor dns Eq. 5.8 0-178 Eq. 5.8 53 Eq. 5.8 (DNS header’s ID)

the header field or use a specific formula to calculate it is out of scope

5.4 Creating Signatures

We describe the way of creating signatures based on the macro and micro analysis
of network packets. We created 19 signatures that identify 19 types of network
packets created by 10 malware families and 2 network scanning tools. These
signatures are shown in Tabs. 5.4-5.6.

5.4.1 Morto

We created signatures of malware Morto based on the analysis of Section 5.2.1.
Signature Morto scan has fixed values of the ID value of the IP header, the TCP
sequence number, the source port number, the destination port number, and the
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Table 5.6: ICMP Signatures.

Signature IP header ICMP header
ID TTL ID Sequence number

Zmap icmp 54321 129-255 * 0

TCP windows size. This malware sets 128 on the initial TTL value, however, this
value is decremented every time that the network packet goes through routers.
Therefore, we set this filed to a range of 64 to 128. Since the source port number
can be changed by NAT (Network Address Translation), we also created signature
Morto scan NAT, whose source port number is set wildcard.

5.4.2 ZMap

We created signatures Zmap tcp, Zmap udp, Zmap icmp based on the analysis of
Section 5.2.2. The IP header’s ID value of the three signatures are set to a fixed
value 54321 and the range of the TTL value is set to 129 to 255. Zmap tcp also has
fixed value in the TCP window size field. Zmap udp is a signature that identifies
network packets using UDP. Since ZMap set 0 to the ICMP header’s sequence
number of the ICMP scanning packet, we set this fixed value to Zmap icmp.

5.4.3 Masscan

We created four signatures of Masscan based on the analysis of Section 5.2.3.
Masscan uses unique methods (Eqs. 5.1-5.4) to calculate the IP header’s ID value
of TCP SYN, DNS, NetBIOS, and SNMP packets. Therefore, we extract header
values and calculate these Equation to match the signatures.

5.4.4 Malware used for DRDoS Attacks

In this section, we explain signatures of malware IptabLes and XOR botnet. We
created signatures Iptables tcp 1 and Iptables dns based on the analysis of Sec-
tion 5.2.4. The IP header’s ID value and the TCP sequence number of Ipta-
bles tcp 1 have fixed values of 0 and 848. This signature also confirms whether
the size of the payload is 848 bytes. Iptables dns uses methods of calculating the
ID value of the IP header and the ID value of the DNS header (Equation 5.6 and
5.7).

We created the signature Xor dns based on the analysis of Section 5.2.4. This
malware generate a random value to set the ID value of the IP header, the UDP
source port, and the ID value of the DNS header. Therefore, this signature confirms
that the three type of header files set the same value.
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Figure 5.3: Network packets (3389/TCP) observed in the darknet.

5.4.5 Malicious Packets Targeting Linux Devices

We created the signature Dark embedded linux 1, which identifies network packets
targeting linux devices based on the analysis of Section 5.2.5. Dark embedded linux 1
detects network packets of 5 TCP ports: 22/TCP, 23/TCP, 8080/TCP, 32764/TCP,
58455/TCP. This signature has a fixed IP header’s ID value, TCP sequence num-
ber, and TCP source port. The initial TTL value is set to 64.

5.5 Evaluation

In this section, we evaluate the effectiveness of the proposed method by analyzing
the correlation between macro and micro analysis of network packets created by
each malware and network scanning tool. We also evaluated false positives and
false negatives when we applied the method to real network traffic.

5.5.1 Signatures of Morto

We analyzed network traffic observed in the darknet and extracted network pack-
ets that matched Morto scan and Morto scan NAT. The network traffic we used
is explained in Section 5.2 We analyzed traffic during the period around the emer-
gence of the malware Morto (from July 1 to August 9, 2011) and examined the
increase of the number of network packets that matched the signatures. Figure 5.3
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Figure 5.4: Network packets observed at the time of publishing ZMap and detected by
signatures of ZMap.

shows the number of source IP addresses of detected network packets per day. We
observed network packets detected by Morto scan and Morto scan NAT, which
have occurred from July 30. This was just before the time that security vendors
issued alerts of malware Morto in late August. We also observed network packets
that have similar characteristics of those created by malware Morto. The pack-
ets were shown in this figure as the Pattern A and Pattern B. A large number
of Pattern A’s packets were observed from July 12 to 27, 2011, but as of 2016,
a small number of packets have been observed in the darknet. Network packets
of Pattern B were only observed in between July 20 and August 1, 2011. These
packets could be network packets for attacker’s reconnaissance or those created by
prototype implementation of malware Morto. In summary, we extracted network
packets of malware Morto using our method and signatures, and revealed that
these packets had occurred and increased prior to the security vendors’ alert.

5.5.2 Signatures of ZMap

We extracted network packets that matched signatures of ZMap from the darknet
traffic around the time this tool was released (August 2013). Figure 5.4 shows the
number of packets that matched Zmap tcp, Zmap udp, Zmap icmp. After the tool
was published on github on August 11, 2013, the packets begun to be observed on
the darknet from August 15, 2013. Almost all packets were sent from several IP
addresses, which were owned by University of Michigan (the developer of this tool)
and Rapid7, which is an organization that uses the tool. Therefore, our method
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and signatures correctly identified network packets that created by ZMap.

5.6 Measurement Study

We performed a measurement study of analyzing malicious traffic in the wild by
using proposed method. We analyzed network traffic observed in honeypots that
we operate. The honeypots were used for observing DRDoS attacks by simulat-
ing servers using UDP, such as DNS and NTP. The purpose of the honeypots
is that attackers use them as reflector servers of DRDoS attacks. The technical
specifications were given in our previous study [85].

5.6.1 Malware used for DRDoS Attakcs

To identify network packets related to DRDoS attacks that originated from Mal-
ware, we analyzed DNS traffic that our honeypots observed between January 1
and April 30, 2015. By using the two signatures Iptables dns and Xor dns, we
observed no network packets from our honeypots. The resons for this is that our
honeypots the two types of malware were not used for DRDoS attacks in the wild;
or the network packets created by the these types of malware did not reach our
honeypots.

5.6.2 Malicious Packets Targeting Linux Devices

We analyzed the malicious network packets targeting Linux devices to understand
what kind of attacks they were associated with. The malicious network packets
were observed in the darknet as described in Section 5.2.5 and can be identified
by the signature Dark embedded linux 1. We used our honeypots [97], which are
developed for observing attacks targeting Linux-based IoT devices. Our honey-
pots simulate Telnet (23/TCP) servers to capture attackers’ login attempts. We
extracted network packets that matched the signature and analyzed sessions with
the same IP addresses as those of the network packets observed on the same day.
A session is defined as a series of network packets starting with a client’s TCP
SYN packet and ending with a TCP FIN packet.

Figure 5.5 shows the number of the sessions and the number of source IP
addresses of the network packets observed between February 22 and October 19,
2015. There were login attempts with easy passwords such as “root/admin” in
the sessions. We used p0f to identify clients’ operating systems and found that
all network packets were send from Linux 2.x or Linux 3.x kernel. Then, we
tried to manually access the source IP addresses of them by using a web browser.
Some IP addresses returned login web pages of routers and network cameras. This
result indicates that routers and network cameras were controlled by any types of
malware and tried to infect other vulnerable devices on the Internet.
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Figure 5.5: Network packets detected by Dark embedded linux 1

5.7 Implementation of the Proposed Method on

a Network Observation System

In this section, we explain our implementation of the proposed method on a large-
scale network observation System, NICTER. NICTER has multiple components,
which enable macro and micro analysis such as the malware dynamic analysis and
the statistical analysis of the network traffic. Our implementation uses network
packets observed in the darknet as the input and automatically detect malicious
and reconnaissance ones using signatures. We show the effectiveness of this imple-
mentation by analyzing network scanning packets related to DRDoS attacks.

5.7.1 Implementation

Our implementation first receives network packet data in real time from the ob-
servation server of the darknet traffic. Then, this implementation detects network
packets using our signatures and stores results into a database system. The detec-
tion results are stored as one record per network packet in the MySQL database.
The record has eight fields: the source IP address, the destination IP address,
the source port number, the destination port number, the name of the signature,
the version of the signature, the ID of the darknet censor, and packet ID. The
signatures will be updated when the implementation accesses our signature server
and download the latest signatures. The latest signatures are also available on the
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Figure 5.6: Network packets detected in NICTER

website [98]

5.7.2 Result of detecting network packets

Figure 5.6 shows the result of detecting network packets observed in the NICTER
between October 1 and October 30, 2015. Network packets were detected by
our seven signatures during this period. The most common packets were those
detected by signatures of ZMap and Masscan, which are related to network scan-
ning. We also network packets created by Malware created by Morto and those
targeting Linux devices. In summary, by using our method and signatures, we can
distinguish a large number of network packets created by malware and network
scanning tools that implements their own network stack from large-scale darknet
traffic.

Then we analyzed network packets detected by the signature ZMap udp to re-
veal the network scans to protocols that are often abused in DRDoS attacks. In our
study [85], we have shown that most attackers abused nine protocols for DRDoS at-
tacks: QOTD (17/UDP), CharGen (19/UDP) , DNS (53/UDP), NTP (123/UDP),
NetBIOS (137/UDP), SNMP (161/UDP), SSDP(1900/UDP), 27015/UDP, and
27960/UDP Figures 5.7a-5.7i are stacked bar charts that show the number of
UDP packets observed in the darknet. The numbers of network packets to the
nine protocols were increasing in the period of analysis. Network packets sent by
Zmap were also increasing from March 2014. Also, they occupied most of observed
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network packets to some protocols, such as DNS and 27960/UDP. Now, we define
a scanner as a source IP address that sends network packets to 64 or more IP
addresses in the darknet. We found that 12,653 scanners send network packets
and 10.1% (1,296 scanners) of them were IP addresses owned by universities, se-
curity vendors, or network scanning projects such as Shodan and Shadowserver.
Out of all scanners, those using ZMap are 727 scanners (5.7%). We found that
507 scanners, whose IP addresses belonged to universities, security vendors, and
network scanning projects, used ZMap. Therefore, network scanning for finding
reflectors of DRDoS attacks was performed not only by attackers and malware,
but also by hosts for research and investigative purposes.

5.7.3 Providing information on infected devices

We discuss alerting users and ISPs with information on malicious devices, which
behave abnormally, such as network scanning. The results in Section 5.4.1 and
5.4.4 showed that some devices infected with malware performed network scanning.
We are continually observing such malicious activities in the darknet and finding
a large number of malicious devices. This information will be useful for users
that have infected devices and are unaware of the infection By collaborating with
ISPs, we can alert users and provide information on what malware their devices
are infected with. Our future work is to alert users using the implementation on
NICTER and provide users with a guide to remove malware according to their
infection status.

5.8 Summary

In this chapter, we proposed a method for identifying network packets created
by malware and network tools that implements their own network stacks. We
evaluated the method, which uses our original signatures, by analyzing correlation
of micro and macro analysis such as malware dynamic analysis, reverse engineering,
observation of the darknet, and operating honeypots. We reported a measurement
study that analyzed malicious and reconnaissance activities on the Internet by
using the method and signatures. Our feature work is to implement our method
to a large-scale observation system and to notify ISPs and organizations (e.g.,
CSIRT) of alerts in real time.
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(b) CharGen（19/UDP）
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(c) DNS（53/UDP）
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(d) NTP（123/UDP）
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(e) NetBIOS（137/UDP）
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(f) SNMP（161/UDP）
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(g) SSDP（1900/UDP）
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(h) 27015/UDP
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(i) 27960/UDP

Figure 5.7: UDP packets whose ports are abused for DRDoS attacks. Blue bars indi-
cate the number of packets sent from ZMap and orange bars indicate the
number of packets sent from other sources
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In recent years, cyber attacks have become more diverse due to the increasing com-
plexity of communication devices and the web. Existing methods for protecting
devices target specific attacks so that they will not be able to capture new attacks
in the future. It is important to estimate the attackers’ purposes and follow attack
vectors to prevent possible future attacks. In this thesis, we focused on methods
for collecting and detecting cyber attacks on the Internet by combining passive and
active observation. One of the contributions of this research is to present robust
approaches to changes in devices and attack trends. In addition, our measurement
studies using the proposed approaches have discovered attackers’ modus operandi
and purposes, which can be useful to improve future countermeasures.

In chapter 3, we proposed a system for crawling and identifying multi-step
social engineering (SE) attacks on the web. SE attacks leverage a sequence of web
pages to manipulate users to lead them to attackers’ purposes. Since previous
studies have analyzed only the surface of the attacks, they have failed to capture
those attacks lurking behind multiple web pages. Our system actively follows the
sequences of web pages by automating a web browser and detects such SE attacks.
We used our system for a large scale measurement and discovered the psychological
tactics of attackers to trick users.

In chapter 4, we proposed a system for detecting new distribution channels of
fake antivirus software. We have defined fake removal information advertisement
(FRAD) sites as malicious web pages that introduce fake removal information for
cyber threats to trick users to install fake antivirus software. To shed light on the
pervasiveness of FRAD sites and their ecosystem, we performed a comprehensive
analysis of both passively and actively collected data. We showed that FRAD
sites occupy search results when users search for cyber threats, thus preventing
the users from obtaining the correct information.

In chapter 5, we proposed a method for detecting network packets created
by malware and network scanning tools. Some malware and network scanning
tools use their network stack to generate network packets faster than operating
systems. Using signatures we created on the basis of the active analysis of malware
and tools, we applied our method to a large-scale network. We revealed that there
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was a large amount of network scanning activities using some network scanning
tools and reconnaissance activities by attackers to find vulnerable devices on the
Internet.

6.2 Future Work

This thesis presented methods for passively and actively observing cyber attacks
on the Internet. We showed that we can analyze attackers’ purposes and trends
by using our methods to collect the cyber attacks, which were difficult to capture
with existing methods. Our experimental results, which focused on cyber attacks
against many and unspecified users and devices, will be a stepping stone to passive
and active observation of all attacks, including attacks targeting specific groups
and individuals. It also helps prevent possible future attacks. Our methods should
be applied to large systems to continuously observe and analyze cyber attacks at
multiple locations. Also, we should focus on designing and developing more robust
systems for new attacks based on our findings.
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