Doctoral Dissertation

A Study on Analyzing Cyber Attacks
through Active and Passive Observation

REENRIER Al & SSENRIERRIIC K %
YA N—KELMWICET 2R

Takashi KOIDE
/N BR

Graduate School of Environment and
Information Sciences,
Yokohama National University

Supervisor: Professor Tsutomu MATSUMOTO

March 2021

Abstract

With the spread of communication devices such as IoT (Internet of Things) and
mobile devices as well as improving the functionality of the web, cyber attacks on
the Internet have been becoming more complex and sophisticated. Cyber attacks
can be divided into two types: attacks targeting specific groups or individuals,
and attacks against many and unspecified users or devices. This thesis focuses on
the latter type of attacks, which affect a wider range of users. Current existing
countermeasures against this type of attack are effective against individual attacks,
but reactive and limited to these attack techniques. These countermeasures will
not respond to changes in attack techniques and the evolution of devices in the
future. In order to prevent the attacks continuously and proactively, it is necessary
to estimate the attackers’ purposes and to follow the attack vectors early on. In
this thesis, we propose methods for observing cyber attacks targeting many and
unspecified users and devices on the Internet by combining passive and active
observation. Correlation analysis of the observation from two perspectives allows
us for a faster and more comprehensive collection of cyber attacks in the wild.
Unlike existing methods that are limited to observing the surface of individual
attacks, our methods analyze attackers’ purposes and attack vectors, thus enabling
long-term observations that are robust to changes in attack techniques and the
evolution of network devices.

First, we propose a system for collecting and detecting multi-step social engi-
neering (SE) attacks on the web. Modern web-based attacks use social engineering
to make users download malware and leak sensitive information. Some SE attacks
leverage a sequence of web pages to psychologically manipulate users to lead them
to attackers’ purposes. We call them multi-step SE attacks in this study. Our
system actively follows the sequences of web pages by automating a web browser
and detects multi-step SE attacks by extracting features from the entire sequence.
We used our system for a large scale measurement and revealed the psychologi-
cal tactics of attackers to deceive and persuade users. We also analyzed domain
names associated with multi-step SE attacks using passively collected user access
statistics and found that a large number of users are affected by these attacks.

Then, we propose a system for identifying malicious web pages that trick users
to install fake antivirus software. Fake antivirus (AV) software is a type of malware
that disguises as legitimate antivirus software and infects users’ devices. Fake
removal information advertisement (FRAD) sites, which introduce fake removal
information for cyber threats, have emerged as platforms for distributing fake AV
software. Although FRAD sites seriously threaten users who have been suffering
from cyber threats and need information for dealing with them, little attention
has been given to understanding these sites. To shed light on the pervasiveness of
this type of attack, we performed a comprehensive analysis of both passively and
actively collected data. Our system actively collected a large amount of FRAD
sites written in multiple languages. We show that FRAD sites occupy search results

when users search for cyber threats, thus preventing the users from obtaining the
correct information.

Finally, we propose a method for detecting network packets sent by malware
and network scanning tools that implement their network stack. Network packets
created by such malware and network scanning tools have unique characteristics
in their header fields. We created signatures based on the active analysis of mal-
ware and tools. We evaluated our method by using passively collected large-scale
network traffic. We found that there was a large amount of network scanning activ-
ities using some network scanning tools and reconnaissance activities by attackers
to find vulnerable devices on the Internet.

ii

Contents

Abstract

List of figures

List of tables

1

Introduction
1.1 Motivation and Contribution
1.2 Organization

Observing Cyber Attacks on the Internet

2.1 Passive Observation
2.2 Active Observation
2.3 Challenges on Observing Cyber Attacks on the Internet

An Analysis of Multi-step Social Engineering Attacks on the Web
3.1 Introduction
3.2 Backgroundo
3.2.1 User Attraction
3.2.2 Browser Interaction oo
3.2.3 Web Navigation oL,
3.2.4 Problems on Collecting SE Attacks
3.3 StraySheep
3.3.1 Landing-Page-Collection Module
3.3.2 Web-Crawling Module
3.3.3 SE-Detection Module
3.4 Evaluation
3.4.1 Qualitative Evaluation
3.4.2 Experimental Setup
3.4.3 Effectiveness of URL Collection
3.4.4 Efficiency of Web Crawling
3.4.5 Evaluating the SE Detection Module
3.5 Detailed Analysis of Detected Multi-step SE Attacks
3.5.1 SE Attack Categories
3.5.2 Common Infrastructures of Multi-step SE Attacks
3.6 Discussion

3.6.1 Limitations 43

3.6.2 Ethical Consideration 44
3.7 Related work 45
3.8 Conclusion 46
Understanding the Fake Removal Information Advertisement Sites 47
4.1 Introductiono 47
4.2 Backgroundo 49
4.3 Method 50
4.3.1 Web Crawling 51
4.3.2 Classification 51
4.4 Data Collection 53
4.4.1 Collecting Cyber Threats 53
442 Web Search 54
4.4.3 Creating the Dataset, 54
4.5 Evaluation 55
4.5.1 Detection Accuracy 55
4.5.2 Detecting Unknown FRAD Sites 55
4.6 Measurement Studyo 57
4.6.1 Incoming Traffic to FRAD Sites 57
4.6.2 Downloads and Page Transitions from FRAD Sites 61
4.6.3 Search Poisoning 63
4.6.4 Distribution Sites of Fake AV software 64
4.6.5 Structure and Content of FRAD Sites 66
4.6.6 Infrastructure of FRAD Sites 68
4.7 Discussion 69
4.7.1 Ethical Considerations, 69
4.7.2 Limitation 70
4.8 Related Work 71
4.9 Conclusion 73

Detection Method for Malicious Packets with Characteristic Net-

work Protocol Header 74
5.1 Introduction 74
5.2 Feature Extraction of Packet Headers Using Macro and Micro Analysis 75
52.1 Morto 75
5.22 ZMap 76
5.2.3 Masscan 76
5.2.4 Malware used for DRDoS attacks 7
5.2.5 Malicious Packets Targeting Linux Devices 78
5.3 Method 79
53.1 Overview 79
5.3.2 Creating Signatures 80
5.3.3 Limitation 80
5.4 Creating Signatures 81
541 Morto 81

ii

5.42 ZMap . ..o
5.4.3 Masscan
5.4.4 Malware used for DRDoS Attacks
5.4.5 Malicious Packets Targeting Linux Devices
5.5 Evaluationo
5.5.1 Signatures of Mortoo
5.5.2 Signaturesof ZMapo
5.6 Measurement Study oL
5.6.1 Malware used for DRDoS Attakes
5.6.2 Malicious Packets Targeting Linux Devices
5.7 Implementation of the Proposed Method on a Network Observation
Systemo
5.7.1 Implementation L0
5.7.2 Result of detecting network packets
5.7.3 Providing information on infected devices
5.8 Summary

Conclusion and Future Work

6.1 Conclusion
6.2 Future Work

Acknowledgments

Publications

il

List of Figures

3.1

3.2
3.3
3.4
3.5

3.6

3.7
3.8

3.9

4.1
4.2
4.3
4.4
4.5

4.6
4.7

4.8
4.9

5.1
5.2
5.3
5.4

2.5
5.6
5.7

Sequence of web pages in multi-step SE attacks and phases in each
web page.
STRAYSHEEP OVEIVIEW. o o v it i e
Conceptual model of WebTree.
Example of extracting features from a sequence.
CDF of time taken to complete web crawling for each landing page
within a 1-hour timeout. Horizontal lines mean the percentage of
web crawling completed before timeout.
Overlap of SE pages’” domain names observed using STRAYSHEEP
and TrueClick.
ROC curves of SE detection results for each feature set.
Examples malware-distribution pages that require user to rename
files and execute them. L
Examples of multimedia scams.

Overview of fake AV software distribution via FRAD sites.
Common page structure of FRAD sites.
Percentage of incoming traffic to FRAD sites from each channel. . .
Number of FRAD site domain names with the same URL paths. . .
Mean and median values of time intervals between entries posted

on FRAD sites.
Distribution of the languages used on FRAD sites.
Number of FRAD sites per top 20 countries where the IP addresses

are located.
Number of FRAD sites per top 20 ASes.
Number of FRAD sites per top 20 TLDs.

Number of network packets observed in 6 hours of analysis time. . .
Network packets targeting Linux devices.
Network packets (3389/TCP) observed in the darknet.
Network packets observed at the time of publishing ZMap and de-
tected by signatures of ZMap. L.
Network packets detected by Dark_embedded_linux_1
Network packets detected in NICTER
UDP packets whose ports are abused for DRDoS attacks. Blue
bars indicate the number of packets sent from ZMap and orange
bars indicate the number of packets sent from other sources

v

39

List of Tables

3.1
3.2
3.3

3.4
3.5
3.6
3.7
3.8

3.9
3.10

3.11
3.12

3.13
4.1

4.2
4.3
4.4
4.5
4.6

5.1
5.2
2.3
0.4
2.5
5.6

List of features SE-detection module uses.
Comparison between proposed and previous systems
Results of web crawling starting from landing page collected with

each method.
Results for each web-crawling module.
Crawling efficiency of each web-crawling module.
Unique domain names observed at each depth.
Results of web crawling using STRAYSHEEP and TrueClick.
Unique SE pages observed at each depth by using STRAYSHEEP

and TrueClick.
SE attack categories
Newly observed SE pages’ domain names at each depth in ascending

order and their user access investigated by SimilarWeb, Alexa Web

Information Service, and DNSDB.

Advertising provider domain names redirected to SE domain names.

Top 10
countries mapped
Top 10 ASes hosting SE attacks,

List of terms for each category; used to check the term’s frequency
in the title, URL paths, domain names, and text content of a web

Top 15 social media that led to FRAD sites.
Categories of referral web pages to FRAD sites.
The percentage of FRAD sites included in search results.
Top 15 ad networks that redirected users to distribution sites of fake

AV software.

Signature format of TCP packets.
Signature format of UDP packets.
Signature format of ICMP echo request packets.
TCP Signatures.
UDP Signatures.
ICMP Signatures.

41

Chapter 1

Introduction

1.1 Motivation and Contribution

Nowadays, the Internet is an essential infrastructure in communication. Unfor-
tunately, while technology becomes sophisticated, it also attracts cybercriminals.
Such threats, cyber attacks, can be divided into two types: attacks targeting spe-
cific groups or individuals, and attacks against many and unspecified users or
devices. This thesis focuses on the latter type of attacks, which affect a wider
range of users. A typical example of these attacks is a malicious web page that
displays fake virus alerts or rewards messages to psychologically induce users com-
ing from public channels such as search engines and social media. Another example
is network scanning by malware and attackers to find vulnerable devices. Many
previous studies have proposed methods for effectively preventing and reducing
this type of cyber attacks. However, with the evolution of devices and attack
techniques, existing methods will not be able to cover new cyber attacks. This is
because they are reactive and limited to individual attack techniques and vectors.
In order to prevent attacks continuously and proactively, it is necessary to estimate
the attackers’ purposes and to follow the attack vectors early on. By capturing
the attackers’ purposes and attack vectors, we can sensitively identify changes in
attack methods and targets and predict possible future attacks.

In this thesis, we focus on methods for observing cyber attacks that target a
large number of unspecified users and devices on the Internet. Observing cyber
attacks is an essential starting point to understand cyber attacks in detail. It can
be divided into two methods: passive and active observation. Many of the previ-
ous studies have chosen active or passive observations to conduct detailed analysis
specific to individual attacks. However, there is a lack of understanding the at-
tackers’ purposes and attack vectors in those studies. We combine passive and
active observations to address the following three main challenges in exploring the
attackers’ purposes and attack vector. The three challenges are (i) matching the
individual cyber attack to the actual scale of the damage, (ii) collecting detailed
behavioral information of victims, (iii) linking observed cyber attacks to the im-
plementation of their sources. Correlation analysis of the observation from active
and passive perspectives allows us for a faster and more comprehensive collection
of attacks in the wild than previous studies. Also, we can develop robust defenses

against attacks targeting new devices and infrastructure in advance based on the
analysis of attackers’ purposes and attack vector.

In chapter 3, we propose a system for collecting and detecting multi-step social
engineering (SE) attacks on the web. Web-based social engineering (SE) attacks
manipulate users to perform specific actions, such as downloading malware and
exposing personal information. Aiming to effectively lure users, some SE attacks,
which we call multi-step SE attacks, constitute a sequence of web pages starting
from a landing page and require browser interactions at each web page. Also,
different browser interactions executed on a web page often branch to multiple
sequences to redirect users to different SE attacks. Although common systems
analyze only landing pages or conduct browser interactions limited to a specific
attack, little effort has been made to follow such sequences of web pages to collect
multi-step SE attacks. We propose STRAYSHEEP, a system to automatically crawl
a sequence of web pages and detect diverse multi-step SE attacks. We evaluate
the effectiveness of STRAYSHEEP’s three modules (landing-page-collection, web-
crawling, and SE-detection) in terms of the rate of collected landing pages leading
to SE attacks, the efficiency of web crawling to reach more SE attacks, and accuracy
in detecting the attacks. Our experimental results indicate that STRAYSHEEP can
lead to 20% more SE attacks than Alexa top sites and search results of trend
words, crawl five times more efficiently than a simple crawling module, and detect
SE attacks with 95.5% accuracy. We demonstrate that STRAYSHEEP can collect
various SE attacks, not limited to a specific attack. We also clarify attackers’
techniques for tricking users and browser interactions, redirecting users to attacks.

In chapter 4, we present a system for identifying malicious web pages that trick
users to install fake antivirus software. Fake antivirus (AV) software is a type of
malware that disguises as legitimate antivirus software and causes harm to users
and their devices. Fake removal information advertisement (FRAD) sites, which
introduce fake removal information for cyber threats, have emerged as platforms
for distributing fake AV software. Although FRAD sites seriously threaten users
who have been suffering from cyber threats and require information for removing
them, little attention has been given to revealing these sites. We develop a system
to automatically crawl the web and identify FRAD sites. To shed light on the
pervasiveness of this type of attack, we performed a comprehensive analysis of
both passively and actively collected data. Our system collected 2,913 FRAD
sites in 31 languages, which have 73.5 million visits per month in total. We show
that FRAD sites occupy search results when users search for cyber threats, thus
preventing the users from obtaining the correct information.

In chapter 5, we propose a method for detecting network packets created by
malware and network scanning tools. Some malware and network scanning tools
implement their original network stack to quickly generate network packets instead
of using sockets provided by operating systems. Network packets created by such
malware and network scanning tools have unique characteristics in their header
fields. By actively analyzing network packets sent by the malware and tools, we
created signatures to identify them. We evaluated our method by using passively
collected large-scale network traffic. We found that there was a large amount of
network scanning activities using some network scanning tools and reconnaissance

activities by attackers to find vulnerable devices on the Internet.
The contributions of this dissertation are as follows.

e We propose a system called STRAYSHEEP to collect and detect multi-step SE
attacks. STRAYSHEEP automates web browsers and recursively follows se-
quences of web pages. This system identifies malicious web pages by applying
machine learning to crawling results. STRAYSHEEP allows us to automati-
cally find malicious web pages hiding deep in the sequence of web pages.

e We present a system for crawling and identifying FRAD sites, which intro-
duce fake information of malware removal to users infected with malware.
This system extracts the linguistic, visual, and structural features of web
pages and uses machine learning to detect FRAD sites. We reveal an ecosys-
tem of a new malware distribution model by analyzing passively collected
user access statistics and actively crawled web pages.

e We propose a method to detect network packets sent by malware and net-
work tools that implement their network stack. This method can identify
reconnaissance and intrusive network packets from the large number of pack-
ets flowing through the network. We clarify that some types of malware and
network scaning tools

1.2 Organization

The rest of this dissertation is organized as follows. Chapter 2 presents the back-
ground on the observation of cyber attacks and discuss challenges on observing
cyber attacks on the Internet. Chapter 3 proposes a system for collecting and
detecting multi-step social engineering attacks on the web. Chapter 4 presents
a system for identifying malicious web pages that trick users infected with mal-
ware to install fake antivirus software. Chapter 5 proposes a method for identifying
malware and network tools that implement their network stack by leveraging char-
acteristics of network packets’ header fields. Chapter 6 concludes this dissertation.

Chapter 2

Observing Cyber Attacks on the
Internet

2.1 Passive Observation

This section explains methods of passively observing cyber attacks on the Internet.
Observing cyber attacks is an essential starting point for capturing their traces and
mechanisms. Passive observation is a way of simply monitoring the circumstances
of cyber attacks without interfering with them (i.e., accessing attackers’ servers or
executing malware). A typical method of passive observation is to analyze network
traffic at servers and transfer points between networks. On the other hand, inter-
acting with an attackers’ infrastructure or malware to induce the attacks is called
active observation, which will be discussed in detail in the next section. Many
studies observed network packets passing through IDS and proxy servers to follow
the trail of malware and attack tools [1, 2]. These studies extract network packets
and payloads that characterize malware and tools from a large amount of network
traffic to analyze trends of cyber attacks and block them. By observing the dark-
net, which consists of unused IP addresses, we can capture the signs of an attack
and exploration activities of attackers [3, 4]. Since it is unusual for normal users
to communicate to IP addresses where none of the servers are located, network
packets arriving on the darknet are the result of a system malfunction or malicious
behavior. Also, we can identify malware behavior and malicious sites indirectly
by observing DNS cache servers. Some studies analyzed malicious activities on
the Internet in real-time and at low cost by using passive DNS, which integrates
traffic observed at multiple servers, rather than observing only a single DNS cache
server [5, 6, 7]. The advantage of passive observation is that by continuously mon-
itoring the same point, we can identify cyber attacks by the slight differences that
imply activities of attackers or malware. It is also unlikely that these methods will
make the attackers aware that they are being observed, or that our experiments
will cause unintended harm to other users. On the other hand, its disadvantage is
that the desired observation result cannot always be obtained because we do not
control the occurrence of the attacks.

2.2 Active Observation

We explain methods of actively observing cyber attacks. As opposed to passive
observations, which only collect network traffic flowing through the same point,
active observations deliberately generate and monitor malicious network traffic. In
other words, active observations intentionally generate attacks or trigger accesses
from attackers by analyzing attackers’ tools and simulating the environment of
victims. For example, attack packets and network scanning can be generated by
executing malware and network tools on the sandbox (testing environment for
malware analysis). This analysis allows us to access attackers’ infrastructure such
as malicious web pages and command-and-control (C&C) servers. Previous stud-
ies identify malicious network packets by actually running malware and capturing
network traffic from them to create signatures [8, 9]. Other studies detect drive-by
download attacks by accessing malicious web pages and simulate the victim’s vul-
nerable environment, which is called a client honeypot [10, 11]. There are other
active observation methods that automate web browser and crawl web pages to
identify cyber attacks that use social engineerings, such as fake virus warning
and fake reward [12, 13, 14, 15, 16]. It is also effective to wait for access from
attackers in the decoy environment that simulates user devices or servers work-
ing as attack springboards. By deploying web server honeypots on the Internet,
we can lure attackers and observe their attack methods in detail [17, 18]. Also,
the DRDoS honeypot, which is a honeypot for observing some types of DDoS
(Denial-of-service) attacks that uses amplification of the response from servers to
attack a target, can be deployed on the Internet and collect these attacks in the
wild [19, 20]. The advantage of the active methods is that we can observe cyber
attacks more accurately in a shorter time than passive observations that monitor
a large number of network packets. By intentionally causing malicious activities
and accessing malicious servers to simulate victims, we can collect detailed and
direct information. However, attackers may be aware of our experiments. Our
experiments may inadvertently cause negative effects to other users, so we need to
conduct them carefully.

2.3 Challenges on Observing Cyber Attacks on
the Internet

In this section, we discuss our roadmap and challenges on observing cyber attacks.
Cyber attacks can be divided into two types: attacks targeting specific groups or
individuals [21], and attacks against many and unspecified users or devices. Our
ultimate goal is to analyze all of those attacks and reveal attackers’ purposes and
attack vectors. In this thesis, as a starting point for our roadmap, we focus on
the latter attacks. In particular, we analyze and reveal malicious activities on the
network and attackers’ psychological strategies on the web, which are threatening
to many and unspecified victims in recent years.

Each of the passive and active observation is usually used to analyze cyber
attacks in previous studies. We have explained the advantages of each observation

method in the above section. Previous studies, which counter cyber attacks that
target an unspecified but a large amount of users and devices, were designed to
be limited to individual types of cyber attacks. They are useful to tackle indi-
vidual attacks at the moment, however, they cannot respond immediately to the
emergence of new cyber attacks. In order to prevent attacks continuously and
proactively, it is necessary to estimate the attackers’ purposes and to follow the
attack vectors early on. Attackers’ puposess are the reasons for attackers to ma-
nipulate and harm users and their devices to achieve attackers’ goal, e.g., stealing
users’ money and personal information. By revealing them, we can understand
not only the mechanism of the attack, but also the possible actions of the attacker
during certain phases of the attack. Attack vectors are intrusion routes used by
attackers or malware, and traps set by the attackers to deceive users. By under-
standing the attack vectors in detail at each step of the attacks, we can develop
strong defenses. This thesis proposes methods of passive and active observation,
and compensate for the disadvantages of previous methods. We can anticipate and
defend against possible attack techniques by designing a versatile approach that is
robust to the aforementioned changes. Correlation analysis combining these two
methods provides comprehensive attack observation.

Here, we address the following three challenges by combining passive and active
observations to reveal attackers’ purposes and attack vectors. The first challenge
is to match the individual cyber attack to the actual scale of the damage, which is
necessary to prioritize countermeasures. Active methods are often used to identify
cyber attacks in detail. For example, in analyzing cyber attacks on the web that
require user interactions, previous studies [13, 12] used active methods, which is
automating web browsers, to analyze malicious web pages. However, these studies
did not reveal how many users reached each of the identified malicious web pages
and how many were affected. The active methods of observing cyber attacks
on the web are uncertain in terms of effectiveness and comprehensiveness due
to the lack of objective information to measure the threat level of the collected
attacks. To address this challenge, in Chapter 3, we propose a system for actively
collecting malicious web pages by simulating behaviors of victims and passively
analyze statistical data of user accesses to estimate the threat impact of each web
page.

The second challenge is to collect detailed behavioral information of users af-
fected by cyber attacks, i.e., the route of accessing each malicious web page and
what actions of users caused the attack. Attackers use illegal ways of gaining ac-
cess to their web pages such as Blackhat SEO (search engine optimization) and
abuse social media postings. Such web pages not only exploit users directly and
take control of them but also try to profit from redirecting traffic to other mali-
cious web pages by using their web pages as relay points. The active methods of
analyzing these web pages by crawling them can discover possible paths to the web
pages and observe types of attacks that arise from them. However, they cannot
identify what paths actual users mainly take to reach the malicious web pages
and what kind of psychological stimulus leads users to the cyber attacks. This is
because the active methods do not reveal which of the multiple paths are effective
in tricking users. Thus, Chapter 4 focuses on the infrastructure of distributing

fake antivirus (AV) software, which is involved in more than half of all malware
distribution on the web [22]. We propose a system to actively collect and detect
new infrastructure of distributing fake AV software, called FRAD (fake removal
information advertisement) sites. We also analyze user access traffic passively to
identify the most effective psychological tactics and path of guiding users, and
understand the ecosystem of malware distributions.

The third challenge is to link observed cyber attacks to the implementation
of their sources. Previous studies, which passively observed cyber attacks on the
Internet and identified malicious traffic, did not link observed attacks to the causes
of the traffic. While passive observation can detect traces of cyber attacks from
a large amount of traffic, it is difficult to link them to an actual source of the
attacks (e.g., specific families of malware and network tools). Also, when there
is abnormal traffic in the network, sometimes it is hard to distinguish whether
a malicious activity or a system failure. The reason for those disadvantages is
the lack of detailed profiles of malware and network tools. Therefore, Chapter 5
proposes a method for detecting malicious packets based on the analysis of actively
and passively observed traffic. We can identify the causes that contribute to DDoS
attacks and network scanning activities, allowing us to understand cyber attack
trends and take countermeasures, e.g., takedowns of specific malware families.

In summary, this thesis addresses each of the three challenges with combina-
tions of active and passive observations and analysis in Chapter 3, 4, and 5.
These observations not only compensates for the disadvantages of each method,
but are also robust to changes in attack vectors and targeted systems (e.g., devices,
operating systems, and web browsers). This is because it provides continuous ob-
servations of current cyber attacks from both passive and active perspectives. In
this thesis, we focus on cyber attacks against many and unspecified users/devices.
Once the effectiveness of our methods are confirmed, they will be a stepping stone
to passive and active observation of all attacks, including attacks targeting specific
groups and individuals. We can conduct a large-scale and long-term analysis of
cyber attacks in the future.

Chapter 3

An Analysis of Multi-step Social
Engineering Attacks on the Web

3.1 Introduction

Attackers use social engineering (SE) techniques to lure users into taking specific
actions. Modern web-based attacks leverage SE for malware infections [23, 24]
and online frauds [25, 14, 12], which are called web-based SE attacks (or simply SE
attacks). Attackers skillfully guide a user’s browser interaction through attractive
web content or warning messages to make users download malware or leak sensitive
information. For example, to download pirated games, a user clicks a download
button on an illegal downloading web page. Then, a popup window with a virus-
infection alert is displayed. A user who believes the fake information clicks a
“confirm” button and downloads fake anti-virus software [26].

Common systems to automatically collect SE attacks involve accessing web
pages collected from search engines [13, 14, 12]. These systems use a web browser
to crawl web pages and identify a particular SE attack by extracting features only
from each web page. However, some types of SE attacks constitute a sequence
of web pages starting from a landing page and require browser interaction (e.g.,
clicking an HTML element) at each web page to reach the attacks, which we call
multi-step SE attacks. This is because each web page gradually convinces a user
by using different psychological tactics [24]. Also, different browser interactions
executed on a web page often branch to multiple sequences, redirecting users to
different SE attacks, because there are multiple attack scenarios corresponding
to a user’s interests or psychological vulnerabilities. Although current systems
analyze only landing pages or conduct browser interactions limited to a specific
attack, little effort has been made to follow such sequences of web pages to collect
multi-step SE attacks.

We propose STRAYSHEEP, a system to automatically crawl the sequence of
web pages and detect diverse multi-step SE attacks derived from a landing page.
STRAYSHEEP is based on two key ideas. The first idea is to simulate the multi-step
browsing behaviors of users, that is, intentionally follow the sequence of web pages
by selecting possible elements that psychologically attract users to lead them to

SE attacks. STRAYSHEEP not only follows a single sequence of web pages but
also crawls multiple sequences derived from a landing page. The second idea is
to extract features from reached web pages as well as an entire sequence of web
pages. Unlike previous approaches that extract features from a single web page
they have visited [12, 14] or identify malicious URL chains automatically caused
without user interactions (i.e., URL redirections) [27, 28, 29], STRAYSHEEP ex-
tracts features from the entire sequence of web pages it has actively and recursively
followed. That is, STRAYSHEEP analyzes image and linguistic characteristics of
reached web pages, browser events (e.g., displaying popup windows and alerts)
that occurred before reaching the web page, and browser interactions that lead
users to SE attacks. These features represent common characteristics of all SE at-
tacks, i.e., persuading and deceiving users. Therefore, by combining these features
to classify sequences, STRAYSHEEP detects various multi-step SE attacks more
accurately. We implemented STRAYSHEEP with three distinct modules (landing-
page-collection, web-crawling, and SE-detection) to automatically collect landing
pages, crawl the web pages branching from them, and detect SE attacks using the
results of web crawling, respectively.

To determine the effectiveness of STRAYSHEEP’s three modules, we conducted
three evaluations: the rate of collected landing pages leading to SE attacks, the
efficiency of web crawling to reach more SE attacks, and accuracy in detecting the
attacks. The first evaluation demonstrated that landing pages gathered by the
landing-page-collection module led to 20% more SE attacks than Alexa top sites
and search results of trend words. The second evaluation demonstrated that the
web-crawling module is five times more efficient at crawling than simple crawling
modules. The third evaluation revealed that the SE-detection module identified
SE attacks with 95.5% accuracy.

We analyzed collected multi-step SE attacks STRAYSHEEP in detail. As a
result of categorizing SE attacks, we found that STRAYSHEEP reached a variety
of SE attacks such as malware downloads, unwanted browser extension installs,
survey scams, and technical support scams. We also found that 30% of SE attacks
were reached from 25 different advertising providers.

The main contributions of this chapter are as follows:

e We propose STRAYSHEEP, which detects multi-step SE attacks by auto-
matically and recursively crawling sequences of web pages branching from
landing pages. STRAYSHEEP can crawl and detect these attacks by simulat-
ing multi-step browsing behaviors of users and extracting features from an
entire sequence of web pages.

e We evaluated STRAYSHEEP’s three modules. The landing-page-collection
module led to 20% more SE attacks than Alexa top sites and search results
of trend words. The web-crawling module was five times more efficient at
crawling than a simple crawling module. The SE-detection module identified
SE attacks with 95.5% accuracy.

e We conducted a detailed analysis of multi-step SE attacks collected using
STRAYSHEEP. We found that STRAYSHEEP collected various SE attacks,

Sequence of web pages

Ssear.d; eng;e f — I " Attacker’s
ocial media anding R ntermediate Last Purpose
page page | O paee NG @
Phases in each web page Enlﬁrgei view of g. s
User . " each web page . |'§_,'if 6;
Attractt Click to start
User W/ your free download
g Download | —> Next Web Page
Browser Web
Interaction Navigation
(§2.2) (§2.3)

Figure 3.1: Sequence of web pages in multi-step SE attacks and phases in each web
page.

not limited to a specific attack. We analyzed attackers’ techniques of luring
users and browser interactions leading users to attacks.

3.2 Background

SE is used to manipulate people into performing a particular action by exploit-
ing their psychology and has been widely used in various types of web-based
attacks, such as malware downloads [24, 30], malicious browser extension in-
stalls [31, 32, 33], survey scams [12], and technical support scams [25, 14]. Malware
downloads and malicious browser extension installs are achieved by masquerading
as legitimate software. Survey scams recruit users attracted by fake survey re-
wards to trick them into providing sensitive information and accessing web pages
controlled by attackers. Technical support scams are carried out by persuading
users to make a call to a fake technical support desk and install keystroke loggers,
remote access tools, or malware.

Multi-step SE attacks use multiple web pages leveraging different psychological
tactics to effectively lure users to the succeeding web page. Figure 3.1 shows a
sequence of web pages in multi-step SE attacks and three simplified phases in each
web page: wuser attraction, browser interaction, and web navigation. Therefore,
the three phases can be repeated multiple times, starting from a landing page,
which appears in response to clicking on a search-engine result or social-media
link. Different user interactions on a single web page also lead to different SE
attacks.

3.2.1 User Attraction

The user-attraction phase attracts a user psychologically by using the content of
the web page to deceive and persuade the user to induce browser interaction [24].
For example, these web pages advertise free downloads of video games, threaten

10

users with fake virus warnings, and request bogus software updates. The main
purpose of this psychological attraction is to make the user interact with an HTML
element (e.g., a and div) that navigates to malware downloads or a web page
controlled by an attacker. We call such HTML elements lure elements. What is
common with lure elements is that they contain words or shapes indicating the
behavior or category of an element. A lure element is characterized by its visual
effects, such as easily understandable download buttons containing “Click here
to download” and movie play buttons containing “WATCH NOW?” or a triangle
pointing right. A lure element is also characterized by containing words such
as “download-btn” and “video-play-link” in their text content and document
object model (DOM) attributes such as id, class, and alt. Multiple lure elements
may be arranged on a single web page. In this case, clicking these lure elements
results in different SE attacks.

11

(zee§)
JoyIsse)

4

(1¢es)

o

UOT)ORIIXF] OINJBa]

"MOTAIOAO dHHHSAVULS :g'¢ 2an3rg

21 GoM
—___

V'S

(€°€ §) AMPOJA uond

9JIP-US

WNTUS[OS

o3eq Surpue

jusuodwo) Suneradp

(TTes)

UOISUIXH

IOSMOIE GO

(zes) |,

jusuodwo)) Sunodyeg |- __

93eq Surpue
wolj Poyoeay

o3ed qom.

\Sjuowd[g 21|

('€ §) SINPOIN Surmerd-qoag

Jo sTaN BIPSJA [E100S
— H =
(T1re§) i
SuldeIdg |
pue 3uIyoresg

ouruy yoresg

i S
(1°€ §) ANPOJA uoNd3[03-d3ed-Burpue]

saraNQ) YoIeds
Suneouan)

> m
arre§) |i

12

3.2.2 Browser Interaction

Users who are acted upon by the previous user-attraction phase are guided to inter-
act with lure elements on the web page. This browser-interaction phase is mainly
an explicit click on the lure element but also includes an unintended click [13]. For
example, unintended clicks include clicking an overlay on the entire web page, con-
text menu, and the browser’s back button. These clicks are forcibly generated by
JavaScript to redirect a user to a new web page or show a popup window against
the user’s intention.

3.2.3 Web Navigation

In the web-navigation phase, browser events occur as a result of browser interac-
tion. These browser events redirect to another web page in the current window
or a new window (popup), display alert dialogs, and download files. Web-page
redirection occurs in an intermediate step of a multi-step SE attack, guiding the
user to the next web page. On the next page, another user attraction, browser
interaction, and web navigation could occur again. The purpose of repeatedly
making a user reach multiple web pages without completing the attack on one web
page is to gradually convince the user and increase the success rate of the attack.
For example, to increase the attack-success rate of a user who watches a movie on
an illegal streaming site, attackers display a popup that offers a dedicated video
player with an alert dialog such as “Please install HD Player to continue.” instead
of providing an automatic software download on the first web page. Also, the
multiple sequences of web pages in a multi-step SE attack often branch from the
landing or intermediate web pages because such web pages contain two or more
lure elements leading to different pages.

3.2.4 Problems on Collecting SE Attacks

There are three approaches to automatically collect SE attacks: tracing web traffic,
archiving with a crawler, and crawling with a web browser. We give a brief intro-
duction of these approaches and their limitations then present the requirements of
collecting SE attacks.

The first approach is of reconstructing SE attacks from web traffic obtained
through passive network monitoring [24]. To take measures against SE attacks,
revealing a single SE attack reached from the landing page is useful, but uncovering
all attacks that branch from web pages is more critical. However, this approach
is used to observe only a single sequence of web pages accessed by the user. Also,
it cannot be used to observe SE attacks starting from arbitrary web pages. That
is, it cannot be used to observe attacks from which a user was not affected but
another user could be affected.

The second approach is to visit each web page using crawlers such as Her-
itrix [34] and GNU Wget. Such crawlers extract links from a downloaded HTML
source code of a web page and crawl them recursively. This approach can solve
the problem with the first approach, in which it cannot collect SE attacks that the

13

user did not reach because it can input an arbitrary URL. However, these crawlers
can only execute simple content downloads and static content parsing. SE attacks
often use web content dynamically generated by JavaScript, which require user
interactions to navigate to the next pages; thus, these types of crawlers cannot
collect most SE attacks.

The third approach is of web-browser automation using a tool such as Sele-
nium [35]. Web-browser automation enables us to simulate user interaction to
all elements on each web page. With this approach, we can solve the problems
with the second approach. If we apply the idea of following all links with the
second approach to web-browser automation, that is, clicking all elements on each
web page, we can ideally collect all multi-step SE attacks derived from a landing
page. However, recursively following all elements takes a significant amount of
time because the browser requires time to run JavaScript and render web pages.

In summary, to efficiently observe multi-step SE attacks in a short time, the
number of elements to crawl must be reduced by selecting possible lure elements
from thousands of HT'ML elements on each web page. To analyze multi-step SE
attacks in detail, it is also necessary to recursively follow multiple sequences of
web pages that lead to SE attacks derived from a landing page rather than tracing
only a single sequence of web pages. Therefore, requirements for collecting and
analyzing multi-step SE attacks are crawling with the web-browser-automation
approach, selecting lure elements that will likely lead to SE attacks, and recursively
interacting with lure elements.

3.3 StraySheep

We propose a system called STRAYSHEEP that automatically collects landing pages
that lead to SE attacks, crawls web pages, and detects multi-step SE attacks.
STRAYSHEEP consists of three modules: landing-page-collection, web-crawling,
and SE-detection. An overview of STRAYSHEEP is shown in Fig. 3.2. The landing-
page-collection module gathers URLs of web pages leading to SE attacks by lever-
aging search engines and social media. The web-crawling module starts recursive
web crawling from the URLs collected by the landing-page-collection module, se-
lects and clicks on lure elements, and outputs a WebTree. A WebTree consists
of tree-like abstract data, including logs such as web navigation, browser interac-
tion, and snapshot (screenshot and HTML source code) observed at each web page
branching from a landing page. The SE-detection module extracts features from
a WebTree and identifies the multi-step SE attack using a classification model.

3.3.1 Landing-Page-Collection Module

The landing-page-collection module leverages search engines and social media to
find landing pages as input for the web-crawling module. Many SE attacks use web
pages that have copyright infringement, such as illegal downloads and free video
streaming, to draw the attention of incautious users [13, 36]. To induce a user
to access such web pages, attackers use search-engine-optimization techniques [37,

14

11, 38] and post messages on social media, which include links to the landing
pages [39, 40, 41]. Examples of such social-media postings are an instruction video
for illegally installing software and a message introducing a free game download
site. To collect such landing pages effectively, the landing-page-collection module
uses a web-search-based approach consisting of two steps: generating search queries
and searching and scraping.

Generating Search Queries

The landing-page-collection module generates search queries to search the URLs
of possible landing pages leading to SE attacks. To generate the search queries, we
design the module so that it collects core keywords, which stand for a title or name
of paid content (e.g., “Godzilla” and “Microsoft Office”) and concatenates them
with predefined qualifiers (e.g., “free download,” “crack,” and “stream online”).
To collect core keywords, the module automatically scrapes popular electronic
commerce (EC) sites and online database sites by using predefined scraping logic
in accordance with each site and groups the core keywords by content category
(e.g., video, software, and music). These core keywords can regularly be updated
by recollecting ranking and new release information.

The aim of using qualifiers is (1) limiting the coverage of search results includ-
ing illegal downloads and streaming, not legitimate sites, and (2) increasing the
variation in search results. We manually prepare qualifiers in advance using auto-
suggest /related search functions on a search engine. When a user queries a certain
word in a search engine, these search functions provide a list of corresponding key-
word predictions. We input some titles of paid content to the search engine and
collect qualifiers for each category because the qualifiers we require vary depend-
ing on the core keyword’s category. For example, qualifiers of video are “stream”,
“movie”, and “online”. For another example, qualifiers of the software category
are “download”, “crack”, and “key”.

Searching and Scraping

This module retrieves URLs from a search engine or social media by using the
generated search queries. It inputs them into the search engine and search forms
on social media to widely collect corresponding URLs. Some social media do not
always provide comprehensive search results due to a minimum required search
function; thus, the module also uses a search engine to collect social-media post-
ings. Finally, it outputs the URLs collected from the search results and links
scraped from social media postings as input for the web-crawling module.

3.3.2 Web-Crawling Module

The web-crawling module automates a web browser to recursively crawl a URL col-
lected by the landing-page-collection module and outputs a WebTree as a crawling
result. Figure 3.3 shows a conceptual model of a WebTree representing sequences
of web pages derived from the landing page and visited by the web-clawing module.

15

Depth-3
@ Download file
(PUP)
Depth-4 Scam pase Download file Scam page
(survep si am) (unwanted (tech support
y extension) scam)

Figure 3.3: Conceptual model of WebTree.

The web-crawling module starts from the landing page, clicks on multiple lure el-
ements on the web pages, and recursively follows multiple web pages derived from
the landing page. The depth indicates the recursion count of web crawls. The
depth increases when this module reaches a web page that completes loading and
is waiting for browser interaction. This module uses Selenium and our original
browser extension to automatically control and monitor a web browser. For the
prototype of our system, we chose Google Chrome as a browser, but Selenium can
also control other web browsers; thus, the web-crawling module can use different
browsers. In the following section, we describe two components of the web-crawling
module: selecting and operating.

Selecting Component

The selecting component collects a lure element that causes web navigation lead-
ing to SE attacks by analyzing an HTML source code and a screenshot of a web
page. As mentioned in Section 3.2.1, a word representing the category or action
of an element tends to be used for the lure element’s DOM attributes, text con-
tent, and the text drawn inside the button graphic, for example, “download” in
“download-btn” of the class attribute and “click” in “Click Now” of the text
drawn inside a clickable button. To select elements containing such keywords as
lure elements, we design the selecting component so that it parses an HTML source
code and executes image processing of a web page’s screenshot. The purpose of
the selecting component is not to accurately detect elements leading to SE at-
tacks but to select possible lure elements to reduce the number of elements with
which to interact. By following only selected elements, the web-crawling module
can efficiently reach diverse SE attacks. Note that there could be multiple lure
elements on the same web page; thus, this component analyzes all elements on
the web page. The reason the selecting component also executes image processing

16

is to complement the acquisition of character strings drawn in the button image
(i.e., img element), which cannot be acquired from the HTML source code. This
component also identifies lure elements by their shape such as the triangular video
play button.

We explain a statistical method of preparing keywords for selecting lure ele-
ments. We compare elements that have actually redirected users to SE attacks
(lure elements) with other elements that have not redirected users to any SE
attacks (non lure elements) and extract words specific to lure elements. More
specifically, we extract attribute, text content, and strings drawn on buttons from
the collected elements and divide these words into two documents: a document of
lure elements and one of non lure elements. We then calculate the term frequency-
inverse document frequency (tf-idf) of the two documents and manually choose
words that have high tf-idf values from the lure-element document. The process
of keyword selection is shown in Section 3.4.2.

In the analysis of HTML source codes, if an element matches at least one of
the following four rules, this component determines it to be a lure element.

e One of the keywords is used in the element’s text content.
e A keyword is set in id, class, or alt DOM attributes.

e A keyword is used as the file name indicated by the URL of the link (a
element) or image (img element).

e An executable file (e.g., .exe or .dmg) or a compressed file (e.g., .zip or
.rar) is used as a link extension.

The purpose of the analysis of image processing is to find rectangular but-
tons and video play buttons. This component extracts character strings written
in each element from the screenshot and matches keywords used in the HTML
source code analysis. This component leverages OpenCV to find rectangle con-
tours representing the button areas in the screenshot and identify the coordinates
and size of buttons. It also uses optical character recognition (OCR) using Tesser-
act OCR [42] to extract character strings from the rectangles the component found.
This component executes keyword matching with extracted character strings and
determines an element containing one of the keywords in the area to be a lure
element. To acquire video play buttons as lure elements, the module also finds
a triangle contour pointing right. Finally, the component outputs multiple lure
elements that may lead to SE attacks from the web page.

Operating Component

The operating component executes browser interactions (i.e., clicking on lure ele-
ments), monitors web navigation, and constructs a WebTree. It simulates clicking
on lure elements with the CTRL key pressed to open the web page in a new browser
tab because the current page may be transferred to another web page by a simple
clicking. As a result, links or popup windows can be opened in new tabs without

17

changing the original tab. The operating module also clicks a body element, body
element with context click, and the browser’s back button to simulate unintended
clicks described in Section 3.2.2. When the new tab is opened, the selecting com-
ponent finds lure elements again, and the operating component executes browser
interactions with a depth-first order, unless it reaches a predetermined maximum
depth. We explain the maximum depth we used in the following experiment in
Section 3.4.2.

The operating component also monitors web navigation. For monitoring JavaScript
function calls, this component hooks the existing JavaScript function to detect the
executed JavaScript function name and its argument. The JavaScript functions to
be monitored by this component are alert(), window.open(), and the installa-
tion function of the browser extension (e.g., chrome.webstore.install()). The
function alert() is frequently used in SE attacks that threaten a user by sud-
denly displaying dialog with messages inducing user anxiety. The window.open()
function opens a new browser window and is used for popup advertisements. This
component also hooks the installation function of the browser extension and de-
tects what type of browser extension was installed from the argument. This com-
ponent also monitors URL redirection, which navigates a user to another URL.
URL redirection is divided into client-side redirection and server-side redirection.
A web browser may conduct client-side redirection such as JavaScript function
location.href when this component clicks the lure element. On the other hand,
a web server conducts server-side redirection to navigate to another web page be-
fore loading a web page. This component monitors the URLs the browser passed
during server-side redirection to identify the server that navigates users to SE
attacks, such as advertising providers.

The operating component conducts browser interactions and monitors web nav-
igation until it finishes clicking on all selected lure elements. This component ag-
gregates information from sequences of web pages (i.e., screenshots, the HTML
source codes of web pages, browser interactions, and web navigation) and finally
outputs a WebTree as input for the SE-detection module.

3.3.3 SE-Detection Module

The SE-detection module extracts features from a WebTree output by the web-
crawling module and identifies multi-step SE attacks using a classification model.
This module first extracts sequences from the WebTree. A sequence is defined as
a series of rendered web pages from the landing page (a root node) to the last
pages (leaf nodes). Note that the sequence does not represent a URL redirection
chain (an automatic process of forwarding a user to another URL multiple times)
but a series of displayed web pages through user interaction. This module then
extracts features from each sequence that reaches web pages of depth of two or
more. Unlike conventional methods that examine structural similarity of URL
redirection chains [27, 28, 29], this module extracts features specific to multi-step
SE attacks from the entire sequence: contents of web pages, browser interactions
that trigger page transitions, and web navigation. Finally, it identifies whether the
last page of each sequence is the SE page using a classifier and outputs URLs of

18

Table 3.1: List of features SE-detection module uses.

Target Feature # of dimensions
User attraction Last page Image features (Bag-of-visual-words) 128
Last page Color histogram 30
Last page Linguistic features (Doc2Vec) 300
Last page HTML tag histogram 40
Last page Length of text field 1
Previous page Image features (Bag-of-visual-words) 128
Previous page Color histogram 30
Previous page Linguistic features (Doc2Vec) 300
Previous page HTML tag histogram 40
Previous page Length of text field 1
Browser interaction Sequence # body clicks 1
Sequence # body context clicks 1
Sequence # left clicks 1
Sequence # back button clicks 1
Sequence # <a>tags clicked 1
Sequence # <iframe>tags clicked 1
Previous page Coordinates (x,y) 2
Previous page Size (width, height) 2
Web navigation Sequence Depth 1
Sequence # alert dialogues 1
Sequence # popup windows 1
Sequence # server side redirections 1
Sequence # client side redirections 1
Last page File downloads 1
Last page Extension installs 1
Previous page File downloads 1
Previous page Extension installs 1

anding page

Previous page
®

I

Last page

—
Sequence

Figure 3.4: Example of extracting features from a sequence.

Feature Extraction

the detected web pages. Ground truth data for identifying SE attacks is explained
in Section 3.4.3.

To classify web pages that trick users into interacting, it is common to use infor-
mation that can be acquired after visiting the web page, such as image and HTML
features [13, 12]. However, if a classifier uses such features, it cannot detect an SE
page similar to the legitimate page, such as a fake software-update web page that

19

closely resembles a legitimate Flash update page or fake infection-alert page using
the logo of security vendors. Therefore, we designed feature vectors using not only
features extracted from a single web page but also all features extracted from the
entire sequence. Specifically, it analyzes the last page of the sequence, page be-
fore the last page (previous page), and the entire sequence, as shown in Fig. 3.4.
Table 3.1 shows features extracted from each sequence and grouped into the three
phases of SE attacks: user attraction, browser interaction, and web navigation. To
the best of our knowledge, STRAYSHEEP is the first system that automatically col-
lects these features from the entire sequence by recursively crawling web pages from
the landing page. In terms of the user-attraction-based features, STRAYSHEEP ex-
tracts appearance, meaning of a document, and structure of HTML from the last
and previous pages. It then finds features based on browser interaction, such as
actions performed on the web pages and lure elements from the previous page
and entire sequence. The SE-detection module also analyzes web navigation that
occurred on the last page, the previous page, and the entire sequence. We explain
a feature extraction method for each SE-attack phase below in detail.

User Attraction The appearance of a web page and the semantic properties of
text content include the intention of the attacker to trick a user. The HTML doc-
ument structure is also an important indicator for analyzing the similarity of web
pages using the same document template. The SE-detection module extracts im-
age and linguistic features from the last and previous pages of the sequence. It also
calculates an HTML tag histogram, RGB color histogram, and the length of the
text field from both the last and previous pages. These features are useful for iden-
tifying web pages that use the same page templates and images as other malicious
web pages. To extract image features, we use AKAZE [43], which is a bag-of-visual
words algorithm that detects local image features. The SE-detection module ex-
tracts 128-dimensional image features from the screenshots of the last and previous
pages using a trained model we previously constructed. We use Doc2Vec [44] as a
document-modelling algorithm to extract linguistic features. The purpose of this
is to capture attackers’ intentions, such as deceiving or threatening users, based on
linguistic characteristics. The module extracts the 300-dimensional features from
the text content of the last and previous pages by using a doc2vec model trained
beforehand. The text content of a web-page document is extracted by cleaning
out HTML tags from an HTML source code. The SE-detection module also calcu-
lates a histogram of the RGB (red, green, and blue) values of the screenshot with
ten bins for each color and a histogram of HTML tags of the text content. This
module uses up to 40 HTML tags (e.g., a div, and img) frequently appearing on
the web pages we collected in advance. It counts the number of characters in the
text content.

Browser Interaction The SE-detection module analyzes lure elements and ac-
tions that caused SE attacks. Browser interaction is an important indicator that
characterizes multi-step SE attacks because the destination web pages change de-
pending on the types of actions taken by users and clicked elements. To extract
features from browser interactions, we design this module so that it counts the
number of left clicks and unintended clicks (body clicks, body-context clicks, and
back-button clicks) the web-crawling module performed in the sequence. This

20

module also counts the types of clicked lure elements (a and iframe) in the se-
quence and determines the size (x,y) and coordinates (width, height) of lure ele-
ments on the previous page.

Web Navigation The SE-detection module analyzes browser events that occurred
as a result of browser interaction. File downloads and extension install indicate
events that are directly related to SE attacks such as malware downloads and
unwanted extension installs. Since SE attacks are often delivered via advertising
providers, redirection has characteristics unique to SE attacks. The method of
navigation (e.g., redirection and popup window) is important for analyzing SE
attacks. This module determines whether file downloads and extension installs
occurred on the last and previous pages. It counts the times popup windows were
displayed and the number of URLs observed during server-side and client-side
redirection. It also checks the number of displayed alert dialogues and the length
of the sequence, i.e., crawling depth.

Classifier

We combine the features extracted from sequences to create features vectors and
construct a binary classifier to identify SE web pages. We use Random Forest
as a learning algorithm because we can measure the importance of each feature
that contributes to the classification. FEvaluation results compared with other
algorithms are given in Section 3.4.5.

21

PaI10A0)) 10N O ‘Pa1ea0)) Afrernred (P ‘paroao)) AN @

SpeO[UMOp S

srouueq YOUJ, sweds jroddns yoaf,

sureos j1oddns 1oa], soded 103e30133e QI sureos AoaIng soelje S dogs-1ynu [y 199[[00 09 syPeIIR 5G Jo odAT,

s1osn uo Surpuedo(] 931s SULIRYS L]

QUISUD 1DIL0S IOUSLIOYS T () ‘UleWOp payIed ouISuo YOILdg OUISUS YDIROG BIPOW [RIDOS

‘QUIdUe DIRSG TUOI108[[00 9Fed-FUIpUe] JO 92IN0G

([oA9] YT0MGOTT) (D O O (orystmory) @ O @) [(9omonbas) somyes
@) O Y (omystmory) @ [[[(orysmSury) somyes]
O O O O (] ° ® (TINLH) somyeaq
O [O O [[[(e8emur) seanyeay
O ©) ©) (@) (©) @] [] a8ed qom uo
symota oany opdnur SUrmMo[o,q
®) @) ®) O (pe oapra Ler1ono) @ (Sury Loams) P @ SYTOW[TINLH A Surgoeiojuy
oAISSR J QATIOY QATIOY APy APy QAT OATPY poysewr Suros[[o)
[Fe ‘€g] ssouymaapy [9€] sprpenay, [F1] e 9o weseatutig [sg] DIAOFOY [¢1] 'Te 10 enbyey [g1] soueidoaimg dATHGAVHLS

swe)sAs snoraord pue pesodoid uweemioq uostredwo)) :g ¢ o[qe],

22

17 € 04 98T 09T

sordures aremey pepeorumop enbrun jo #

(%1°2) ¢6 (%9°0) LT (%¢0) e (%eT¥) 181 (%6°8) 9¥¥ soBed Fg peyisia Jo surewop subrun jo #
L0S'F 168 970'8 619'¢ ¥86'F SUrRWOp Poyisia onbrun jo #
(%1°2) 829 (%9°0) o1 (%¢£°0) 08 (%¢€°9) €891 (%€°6) 91LF soSed FG PoysiA Jo STY() enbrun jo #
eeT'0g 0vg9T 818°LT 7TL'GT 18¢'0g STHN Poyista onbrun jo #
(%6°0) 97 (%€e'T) 69 (%20) €€ (%2'9T) 808 (%2°12) 090°T sypelte FS 09 pesf sefed Surpuer Jo #

000°G 000°G 000°G 000°G 000°G

soded Surpue| jo #

(ourposeq) sprom£ay o100 (ourEsRy) SPIOA\ PULI], (duTsey) s991§ doT, eXoTy (dHTHSAVULS) RIPIIN [P100G (dATHSAVULS) oUISUH ToIedg

"POYIoU [oed M Pada[[od oFed Surpur] WoI} SuljIe)s SUMeId oM Jo s)NsoY :€'¢ d[qel,

23

3.4 Evaluation

We evaluated the three modules of STRAYSHEEP (landing-page-collection, web-
crawling, and SE-detection). We first evaluated the qualitative advantage of
STRAYSHEEP by comparing it with previous systems for collecting SE attacks.
We then evaluated the effectiveness of the landing-page-collection module by com-
paring its two collection methods (search engine and social media) to three baseline
URL-collection methods in terms of the number of landing pages leading to SE
attacks and total visited malicious pages and domain names. Also, we conducted
a crawling experiment to determine the efficiency of the web-crawling module by
comparing its crawling method with two baseline crawling methods in terms of the
number of malicious domain names reached per unit of time. Finally, we confirmed
the effectiveness of the SE-detection module in terms of detection accuracy.

3.4.1 Qualitative Evaluation

We qualitatively compared STRAYSHEEP with the previous systems to collect SE
attacks from five perspectives. Table 3.2 summarizes the results.

Collecting method. The previous systems [23, 24] for passively observing HTTP
traffic to analyze SE attacks, can only collect attacks triggered by users’ real
download events. On the other hand, actively crawling arbitrary web pages with
STRAYSHEEP enables us to proactively detect SE attacks before many users reach
the web pages.

Interacting with elements. To observe multi-step SE attacks, we need to inter-
act with HTML elements and recursively follow page transitions. Surveylance [12]
is a system to detect survey gateways, which are landing pages displaying survey
requests, and interact with their survey content and survey publisher sites. A sys-
tem proposed by Rafique et al. [13] detects free live streaming (FLIS) pages and
interacts with overlay video ads on them. While these systems focus on survey
scams or FLIS services, STRAYSHEEP can collect various SE attacks and observe
different types of survey scams originating from web pages deeper than the landing
pages (see Section 3.5.1).

Extracting features. As stated in Section 3.3.3, STRAYSHEEP extracts features
such as images, HTML structures, and linguistic context from reached web pages
and analyzes sequences to accurately detect multi-step SE attacks. As shown in
Table 3.2, none of the previous systems use all the features used in STRAYSHEEP.
Source of landing-page collection. STRAYSHEEP collects landing pages from
two common platforms: search engines and social media. STRAYSHEEP is the only
system that uses both platforms.

Type of SE attacks to collect. While the previous systems are limited to
detecting a specific attack, STRAYSHEEP collects various multi-step SE attacks by
following lure elements on each web page.

In summary, STRAYSHEEP is the first system to collect multi-step SE attacks
not limited to specific attacks by recursively following multiple lure elements on
web pages. STRAYSHEEP also detects multi-step SE attacks by extracting various
types of features from reached web pages and sequences.

24

3.4.2 Experimental Setup

We implemented STRAYSHEEP for Google Chrome 69 with Ubuntu 16.04. It si-
multaneously ran up to 32 instances on a virtual machine assigned with Intel Xeon
32 logical processors and 256-GB RAM. For the browser setting, a user agent was
set as Google Chrome of Windows 7, and browser cookies were reset for every
landing-page access. Our crawling experiment spanned from November to Decem-
ber 2018, and STRAYSHEEP used a single IP address. We need to set a timeout for
performance evaluation because the two baseline web-crawling modules mentioned
in Section 3.4.4 require an enormous amount of time (a few weeks at most) to
complete web crawling. About 90% of web crawling conducted with STRAYSHEEP
finished within an hour in our preliminary experiment (similar results are shown
in Fig. 3.5); therefore, we set the timeout to one hour. To find the best maximum
depth for collecting the most malicious domain names when we used the timeout,
we changed the depth from two to six. The number of malicious domain names
monotonically increased up to depth four and decreased as the depth increased.
Therefore, we set the maximum depth to four in the following experiments.

To determine keywords for selecting lure elements, we followed the statistical
method described in Section 3.3.2. First, we manually browsed landing pages (e.g.,
game download, movie streaming, and torrent sites) and clicked on various HTML
elements. We also browsed intermediate pages navigated from them, such as fake
virus alerts, file downloading, and advertising pages served by URL shorteners. We
then gathered 1,447 lure elements from 978 web pages, which we confirmed finally
led to SE attacks. To determine if the reached web pages contained SE attacks, we
used URL/domain blacklists (Google Safe Browsing, Symantec DeepSight [45], and
hpHosts [46]) to match visited web pages and checked the MD5 hash values of the
downloaded binaries with VirusTotal. We defined an SE page, which matched the
blacklist whose label was associated with SE attacks (e.g., phishing, tech support
scam, and survey scam) or started downloading malware or potentially unwanted
programs (PUPs) [47, 48]. We used the same method of checking SE pages in the
following experiments. We randomly selected 5,000 non-lure elements that did not
redirect to any SE pages from the landing and intermediate pages. We created
lure and non-lure elements’ documents containing words extracted from attributes
and text content to calculate tf-idf. Finally, we chose 31 keywords specific to the
lure elements by excluding proper nouns (e.g., game and movie titles) and words
with zero tf-idf values.

3.4.3 Effectiveness of URL Collection

To show the effectiveness of STRAYSHEEP’s landing-page-collection module, we
validated landing pages collected by this module; thus, we used the web-crawling
module to recursively crawl the landing pages and identified whether visited web
pages caused SE attacks. We compared the number of collected landing pages that
led to SE attacks across the five methods, i.e., the landing-page-collection module’s
two methods (search engine and social media) and three baseline methods (Alexa
top sites, trend words, and core keywords). We collected 5k landing pages for each

25

method.

Search Engine (StraySheep’s Method) This method collected a total of 3k
core keywords from EC/database sites, such as amazon.com, steampowered.com,
billboard.com, and imdb.com, which we chose from Alexa top 500 sites. These core
keywords were divided into five categories: software (game and applications), video
(movie, animation, and TV series), music, eBook, and comic. We can increase the
variety of landing pages by collecting different types of core keywords, which are
often used in illegal sites to lure users. This method generated 90k search queries
by concatenating the core keywords with an average of 30 predefined qualifiers for
each category. When we search for only core keywords, many legitimate sites, such
as official sites of movies or games, are included in the search results. However, we
can collect more landings pages leading to SE attacks, including illegal sites, by
adding qualifiers to core keywords. It searched the queries using Microsoft Bing
Web Search APT [49] (Bing API) and collected about 1M unique URLs. In that
web search, it gathered URLs from up to 30 search results for each search query.
Note that the search queries containing the same core keywords with different
qualifiers sometimes returned duplicate search results, and some search queries
returned less than 30 search results. Finally, we randomly sampled 5k URLs from
the collected 1M URLs to crawl for the crawling experiment.

Social Media (StraySheep’s Method) This method also searched seven social-
media platforms (Facebook, Twitter, Youtube, Dailymotion, Vimeo, Flickr, and
GoogleMap) using the same search queries as the above search-engine experiment.
Attackers post fake messages on social media such as free downloads of games
and streaming of movies to lure users into accessing their links. By collecting
such social media posts, we can also gather landing pages that do not appear in
search engine results. This method extracted links from posting messages (from
Facebook, Twitter, and Flickr), descriptions of uploaded video (from Youtube,
Dailymotion, and Vimeo), and descriptions of GoogleMap’s My Maps. It used
search forms on Youtube, Dailymotion, and Facebook because they have flexible
search mechanisms and searched Bing API for the other social-media platforms to
gather up to 30 social media postings for each search query. It searched for 10k
search queries (sampled from 90k search queries) for each social-media platform
and found a total of 130k unique social-media postings. These search queries often
returned less than 30 search queries. This method then gathered 45k unique links
by scraping these 130k social-media postings. Some social-media postings did not
include any links or included multiple links. Finally, we randomly sampled 5k
URLs from the 45k links for the crawling experiment.

Alexa Top Sites (Baseline Method) We gathered the top 5k domain names
from Alexa top sites and converted them to 5k URLs by adding “http://” to the
domain names.

Trend Words (Baseline Method) We searched the top 1k trend words collected
from Google Trends using Bing API and randomly selected 5k URLs from the 30k
search results (retrieved 30 results per query).

Core Keywords (Baseline Method) We simply searched the same set of 3k
core keywords we used for the above Search Engine method and randomly sampled
5k URLs from the 90k search results (retrieved 30 results per query).

26

Table 3.4: Results for each web-crawling module.

STRAYSHEEP ElementCrawler LinkCrawler
SE pages Total SE pages Total SE pages Total
of Total pages 9,374 (5.4%) 173,060 13,559 (2.4%) 562,708 19,241 (3.6%) 540,822

of Unique visited pages 6,283 (8.5%) 73,906 5,998 (3.1%) 191,901 5,445 (3.0%) 180,920
of Unique visited domains 513 (6.7%) 7,660 437 (3.2%) 13,545 335 (3.4%) 9,734

Table 3.3 lists the results of web crawling for each method. The landing pages
that led to SE attacks and collected with the search-engine and social-media meth-
ods accounted for 21.2 and 16.2% for each 5k landing pages. While, those of the
three baseline methods (Alexa top sites, trend words, and core keywords) were
much smaller, 0.7, 1.3, and 0.9%, respectively. From the results of the search-
engine and social-media methods, the numbers of unique visited URLs and domain
names were larger than those of the three baseline methods. Since StraySheep’s
methods, which use qualifiers, collected about 20 times as many landing pages lead
to SE attacks as the baseline method (Core Keywords) when using the same set
of core keywords, qualifiers are effective in collecting landing pages. The number
of malware samples reached from the URLs collected with the search-engine and
social-media methods was also larger than that of the other three methods.

3.4.4 Efficiency of Web Crawling

To evaluate the efficiency of STRAYSHEEP’s web-crawling module, especially the
function to follow lure elements selected by the selecting component, we compared
the ratio of SE pages in visited web pages and the time to reach SE attacks among
three web-crawling modules: that of STRAYSHEEP’s web-crawling module and two
baseline web-crawling modules. Then, we compared the crawling performance of
STRAYSHEEP with that of TrueClick [36].

Comparison of crawling performance with baseline web-crawling mod-
ules and StraySheep We implemented the two baseline modules: ElementCrawler,
which extracts all visible elements on the web pages and simply clicks them, and
LinkCrawler, which purely selects all the link elements (HTML a tag with href at-
tribute) and clicks them. Note that elements selected by ElementCrawler contain
all those selected by LinkCrawler or STRAYSHEEP’s web-crawling module. Ele-
mentCrawler and LinkCrawler are alternative implementations of STRAYSHEEP's
web-crawling module, which are implemented by replacing the selecting compo-
nent (see Section 3.3.2) with the function of selecting all elements or all links from
an HTML source code. The landing pages we input to the three modules were
the same 10k URLs as those collected by the landing-page-collection module, as
mentioned in Section 3.4.3, which are the 5k URLs collected from a search engine
and another 5k URLs collected from social media. We newly crawled the 10k
landing pages using ElementCrawler and LinkCrawler under the same condition
mentioned in Section 3.4.3. We compared these crawling results with those of the
above experiment in which STRAYSHEEP’s web-crawling module crawled the 10k
landing pages. In the same manner as the above experiment, we identified SE
pages using blacklists and VirusTotal.

27

100%

StraySheep: 88.5%
80% -
0, -
60% = StraySheep
ElementCrawler
= == |inkCrawler
40% -
LinkCrawler: 29.9%
I ElementCrawler: 22.8% e m—_———TT _ .
20% - _____::::‘:_,..“.........
’.—--fi"""l-
fﬂ'"ﬁf. |
0% 1 T T T I I
00:00:00 00:10:00 00:20:00 00:30:00 00:40:00 00:50:00 01:00:00

Time

Figure 3.5: CDF of time taken to complete web crawling for each landing page within
a 1-hour timeout. Horizontal lines mean the percentage of web crawling
completed before timeout.

Table 3.4 shows the number of total pages, unique visited pages, and domain
names for each web-crawling module. The numbers of unique visited pages and
domain names of SE pages visited with STRAYSHEEP’s web-crawling module were
6,283 pages and 513 domain names, which were larger than those of the baseline
modules, and the percentages of pages and domain names of SE pages were also
larger than those of the baseline modules (8.5 and 6.7%, respectively). Although
the numbers of total pages of ElementCrawler and LinkCrawler were three times
larger than that with STRAYSHEEP’s web-crawling module, STRAYSHEEP’s web-
crawling module had the best percentage (5.4%) for all SE pages. This is because
STRAYSHEEP’s web-crawling module selected lure elements from thousands of el-
ements to crawl web pages likely to cause SE attacks, while ElementCrawler and
LinkCrawler simply took turns to click elements and reached many benign web
pages. In short, ElementCrawler may crawl all potential SE attacks by taking
an enormous amount of time; however, STRAYSHEEP can reach SE attacks in a
shorter time by selecting lure elements.

Next, we analyzed the efficiency of each web-crawling module by comparing
the time taken to complete visiting web pages branching from the landing page.
Figure 3.5 is a cumulative distribution function (CDF) of the time for each web-
crawling module, which shows the percentage of web crawling finished at a certain
time out of all web crawling starting from 10k landing pages. We found that 88.5%
of STRAYSHEEP’s web crawling module finished within one-hour timeout. In con-
trast, ElementCrawler finished only 22.8% of web crawling within the timeout,

28

Table 3.5: Crawling efficiency of each web-crawling module.

STRAYSHEEP ElementCrawler LinkCrawler

of unique domains of visited SE pages 513 437 335
Total crawling time [sec] 8,429,288 29,698,118 28,421,460
Crawling efficiency [/sec] 6.1-107° 1.5-107° 1.2-107°

and LinkCrawler finished 29.9%. The average time to complete the web crawling
for each landing page was 14 minutes for STRAYSHEEP’s web-crawling module, 49
minutes for ElementCrawler, and 47 minutes for LinkCrawler.

To measure the web-crawling modules’ ability to reach SE attacks per total

crawling time, we calculated crawling efficiency.
Unique domains of visited SE pages

Crawling Efficiency [/sec] = Total crawling time [sec]

Crawling efficiency indicates the ability to reach the unique domain names of
SE pages per unit of time. Higher crawling efficiency implies that the module can
efficiently reach new SE pages.

We show the crawling efficiency for each web-crawling module in Table 3.5. To-
tal crawling time in Table 3.5 represents the sum of the times to complete crawling
10k landing pages. The crawling efficiency of STRAYSHEEP’s web-crawling module
was 4.1 times higher than that of ElementCrawler and 5.1 times higher than that
of LinkCrawler, making it the most efficient module to reach SE attacks. As de-
scribed in Section 3.3.2, since STRAYSHEEP’s web-crawling module detected lure
elements that led to SE pages by using the selecting component, it visited more
SE pages in less time than the two baseline modules.

We also examined the ability to visit SE attacks that can be reached via mul-
tiple web pages. Table 3.6 shows the number of unique domain names observed
at each depth. Note that each depth may have duplicate domains because the
web-crawling modules visited the same domains at different depths. Also, the
number of domain names observed at a depth of 1 was the same because each
module visited the same landing pages. The number of domains of SE pages show
that STRAYSHEEP’s web-crawling module efficiently visited more domains of SE
attacks at every depth than the baseline modules. As the depth became deeper,
the percentages of an SE page’s domains that ElementCrawler and LinkCrawler
detected decreased. On the contrary, the percentages of an SE page’s domains
that STRAYSHEEP’s web-crawling module visited were 5.5% at a depth of 2, 6.3%
at a depth of 3, and 9.4% at a depth of 4; thus, the deeper STRAYSHEEP’s web-
crawling module crawled, the more it efficiently visited SE pages. As described in
Section 3.3.2, STRAYSHEEP selects lure elements that lead to SE attacks so that
the web-crawling module can reach more of an SE page’s domains even though it
crawls deeper.

Comparison of crawling performance with TrueClick and StraySheep
We also conducted an additional experiment comparing the crawling performance
of STRAYSHEEP with that of TrueClick in terms of the ability to reach SE pages
and collect malware executables. TrueClick is a tool that distinguishes fake ad-
vertisement banners (trick banners) from genuine download links. TrueClick has

29

Table 3.6: Unique domain names observed at each depth.

Depth STRAYSHEEP ElementCrawler LinkCrawler
SE Total SE Total SE Total
1 91 (2.2%) 4,187 91(2.2%) 4,187 91(2.2%) 4,187
2 223 (5.5%) 4,043 159 (4.1%) 3,882 126 (4.6%) 2,726
3 231 (6.3%) 3,692 171 (3.5%) 4,895 148 (3.9%) 3,844
4 348 (9.4%) 3,685 299 (2.8%) 10,694 303 (3.4%) 8,939

Table 3.7: Results of web crawling using STRAYSHEEP and TrueClick.

Unique visited pages Unique visited SE pages Unique malware samples

(domain names) (domain names)
STRAYSHEEP 48,524 (5,809) 3,897 (219) 266
TrueClick 7,017 (2,978) 523 (78) 1

Table 3.8: Unique SE pages observed at each depth by using STRAYSHEEP and

TrueClick.
denth SE pages crawled using StraySheep SE pages crawled by TrueClick
P (domain names) (domain names)
1 97 (44) 97 (44)
2 845 (86) 356 (35)
3 1068 (104) 48 (12)
4 2302 (106) 25 (12)
Unique SE pages 3,897 (219) 523 (78)

TrueClick

StraySheep

Figure 3.6: Overlap of SE pages’ domain names observed using STRAYSHEEP and
TrueClick.

the similar purpose as STRAYSHEEP for finding HTML elements that are made
to deceive users and direct to a malicious site or malware executable, but it only
finds elements displayed by advertising providers regardless of the web site owner’s

30

intention.

Since the source code of TrueClick has not been published, we re-implemented
TrueClick based on the implementation details of the paper [36] using a manually
collected dataset containing 87 trick banners and 51 genuine banners, which is
almost equivalent to the amount of the original dataset (165 trick banners and 94
genuine download links), to train a machine learning model. The trained model
identifies trick banners with 98.6% accuracy. We then created a baseline crawl-
ing module by replacing STRAYSHEEP’s selecting component (Section 3.3.2) with
TrueClick implementation.

To equivalently compare the crawling results under the same experimental
condition in terms of the period of landing-page collection and web crawling, we
have collected 5k URLs in the same manner as that mentioned in Section 3.4.4 and
crawled them using both STRAYSHEEP’s web-crawling module and the baseline
module as of November 2019. Since this experiment was conducted at a different
period than the one explained above, we newly collected 2.5k landing pages each
from a search engine and social media as input URLs. Table 3.7 summarizes the
results. STRAYSHEEP visited more SE pages than TrueClick because it follows
not only trick banners but also buttons and links intentionally placed by web
site owners to lead to SE attacks. While STRAYSHEEP successfully downloaded
266 malware samples, TrueClick downloaded only 1 malware sample. This is
because, in most cases, genuine download links distribute malware samples instead
of trick banners on web pages redirected from the first trick banners on landing
pages. Table 3.8 shows the number of unique SE pages observed at each depth.
Similar to the results in Table 3.6, STRAYSHEEP reached more SE attacks as
it crawled deeper. Conversely, the number of SE pages that TrueClick reached
considerably decreased deeper than depth three. The reason for this is that as
we crawl deeper from the landing page, the number of trick banners decreases.
Additionally, intentionally placed lure elements including genuine download links
mainly lead to SE attacks at deeper depths. Figure 3.6 shows the overlap of SE
pages = domain names observed using each crawler. Although STRAYSHEEP did
not visit a small number of SE pages dynamically served by ads, it covered most
of the SE pages observed by TrueClick. In summary, to collect more multi-step
SE attacks, we need not only to detect trick banners but also follow lure elements.

3.4.5 Evaluating the SE Detection Module

We evaluated the effectiveness of STRAYSHEEP’s SE-detection module using Web-
Trees, which are the outputs of STRAYSHEEP’s web-crawling module. We used
30k WebTrees constructed from the results of web crawling starting from 30k
landing pages. These WebTrees consisted of the 10k landing pages crawled by
STRAYSHEEP’s web-crawling module (Section 3.4.4) and additional 20k landing
pages. The 20k landing pages were collected and randomly sampled in the same
manner as for the 10k landing pages mentioned in Section 3.4.3. We carried out
the web crawling in the same environment in the same period to output additional
20k WebTrees.

To create datasets for evaluation, we extracted malicious and benign sequences

31

from the 30k WebTrees. The 30k WebTrees contained a total of 243,914 unique
web pages (13,415 unique domains) of visited web pages. To label these web
pages as SE pages, we used blacklists (same as in Sections 3.4.3 and 3.4.4) and
VirusTotal. We labeled 51,501 unique web pages (unique 1,066 domains) as SE
pages and extracted 1,066 sequences, which reached 1,066 different domain names
from distinct landing pages. We excluded unreachable or parking domain pages
and created 1,045 sequences as the malicious dataset. To create a benign dataset,
we randomly sampled 1,045 sequences that did not visit SE pages.

To evaluate the detection accuracy of the SE-detection module, we conducted
a 10-fold cross-validation (CV) on the labeled dataset. The SE-detection module
classified our dataset with a precision of 97.4%, recall of 93.5%, and accuracy of
95.5%. When we changed the learning algorithm from random forest to support
vector machine, logistic regression, and decision tree, their accuracies were 93.6%,
90.8%, and 90.7%, respectively. The percentage of feature importance accounted
for 65.2% of features extracted from the last page (last page features), 28.2%
of features extracted from the previous page (previous page features), and 6.6%
of features extracted from the entire sequence (sequence features), as shown in
Table 3.1.

Although the SE-detection module can accurately identify multi-step SE at-
tacks, the evaluation result contained some false positives and false negatives. We
discuss ideas for reducing these false positives and false negatives. The false posi-
tives included popular shopping and casino sites that were redirected from pop-up
ads triggered by unintended click. We can reduce these false positives by extract-
ing long-term stable and popular domain names from domain lists such as Alexa
to create a white list. We also found false negatives that were listed on blacklists
but not detected by the SE-detection module. Since we only trained web pages
written in English in this experiment, Some web pages written in non-English lan-
guages were included in false negatives. Ad providers may change web pages to
serve depending on the region of a source IP address. Therefore, we can accurately
detect multi-step SE attacks by automatically translating web pages to English or
by training web pages written in a specific language corresponding to the region
of the source IP address.

To show the relationship between detection accuracy and features, we divided
the features into four feature sets: last page, previous page, sequence, and the
combination of last and previous page (feature sets without our proposed sequence
features). We conducted 10-fold CVs using all feature sets and four divided feature
sets with the same dataset discussed in Section 3.4.5. Figure 3.7 shows the receiver
operating characteristic (ROC) curves for the classification results. The most
accurate result was the CV using all features in order of the combination of last and
previous page, last page, sequence, and previous page feature sets. The area under
the curve (AUC) for each result was 0.965, 0.955, 0.948, 0.923, and 0.829. This
experiment revealed that our original page-level features that analyzed linguistic,
image, and HTML characteristics were useful in detecting various types of SE
attacks, i.e., not limited to a specific SE attack. However, we can classify more
accurately by using the features of a previous page and sequence together that
STRAYSHEEP automatically collects.

32

1.0
0.8
()
] .
[©] N
o ;
@ 06+ i
= i/
S i/
© 0.4+ E'I!
E {I- —— All features
0 i Last page features
' ' —-— Previous page features
| ------- Sequence features
004 | ---= Last and previous page features
| | | | | |
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 3.7: ROC curves of SE detection results for each feature set.

Some web pages had similar appearances to known SE pages but were not
blacklisted. To find such potentially unknown SE pages, we leveraged the SE-
detection module to classify the remaining 192,620 sequences of the 11,304 domain
names not used in the evaluation. As a result of manually excluding false posi-
tives (27 domains) from the classification results, we found 359 unknown domain
names associated with SE attacks. We not only detected web pages where page
contents were shared across multiple domain names to expand attack campaigns
(e.g., Fig 3.8 and Fig 3.9), but also discovered unreported domain names associ-
ated with technical support scams and survey scams. This process was conducted
by analyzing screenshots to check whether suggested software and extensions or
login pages are associated with legitimate services. One example of the false posi-
tives was a Facebook login page opened by a popup that redirected from an illegal
software-download blog by clicking a share button. Another example was a down-
load page of legitimate anti-virus products that transferred by clicking advertising
in an iframe. We finally found a total of 1,404 unique domain names (the 1,045
blacklisted domain names and newly detected 359 domain names), and 56,922 se-
quences reached the 1,404 domain names. The number of sequences’ steps (i.e., the
number of page transitions) from one to three is 11,855 (20.8%), 13,813 (24.3%),
and 31,254 (54.9%), respectively.

33

Table 3.9: SE attack categories

Category SE domain names
PUP 566 (40.2%)
Malware 310 (22.1%)
Unwanted browser extension 181 (12.9%)
Multimedia scam 94 (6.7%)
Phishing 70 (5.0%)
Survey scam 25 (1.8%)
Tech support scam 20 (1.4%)
Fake browser history injection 16 (1.1%)
Malvertisement redirection 13 (0.9%)
Cryptojacking 3 (0.2%)
Other SE attacks 109 (7.8%)
Total 1,404 (100%)

3.5 Detailed Analysis of Detected Multi-step SE
Attacks

We conducted a detailed analysis of the collected multi-step SE attacks men-
tioned in Section 3.4.5 (1,404 domain names and 56,992 sequences). To show that
STRAYSHEEP found a wide variety of SE attacks, we categorized the observed
SE page’s domain names and investigated the attacker techniques to deceive and
persuade users for each SE attack category. We then analyzed the browser inter-
actions and advertising providers that led to SE pages to clarify the cause of SE
attacks. Finally, we investigated network infrastructures hosting SE attacks.

3.5.1 SE Attack Categories

To clarify the types of multi-step SE attacks detected by STRAYSHEEP, we cat-
egorized the 1,404 domain names into 11 categories, as shown in Table 3.9. We
used labels of blacklists (Google Safe Browsing, Symantec DeepSight, hpHosts)
and virus scan results of VirusTotal to categorize the attacks. We leveraged AV-
Class [50] to classify detected binaries as PUPs or malware. We also checked the
appearance of these domain names’ web pages to complement categorization.
PUP and Malware The most common categories we identified were PUP (566
domain names) and malware (310 domain names). These categories are SE at-
tacks where PUPs and malware were downloaded due to browser interactions.
STRAYSHEEP downloaded 6,924 unique binary executable files (e.g., .exe or .dmg).
For example, we found that these binaries were disguised as fake game installers,
fake anti-virus software, and fake Java/Flash updaters. Out of the 6,924 binaries,
we detected 1,591 unique binaries including 1,090 malware samples and 501 PUPs
by checking their MD5 hash in VirusTotal and using AVClass. We confirmed that
3,336 unique binaries were never uploaded to VirusTotal. Although the remain-
ing 1,997 unique binaries were already uploaded, they were not detected by any
anti-virus software in VirusTotal.

The 2,141 out of the 3,336 binaries that were not uploaded had 1,347 unique

34

filenames, which were automatically set according to the previous page (e.g., “[the
title of the previous page|.exe.rename”). Figure 3.8 shows examples of these web
pages. The web pages that downloaded these binaries contained instructions to
entice users to remove “.rename” and execute them. We found 504 unique do-
main names downloading these binaries. The 175 out of these 504 domain names
matched the blacklists and the other 329 domain names were newly detected by
STRAYSHEEP. The reason for making users change the file extension is to cir-
cumvent the download-protection function of web browsers. Since the hash values
of these binaries also changed at every downloading, none were ever uploaded to
VirusTotal. To check whether these binaries were malicious, we chose ten samples
from the binaries and uploaded them to VirusTotal. Then, all ten samples were
detected as “StartSurf” or “Prepscram” family names.

Unwanted Browser Extension We categorized 181 domain names as distribut-
ing unwanted browser extensions. We confirmed that these domain names were
detected as “Fake Browser Extension Download” or “Unwanted Extension”, which
led to install pages (https://chrome.google.com/webstore) of 128 unique Google
Chrome browser extensions. However, we found that 119 (93.0%) extensions were
still available on the browser extension install pages a month after the crawling. By
investigating these browser extensions, we found that 18 (14.1%) extensions were
search tool bars, and 14 (10.9%) extensions were file converters. Security vendor
blog postings and online forums stated that some extensions were malicious exten-
sions or browser hijackers that modify web browser settings, track user’s browsing,
and inject unwanted advertisements [51]. As a result of our dynamic analysis
of some browser extensions using a real browser, we observed suspicious behav-
ior such as displaying popup advertisements and changing the default browser’s
homepage and search engine to web pages hard coded in many malware samples.
To determine the popularity of these browser extensions, we searched each ex-
tension name on a search engine. We then found that the search results of 100
extensions (78.1%) consisted of one or more web pages explaining “How to remove
[browser extension name]” or “Virus removal guide”. Surprisingly, most of these
web pages introduced not only removal methods but also suggested yet more fake
removal tools, which were detected as PUPs or malware. Attackers prepared the
web pages for tricking technically unsophisticated users who disrupt these browser
extensions. Thus, even if the users successfully remove the unwanted browser
extensions, they also become victims of other SE attacks. STRAYSHEEP’s SE-
detection module newly found 21 domain names out of the 181 domain names we
categorized. STRAYSHEEP successfully finds unwanted browser extensions by ana-
lyzing distribution web pages and sequences that led to them instead of analyzing
their source codes and behaviors.

Multimedia Scam We found web pages (94 domain names) that ask for credit
card registration in exchange for offering free access to movies or music. Their
content, such as input forms, logos, and background images, were shared among
each other. We call them multimedia scams in this study. Only 27.7% (26/94)
of domain names were listed in blacklists; however, STRAYSHEEP’s SE-detection
module newly found 72.3% (68/94) domain names. Some security vendor blog
postings and online forums reported that these web pages fraudulently charge

35

credit cards [52]. We found that some words (e.g., media, play, and book) were
frequently used in the domain names, such as etnamedia.net, kelpmedia.com,
dewymedia.com, parryplay.com, cnidaplay.com, and mossyplay.com.

Figure 3.9 shows examples of multimedia scams. These web pages suggest users
to register for free membership to obtain movies, music, or games. When users
are tricked to input their credit card numbers, the web pages fraudulently charge
them.

Phishing We observed 94 domain names detected as phishing, which were at-
tempting to steal user’s sensitive information such as email addresses or passwords.
Survey Scam We found 25 survey scam domain names, which spoofed famous
companies and promised rewards such as iPhones and gift cards. Although Sur-
veylance [12] only identified landing pages that have survey content and interacted
with them to reach survey scams, STRAYSHEEP recursively followed lure elements
to detect survey scams reached from landing pages that did not have survey con-
tent.

Tech Support Scam We observed 20 tech support scam domain names that
displayed fake virus-infection messages and telephone numbers of support centers
to urge users to call. STRAYSHEEP reached the scams from sequences of web pages
starting from the search engine’s results and social media postings, which are not
observed with other systems [25, 14].

Fake Browser History Injection We found 16 Fake browser history injection
attacks domain names, which injected URLs into the browser’s history to force
users to redirect to another SE page when the browser’s back button is clicked.
To interact with such attacks, STRAYSHEEP attempted clicking the back button
for each web page and determined that the action led to other SE pages.
Malvertisement Redirection We found 13 Malvertisement website redirect do-
mains [53, 54] that also led users to other SE pages.

Cryptojacking We found three Cryptojacking domain names that secretly used
user’s CPU resources to mine cryptocurrencies by injecting JavaScript codes.
Other SE Attacks We observed various SE attacks other than those mentioned
above, such as one just indicates the “Social engineering” label.

3.5.2 Common Infrastructures of Multi-step SE Attacks

To clarify the common infrastructures of multi-step SE attacks and attacker’s tech-
niques leading to the attacks, we analyzed the 56,922 sequences (see Section 3.5)
that led to SE pages.

SE Attacks Caused by Unintended Clicks We observed opening popup/pop-
under windows caused by unintended clicks such as clicking anywhere on a web
page and on the browser’s back button. Such popups are often set by JavaScript
codes provided by advertising providers to the web page’s owner. The follow-
ing three files are the most frequently loaded on web pages leading users to SE
pages: “cl.popads[.]net/pop.js”, “cdn.popcash[.]lnet/pop.js”, and “cdn.
cpmstar[.]com/cached/jspopunder_v101.pack. js”. Since such advertisements
are common infrastructures for SE attack distribution, they are used in various web
pages. The sequences in which popups caused by unintended clicks occurred were

36

20.0% (11,373/56,922) of all sequences. The sequences in which popups caused by
unintended clicks occurred in the landing pages were 8.7% (4,952/56,922) of all se-
quences. We also observed exit-driven redirections that were triggered by clicking
on the browser’s back button, which was 4.5% (2,578/56,922) of all sequences.
Alert Dialog Of all sequences, 2.9% (1,651/56,922) included a web page that
displayed more than one alert dialog. We found 66 distinct alert messages, such
as those of fake virus infection and fake rewards, which might strongly influence
user psychology. To investigate the relationship between the content of alert mes-
sages and SE attacks, we categorized the 66 alert messages into the three attack
classes of comply, alarm, and entice. These classes were defined in a previous
study [24]. We found 30 Comply alerts that were often used on fake Java/Flash
update web pages for luring users to install PUPs and malware, such as “Please
install Java to continue.” and “Your Flash Player might be out of date. Please
install update to continue.” We found 19 FEntice alerts that made users input
sensitive information, such as “CONGRATULATIONS! Your IP address has been
selected to receive a Year of FREE Netflix!” We found 17 Alarm alerts that showed
warning messages such as “IMMEDIATE ACTION REQUIRED We have detected
a trojan virus” with alert sounds in some cases (e.g., <audio src="alert.mp3"
autoplay>). Users were directed to install fake anti-virus software or call fake
technical support centers.

37

H1Z1-keygen
download is ready!

Note! Rename the downloaded file to setup.exe and open it
Important

seiect ‘Show in folder

Open

Always open files | 2 5

— Right click and select Double c!'Ck on

IR “Rename” to setup.exe exe file
Name
Delete
= 7 setup
~

Rename
Pmpeme;‘\\

Press yes

=

Warcraft 2 Beyond the Dark Portal Download PC
download is ready!

e! Rename the downloaded file to setup.exe and open it

Important
select "Show in folder

Open

Always spen files 1 2)
A Right click and select Double c!|ck on
“Rename” to setup.exe exe file
Name
Delete
- 5 eetop

Rename
Pvupeme\

Press yes

PLAYSTATION 2 ALL BIOS FILES COLLECTION POST
download is ready!

\; eralote! Rename the downloaded file to setup.exe and open it

select “Show in folder’
‘Open
Always open files 1 2 .
T Right click and select Double C!'Ck on
“Rename” to setup.exe . exe file
Delete = i

Rename
Proped\e\

Figure 3.8: Examples malware-distribution pages that require user to rename files and
execute them.

38

PLAY YOUR FAVORITE
GAMES FREE

Sign Up For FREE!

Please fill out the following fields to create an account:
*“Emall and password are case sensitive

Don't have an account?

sign up now! it only takes 2 minutes to signup for over a million
titles. Existing users, please enter Members' Area here.

1. Account Info 2. Verification 3. Enjoy

We value your privacy. We will not sell o rent your email
address to third parties. See our Terms & Conditions and
Privacy Policy for mere detalls.

FREE & UNLIMITED
GAMES MUSIC BOOKS MOVIES &more

Sign Up For FREE!

Please fill out the following fields to create an account:
*Email and password are case sensitive
need to sign up to download

unlimited

Don't have an account?

sign up now! It only takes 2 minutes to signup for over a million
titles. Existing users, please enter Members' Area here.

1. Account Info 2, Verification 3. Enjoy Continue

We value your privacy. We will not sell or rent your email
address to third parties. See our Terms & Conditions and
Privacy Policy for more details.

WATCH YOUR FAVORITE MOVIES
FOR FREE

Please fill e following fields to create an account

*Email and password are case sensitive

You need to sign up to download

Don't have an account?

sign up nowl it only takes 2 minutes to signup for over a million
titles. Exist

1. Account Info 2. verification 3. Enjoy Continue

we value y
addre:
Privacy Policy for more d

jsrs. Qledse enter Members’ Area here.

12 & Conditions a

Figure 3.9: Examples of multimedia scams.

39

VL0'T19 F00°098°LLY 00F'TIS'T9T @8L |68°¢ 8€'6£€C 0G'TEI T0°0 L09 899°788'F £G€'EVS'STT'Z 000°008°C0T 96'6 9LV 7071 [e30T,
18€°289 TLF'I9%'€O FISLSE'TTIC €6 190 TEVE 298 T001¢ G6T°9L9°G 99F°€€6°8GT 000°00%'CTT T6T'ST 8¢ ave iZ
G98°¢29°T €09°696°C0E 00F'T9S'TOT T8I 1€°¢ G6°9LF 00792 100 F¥T TL6'F6L'C 8T6'998°T0E 000°09%'26 97E°9T 80T 887 ¢
67L'€cT 891°€6G°cS T190°LCL'61C STb 067 ©9F89T 0S°1€9 T10°0 ¥7€ 119°89°G LSE TIT E8F T 000°008°G0T 9566 193 089 C
GOR'80L T9L'GER']SG TGT'968°0€T €8 1T 6V'E€FT 0LTF 10089 TT8'0FL'T 2T T68'F8T 000°00£°0TT 9T9°9T 6€ 76 1

BJRp pI[RA eyep prea rjep prea

eI\ wng XRIN U\ [IM SOWRU |URIJ\ WING XBJN UL\ [IM SOUIeU (eI wng XRIN ur)M SowRU

Urewop Jo # urewop Jjo # Urewop Jo #
(setomb N () GASNA (s30sm woyut 10d smoraoged) (qauowr 1od S)ISTA TR103) (OA\ TRIUIIS surewiop Jjo # yido(q

) 9OTAIOG UOTIBULIOJUT (OAN BXI[Y T T)

"GASN{ PUe ‘901AI9G UOIJRULIOJU] (oA BXI[Y
‘qoATRTIIIG Aq POIRSI)SOAUT SS90k I9SN I19Y) pue I9pio Surpusdse ul yjdop yoes je seureu urewop soSed S POAISSqO A(MaN :0T°€ 9IqelL

40

Table 3.11: Advertising provider domain names redirected to SE domain names.

Advertising provider # of unique SE domains redirected from ad provider
newstarads.com 155
traktrafficflow.com 134
mybestmv. com 123
revimedia.com 122
naganoadigei.com 99
doubleclick.net 90
googleadservices.com 80
adk2x.com 75
clksite.com 52
cobalten.com 41
bodelen.com 41
googlesyndication.com 36
cpmstar.com 29
go2affise.com 28
inclk.com 23
digitaldsp.com 21
dtiserv2.com 19
tradeadexchange.com 19
adf.ly 19
adreactor.com 19
friendlyduck.com 16
revcontent.com 16
servedbytrackingdesk.com 16
reimageplus.com 14
adnetworkperformance.com 14
All advertising provider 427

Advertising Domain Names Online advertising often results in SE attacks [24,
12]. To analyze SE attacks delivered by advertising providers, we extracted ad-
vertising providers’ domain names (ad domain) from server-side redirection on the
sequences. We leveraged public advertising provider lists [55] to identify ad do-
mains. Table 3.11 shows a list of ad domains and the number of unique domain
names of SE pages redirected from each ad domain. We found 25 ad domains
that led to SE attacks. Categories of SE attacks frequently distributed by ad do-
mains were multimedia scam, unwanted browser extension, fake anti-virus software
(PUP /malware category), and fake Java update (PUP/malware category). The ad
domain that redirected to the most SE page’s domain names was newstarads. com,
which led to 155 unique domain names. Two domain names (doubleclick.net
and googleadservices.com) redirected to 89 and 79 unique domain names of un-
wanted browser extension and they also redirected to the same phishing domain
names. We found that 30.4% (427/1,404) of the total SE domain names were
reached from these advertising domain names.

Prevalence of SE attacks We analyzed the statistics of user accesses to measure
how many users encountered multi-step SE attacks. We used SimilarWeb!, Alexa

'https://www.similarweb.com/

41

Table 3.12: Top 10
countries mapped

Country Percentage
UnitedStates 72.9%
Thailand 2.3%
Mexico 1.9%
Vietnam 1.9%
Canada 1.8%
Brazil 1.6%
Korea 1.4%
Indonesia 1.0%
Philippines 0.9%
Taiwan 0.8%

Table 3.13: Top 10 ASes hosting SE attacks

AS Percentage
Amazon.com, Inc. 50.5%
Google LLC 7.6%
Cloudflare Inc 2.9%
Uninet S.A. de C.V. 1.0%
VNPT Corp 1.0%
Level 3 Parent, LLC 0.6%
JasTel Network International Gateway 0.6%
Telefonica Brasil 0.6%
TOT Public Company Limited 0.6%
FPT 0.4%

Web Information Service (AWIS)?, and DNSDB? to investigate website traffic
volumes of 1,404 domain names that STRAYSHEEP collected, as mentioned in
Section 3.4. SimilarWeb and AWIS provide website traffic statistics of domain
names. DNSDB is a passive DNS database that provides the total number of
DNS queries of domain names. Table 3.10 lists the numbers of unique domain
names newly observed at each depth in ascending order and statistics (minimum,
maximum, sum, mean) of website traffic and DNS queries. Note that # domain
names with valid data means the number of domain names excluding the data
that are zero or not available in the data sources. Since most SE pages~ domain
names were observed at depth two, there were still 44.9% (630) of domain names
observed at deeper depths. In other words, there are many domain names at
deeper depths that can only be reached by following multiple web pages with
STRAYSHEEP. The statistics of user accesses and DNS queries show that these
websites have the same level of population with domain names observed at shallow
depths, some of which are covered by previous systems. For example, the mean of
SimilarWeb’s total visits at depth four (5,676,195) is almost the same as that at
depth two (5,682,611) and is larger than that at depth one (4,740,811). Also, the
sum of AWIS’s pageviews per million at depths three and four is 511.27, which is

’nttps://awis.alexa.com/
3https://www.dnsdb.info/

42

21.9% of the total. In the data of DNSDB, the number of valid domain names at
depth three (181) is less than depth two (425); however, the sum of DNS queries
(302,969,603) is larger than that at depth three (52,593,168). Therefore, we showed
that there are many malicious domain names that StraySheep reaches by following
multiple web pages from landing pages. Also, these domain names, which previous
systems cannot reach, have a large number of user accesses. One reason for this
is that these domain names are distributed by large-scale advertising providers, as
shown in Table 3.11.

IP Addresses Used for SE Attacks To analyze the relationship between each
SE page’s domain name, we leveraged DNSDB. The DNSDB enables us to find IP
addresses historically associated with domain names. If the same IP address is set
in the A record of different domain names, we assume that these domain names are
related. As a result of investigating the 1,404 domain names, we detected a total of
96,544 TP addresses associated with 1,349 domain names (55 domain names were
not found in the DNSDB). Note that multiple IP addresses were associated with
one domain name; thus, there are more IP addresses than domain names. We
found that 29.6% (28,617/96,544) of IP addresses were shared among more than
two domain names we detected, and these IP addresses (28,617) were associated
with 39.5% (554/1,404) of domain names. The 554 domain names were mainly used
for multimedia scams, PUP/malware distributions, survey scams, and unwanted
browser extension installs. We now focus on 94 multimedia scam domains and
their corresponding 20,589 IP addresses. We found that 87.8% (18,086,/20,589) IP
addresses were shared among more than two multimedia scam domains. One of
these IP addresses was shared with 84 multimedia scam domains we detected.
Geographical Attribution We analyzed the geographical attribution of IP ad-
dresses used for SE attacks. We used the same 96,544 IP addresses as the above
analysis. We queried GeolP2 Databases * for the country and Autonomous system
(AS) information associated with the IP addresses. Table 3.12 shows the top 10
countries whose IP addresses were used for distributing SE attacks. United States
accounted for 72.9% of all IP addresses, Thailand for 2.3%, Mexico for 1.9%, and
Vietnam for 1.9%. Table 3.13 shows the top 10 ASes. We confirmed CDNs and
cloud hosting providers are frequently abused for SE attacks. Amazon, Google,
and Cloudflare accounted for 50.5, 7.6, and 2.9%.

3.6 Discussion

In this section, we discuss the limitations of STRAYSHEEP and ethical considera-
tions during our study.

3.6.1 Limitations

There are limitations with STRAYSHEEP in terms of system environment, system
implementation, and evasion of our system.

‘https://www.maxmind.com/en/geoip2-databases

43

System Environment In the evaluation discussed in this chapter, STRAYSHEEP
was run in a single environment. Some SE pages may not serve the same web page
every time due to an ad network or cloaking technology. Specifically, a website
changes the web page to be delivered according to the source IP address, web-
browser environment, and browsing history. In this case, there are SE attacks
that cannot be reached in the current STRAYSHEEP environment. However, as
described in Section 3.3.2, STRAYSHEEP does not depend on the selected browser
environment and connection network. Thus, preparing multiple browser environ-
ments and connection networks enables us to collect environment-dependent SE
attacks.

System Implementation STRAYSHEEP implements web-search-based URL col-
lection methods; thus, attacks originating from other types of sources (e.g., email)
are out of its scope. Since SE attacks attempt to lure more users to their web pages,
attackers should prepare landing pages that can be easily visited from popular web
platforms, i.e., search engines and social media. STRAYSHEEP covered these plat-
forms and retrieve landing pages using easily customizable search queries. Since
interacting HTML forms are not implemented in STRAYSHEEP’s current web-
crawling module, it cannot crawl web pages that require login, account creation,
and survey. However, STRAYSHEEP’s SE-detection module can identify these web
pages because it uses not only features of the reached web page but also features
extracted from the entire sequence.

Evasion There may be an evasion technique against STRAYSHEEP’s web-crawling
module to create a web page that redirects users to SE attacks without preparing
any lure elements. This technique leads to a lowering of the collection efficiency of
SE attacks of STRAYSHEEP. There may be another evasion technique that intro-
duces CAPTCHA authentication in the middle of an SE attack. An SE attack with
CAPTCHA authentication cannot be collected with the current implementation
of STRAYSHEEP. However, these evasion techniques greatly reduce the number of
potential victims, which leads to a reduction in the success rate of attacks. There-
fore, we believe that it is unlikely that an attacker actually carries them out, as it
goes against the current trend of SE attacks.

There may also be an evasion technique against STRAYSHEEP’s SE-detection
module designed as a classification approach. Attackers modify an SE page’s
appearance to evade the future design and structure of web pages. However, this
module also extracts features from the entire sequence of web pages, such as the oc-
currence of popup windows displaying fake infection alerts and redirections caused
by a user’s unintended clicks. Thus, we believe it is still difficult for attackers to
evade because these features represent attackers’ effective techniques to lure users
to their web pages.

3.6.2 Ethical Consideration

Our study followed research ethics principles and best practices [56, 53, 54, 14].
While we conducted parallel crawling for various websites, each of our crawling ses-
sions sequentially traversed web content on the same website, so only a restricted
amount of traffic to the website was generated, which did not increase website

44

workload. Our crawling carefully created web requests according to the manner of
a real web browser and did not create any harmful web requests breaking or ex-
ploiting websites. Due to using a real web browser, our crawling faithfully performs
according to the natural behavior of web browsers. Furthermore, the intention of
our automated crawling is not to thwart the monetization model of benign web
ads. There is no alternative and realistic way to directly observe SE attacks except
for active crawling; however, there is a risk of unexpectedly contributing to ma-
licious pay-per-click (PPC) or pay-per-install (PPI) monetization. Our crawling
did not intentionally concentrate on specific PPC or PPI services.

3.7 Related work

Web-based SE attacks and their defenses have been gaining the attention of re-
searchers. We review related work in terms of collecting these attacks and an-
alyzing the attack mechanisms. Duman et al. focused on the visual properties
of trick banners, which lure users into clicking on fake links [36]. They built a
Firefox browser extension called TrueClick to detect such trick banners based on
image processing and machine learning. STRAYSHEEP finds lure elements includ-
ing trick banners, and interacts with them to confirm whether they actually lead
users to SE attacks. Rafique et al. analyzed free live streaming services and their
ecosystems [13]. They found that users of these services are exposed to ads, mal-
ware, and unwanted browser extensions. Our analysis found that not only live
streaming services but also web pages showing illegal content, such as music and
games, use lure elements to lead users to malware and unwanted browser exten-
sions. Nelms et al. studied the sequences of visited web pages preceding malware
downloads in drive-by download and SE attacks [23]. They proposed a system
called WebWitness to passively trace back the visited web pages to analyze how
users reach the attacks. They also presented a systematic study on successful SE
attacks leading to malicious and unwanted software [24]. They categorized and
identified the tactics used in such SE attacks to gain users’ attention. While these
studies [23, 24| passively traced back real victim’s traffic, STRAYSHEEP actively
collects SE attacks and does not rely on real victims. Vadrevu et al. devel-
oped a specific web-browser system called ChromePic to enable the reconstruction
of SE attacks [30]. ChromePic introduces a detailed snapshot of logging into
Chromium to enable the investigation of SE attacks. Whereas ChromePic focuses
on forensics after users reached SE attacks, proactive and large-scale crawling of
the latest SE attacks. Miramirkhani et al. conducted the first systematic analysis
of technical-support-scam web pages [25]. Specifically, they developed a system
that can identify such web pages and collect them to show their prevalence, the
abused infrastructure, and illicit profits. Srinivasan et al. analyzed technical sup-
port scams by focusing on search-engine results and corresponding sponsored ad-
vertisements [14]. They generated technical-support-related special search-engine
queries to discover previously unknown technical support scams. STRAYSHEEP
also