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Preface

This thesis is written on the subject “Re-embedding structures of graphs on surfaces and

related topics for graph colorings” and it is to be submitted to get the degree of Doctor

of Science at Yokohama National University. I will present my work on topological graph

theory which is based on our four papers written when I was in master’s and doctor’s

course. In particular, we focus on “re-embedding theory”.

The study of “embeddability of graphs on surfaces” is one of the most important topics

in the early days of topological graph theory, which originated in Kuratowski’s Theorem

and led to the deep Robertson-Seymour theory on graph minors. On the other hand,

since a graph may not have only one embedding on an embeddable surface, the follow-

ing questions also attracted many topological graph theorists: (1) How many (distinct)

embeddings on a surface does a graph have? (2) What kind of structures generate these

embeddings of the graph? We call the topic about these questions re-embedding theory.

We hope that this thesis can contribute to development of re-embedding theory.

After the introduction, the reader can find six chapters. In Chapter 2, we shall give

general terminology of (topological) graph theory. The remaining chapters consist of two

parts.

In the first part, we will present my work about re-embedding structures of graphs

on surfaces. In Chapter 3, we shall characterize re-embedding structures of 3-connected

3-regular planar graphs on the projective-plane, the torus and the Klein bottle. These

results enable us to give explicit bounds for the number of inequivalent embeddings of such

a graph on each surface, and propose effective algorithms for enumerating and counting

these embeddings. In Chapter 4, we shall expand the above results to strongly 2-edge-

connected 2-regular diplanar digraphs. That is, we characterize re-embedding structures

of strongly 2-edge-connected 2-regular diplanar digraphs on the projective-plane, the torus

and the Klein bottle. Moreover, we give a simpler proof of Archdeacon, Bonnington and

Mohar’s theorem [7, Corollary 2.3] than the original one, which states that every strongly

2-edge-connected diplanar graph is uniquely embeddable on the sphere.

In the second part, we will present my work about graph coloring problems from the

viewpoint of re-embeddings of graphs. In Chapter 5, we shall give an affirmative answers

ii



of Kündgen and Ramamurthi’s conjecture [44, Conjecture 8.1]: For each positive integer

k, there is a graph that has two different embeddings on the same surface whose weak

chromatic numbers differ by at least k. Moreover, we prove that there is a graph having

two triangulations on a surface, only one of which is weakly k-colorable if and only if

k ≥ 3. In Chapter 6, we shall give the upper bound for the difference of the facial 3-

achromatic numbers between two triangular embeddings of a simple graph on a surface

in terms of the genus of the surface.
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Chapter 1

Introduction

In graph theory, a graph G = (V (G), E(G)) is usually defined as a composite structure

of a non-empty and finite set V (G) and a family E(G) of 2-element subsets in V (G),

possibly empty. Each element in V (G) is called a vertex and each element in E(G) is

called an edge. To visualize this structure, we often draw a figure consisting of points and

curves joining two points, which correspond to the vertices and the edges, respectively.

In particular, drawing graphs on topological spaces with no pair of edges crossing is the

center of attention in topological graph theory. In this thesis, we deal with such drawn

graphs. So it is convenient that we regard a graph as a topological space with the structure

of a simplicial 1-complex, not only as a combinatorial object.

A (closed) surface is a compact connected 2-dimensional manifold without boundary.

An embedding of a graph G on a surface F 2 is an injective continuous map f : G → F 2.

Roughly speaking, an embedding of G on F 2 is a drawing of G on F 2 with no pair of edges

crossing. We often call the subspace f(G) in F 2 with the structure of a graph induced by

f ‘an embedding of G on F 2’ rather than the map f . If a graph G has an embedding on

a surface F 2, we say that G is embeddable on F 2. A planar graph is a graph embeddable

on the sphere (or, equivalently, embeddable on the plane).

We sometime consider that a graph G is already embedded on a surface and denote

its image by G itself to simplify the notation. However, if we deal with two or more

embeddings of G on some surfaces, then we denote them by f1(G), f2(G), . . . to distinguish

them, or denote a first given embedding of G by G itself and another embedding of G by

f(G). In the latter situation, we call f(G) a re-embedding of G.

The faces of a graph G embedded on a surface F 2 are the connected components

of the open set F 2 − G. We denote by V (F ) the set of vertices in the boundary of a

face F of G, and by F(G) the set of faces of G. We call G cellular if each face of G

must be homeomorphic to an open 2-cell, that is, homeomorphic to the unit open disk

{(x, y) ∈ R2|x2 + y2 < 1}. In this thesis, we mainly focus on cellular embeddings unless
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we particularly mention it.

Uniqueness and re-embedding problems

Two embeddings f1, f2 : G→ F 2 are equivalent if there is a homeomorphism h : F 2 → F 2

such that hf1 = f2, and they are inequivalent otherwise. We say that a graph G is uniquely

embeddable on F 2 (up to equivalence) if any two embeddings of G on F 2 are equivalent.

The following two questions are important and have attracted many topological graph

theorists:

(I) (Uniqueness Problem) What kind of graphs is uniquely embeddable on a given

surface?

(II) (Re-embedding Problem) If a graph has two or more inequivalent embeddings on a

surface, then how many inequivalent embeddings on a fixed surface does the graph

have, and what kind of structures generates inequivalent embeddings of a given

graph? (We often call such a structure the re-embedding structure.)

We call the topic about these problems Re-embedding Theory. (This topic is also called

the flexibility of embeddings in some papers.) The following theorem is the most classical

and famous result.

Theorem 1.1 (Whitney [74,75]). Every 3-connected planar graph is uniquely embeddable

on the sphere.

This theorem was obtained as a corollary of the statement that one of any two em-

beddings of a 2-connected planar graph on the sphere can be obtained from the other by

a sequence of simple local re-embeddings, called Whitney’s 2-flipping (see Chapter 2 for

more details).

With regard to the uniqueness of a graph G embedded on a non-spherical surface F 2

and the upper bound for the number of inequivalent embeddings of G on F 2, “face-width”

plays an effective role. The face-width fw(G), which is also called the representativity, of

G is defined by

fw(G) = min{|G ∩ ℓ| : ℓ is a noncontractible simple closed curve on F 2}.

Robertson and Vitray [66] proved that every 3-connected graph G embedded on an ori-

entable surface of genus g with fw(G) ≥ 2g+3 is uniquely embeddable on the surface, and

G is a minimum genus embedding. Mohar [49] and Seymour and Thomas [69] improved

this to any surface and fw(G) = Ω(log(g)/ log(log(g))). Robertson, Zha and Zhao [67]

proved that every 3-connected toroidal graph G except for a small number of graphs with
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fw(G) ≥ 4 is uniquely embeddable on the torus. Mohar and Robertson [51] proved that

for any surface F 2, there is an integer N(F 2) such that every 3-connected graph G has

at most N(F 2) inequivalent embeddings f(G) on F 2 with fw(f(G)) ≥ 3. In these re-

sults, the assumption of the 3-connectivity is necessary to avoid inequivalent embeddings

obtained by Whitney’s 2-flipping.

Not only the face-width but also the connectivity has a strong relation to the number

of inequivalent embeddings on surfaces with lower genera, which can be expected from

Whitney’s theorem. Negami [57] proved that every 6-connected toroidal graph except for

three graphs is uniquely embeddable on the torus. Kitakubo and Negami [42] and Suzuki

[71] studied the number of inequivalent embeddings of 5- and 4-connected non-planar

graphs on the projective-plane, respectively. Recently, Maharry et al. [46] constructed re-

embedding structures of non-planar graphs on the projective-plane completely and pointed

out some mistakes in the past studies. In these papers, they analyzed re-embedding

structures of “non-planar” graphs.

On the other hand, Mohar, Robertson and Vitray [53] and Mohar and Robertson [52]

showed that 2-connected “planar” graphs embedded on non-spherical surfaces have special

re-embedding structures, called “patch structures”, while they have not given specific

structures on each surface except for the projective-plane and not mentioned the number

of inequivalent embeddings on any surface.

In Chapter 3, we shall construct the complete list of re-embedding structures of a

planar graph G embedded on the projective-plane, the torus or the Klein bottle when G

is 3-connected and 3-regular. In this argument, 3-connectivity is essential in order for us to

avoid Whitney’s 2-flippings, and when a 3-connected planar graph G is 3-regular, we can

describe re-embedding structures of G on each surface completely. These re-embedding

structures lead to the following results.

Theorem 1.2. There exists a one-to-one correspondence between inequivalent embeddings

of a 3-connected 3-regular planar graph on the projective-plane and subgraphs of the dual

graph of the graph embedded on the sphere isomorphic to K2 or K4.

Theorem 1.3. There exists a one-to-one correspondence between inequivalent embeddings

of a 3-connected 3-regular planar graph on the torus and subgraphs of the dual graph of the

graph embedded on the sphere isomorphic to K2,2,2, K2,2m or K1,1,2m−1 for some positive

integer m.

Theorem 1.4. There exists a one-to-one correspondence between inequivalent embeddings

of a 3-connected 3-regular planar graph on the Klein bottle and subgraphs of the dual graph

of the graph embedded on the sphere isomorphic to K2,2m−1 or K1,1,2m for some positive

integer m, or one of the six graphs A1 to A6 shown in Fig. 1.1.
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A1 A2 A3

A4 A5 A6

K2,2m-1 K1,1,2m

Figure 1.1: The eight graphs

Based on these theorems, we will give explicit bounds for the number of inequivalent

embeddings of a 3-connected 3-regular planar graph G on each of the projective-plane,

the torus and the Klein bottle. In addition, we will propose effective algorithms for

enumerating and counting these embeddings. In particular, even though G may have

exponentially many inequivalent embeddings on the torus and the Klein bottle, we can

calculate the total number of such embeddings in polynomial time.

A digraph or directed graph D is defined as a composite structure of a non-empty and

finite set V (D), each of whose element is called a vertex, and a set E(D) of ordered pairs

of distinct vertices of D, called arcs or directed edges. When we present a digraph as a

figure, the “direction” of each arc is indicated by an arrowhead. The underlying graph

of a digraph D is an undirected graph obtained from D by replacing each arc with an

undirected edge.

A digraph is Eulerian if each vertex has the same indegree and outdegree. An em-

bedding of an Eulerian digraph D on a surface F 2 is defined as a 2-cell embedding of its

underlying graph on F 2 with a property that each face is bounded by a directed closed

walk. Hence, in- and out-edges alternate in the rotation around each vertex of an embed-

ded digraph. An Eulerian digraph D is diplanar if D is embeddable on the sphere. This

type of embedding was previously studied in [2, 6, 7, 9, 10,16,34,40].
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For an integer k ≥ 1, a digraph D is k-regular if each vertex of D has both indegree

and outdegree k, and is strongly k-edge-connected if for any X ⊆ E(D) with |X| < k,

D−X is strongly connected, that is, there is a directed path from any vertex to any other

vertex. Archdeacon et al. [6] proved an analogue of Whitney’s theorem:

Theorem 1.5 (Archdeacon et al. [6]). Every strongly 2-edge-connected 2-regular diplanar

digraph is uniquely embeddable on the sphere.

As with Whitney’s theorem, Theorem 1.5 was obtained as a corollary of the stronger

result that one of any two embeddings of a connected 2-regular diplanar digraph can be

obtained from the other by a sequence of “directed” Whitney flips. Moreover, in [7],

they proved an analogue of Tutte’s peripheral cycles theorem, that is, every edge of a

3-connected graph is contained in at least two induced cycles, each of whose removal

result in a connected graph. This analogue of Tutte’s peripheral cycles theorem is also a

stronger result of Theorem 1.5. Note that Theorem 1.5 does not hold arbitrary Eulerian

digraphs. That is, there are infinitely many strongly 2-edge-connected Eulerian diplanar

digraphs having at least two embeddings on the sphere.

In Chapter 4, we shall indicate the close relationship between an embedding of a 3-

connected 3-regular graph on a surface and one of a strongly 2-edge-connected 2-regular

digraph on the surface, which enables us to give a simple proof of Theorem 1.5. Moreover,

we shall focus on embeddings of diplanar digraphs on non-spherical surfaces and extend

the above result about 3-connected 3-regular planar graphs to strongly 2-edge-connected 2-

regular diplanar graphs. That is, we shall characterize re-embedding structures of strongly

2-edge-connected 2-regular diplanar digraph on the projective-plane, the torus and the

Klein bottle. In addition to this, we evaluate the number of such embeddings. In partic-

ular, we shall prove the following two theorems.

An undirected graph is cyclically k-edge-connected if there is no set of at most k − 1

edges such that the graph obtained by deleting these edges has at least two components

having a cycle.

Theorem 1.6. Every strongly 2-edge-connected 2-regular diplanar digraph with n vertices

has exactly 2n inequivalent embeddings on the projective-plane.

Theorem 1.7. If the underlying graph of a strongly 2-edge-connected 2-regular digraph D

with n vertices is cyclically 5-edge-connected, then D has exactly n inequivalent embeddings

on the torus and n(2n− 1) inequivalent embeddings on the Klein bottle. Moreover, in the

case on the torus, the converse holds.
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Graph colorings with re-embedding structures

Hereafter, we will consider “multigraphs”, which is a generalization of the notion of graphs.

A multigraph G is a composite structures of a non-empty and finite vertex set V (G) and

a multiset E(G) of 2-element subsets in V (G), called an edge set. Then we allow two or

more edges joining the same pair of vertices, which are called multiple edges or parallel

edges. After Chapter 5, we use the term graph in this generalized sense, and call graphs

without multiple edges simple graphs. (Some authors allowed loops, that is, edges with

only one end, in multigraphs. However, throughout this thesis, we consider only graphs

without loops.) A digon of a graph embedded on a surface is a face bounded by two

multiple edges.

A (vertex) k-coloring of a graph G is an assignment c : V (G) → {1, 2, . . . , k} (we

regard the set {1, 2, . . . , k} as the set of k-colors). A coloring c of a graph G is proper

if c(u) ̸= c(v) for any two adjacent vertices u and v of G. Throughout this thesis, a

k-coloring c of G is not necessarily proper unless we mention it. The chromatic number

χ(G) of a graph G is the minimum number k such that G has a proper k-coloring.

Historically the first problem in coloring of graphs on surfaces is “Four Color Problem”,

which was posed in 1852 by Francis Guthrie. It was answered affirmatively by Appel and

Haken [3] in 1976 (see also [4, 5]), and the result is known as “Four Color Theorem”:

Theorem 1.8 (Four Color Theorem). Every planar graph has a proper 4-coloring.

Four Color Theorem implies that for any planar graph G, χ(G) ≤ 4. This bound

is best possible as the complete graph of order 4 is embeddable on the sphere. On the

other hand, in 1890, Heawood [36] proved that for any non-spherical surface F 2 and any

graph G embedded on F 2, χ(G) ≤ ⌊(7 +
√

49− 24e(F 2))/2⌋, where e(F 2) is the Euler

characteristic of F 2, and conjectured this bound is best possible. In a series of papers,

partial case of the conjecture were solved, and finally in 1968, Ringel and Young [64] solved

Heawood’s conjecture completely. This result is called “Map Color Theorem” (see [65]

for the history of Map Color Theorem).

Theorem 1.9 (Map Color Theorem). Let F 2 be a non-spherical surface and χ(F 2) be

the maximum of χ(G) taken over all graphs G embedded on F 2. Then χ(F 2) = 6 if F 2 is

the Klein bottle, and χ(F 2) = ⌊(7 +
√

49− 24e(F 2))/2⌋ otherwise.

Four Color Theorem and Map Color Theorem are the cornerstones for developing

topological graph theory. To solve these theorems, various ideas and techniques for graphs

embedded on surfaces were invented, and even after these theorems were proved, a variety

of graph coloring problems have been introduced and studied. Recently, there are a large

number of papers which study colorings of graphs embedded on surfaces where suitable
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constraints on colors appear around faces. Such colorings are called facially-constrained

colorings. In particular, facially-constrained colorings of plane graphs, that is, planar

graphs already embedded on the sphere, were overviewed by Czap and Jendrol’ [20].

In this thesis, we shall study some facially-constrained colorings from the following

viewpoint: The possibility of a facially-constrained coloring depends on the embedding

in general. That is, even if a graph G embedded on a surface F 2 has a certain facially-

constrained coloring, a re-embedding f(G) of Gmay not have this coloring. Actually, such

situations were pointed out in various papers dealt with facially-constrained colorings.

In this thesis, we mainly focus on two facially-constrained colorings. First, in Chap-

ter 5, we deal with a “weak coloring”. A weak coloring of a graph G embedded on a

surface is a coloring of G such that no face is monochromatic, that is, all vertices on its

boundary have the same color. The weak chromatic number of G, denoted by χw(G), is

the minimum integer k such that G has a weak k-coloring. Kündgen and Ramamurthi [44]

studied weak colorings of graphs embedded on surfaces from various viewpoints and raised

the following conjecture.

Conjecture 1.10 (Kündgen and Ramamurthi [44, Conjecture 8.1]). For each positive

integer k, there is a graph that has two different embeddings on the same surface whose

weak chromatic numbers differ by at least k.

We shall answer this conjecture affirmatively in two ways. First, we construct two

embeddings of a simple graph on the same surface such that one of them has a weak 2-

coloring but the other has arbitrarily large weak chromatic number. Note that these are

far from minimum genus embeddings, while we secondly construct two “triangulations”

obtained from the same non-simple graph on the same surface of Euler genus g, whose

weak chromatic numbers differ from Ω( 3
√
g). A triangulation is a graph embedded on a

surface so that each face is bounded by a cycle of length 3. (Note that a triangulation

is a minimum genus embedding if we avoid digons.) This order is best possible in some

sense:

Dvořák, Král’ and Škrekovski [24] proved the following theorem.

Theorem 1.11 (Dvořák, Král’ and Škrekovski [24]). For an integer r ≥ 3, every graph G

embedded on a surface of Euler genus g ≥ 5 has a coloring using at most 3⌈ r
√
(g − 2)/2⌉

colors and avoiding a monochromatic face of size at least r.

This theorem implies that the weak chromatic number of a graph embedded on a

surface of Euler genus g without digons is O( 3
√
g). Thus, for two embeddings of the

same graph on the same surface of Euler genus g, the difference of these weak chromatic

numbers is also O( 3
√
g). Our second construction attains this order.

7



Moreover, our second construction implies that for many positive integers k, the weak

k-colorability of triangulations depends on the embedding. Actually, we shall show that

the weak 2-colorability of triangulations does not depend on the embedding, while for any

positive integer k ≥ 3, the weak k-colorability of triangulations depends on the embedding.

In Chapter 6, we shall focus on a “facial complete coloring”, which is an expansion

of a “complete coloring”. A complete k-coloring of a graph G is a proper k-coloring such

that each pair of k-colors appears on at least one edge of G. The achromatic number

of G is the maximum integer k such that G has a complete k-coloring. This notion was

introduced by Harary and Hedetniemi [35], and has been extensively studied (see [39] for

its survey). Recently, Matsumoto and Ohno [48] introduced a facial complete coloring as

an extended notion of a complete coloring. A k-coloring, which is not necessarily proper,

of a graph G embedded on a surface is facially t-complete if for any t-element subset X

of the k colors, there is a face F of G such that X ⊆ c(V (F )). The maximum integer

k such that G has a facial t-complete k-coloring is the facial t-achromatic number of G,

denoted by ψt(G). It seems to be natural to consider facial t-complete colorings for graphs

embedded on a surface so that each face is bounded by a cycle of length t. Actually, in

this thesis, we focus on facial 3-complete colorings of triangulations on a surface, and

prove the following theorem:

Theorem 1.12. Let G be a simple graph which has two triangulations f1(G) and f2(G)

on a surface F 2, and let g be the Euler genus of F 2. If F 2 is orientable, then

|ψ3(f1(G))− ψ3(f2(G))| ≤

9g/2 (g ≤ 2)

27g/2− 27 (otherwise).

If F 2 is non-orientable, then

|ψ3(f1(G))− ψ3(f2(G))| ≤

3g (g = 1)

21g − 27 (otherwise).

Note that we can easily construct a triangulation on each surface so that its facial 3-

achromatic number is an arbitrarily large, while Theorem 1.12 implies that the difference

of the facial 3-achromatic numbers between two triangulations f1(G) and f2(G) on a given

surface, which is obtained from the same graph G, can be bounded by a constant.

On the other hand, the upper bounds in Theorem 1.12 do not seem to be sharp.

Unfortunately, we have no construction of a graph which has two triangulations on a

surface whose facial 3-achromatic numbers differ. So one may suspect that ψt(f1(G)) =

ψt(f2(G)) whenever a simple graph G has two triangulations f1(G) and f2(G) on a surface.

However, we do not believe that. Actually, we shall show the non-simple graphs having
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two triangulations on a surface whose facial 3-achromatic numbers differ (the definition of

the facial complete coloring can be extended to multigraphs naturally). Hence, we hope

that there exist such graphs for simple graphs.
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Chapter 2

Foundations

In this chapter we define some basic terminology of (topological) graph theory, which are

used throughout this thesis. We refer to [15, 23,29,50].

2.1 Graphs

A graph G = (V (G), E(G)) is usually defined as a composite structure of a non-empty

and finite set V (G) and a family E(G) of 2-element subsets in V (G), possibly empty.

Each element in V (G) is called a vertex and each element in E(G) is called an edge. An

edge {u, v} is often written as uv or vu. The order of a graph G is the number of vertices

of G, denoted by |G|. (We will introduce some other notions of graphs in the last of this

section.)

To visualize the structure of a graph, we often draw a figure consisting of some points

and curves joining two points, which correspond to the vertices and the edges of the

graph, respectively. For example, Fig. 2.1 represents the graph G = (V (G), E(G)) with

V (G) = {1, 2, 3, 4, 5} and E(G) = {12, 13, 14, 23, 25, 45}.

1 2

3

4

5

Figure 2.1: The graph G.
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If two vertices u and v of a graph G are joined by an edge e, that is, e = uv, then they

are called neighbors of each other, and endvertices or ends of e. In this situation, we say

that they are and adjacent to each other, and u (or v) is incident with e.

The set of neighbors of v is called the (open) neighborhood of v, denoted by NG(v).

The degree of v is the number of edges incident with v, denoted by degG(v), that is,

degG(G) = |NG(v)|. A graph is r-regular if the degrees of all vertices of G is r. The

following lemma is one of the most fundamental and important statement in graph theory,

which is well-known as Handshaking Lemma.

Lemma 2.1 (Handshaking Lemma). For every graph G, we have

Σv∈v(G) degG(v) = 2|E(G)|.

This lemma implies that every graph has an even number of vertices with odd degree.

Let G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2)) be two graphs with |V (G1)| =
|V (G2)|. A bijection ϕ : V (G1) → V (G2) is called an isomorphism from G1 to G2 if for

any two vertices u and v of G1, uv is an edge of G1 if and only if ϕ(u)ϕ(v) is an edge of

G2. If there is an isomorphism from G1 to G2, then they are called isomorphic to each

other. An isomorphism from G1 to itself is called an automorphism. We do not usually

distinguish between isomorphic graphs, and write G1 = G2.

Subgraphs

For two graphs G and H, if V (H) ⊆ V (G) and E(H) ⊆ E(G), then H is called a subgraph

of G, and we say that G has H (as a subgraph). A subgraph H of G is called spanning

if V (H) = V (G). An edge not in H but with both ends in H is called chord of H. The

subgraph H of a graph G is induced if H has no chord.

Let S be a subset of the vertex set of a graph G. If a subgraph of G whose vertex

set is S contains all edges e = uv of G with u, v ∈ S, then we say that it is a subgraph

induced by S, and denote it by G[S]. Let G be a graph and H be a subgraph of G. An

edge-induced subgraph of a graph G consists of a subset X ⊆ E(G) and the endvertices of

all edges in X, denoted by G[X]. In this situation, we say that this subgraph induced by

X.

For a subset S of the vertex set of a graph G, we denote by G − S the subgraph of

G obtained by deleting all vertices in S and all edges whose endvertices contains a vertex

in S. If S = {v}, we simply denote it by G − v. Similarly, for a subset X of E(G), we

denote by G −X the subgraph of G obtained by deleting all edges in X. If If S = {e},
we simply denote it by G− e.

11



For example, Fig. 2.2 presents the graph G and two subgraphs H1 and H2 of G. The

subgraph H1 is not an induced subgraph of G since it has a chord fg, while H2 is a induced

subgraph of G, which is obtained by deleting two vertices c and g, that is, H2 = G−{c, g}.

a

b

c
de

f

g

a

b

de

f

g

a

b

de

f

G H1 H2

Figure 2.2: The graph G and two subgraphs H1 and H2 of G.

Paths and cycles

Let G be a graph. A walk is a sequence of vertices and edges W = v1, e1, v2, e2, . . . en−1, vn

such that ei = vivi+1 for 1 ≤ i ≤ n−1. We sometime write the walk as W = v1, v2, . . . , vn

or W = e1, e2, . . . , en−1. If u = v1 and v = vn, then W is called u-v walk. If v1 = vn then

the walk W is called closed. The length of W is the number of edges in W . A non-closed

walk (resp. closed walk) in G in which no vertex is repeated is called a path (resp. cycle).

A path and a cycle in G can be regarded as a subgraph of G. If a graph is isomorphic to

a path or cycle of order n, then it is denoted by Pn or Cn, respectively (see Fig. 2.3 for

example). We often call a cycle of order n a n-cycle.

P5 C6

Figure 2.3: A path P5 and a cycle C6.
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Complete graphs and miltipartite graphs

If all vertices of a graph are pairwise adjacent, then it is called complete. A complete

graph of order n is denoted by Kn.

For an integer k ≥ 2, a graph is k-partite if there is a partition of V (G) into k subsets

V1, V2, . . . , Vk, called partite sets, such that Vi induces a subgraph having no edges for

1 ≤ i ≤ k. A 2-partite graph is also called a bipartite graph. For a k-partite graph

with partite sets V1, V2, . . . , Vk, if any two vertices belonging to different partite sets are

adjacent, then the graph is called complete k-partite graph, denoted by Kn1,n2,...,nk
, where

ni = |Vi| for 1 ≤ i ≤ k. Fig. 2.4 presents three graphs K5, K3,3 and K2,2,2.

K5 K3,3 K2,2,2

Figure 2.4: Three graphs K5, K3,3 and K2,2,2.

Independent set and matching

Let G be a graph. A subset S ⊆ V (G) is independent if no two vertices in S are adjacent.

The independence number of G, denoted by α(G), is the cardinality of the largest inde-

pendent set, that is, the size of a maximum independent set of G. A subset X ⊆ E(G)

is matching if any two edges have no common endvertex. The matching number of G,

denoted by µ(G), is the cardinality of the largest matching, that is, the size of a maximum

matching of G. A matching M of G is perfect if 2|M | = |G|.

Connectivity

A graph G is called connected if for any two vertices u and v of G, there is a u-v path in

G, and called disconnected otherwise. A component of a graph G is a connected induced

subgraph H such that there is no path in G between a vertex of H and one of the rest of

G, that is, a maximal connected subgraph of G.

A subset S of V (G) is called a vertex-cut set or simply cut set, if G−S is disconnected.

If S = {v}, then we call v a cut vertex. Let X be a subset of E(G). X is called an edge-cut

13



set or edge-cut, if G−X is disconnected. If X = {e}, then we call e a cut edge or a bridge.

A graph G is called k-connected if G has at least k + 1 vertices, and for any subset

S of V (G) with at least k − 1 vertices, G− S is connected. The connectivity of G is the

maximum number k such that G is k-connected.

A graph G is cyclically k-edge connected if there is no set of at most k− 1 edges such

that the graph obtained by deleting these edges has at least two components having a

cycle.

H-bridge

An H-bridge is a subgraph of a graph G induced by a chord of H, or a component of

G − V (H) together with all edges joining it to H. In an H-bridge, a vertex belongs to

V (H) is called a vertex of attachment. Note that any two H-bridges are edge-disjoint and

meet only the common vertices of attachment.

In Fig. 2.5 to the left, a subgraph H of a graph G is represented by the four edges

drawn by bold lines with these ends, that is, H is induced by the four bold edges. There

are three H-bridges in G, denoted by B1, B2 and B3, as shown in Fig. 2.5.

1

2
3

4

5

6
7

1

2

6

2

6

2
3

4

5

6
G B1 B2 B3

Figure 2.5: There are three H-bridges in G.

Other notions of graphs

In this thesis, we sometime mention some other notions of graphs.

A multigraph G = (V (G), E(G)) is defined as a composite structure of a non-empty

and finite vertex set V (G) and a multiset E(G) of 2-element subsets in V (G), called an

edge set. That is, we allow two or more edges joining the same pair of vertices, which

are called multiple edges or parallel edges. For example, Fig. 2.6 presents a multigraph

G, where pairs (b, c) and (f, d) of vertices are joined by three and two multiple edges,

respectively.

In Chapters 3 and 4, we will not consider multigraphs, while after Chapter 5, we use

the term graph in this generalized sense, and call graphs without multiple edges simple
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a
b

c

d
e

f

G

Figure 2.6: The multigraph G.

graphs. (Some authors allowed loops, that is, edges with only one end, in multigraphs.

However, throughout this thesis, we consider only graphs without loops.)

A digraph D = (V (D), E(D)) or directed graph is defined as a composite structure of

a non-empty and finite vertex set V (D) and a family E(D) of ordered pairs of distinct

vertices of D, called arcs or directed edges. An arc (u, v) is often written as uv. The

arc uv is said to be directed from u to v. The underlying graph of a digraph D is an

undirected graph obtained from D by replacing each arc with an undirected edge. When

we present a digraph as a figure, the “direction”of each arc is indicated by an arrowhead.

For example, Fig. 2.7 represents the graph D = (V (D), E(G)) with V (G) = {1, 2, 3, 4, 5}
and E(G) = {12, 14, 21, 23, 25, 34, 42, 51}.

1 2

3

45

Figure 2.7: The digraph D.

For a digraph D, the indegree and outdegree of a vertex v are the numbers of arcs

directed to v and that of arcs directed from v, respectively. A digraph is Eulerian if

each vertex has the same indegree and outdegree, and k-regular if each vertex has both

indegree and outdegree k.

A directed walk is a sequence of vertices and arcs W = v1, e1, v2, e2, . . . en−1, vn such
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that ei = vivi+1 for 1 ≤ i ≤ n − 1. Each of a directed closed walk, a directed path and a

directed cycle can be defined similarly as in the undirected case. A digraph D is called

strongly connected if there is a directed path from any vertex to any other vertex, and

strongly k-edge-connected if for any X ⊆ E(D) with |X| ≤ k − 1, D − X is strongly

connected.

A hypergraph H = (V (H), E(H)) is defined as a composite structure of a non-empty

and finite vertex set V (D) and a family E(H) of non-empty subsets of V (H), called

hyper-edge. A hypergraph H is called k-uniform if each hyper-edge has k vertices.

2.2 Graphs on surfaces

A (closed) surface is a compact connected 2-dimensional manifold without boundary. By

the classification theorem of surfaces, any surface is homeomorphic to either an orientable

surface of genus g ≥ 0, denoted by Sg, or a non-orientable surface of genus k ≥ 1, denoted

by Nk. The Euler genus of Sg is 2g and that of Nk is k. The surface S0, S1, N1 and N2

are called the sphere, the torus, the projective-plane and the Klein bottle.

An embedding of a graph G on a surface F 2 is an injective continuous map f : G→ F 2.

Roughly speaking, an embedding of G on F 2 is a drawing of G on F 2 with no pair of edges

crossing. We often call the subspace f(G) in F 2 with the structure of a graph induced by

f “an embedding of G on F 2” rather than the map f . If a graph G has an embedding on

a surface F 2, we say that G is embeddable on F 2. A planar graph is a graph embeddable

on the sphere (or, equivalently, embeddable on the plane). A plane graph is a planar

graph already embedded on the sphere.

We sometime consider that a graph G is already embedded on a surface and denote

its image by G itself to simplify the notation. However, if we deal with two or more

embeddings of G on some surfaces, then we denote them by f1(G), f2(G), . . . to distinguish

them, or denote a first given embedding of G by G itself and another embedding of G by

f(G). In the latter situation, we call f(G) a re-embedding of G.

The faces of a graph G embedded on a surface F 2 are the connected components

of the open set F 2 − G. We denote by V (F ) the set of vertices in the boundary of a

face F of G, and by F(G) the set of faces of G. We call G cellular if each face of G

must be homeomorphic to an open 2-cell, that is, homeomorphic to the unit open disk

{(x, y) ∈ R2|x2 + y2 < 1}. In this thesis, we mainly focus on cellular embeddings unless

we particularly mention it. For a graph G embedded on a surface, a closed walk in G is

facial if it bounds a face of G.

A triangulation on a surface is a graph embedded on a surface so that each facial

closed walk has length 3. If a graph G is embeddable on a surface F 2 as a triangulation,
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we say that G has the triangulation on F 2. As with a triangulation, a quadrangulation

on a surface F 2 is defined as a graph embedded on F 2 so that each facial closed walk has

length 4.

Two embeddings f1, f2 : G→ F 2 are equivalent if there is a homeomorphism h : F 2 →
F 2 such that hf1 = f2, and they are inequivalent otherwise. We say that a graph G is

uniquely embeddable on F 2 (up to equivalence) if any two embeddings of G on F 2 are

equivalent.

The following theorem is one of the most important and famous results in topological

graph theory, called the Whitney’s theorem.

Theorem 2.2 (Whitney [74,75]). Every 3-connected planar graph is uniquely embeddable

on the sphere.

This theorem was obtained as a corollary of the statement that one of any two em-

beddings of a 2-connected planar graph on the sphere can be obtained from the other by

a sequence of simple local re-embeddings, called “Whitney’s 2-flipping”.

Let G be a graph embedded on a surface F 2, and D be a disk whose boundary meets

G only at two vertices u and v. Suppose that there is at least one vertex into D. Then

we can obtain a re-embedding f(G) of G on F 2 by applying an orientation-reversing

automorphism of D which fixes u and v on the boundary of D (see Fig. 2.8 for example).

Such an operation is called Whitney’s 2-flipping. See [50, Sections 2 and 5] for the strict

definition of Whitney’s 2-flipping.

u u

v v
G f(G)

D D

Figure 2.8: Whitney’s 2-flipping D for a plane graph G.

In addition, Theorem 2.2 is also obtained as a corollary of the Tutte’s peripheral cycle

theorem. We say that a cycle C in a graph G is peripheral if there is exactly one C-bridge

in G.

Theorem 2.3 (Tutte [73]). Every edge in a 3-connected graph is contained in at least

two peripheral cycles.
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Rotation systems and embedding schemes

We now introduce two combinatorial ways of describing embeddings of a graph; “rotation

systems” and “embedding schemes”. A general description on the rotation system and

the embedding scheme can be found in [50].

Suppose that a connected graph G is embedded on an orientable surface. A rotation

ρv around a vertex v of G is a cyclic permutation of edges incident with a vertex v such

that ρv(e) is the successor of e in the clockwise ordering around v. A rotation system for

the embedded graph G is the collection of ρv, denoted by ρ = {ρv : v ∈ V (G)}. It is well-
known that every embedding of a connected graph on an orientable surface is uniquely

determined up to equivalence by its rotation system. Moreover, there are no rotation

systems representing this embedding other than this rotation system and its inverse.

On the other hand, in order to include embeddings on non-orientable surfaces, we have

to add the following concept. Let f(G) be another embedding of G on a surface, which is

not necessarily orientable. There are two possible cyclic ordering of edges incident with

each vertex v of f(G). Choose one of them and denote it by ρv. A signature of E(G) is a

map outputting 1 or −1 from each edge of G, denoted by λ, such that for an edge e = uv

with its endvertices u and v, λ(e) = 1 if a sub-walk induced by the three edges ρu(e), e

and ρ−1
v (e) is included in a facial walk, otherwise λ(e) = −1. It can be shown that this

definition of the signature λ is consistent, that is, λ(uv) = λ(vu) for every edge uv. The

pair (ρ, λ), where ρ = {ρv : v ∈ V (G)} is obtained by the above procedure, is called an

embedding scheme for f(G). An embedding scheme determines exactly one embedding

of G. Unfortunately, an embedding scheme representing a given embedding of G is not

uniquely determined, unlike rotation systems for the orientable case. For an embedded

graph G associated with a given embedding scheme (ρ, λ), an edge e with λ(e) = −1 is

called twisted. If there are no twisted edges then G is embedded on an orientable surface

obtained by the rotation system ρ.

Cycles in embedded graphs

Let G be a graph embedded on a surface F 2. A cycle C of G can be regarded as a

simple closed curve in F 2. The cycle C is contractible if it bounds a 2-cell region, and

is separating if it separates F 2 into two parts. We say that C is 2-sided if it divides

its annular neighborhood into two parts, and is 1-sided otherwise. Note that if C is

contractible then it is separating and if C is 1-sided then it is non-separating.

For two disjoint cycles C1 and C2 of G, cut the surface F 2 along them. When one of

the component in the resulting surface is an annulus with boundary components C1 and

C2, we say that C1 and C2 are homotopic.
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2.3 Facially-constrained colorings

Let G be a graph. A (vertex) k-coloring of G is a map c : V (G) → {1, 2, . . . , k}. A

k-coloring c of G is proper if c(u) ̸= c(v) for any two adjacent vertices u and v of G.

We say that G is k-colorable if G has a proper k-coloring. The chromatic number of G,

denoted by χ(G), is the minimum number k such that G is k-colorable.

The following two theorems are the most important and famous results about coloring

of graphs on surfaces.

Theorem 2.4 (Four Color Theorem). Every planar graph has a proper 4-coloring.

Theorem 2.5 (Map Color Theorem). Let F 2 be a non-spherical surface and χ(F 2) be

the maximum of χ(G) taken over all graphs G embedded on F 2. Then χ(F 2) = 6 if F 2 is

the Klein bottle, and χ(F 2) = ⌊(7 +
√

49− 24e(F 2))/2⌋ otherwise.

Recently, there are a large number of papers which study colorings of graphs embedded

on surfaces where suitable constraints on colors appear around faces. Such colorings are

called facially-constrained colorings. In particular, facially-constrained colorings of plane

graph were overviewed by Czap and jendrol’ [20]. Many facially-constrained colorings

can be translated into colorings of some kind of hypergraphs, called “face-hypergraphs”.

The face-hypergraph H(G) of a graph G embedded on a surface is the hypergraph with

vertex-set V (G) and edge-set {V (F ) : F ∈ F(G)}, whose concept was introduced in [44].

We now introduce some facially-constrained colorings: rainbow coloring, antirainbow

coloring, weak coloring, polychromatic coloring, facial complete coloring. For a vertex-

colored graph G embedded on a surface, a face F is rainbow if any two distinct vertices

in V (F ) has disjoint colors, and is monochromatic if all vertices in V (F ) has the same

color.

Rainbow coloring

Let G be a graph embedded on a surface. A rainbow coloring (or originally cyclic coloring)

of G is a coloring of G so that each face is rainbow. The minimum integer k such that G

has a rainbow k-coloring is the rainbowness of G, denoted by rb(G). It is clear that the

rainbowness of G is larger than or equal to the maximum |V (F )| taken over all faces F

in G. This concept was introduced by Ore and Plummer [60], and has been extensively

studied; see for example [11–13, 26, 27, 55, 62, 68]. Recently, rainbow coloring of plane

graphs and related topics were overviewed by Czap and Jendrol’ [21].
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Antirainbow coloring

An antirainbow coloring (or a valid coloring) of G is a coloring of G so that no face is

rainbow. The maximum integer k such that G has a surjective antirainbow k-coloring is

the antirainbowness of G, denoted by arb(G). This type of coloring was introduced by

Ramamurthi and West [63] and Negami [58] independently. (See also [8,59] for some acts

of taking the initiative.) The topics of antirainbow coloring of plane graph was studied

in [25, 41, 63], and that of triangulations on surfaces was studied in [54, 58]. (Note that

in [54,58], the invariant “looseness” ξ(G) of a triangulation G on a surface was introduced

and studied, which is corresponds to the value arb(G) + 2.)

Weak coloring

A weak coloring of G is a coloring of G such that no face is monochromatic. The minimum

integer k such that G has a weak k-coloring is the weak chromatic number of G, denoted

by χw(G). Note that a weak coloring of an embedded graph corresponds to a proper

coloring of its face-hypergraph. Weak colorings of graphs on surfaces have been studied

in various contexts; see for example [14, 24,44,61].

Polychromatic coloring

A polychromatic k-coloring of G is a k-coloring of G so that all k colors appear in the

boundary of each face. Note that a weak k-coloring and a polychromatic k-coloring are

equivalent if and only if k = 2. This concept was introduced by Alon et al. [1], and has

been extensively studied; see for example [1, 37, 38, 43, 45, 72]. A polychromatic coloring

of plane graph is related to art gallery problems (see [19, 28] for details of art gallery

problems).

Facial complete coloring

A complete k-coloring of a graph G is a proper k-coloring such that each pair of k-colors

appears on at least one edge of G. The achromatic number of G is the maximum integer

k such that G has a complete k-coloring. This notion was introduced by Harary and

Hedetniemi [35], and has been extensively studied (see [39] for its survey).

Recently, Matsumoto and Ohno [48] introduced a new facially-constrained coloring,

called the “facial complete coloring”, which is an expansion of the complete coloring. A

k-coloring, which is not necessarily proper, of a graph G embedded on a surface is facially

t-complete if for any t-element subset X of the k colors, there is a face F of G such that

X ⊆ c(V (F )). The maximum integer k such that G has a facial t-complete k-coloring is
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the facial t-achromatic number of G, denoted by ψt(G). It seems to be natural to consider

facial t-complete colorings for graphs embedded on a surface so that each face is bounded

by a cycle of length t.

From the viewpoint of re-embeddings of graphs

We should notice that the possibility of a facially-constrained coloring of a graph em-

bedded on a surface depends on the embedding. That is, even if a graph G embedded

on a surface has a certain facially-constrained coloring, a re-embedding f(G) of G may

not have this coloring. In Chapters 5 and 6, we focus on weak colorings and facial com-

plete colorings from this point of view, respectively. We now introduce some results and

observations about rainbow colorings, antirainbow colorings.

Let G be the graph consisting of m ≥ 3 cycles of length 3 with one common vertex,

which has two embeddings f1(G) and f2(G) on the sphere as shown in Fig. 2.9. Then G

has 2m+ 1 vertices.

f1(G) f2(G)

Figure 2.9: Two embeddings of G on the sphere.

As there is a face incident with all vertices in f1(G), we have rb(f1(G)) = |V (G)| =
2m+1. It is also easy to see that rb(f2(G)) = 5. Hence, the difference between rb(f1(G))

and rb(f2(G)) is 2m−4. It implies that the rainbowness of a graph embedded on a surface

depends on the embedding. Moreover, such a difference can be arbitrarily large. On the

other hand, it is easy to see that rb(G) = χ(G) for every triangulation on a surface, where

χ(G) is the chromatic number of G. This implies that the rainbowness of a triangulation

does not depend on the embedding.

Ramamurthi and West [63] observed that for the above two embeddings f1(G) and

f2(G) of G on the sphere, arb(f1(G)) = m + 1 and arb(f2(G)) = ⌈3m/2⌉. Then the

difference of these antirainbownesses is ⌈m/2 − 1⌉, and hence the antirainbowness of a

graph embedded on a surface also depends on the embedding. Ramamurthi and West [63]
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conjectured this difference is the maximum difference for two embeddings of a graph on

the sphere, that is, for every planar graph G of order n, there is no pair of embeddings of

G on the sphere whose antirainbownesses differ from at least ⌊(n− 2)/4⌋.
Arocha, Bracho and Neumann-Lara [8] studied the antirainbow 3-colorability of tri-

angulations obtained from complete graphs, which they called the tightness. They proved

that the complete graph of order 30 has both of a tight triangulation and an untight one

on the same surface. This implies that the antirainbowness of triangulations depends on

the embedding, in contrast to the rainbowness of triangulations. As the generalization of

their work, Negami [58] introduced the looseness of a triangulation G on a surface, which

corresponds to arb(G)+2. He proved that for any graph having two triangulations f1(G)

and f2(G) on a surface F 2,

|arb(f1(G))− arb(f2(G))| ≤ 2⌊g(F 2)/2⌋,

where g(F 2) is the Euler genus of F 2.
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Chapter 3

3-Regular Planar Graphs on Surfaces

In this chapter, we focus on embeddings of a 3-connected 3-regular planar graph on the

projective-plane, the torus or the Klein bottle. Our main results in this chapter are the

followings.

Theorem 3.1. There exists a one-to-one correspondence between inequivalent embeddings

of a 3-connected 3-regular planar graph on the projective-plane and subgraphs of the dual

graph of the graph embedded on the sphere isomorphic to K2 or K4.

Theorem 3.2. There exists a one-to-one correspondence between inequivalent embeddings

of a 3-connected 3-regular planar graph on the torus and subgraphs of the dual graph of the

graph embedded on the sphere isomorphic to K2,2,2, K2,2m or K1,1,2m−1 for some positive

integer m.

Theorem 3.3. There exists a one-to-one correspondence between inequivalent embeddings

of a 3-connected 3-regular planar graph on the Klein bottle and subgraphs of the dual graph

of the graph embedded on the sphere isomorphic to K2,2m−1 or K1,1,2m for some positive

integer m, or one of the six graphs A1 to A6 shown in Fig. 3.1.

Throughout this chapter, let G be a 3-connected 3-regular planar graph. In addition,

we assume that G is already embedded on the sphere with its rotation system ρ = {ρv :

v ∈ V (G)}. (By Whitney’s theorem, G is uniquely embeddable on the sphere.)

3.1 Re-embeddings of 3-regular planar graphs

We now consider another embedding of G. Since G is 3-regular, there are only two

possible rotations around each vertex of G, and one of them is the inverse of the other.

This implies that for any embedding f(G) of G on any surface, we can choose ρv as the

local rotation around each vertex v. Thus, f(G) can be determined by an embedding
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A1 A2 A3

A4 A5 A6

K2,2m-1 K1,1,2m

Figure 3.1: The eight graphs

scheme (ρ, λ) with a suitable signature λ. We denote the set of twisted edges associated

with this embedding scheme by X. In this situation, we regard this embedding as a re-

embedding of G obtained by twisting all edges of X and denote it by fX(G). In addition,

let F 2
X be the surface where fX(G) is embedded.

3.2 Facial cycles in planar graphs

Choose two distinct subsets X1 and X2 of E(G). Then, there is an edge e belonging to

only one of either X1 or X2. We may assume that e ∈ X2. It is easy to check that every

facial walk of a 3-connected planar graph embedded on the sphere is a cycle. Thus, there

are exactly two facial cycles containing e of G, denoted by C and C ′. Let e1 and e2 be

the edges of C ′ adjacent to e. Fig. 3.2 presents local neighborhoods around fX1(e) and

fX2(e). Note that fX1(C) and fX2(C) are drawn by bold lines in Fig. 3.2.

For the walk W = e1ee2 of G, fX1(W ) constructs a consecutive part of a facial walk in

fX1(G) on F
2
X1

but fX2(W ) are not so on F 2
X2
. Thus, F 2

X1
̸= F 2

X2
, or fX1(G) and fX2(G)

are not equivalent. It implies that the choice of a subset X of E(G) uniquely induces the

re-embedding fX(G) of G up to equivalence. Moreover, the total number of inequivalent

embeddings of G is 2|E(G)|, and F 2
X is homeomorphic to the sphere if and only if X is

empty.
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e

fX1(G) fX2(G)

e2e1

e e2

e1

Figure 3.2: The neighborhoods around e in fX1(G) and fX2(G)

In the situation shown in the right of Fig. 3.2, we say that two cycles fX2(C) and

fX2(C
′) cross along an edge e. Since G is 3-connected and planar, there are no edges and

vertices contained in both C and C ′ other than e and its endvertices. Thus, fX2(C) and

fX2(C
′) cross exactly once. Note that any two cycles in fX(G) for a given subset X of

E(G) do not cross at a single vertex since G is 3-regular.

It has been known that for a facial cycle C of a 3-connected planar graph G, there is

only one C-bridge in G (e.g., see [50, p.39–40]).

Lemma 3.4. Let C be a facial cycle in G and let fX(G) be a re-embedding of G with

a given subset X of E(G). Then, fX(C) is a non-separating cycle on F 2
X if and only if

fX(C) has a twisted edge.

Proof. It is easy to see that if fX(C) has no twisted edges then it is facial in fX(G) and

hence it separates F 2
X into two regions.

Suppose that fX(C) has a twisted edge fX(e), that is, an edge e of G is in X. Let

C ′ be the other facial cycle of G containing e. As shown in the right of Fig. 3.2, fX(C)

and fX(C
′) cross along e and hence two edges of fX(C

′) adjacent to fX(e) are located

separately in opposite sides of fX(C). However, both of these edges are contained in the

unique fX(C)-bridge. This implies that fX(C) does not separate F
2
X .

3.3 Characterizations of re-embedding structures

In this section, we shall characterize the structures of fX(G) when F
2
X is homeomorphic

to the projective-plane, the torus or the Klein bottle, and show the following theorems.

Theorem 3.5. A 3-connected 3-regular graph embedded on the projective-plane is planar

if and only if it has one of the two structures (P1) and (P2) shown in Fig. 3.3.

Theorem 3.6. A 3-connected 3-regular graph embedded on the torus is planar if and only

if it has one of the two structures (T1), (T2) and (T3) shown in Fig. 3.4.
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(P2)(P1)

Figure 3.3: Re-embedding structures on the projective-plane

(T1) (T2)

(T3)

Figure 3.4: Re-embedding structures on the torus

26



Theorem 3.7. A 3-connected 3-regular graph embedded on the Klein bottle is planar if

and only if it has one of the eight structures (K1) to (K8) shown in Fig. 3.5.

(K1) (K2)

(K3) (K4) (K5)

(K6) (K7) (K8)

Figure 3.5: Re-embedding structures on the Klein bottle

In Fig. 3.3, each pair of antipodal points on the dashed circle should be identified to

recover the projective-plane. Similarly, in Fig. 3.4, to recover the torus, both pairs of op-

posite sides of dashed rectangle should be identified in the same direction, and in Fig. 3.5,

to recover the Klein bottle, the top and bottom sides of the dashed rectangle should be

identified in the same direction while the left and right sides should be identified in the

opposite direction. In these figures, each of shaded areas corresponds to a component

of the graph obtained form the original graph by deleting all edges drawn by bold lines.

Some vertices on the boundary of such an area may not be different from each other,

that is, the edges drawn by bold lines may not be disjoint. We omit a series of shaded

rectangles from (T2), (T3), (K1) and (K2). Both (T2) and (T3) have an even number of

shaded rectangles ((T3) may have no shaded rectangle), while both (K1) and (K2) have

an odd number of shaded rectangles.

In [53], the re-embedding structure of 2-connected planar graphs on the projective-

plane was analyzed in detail (see Theorem 3.2 in [53]), while we focus on 3-connected 3-
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regular planar graphs. Then, our re-embedding structure on the projective-plane, shown

in Theorem 3.5, is a special case in [53], and follows from it. However, our proof is very

simple and important for us to understand other Theorems (e.g. Theorem 3.1). We

thus provide a full proof of Theorem 3.5. Moreover, we also construct the re-embedding

structures on the torus and the Klein bottle, which is not characterized completely in

[52,53]. One may think that the case of the Klein bottle can be easily obtained from the

case of projective-plane, but this is not true. Some structures in Theorem 3.7 (e.g. (K3),

(K4) and (K5)) can be regarded as simple combinations of the structure in Theorem 3.5,

but some are not (e.g. (K1) and (K2)).

Let HX be the subgraph of the dual of G (embedded on the sphere) induced by all

edges dual to edges of the given subset X of E(G). Then, there is a vertex of HX located

in the inside of each face of G whose facial cycle has an edge in X. We shall specify what

HX is isomorphic to when F 2
X is homeomorphic to the projective-plane, the torus or the

Klein bottle, which are essential ideas to prove not only Theorems 3.5, 3.6 and 3.7 but

also Theorems 3.1, 3.2 and 3.3.

First of all, we give a simple condition of HX when F 2
X is homeomorphic to a non-

orientable surface. It has been known that an embedding scheme defines an embedding

of a given graph on non-orientable surface if and only if there is a cycle containing an odd

number of twisted edges (see [50, p.24–25]). It implies the following lemma.

Lemma 3.8. For a given subset X of E(G), F 2
X is non-orientable if and only if there is

a vertex of odd degree in HX .

Proof. If there is a vertex of odd degree in HX then the facial cycle, denoted by C,

corresponding to the vertex contains an odd number of edges in X. Thus, fX(C) contains

an odd number of twisted edges.

Suppose that F 2
X is non-orientable. Then, there is a cycle in fX(G) containing an odd

number of twisted edges, that is, there is a cycle in G containing an odd number of edges

in X, denoted by C ′. Since C ′ separates the sphere into two regions, the edges dual to

X ∩ E(C ′) form an edge-cut of HX , whose cardinality is odd. Thus, there is a vertex of

odd degree in HX by the handshaking lemma.

3.3.1 On the projective-plane

Lemma 3.9. For a given subset X of E(G), F 2
X is homeomorphic to the projective-plane

if and only if HX is isomorphic to K2 or K4.

Proof. Suppose that F 2
X is homeomorphic to the projective-plane. Any two non-separating

simple closed curves on the projective-plane cross at least once.
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Let C and C ′ be any two facial cycles in G each of which has an edge of X. By Lemma

3.4, fX(C) and fX(C
′) are non-separating cycles on F 2

X and cross at most once. Thus,

fX(C) and fX(C
′) cross exactly once and hence C and C ′ have exactly one common edge

in X. It implies that any two vertices in HX are adjacent to each other, that is, HX must

be a complete graph. Since HX is planar and induced by edges, HX must be isomorphic

to K2, K3 or K4. However, HX is not isomorphic to K3 by Lemma 3.8.

If HX is isomorphic to K2 or K4 then G must have one of the structures shown in

Fig. 3.6 (HX is drawn by squares and dashed lines). Note that K4 is uniquely embeddable

on the sphere and hence the structure is determined uniquely. In Fig. 3.6, we represent

edges in X by bold lines and each component of G−X by shaded area together with some

vertices, each of which is an end vertex of an edge in X, on its boundary. Note that X

does not have to be a matching, that is, two edges in X may have a common end vertex.

K2 K4

Figure 3.6: Two structures of G with HX

In the situation shown in Fig. 3.6, by twisting all edges of X, we obtain the re-

embedding fX(G) into the projective-plane shown in Fig. 3.3.

Proof of Theorem 3.5. Let G be a 3-connected 3-regular planar graph. Any embedding

of G on a non-spherical surface can be represented by fX(G) with a suitable non-empty

subsetX of E(G). By lemma 3.9, if fX(G) is a re-embedding of G into the projective-plane

then it has one of the structures shown in Fig. 3.3.

Conversely, it is easy to see that if a 3-connected 3-regular graph has one of the

structures shown in Fig. 3.3, then it can be embedded on the sphere so that it has one of

the structures shown in Fig. 3.6.

3.3.2 On the torus

Lemma 3.10. For a given subset X of E(G), F 2
X is homeomorphic to the torus if and

only if HX is isomorphic to K2,2,2, K2,2m, or K1,1,2m−1 for some positive integer m.

Proof. Suppose that F 2
X is homeomorphic to the torus. For two simple closed curves

crossing at most once on the torus, they cross if and only if they are not homotopic.
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Let C and C ′ be any two facial cycles in G each of which has an edge of X. By

Lemma 3.4, fX(C) and fX(C
′) are non-separating cycles on F 2

X and cross at most once.

Then, fX(C) and fX(C
′) are homotopic if and only if they do not cross, that is, C and

C ′ have no common edge in X, and hence two vertices in HX corresponding to them are

not adjacent. It implies that HX must be a complete multipartite graph and each partite

set corresponds to a non-null homotopy class on the torus.

It is easy to check that any planar complete miltipartite graph is isomorphic to one of

the 7 graphs K1,1,1,2, K1,1,1,1 = K4, K2,2,2, K1,2,2, K1,1,n, K2,n and K1,n for some natural

number n. By Lemma 3.8, any vertex of HX has even degree. Then, as HX is planar, HX

is isomorphic to K2,2,2, or K2,2m or K1,1,2m−1 for some positive integer m.

Conversely, if HX is isomorphic to K2,2,2, K2,2m or K1,1,2m−1, then G must have one of

the structure shown in Fig. 3.7. Note that all of K2,2,2, K2,2m and K1,1,2m−1 is uniquely

embeddable on the sphere if we neglect the labels of their vertices.

K1,1,2m-1

K2,2m

K2,2,2

Figure 3.7: Three structures of G with HX

In the situation shown in Fig. 3.7, by twisting all edges of X, we obtain the re-

embedding fX(G) into the torus shown in Fig. 3.4.

Proof of Theorem 3.6. Like Theorem 3.5, this theorem follows immediately from the key

lemma; Lemma 3.10.

3.3.3 On the Klein bottle

Lemma 3.11. For a given subset X of E(G), F 2
X is homeomorphic to the Klein bottle if

and only if HX is isomorphic to K2,2m−1 or K1,1,2m for some positive integer m, or one

of the six graphs A1 to A6 shown in Fig. 3.1.
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Proof. Suppose that F 2
X is homeomorphic to the Klein bottle. There are exactly two mu-

tually disjoint non-separating simple closed 1-sided curves and exactly one non-separating

2-sided curve on the Klein bottle up to homotopy.

Let C and C ′ be any two facial cycles in G each of which has an edge of X. Then,

fX(C) and fX(C
′) are non-separating cycles on F 2

X and cross at most once. We first

assume that both fX(C) and fX(C
′) are 1-sided. Then, fX(C) and fX(C

′) cross if and

only if they are homotopic. Second, we assume that one of fX(C) and fX(C
′) is 1-sided

and the other is 2-sided. Then, they cross. Third, we assume that both fX(C) and fX(C
′)

are 2-sided. Then they are homotopic and hence do not cross.

The vertex of HX corresponding to C has odd degree if and only if fX(C) is 1-

sided. Thus, the facts mentioned in the last paragraph imply that HX has the following

conditions. (1) The vertices of odd degree in HX induce a graph having at most two

components each of which is isomorphic to a complete graph. (2) Any vertex of even

degree and any vertex of odd degree are adjacent. (3) The vertices of even degree in HX

are independent, that is, any pair of such vertices are not adjacent.

Let Vodd (resp. Veven) be the set of vertices of odd (resp. even) degree in HX . Since

Veven is a independent set and any vertex of Veven is adjacent to each vertex of Vodd, |Vodd|
is even.

Case 1: Vodd induces a complete graph Km. As HX is planar, m = 2 or 4.

Subcase 1a: m = 2. It is easy to see that |Veven| is even. Then, HX is isomorphic

to K1,1,2k with some non-negative integer k. However, if HX is isomorphic to K1,1,0 = K2

then F 2
X is homeomorphic to the projective-plane by Lemma 3.9. Then, k ≥ 1.

Subcase 1b: m = 4. If there is at least one vertex in Veven then HX is not planar

since it contains K5 as a subgraph. Moreover, if Veven is empty, then HX is isomorphic

to K4 and hence F 2
X is homeomorphic to the projective-plane by Lemma 3.9. Therefore,

m ̸= 4.

Case 2: Vodd induces two disjoint complete graphs Km and Kn. Then, we have

m+ n = 2, 4, 6, 8.

Subcase 2a: m + n = 2, that is, m = n = 1. In this situation, HX is isomorphic to

K2,2k−1 with some positive integer k.

Subcase 2b: m + n = 4, that is, m = n = 2 or m = 1, n = 3. Suppose that

m = n = 2. If |Veven| ≥ 3 then HX is not planar since it contains K3,3 as a subgraph.

If |Veven| = 1 then each vertex of HX has even degree, which contradicts Lemma 3.8. If

|Veven| = 0 or 2 then HX corresponds to A1 or A6, respectively.

Suppose that m = 1 and n = 3. If |Veven| ≥ 3 then HX is not planar since it contains

K3,3 as a subgraph. If |Veven| = 0, 2 then each vertex of HX has even degree, which

contradicts Lemma 3.8. If |Veven| = 1 then HX corresponds to A4.
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Subcase 2c: m + n = 6, that is, m = n = 3 or m = 2, n = 4. Suppose that

m = n = 3. If |Veven| ≥ 3 then HX is not planar since it contains K3,3 as a subgraph. If

|Veven| = 0, 2 then each vertex of HX has even degree, which contradicts Lemma 3.8. If

|Veven| = 1 then HX corresponds to A5.

Suppose that m = 2, n = 4. If |Veven| ≥ 1 then HX is not planar since it contains K5

as a subgraph. If |Veven| = 0 then HX corresponds to A2.

Subcase 2d: m + n = 8, that is, m = n = 4. If |Veven| ≥ 1 then HX is not planar

since it contains K5 as a subgraph. If |Veven| = 0 then HX corresponds to A3.

According to the above results, HX is isomorphic to K2,2m−1 or K1,1,2m for some

positive integer m, or HX is isomorphic to one of the six graphs A1 to A6.

Conversely, if HX is isomorphic to K2,2m−1 or K1,1,2m for some positive integer m, or

HX is isomorphic to one of the six graphs A1 to A6, then G must have one of the structure

shown in Fig. 3.8. Note that all graphs shown in Fig. 3.1 are uniquely embeddable on the

sphere if we neglect the labels of their vertices.

In the situation shown in Fig. 3.8, by twisting all edges of X, we obtain the re-

embedding fX(G) into the Klein bottle shown in Fig. 3.5.

Proof of Theorem 3.7. Like Theorem 3.5, this theorem follows immediately from the key

lemma; Lemma 3.11.

3.3.4 Proof of Theorems

Theorems 3.1, 3.2 and 3.3 immediately follow from Lemmas 3.9, 3.10 and 3.11, respec-

tively.

Proof of Theorems 3.1, 3.2 and 3.3. Let G be a 3-connected 3-regular planar graph. Any

embedding of G on any surface is equivalent to an embedding fX(G) associated with a

suitable subset X of E(G). Moreover, such X is unique. Thus, Lemmas 3.9, 3.10 and

3.11 imply Theorems3.1, 3.2 and 3.3, respectively.

3.4 Inequivalent embeddings

In this section, we first give explicit bounds for the number of inequivalent embeddings of

G on each of the projective-plane, the torus and the Klein bottle. After that, we propose

algorithms for enumerating and counting these embeddings.

3.4.1 The number of inequivalent embeddings

Based on Theorems 3.1, 3.2 and 3.3, we show the following three results.
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A1 A2 A3

A4 A5 A6

K2,2m-1 K1,1,2m

Figure 3.8: Eight structures of G with HX

Theorem 3.12. A 3-connected 3-regular planar graph with n vertices has at least 3
2
n and

at most 2n− 1 inequivalent embeddings on the projective-plane.

Theorem 3.13. A 3-connected 3-regular planar graph with n ≥ 5 vertices has at least 5
2
n

inequivalent embeddings on the torus.

Theorem 3.14. A 3-connected 3-regular planar graph with n vertices has at least 3
8
n(3n+

2) inequivalent embeddings on the Klein bottle.

Before we prove these theorems, we consider a situation where the dual of G embedded

on the sphere has many subgraphs isomorphic to K4, which is useful for showing the upper

bound of Theorem 3.12 and characterizing graphs attaining this bound.

A graph embedded on the sphere is 3-connected and 3-regular if and only if the dual is

a triangulation on the sphere. For a triangulation T , a 3-vertex addition is an operation

of adding a vertex into a face ∆ of T and joining the new vertex to the vertices on the

boundary of ∆.
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Lemma 3.15. Every triangulation T on the sphere has at most (|V (T )| − 3) subgraphs

isomorphic to K4. In particular, T attains the upper bound if and only if T is obtained

from K4 embedded on the sphere by a sequence of 3-vertex additions.

Proof. The proof is by induction on the number of vertices.

If |V (T )| = 4 then T is K4 itself and hence the result clearly holds. Thus, we assume

|V (T )| ≥ 5.

If T has no separating cycle of order 3 then T has no subgraph isomorphic to K4.

Thus, we may assume that T has a separating cycle C of order 3, which separates the

sphere into two regions, denoted by R1 and R2. Let T1 (resp. T2) be the subgraph of T

induced by the vertices lying on R1 (resp. R2) with its boundary. Then, both of T1 and

T2 is also a triangulation on the sphere. Note that T1 ∩ T2 = C and T1 ∪ T2 = G. For any

vertices x ∈ V (T1) \ V (C) and y ∈ V (T2) \ V (C), there is no edge whose endvertices are

x and y, and hence there are no subgraphs of T isomorphic to K4 having both x and y.

Thus, the number of subgraphs of T isomorphic to K4 is at most

(|V (T1)| − 3) + (|V (T2)| − 3) = (|V (T )|+ 3)− 6 = |V (T )| − 3.

Next, we characterize triangulations attaining this upper bounds. Let T̃ be a triangu-

lation on the sphere obtained from T by one operation of a 3-vertex addition and ṽ be the

additional vertex of T̃ . There is exactly one subgraph of T̃ isomorphic to K4 including

ṽ. If T is obtained from K4 by a sequence of 3-vertex addition then T has has exactly

|V (T )| − 3 subgraphs isomorphic to K4, and hence T̃ has exactly |V (T )| − 2 = |V (T̃ )| − 3

subgraphs isomorphic to K4.

Conversely, suppose that T has exactly |V (T )| − 3 subgraphs isomorphic to K4. We

may assume that |V (T )| ≥ 5 and T has a separating cycle C of order 3. Then, T1

and T2, which are defined in the same way as above, must have exactly |V (T1)| − 3 and

|V (T2)| − 3 subgraphs isomorphic to K4, respectively, and hence both are obtained from

K4 by a sequence of 3-vertex additions.

Let T ′ be a triangulation on the sphere obtained from K4 by a sequence of 3-vertex

addition but not K4. It is easy to check that any two vertices of degree 3 are not adjacent

in T ′. Thus, an operation of a 3-vertex addition from T ′ will not decrease the number of

vertices of order 3, and hence T ′ has at least two vertices of degree 3.

The above facts imply that we can obtain K4 from T2 by deleting a vertex of degree

3 without deleting the vertices on C. By applying these operations to T and deleting the

last vertex from R2, we have just obtained T1. Therefore, T is also obtained from K4 by

a sequence of 3-vertex additions.

Proof of Theorem 3.12. Let G be a 3-connected 3-regular planar graph embedded on the

sphere with n vertices and G∗ be its dual. Choose an edge e of G and put X = {e}.
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Then, HX is isomorphic to K2 and hence fX(G) is embedded on the projective-plane

by Lemma 3.9. It implies that G has at least |E(G)| inequivalent embeddings on the

projective-plane. Since G is 3-regular, we have |E(G)| = 3
2
n.

By Lemma 3.15, there are at most |V (G∗)| − 3 subgraphs of G∗ isomorphic to K4. By

Euler’s formula, |V (G∗)| = (|V (G)| + 4)/2 = n+4
2

and hence G∗ has at most
(
n+4
2

− 3
)

subgraphs isomorphic to K4. Thus, by Theorem 3.1, G has at most 3
2
n+

(
n
2
− 1

)
= 2n−1

inequivalent embeddings on the projective-plane.

Not only 3-connected 3-regular planar graphs, any 2-connected graph G has |E(G)|
inequivalent embeddings on the projective-plane by twisting each edge of G. Then, the

assumptions on 3-connectivity and 3-regularity are not necessary in the lower bound in

Theorem 3.12. However, these assumptions are clearly necessary in the upper bound

in Theorem 3.12. In fact, we can easily construct non-3-connected or non-3-regular

2-connected planar graphs having exponentially many inequivalent embeddings on the

projective-plane.

Proof of Theorem 3.13. Let G be a 3-connected 3-regular planar graph embedded on the

sphere with at least 5 vertices and G∗ be its dual. Every face of G∗ is bounded by a cycle

of order 3 (= K1,1,1) and every edge of G∗ forms a chord of a cycle of order 4 (= K2,2)

since it is incident with just two triangle faces. If G is not isomorphic to K4, then there

are no other chords in this cycle. Thus, G∗ has at least |V (G)| cycles of order 3 and at

least |E(G)| cycles of order 4 as subgraphs. As G is 3-regular, |E(G)| = 3n/2. Then, by

Theorem 3.2, G has at least n+ 3n/2 = 5n/2 inequivalent embeddings on the torus.

Note that a 3-connected 3-regular planar graph with at most 4 vertices must be iso-

morphic to K4, which has exactly 7 ≤ 5 · 4/2 inequivalent embeddings on the torus.

Proof of Theorem 3.14. Let G be a 3-connected 3-regular planar graph embedded on the

sphere with n vertices and G∗ be its dual. Choose two distinct edges e1 and e2 of G and

put X = {e1, e2}. Then, HX is isomorphic to K2,1 or A1. By Lemma 3.11, fX(G) is

embedded on the Klein bottle.

In addition, we try to find subgraphs isomorphic to K1,1,2 in G∗. Since G∗ is a tri-

angulation on the sphere, every edge e∗ is incident with just two triangle faces. The five

edges bounding these faces induce subgraphs of G∗ isomorphic to K1,1,2. Then, G∗ has

|E(G∗)| subgraphs isomorphic to K1,1,2.

These results imply that, by Theorem 3.3, G has at least
(|E(G)|

2

)
+|E(G∗)| = 3

8
n(3n+2)

inequivalent embeddings on the Klein bottle.
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3.4.2 Examples

First, we characterize the graphs attaining the lower bound of Theorem 3.12. By Theorem

3.12, the following clearly holds.

Corollary 3.16. A 3-connected 3-regular planar graph G with n vertices has exactly 3
2
n

inequivalent embeddings on the projective-plane if and only if the dual of G embedded on

the sphere has no subgraph isomorphic to K4.

By this corollary, we show the following two families of graphs attaining the lower

bound of Theorem 3.12.

Proposition 3.17. A 3-connected 3-regular planar graph G with n ≥ 5 vertices has

exactly 3
2
n inequivalent embeddings on the projective-plane if G is bipartite or cyclically

4-edge-connected.

Proof. We only have to show that the dual G∗ of G embedded on the sphere has no

subgraph isomorphic to K4.

If G is bipartite then degree of each vertex of G∗ is even, that is, G∗ is a even triangu-

lation. It is well-known that every even triangulation on the sphere is (vertex) 3-colorable

and hence has no subgraph isomorphic to K4.

If G is cyclically 4-edge-connected and n ≥ 5, then G∗ has no separating cycle of order

3 and hence has no subgraph isomorphic to K4.

Second, we characterize the graphs attaining the upper bound of Theorem 3.12. To-

wards this goal, we introduce a transforming operation of G, which corresponds to a

3-vertex addition in the dual of G.

Let v be a vertex of G, and u1, u2 and u3 be vertices adjacent to v. A truncation of

a vertex v in G is an operation of replacing a small part around v with a cycle of order

3 shown in Fig. 3.9; delete v and add new vertices v1, v2 and v3 together with six edges

u1v1, u2v2, u3v3, v1v2, v2v3 and v3v1.

u1

u2
vu3

u1

u2
u3

v1
v2v3

Figure 3.9: Truncation of a vertex
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The resulting graph, denoted by G′, is also 3-connected, 3-regular and planar. The

dual (G′)∗ is obtained from the dual G∗ of G by a 3-vertex addition. Then, the following

clearly holds by Lemma 3.15.

Corollary 3.18. A 3-connected 3-regular planar graph G with n vertices has exactly 2n−1

inequivalent embeddings on the projective-plane if and only if G is obtained from K4 by a

sequence of truncations.

Third, we provided graphs attaining the lower bounds of Theorems 3.13 and 3.14.

Corollary 3.19. A 3-connected 3-regular planar graph G with n ≥ 5 vertices has exactly
5
2
n inequivalent embeddings on the torus if and only if G is cyclically 5-edge-connected.

Corollary 3.20. A 3-connected 3-regular planar graph G with n vertices has exactly
3
8
n(3n+2) inequivalent embeddings on the Klein bottle if G is cyclically 5-edge-connected.

Proof of Corollaries 3.19 and 3.20. Suppose that G is cyclically 5-edge-connected. In

each of the six structures shown in Fig. 3.7 and Fig. 3.8 corresponding toK2,2,2, A2, A3, A4, A5

and A6, we can easily find a set of at most four edges (drawn by bold lines) such that

the graph obtained from G by deleting these edges has at least two components hav-

ing a cycle. (The shaded annular area in A2 must have a cycle.) Then, G has none of

these six structures and hence G∗ has no subgraph isomorphic to one of the six graphs

K2,2,2, A2, A3, A4, A5 and A6.

Suppose that G∗ has a subgraph isomorphic to K2,n or K1,1,n with n ≥ 3. Then, G has

one of the four structures shown in Fig. 3.7 and Fig. 3.8 correspondingK2,2m, K1,1,2m−1, K2,2m−1

and K1,1,2m. In both case, G has at least three shaded areas, and since G is cyclically

5-edge-connected, all shaded areas except for at most one have no cycle. Hence, there

are two consecutive shaded areas having no cycle in G, one of which is rectangle. These

shaded areas together with edges joining them form one of the three subgraphs shown in

Fig. 3.10.

Figure 3.10: Subgraphs formed by two consecutive shaded areas

These subgraphs have a cycle and can be separated from G by deleting at most four

edges. This implies that G has at most one more shaded rectangle and that it contains

no cycle. Hence it must be one of the three graphs shown in Fig. 3.11. These graphs have
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Figure 3.11: Three graphs

distinct structures but each graph is the same as the others. However, this graph is not

cyclically 5-edge-connected, a contradiction.

Therefore, G∗ has no subgraph isomorphic to K2,n or K1,1,n with n ≥ 3, and hence

G has only 5
2
n inequivalent embeddings mentioned in the proof of Theorem 3.13 on the

torus, and only 3
8
n(3n + 2) inequivalent embeddings mentioned in the proof of Theorem

3.14 on the Klein bottle.

Suppose G is not cyclically 5-edge-connected. Since G is 3-connected, there are three

or four edges of G whose removal results in a disconnected graph having exactly two

components, both of which contain a cycle. Let X be such edges. Then, HX is isomorphic

to K1,1,1 = K3 or K2,2, and hence fX(G) is embedded on the torus. However, this re-

embedding conforms to none of re-embeddings mentioned in the proof of Theorem 3.13.

Thus, the number of inequivalent embeddings of G on the torus is more than 5n
2
.

A graph attaining the lower bound of Theorem 3.14 is not necessarily cyclically 5-

edge-connected. For example, the following graph shown in Fig. 3.12 is such a graph. We

can construct infinitely many such graphs but we omit this here.

Figure 3.12: A graph attaining the lower bound of Theorem 3.14

Finally, we show graphs having exponentially many inequivalent embeddings on the

torus and the Klein bottle.

Proposition 3.21. For a 3-connected 3-regular planar graph G with n vertices, if the

dual G∗ of G embedded on the sphere has a subgraph isomorphic to K1,1,m with a positive
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integer m then G has at least 2m−1 inequivalent embeddings on each of the torus and the

Klein bottle.

Proof. For the complete tripartite graph K1,1,m with partite sets V1 = {u}, V2 = {v}
and V3 = {a1, a2, . . . , am}, let S be any non-empty subset of V3. A subgraph induced by

V1 ∪ V2 ∪ S is isomorphic to K1,1,|S|. Deleting an edge uv from this subgraph, we obtain

a subgraph isomorphic to K2,|S|.

It implies that if G∗ has a subgraph isomorphic to K1,1,m, then we can find 2(2m − 1)

subgraphs in G∗ isomorphic to K1,1,k or K2,k for some positive integer k. Moreover, in

these subgraphs, the number of subgraphs isomorphic to K1,1,k is the same as the one

isomorphic to K2,k for any 1 ≤ k ≤ m. Then, by Theorems 3.2 and 3.3, G has at least

2m − 1 inequivalent embeddings on each of the torus and the Klein bottle.

3.4.3 Algorithms

By Theorem 3.12, the number of inequivalent embeddings of G on the projective-plane is

O(n) with respect to the number n of vertices of G. In fact, we can easily enumerate these

embeddings in polynomial-time with respect to n. Note that we regard an enumeration

of embedding schemes of a graph as one of the embeddings of the graph.

Theorem 3.22. There is a polynomial time algorithm for enumerating inequivalent em-

beddings of a 3-connected 3-regular planar graph on the projective-plane.

Proof. Let G be a 3-connected 3-regular planar graph. The embedding of G on the sphere,

its dual G∗ and another embedding fX(G) with a given subset X of E(G) can be obtained

in polynomial time. Then, we only have to find subgraphs isomorphic to K2 or K4 in G∗

by Lemma 3.9, which can be done in polynomial time.

On the other hand, there are 3-connected 3-regular planar graphs having exponentially

many inequivalent embeddings on the torus and the Klein bottle by Proposition 3.21.

Then, we cannot enumerate inequivalent embeddings of such a graph on the torus or the

Klein bottle in polynomial time. However, we shall give a “polynomial delay” algorithm

for enumerating them. An enumeration algorithm is said to be polynomial delay if the

maximum computation time between two consecutive outputs is polynomial in the input

size.

For the complete miltipartite graphs K2,m+2 and K1,1,m+1 with any positive integer m,

there are exactly two vertices whose degree is not two. We call them apex vertices.

Theorem 3.23. There is a polynomial delay algorithm for enumerating inequivalent em-

beddings of a 3-connected 3-regular planar graph on each of the torus and the Klein bottle.
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Proof. Let G be a 3-connected 3-regular planar graph. We enumerate inequivalent embed-

dings of G on the torus and the Klein bottle simultaneously. Like the proof of Theorem

3.22, we only have to find subgraphs isomorphic to K2,m+1 or K1,1,m for any positive in-

teger m, or one of the seven graphs A1, · · · , A6 and K2,2,2. (Every time we find such a

subgraph, output a embedding corresponding to it)

First, we find subgraphs isomorphic to one of the nine graphs A1, · · · , A6, K1,1,1 =

K3, K2,2 and K2,2,2 in G∗, which can be done in polynomial time. Second, for a pair of

vertices u and v of G∗, enumerate vertices adjacent to both of them. Third, enumerate

subgraphs isomorphic to K2,m+2 or K1,1,m+1 whose apex vertices are u and v. In such

a subgraph, all non-apex vertices are already enumerated in the second step. Thus, the

third step can be done in polynomial delay time.

To repeat the second and third step for any pair of vertices, in the end, we have just

enumerated all subgraphs isomorphic to K2,m+2 or K1,1,m+1 in G∗.

We can calculate the total number of inequivalent embeddings of G on each of the

projective-plane, the torus and the Klein bottle in polynomial time by a simple improve-

ment of the above algorithms.

Corollary 3.24. There is a polynomial time algorithm for counting the number of inequiv-

alent embeddings of a 3-connected 3-regular planar graph on each of the projective-plane,

the torus and the Klein bottle.

Proof. The projective-planar case clearly holds. We only have to count all the embeddings

enumerated in the algorithm of Theorem 3.22. Thus, we may consider embeddings on the

torus and the Klein bottle.

Let G be a 3-connected 3-regular planar graph. On the basis of the algorithm in

Theorem 3.23, we shall count subgraphs of G∗ isomorphic to K2,2,2, K2,2m or K1,1,2m−1,

which correspond to embeddings on the torus, and count subgraphs isomorphic to K2,2m−1

or K1,1,2m, or one of the six graphs A1 to A6, which correspond to embeddings on the

Klein bottle.

Like the proof of Theorem 3.23, we first count the number of subgraphs of G∗ iso-

morphic to one of the three graphs K2,2,2, K2,2 and K1,1,1 = K3, and denote it by NT .

Similarly, we count the number of subgraphs isomorphic to one of the six graphs A1 to

A6, and denote it by NK .

Second, for the pair of vertices u and v in the proof of Theorem 3.23, assume that

exactly k vertices are adjacent to both u and v. Let fT (u, v) (resp. fK(u, v)) be the

number of subgraphs isomorphic to K2,2m+2 or K1,1,2m+1 (resp. K2,2m−1 or K1,1,2m) for

any positive integer m whose apex vertices are u and v. If u and v are adjacent to each
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other in G∗, then we have

fT (u, v) =
k∑

i=3

(
k

i

)
= 2k − k(k − 1)

2
− k − 1 = 2k − k2 + k + 2

2
,

fK(u, v) =
k∑

i=1

(
k

i

)
= 2k − 1.

Otherwise,

fT (u, v) =

⌊ k
2
⌋∑

i=2

(
k

2i

)
= 2k−1 − k(k − 1)

2
− 1 = 2k−1 − k2 − k + 2

2
,

fK(u, v) =

⌊ k+1
2

⌋∑
i=1

(
k

2i− 1

)
= 2k−1.

Add the sum of fT (u, v) (resp. fK(u, v)) taken over all pairs of vertices u, v to NT

(resp. NK). These are the total numbers of inequivalent embeddings of G on the torus

and the Klein bottle. Thus, we can obtain this number in polynomial time.

3.5 Remarks

In this chapter, we have shown the re-embedding structures of a 3-connected 3-regular

planar graph G on the projective-plane, the torus and the Klein bottle. These structures

enable us to count inequivalent embeddings of G on each surface easily. These results allow

the computation and the study of the genus distributions of a large family of graphs. We

denote the number of inequivalent embeddings of a graph G on the orientable surface of

genus k (resp. the non-orientable surface of genus h) by gG(k) (resp. g̃G(h)). The genus

distribution (resp. non-orientable genus distribution) of G is defined as the sequence

gG(0), gG(1), gG(2), . . . (resp. g̃G(0), g̃G(1), g̃G(2), . . . ). The topic of genus distributions

was introduced by Gross and Furst [30] and studied in various papers; see for example [17,

18,30–33]. Whether the genus distribution of every graph is log-concave is an interesting

problem conjectured in [31], and still remains to be solved. From the genus distribution’s

point of view, we give explicit bounds for gG(1), g̃G(1) and g̃G(2) of a 3-connected 3-regular

planar graph G and algorithms for calculating them.

In order to extend our result to surfaces with higher genera, we should show the

complete lists of re-embedding structures of G on these surfaces like Theorems 3.5, 3.6

and 3.7. However, we think that there are a large number of re-embedding types even

on an orientable surface with genus 2 or a non-orientable surface with genus 3. Then, it

seems to be difficult to give such complete lists without additional assumptions.
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Chapter 4

2-Regular Diplanar Digraphs on

Surfaces

In this Chapter, we focus on embeddings of strongly 2-edge-connected 2-regular “diplanar”

digraphs on surfaces.

An embedding of an Eulerian digraphD on a surface F 2 is defined as a 2-cell embedding

of its underlying graph on F 2 with a property that each face is bounded by a directed

closed walk. Hence, in- and out-edges alternate in the rotation around each vertex of an

embedded digraph. An Eulerian digraph D is diplanar if D has an embedding on the

sphere (or the plane).

In Section 4.1, we indicate the close relationship between an embedding of a 3-

connected graph on a surface and one of a strongly 2-edge-connected digraph on the

surface, which enables us to give a simple proof of Theorem 1.5, which we call the directed

version of Whitney Theorem or simply Directed Whitney Theorem.

Moreover, we focus on embeddings of diplanar digraphs on non-spherical surfaces.

In Chapter 3, we completely characterized structures of embeddings of 3-connected 3-

regular planar graphs on the projective-plane, the torus and the Klein bottle, which are

useful for enumerating such embeddings and counting its total number. In Section 4.2,

we extend the above result to embeddings of digraphs, that is, we characterize structures

of embeddings of strongly 2-edge-connected 2-regular diplanar digraph on the projective-

plane, the torus and the Klein bottle. In addition to this, we evaluate the number of such

embeddings in Section 4.3.

4.1 Simple proof of Directed Whitney Theorem

For an embedded graph G associated with a given embedding scheme, we call an operation

of replacing the signatures of some edges with these inverses twisting these edges, and
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the embedding associated with the resulting embedding scheme the re-embedding of G

obtained by twisting these edges.

Now we introduce a transforming operation of a 4-regular graph. Let G be a 4-regular

graph embedded on a surface, and v be a vertex of G adjacent to u1, u2, u3 and u4 such that

the rotation around v corresponds this order. A truncation of a vertex v is an operation

of replacing a small part around v with a facial cycle of order 4, called a truncated cycle,

shown in Fig. 4.1; delete v and add four vertices v1, v2, v3 and v4 together with edges viui

and vivi+1 with indices taken modulo 4.

u1

u3

u2

u4

u1

v3
u2v4

v1

u3

v2u4
v

Figure 4.1: Truncation of a vertex

The truncated graph of a 4-regular graph G embedded on a surface is the embedded

graph obtained from G by truncating all vertices, denoted by tr(G). We call the edges

of tr(G) contained in a truncated cycle truncated edges and the others original edges. It

is clear that tr(G) is 3-regular and each vertex is incident with two truncated edges and

one original edge. Note that the truncating operation depends on the rotation around a

vertex. That is, if two embeddings f1(G) and f2(G) of G on a surface are inequivalent

then the truncated graphs tr(f1(G)) and tr(f2(G)) may not be isomorphic to each other.

However, we do not have to consider such situation when G is the underlying graph of a

connected 2-regular digraph D.

Lemma 4.1. For any two embeddings f1(D) and f2(D) of a connected 2-regular digraph

D embedded on a surface with its underlying graph G, the truncated graphs tr(f1(G)) and

tr(f2(G)) are isomorphic to each other.

Proof. Since G is the underlying graph ofD, which is 2-regular, there are only two possible

rotations around each vertex of G, and one of them is the inverse of the other. This implies

that the sets of truncated cycles of tr(f1(G)) and tr(f2(G)) are same, and hence tr(f1(G))

and tr(f2(G)) are isomorphic to each other.

Lemma 4.2. If a connected 2-regular digraph D embedded on a surface is strongly 2-edge-

connected then the truncated graph of the underlying graph of D is 3-connected.
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Proof. It is easy to see that if D is strongly 2-edge-connected then the underlying graph G

is 2-connected and 4-edge-connected. Suppose that the truncated graph tr(G) of G is not

3-connected. Since tr(G) is 3-regular, there are two edges of tr(G) forming an edge-cut.

If one of them is truncated then the other must be contained in the same truncated cycle.

It implies that the vertex of G corresponding to this truncated cycle is a cut vertex, which

contradicts the 2-connectivity of G. Hence, both edges are not truncated. However, it

implies that they form an edge-cut of G, which contradicts the 4-edge-connectivity of

G.

Using Lemmas 4.1 and 4.2, we can prove Theorem 1.5 easily.

Proof of Theorem 1.5. Let D be a strongly 2-edge-connected 2-regular diplanar digraph

with its underlying graph G, and f1(D) and f2(D) be two embeddings of D on the sphere.

By Lemma 4.1, the two truncated graphs tr(f1(G)) and tr(f2(G)) of f1(G) and f2(G),

respectively, are isomorphic. Moreover, by Lemma 4.2, they are 3-connected and hence

equivalent to each other (by Whitney’s theorem). This implies that f1(D) and f2(D) are

equivalent.

4.2 Embeddings on non-spherical surfaces

In this section, we expand Theorems 3.5, 3.6 and 3.7 to embeddings of strongly 2-edge-

connected 2-regular diplanar digraphs:

Theorem 4.3. A strongly 2-edge-connected 2-regular digraph embedded on the projective-

plane is diplanar if and only if it has the structure shown in Fig. 4.2.

Figure 4.2: Directed embedding structures on the projective-plane

Theorem 4.4. A strongly 2-edge-connected 2-regular digraph embedded on the torus is

diplanar if and only if it has the structure shown in Fig. 4.3.
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Figure 4.3: Directed embedding structures on the torus

Theorem 4.5. A strongly 2-edge-connected 2-regular digraph embedded on the Klein bottle

is diplanar if and only if it has one of the two structures shown in Fig. 4.4.

Figure 4.4: Directed embedding structures on the Klein bottle

As with Figures 3.3, 3.4 and 3.5, in these figures, each of shaded areas corresponds to

a component of the digraph obtained form the original digraph by deleting all arcs drawn

by bold arrows.

Proof of Theorems 4.3, 4.4 and 4.5. If an embedding of a strongly 2-edge-connected 2-

regular digraph on the projective-plane, the torus or the Klein bottle has one of the

structures shown in Fig. 4.2, Fig. 4.3 and Fig. 4.4, then it has one of the embeddings

on the sphere shown in Fig. 4.5. Hence, we only have to show that any embedding of a

strongly 2-edge-connected 2-regular diplanar digraph D on the projective-plane, the torus

or the Klein bottle must have one of the structures shown in Fig. 4.2, Fig. 4.3 and Fig. 4.4.

Suppose that D is already embedded on the projective-plane, the torus or the Klein

bottle with an embedding of the underlying graph G. By Lemma 4.2, the truncated

graph tr(G) of G is 3-connected. Moreover, we now show that every edge-cut of order

3 in tr(G) is trivial, that is, its edges have the common end-vertex. Suppose that tr(G)

has a non-trivial edge-cut of order 3 (for a contradiction). If an edge in the edge-cut is

truncated then either of the others is contained in the same truncated cycle. Since the

edge-cut is non-trivial, in this situation, we can find a vertex-cut of order at most two in

tr(G), which contradicts the 3-connectivity of tr(G). Thus, each of them is original one.

However, this implies that G has an edge cut of order 3, which contradicts the strong

2-edge-connectivity of D. Therefore, every edge-cut of order 3 in tr(G) is trivial.
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Figure 4.5: Three structures of an embedding on the sphere

Since tr(G) is 3-connected, 3-regular and planar, by Theorems 3.5, 3.6 and 3.7, tr(G)

has one of the structures shown in Fig. 3.3, Fig. 3.4 and Fig. 3.5. In the structure, if tr(G)

has a shaded triangle then the three edges incident with this triangle form an edge-cut.

Thus, this triangle corresponds to only one vertex, denoted by v, and hence the truncated

cycle incident with v, denoted by C, bounds an empty area in the structure. This implies

that this cycle does not facial in the re-embedding of tr(G) on the sphere. By Theorem

1.5, D is uniquely embeddable on the sphere, and we denote this embedding by f(D). By

Lemma 4.1, the truncated graph tr(f(G)) of f(G) and tr(G) are isomorphic and hence

C is also facial cycle of tr(f(G)). However, the re-embedding of tr(G) on the sphere is

just tr(f(G)), a contradiction.

Therefore, tr(G) has no shaded triangle, that is, the structure is one of the four (P1),

(T2), (K1) and (K3). From the above argument, an edge contained in a truncated cycle

appear in a shaded area. Thus, G has the same structure, and hence D has one of the

structures shown in Fig. 4.2, Fig. 4.3 and Fig. 4.4.

4.3 The number of embeddings

For an embedding of a digraph D on a surface, the operation of twisting some edges of

D can be defined as with the case of embeddings of (undirected) graphs. This operation

holds the property that in- and out-edges alternate in the rotation at each vertex of D.

That is, the resulting mapping of D on a surface is a re-embedding of D. Actually, for

a digraph D embedded on the sphere with one of the structure shown in Fig. 4.5, we

obtain the re-embedding of D with one of the structure shown in Fig. 4.2, Fig. 4.3 and

Fig. 4.4 by twisting all edges which are not contained in shaded area. It can be shown
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that for two distinct edge-sets X1 and X2, the two embeddings of D obtained from the

original embedding of D by twisting the edges in X1 and X2 are inequivalent or mapped

on distinct surfaces.

Proposition 4.6. Every connected 2-regular diplanar digraph D with n vertices has at

least 2n inequivalent embeddings on the projective-plane and n inequivalent embeddings

on the torus. If D is strongly 2-edge-connected, then D has at least n(2n−1) inequivalent

embeddings on the Klein bottle.

Proof. Let D be a 2-regular diplanar digraph with n vertices, and suppose that D is now

embedded on the sphere.

Twisting an edge of D, we obtain a re-embedding of D on the projective-plane, which

has the structure shown in Fig. 4.2. Twisting the four edges incident with a vertex of D,

we obtain a re-embedding of D on the torus, which has the structure shown in Fig. 4.3

when there are exactly two shaded rectangles and one of them represents only one vertex.

Choose two edges of D and twisting them, we obtain a re-embedding of D on the Klein

bottle, which has one of the two structures shown in the left of Fig. 4.4 or the right of

Fig. 4.4 when there are exactly one shaded rectangles. Therefore, we can give at least

|E(D)| = 2n inequivalent embeddings of D on the projective-plane, and |V (G)| = n

inequivalent embeddings of D on the torus.

In the case of Klein bottle, since D is strongly 2-edge-connected, the re-embedding of

D obtained by twisting any two edges is embedded on non-spherical surfaces. That is,

this operation is not a directed Whitney flip. Actually, if we choose two edges contained

in the same facial directed walk, then the re-embedding is embedded on the Klein bottle

and has the structure shown in the left of Fig. 4.4. Otherwise, it has the structure shown

in the right of Fig. 4.4. Thus, we can give at least
(|E(G)|

2

)
= n(2n − 1) inequivalent

embeddings of D on the Klein bottle.

By Theorem 4.3, there are no embeddings of a strongly 2-edge-connected 2-regular

diplanar digraph on the projective-plane other than them in Proposition 4.6.

Corollary 4.7. Every strongly 2-edge-connected 2-regular diplanar digraph with n vertices

has exactly 2n inequivalent embeddings on the projective-plane.

Next, we show a family of digraphs attaining the lower bounds in Proposition 4.6 on

the torus and the Klein bottle. An undirected graph is cyclically k-edge-connected if there

is no set of at most k− 1 edges such that the graph obtained by deleting these edges has

at least two components having a cycle.

Corollary 4.8. If the underlying graph of a strongly 2-edge-connected 2-regular digraph

with n vertices is cyclically 5-edge-connected, then it has exactly n inequivalent embeddings
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on the torus and n(2n− 1) inequivalent embeddings on the Klein bottle. Moreover, in the

case on the torus, the converse holds.

Proof. Let D be a a strongly 2-edge-connected 2-regular digraph D with n vertices. Sup-

pose that the underlying graph G of D is cyclically 5-edge-connected, and D has more

than n inequivalent embeddings on the torus or n(2n−1) inequivalent embeddings on the

Klein bottle. Thus, there is an embedding of D on the torus or the Klein bottle which is

not counted in Proposition 4.6. This embedding has the structure shown in Fig. 4.3 or the

right of Fig. 4.4 having at least two shaded rectangle, each of which does not represent

just one vertex, that is, has a cycle. In this situation, we can find four edges of G such that

the graph obtained by deleting these edges has exactly two components having cycles, a

contradiction.

If G is not cyclically 5-edge-connected then there are four edges such that the graph

obtained by deleting these edges has two components having a cycle. Twisting these

edges, we obtain a re-embedding of D on the torus, which has the structure shown in

Fig. 4.3 when there are exactly two shaded rectangles. This embedding is is not counted

in Proposition 4.6.

The underlying graph of a digraph attaining the lower bounds in Proposition 4.6 on the

Klein bottle is not necessarily cyclically 5-edge-connected. For example, Fig. 4.6 presents

the underlying graph of such a digraph D.

Figure 4.6: The underlying graph of D

In addition to Corollary 4.8, we can give a polynomial-time algorithm for counting

the number of inequivalent embeddings of a given strongly 2-edge-connected 2-regular

diplanar digraph on the torus or the Klein bottle and a polynomial-delay algorithm for

enumerating them to imitate the algorithm in Theorems 3.22 and 3.2, but we omit details

here.
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Chapter 5

Kündgen and Ramamurth’s

Conjecture

Hereafter, we use the term graph in the generalized sense, that is, we focus on multiple

graphs and call graphs without multiple edges simple graphs.

In this Chapter, we give affirmative answers of Conjecture 1.10 in two ways. First,

we construct two embeddings of a simple graph on the same surface such that one of

them has a weak 2-coloring but the other has arbitrarily large weak chromatic number in

Section 5.1. Note that these are far from minimum genus embeddings, while we secondly

construct two triangulations obtained from the same non-simple graph on the same surface

of Euler genus g in Section 5.2.

Moreover, in Section 5.3, we prove that there is a graph having two triangulations on

a surface, only one of which is weakly k-colorable if and only if k ≥ 3.

5.1 Two embeddings of a simple graph

In this section, we prove the following theorem to give an affirmative answer of Conjecture

1.10.

Theorem 5.1. For each positive integer n ≥ 3, there is a simple graph G embedded on a

surface F 2 with χw(G) ≥ n such that G has another embedding f(G) on F 2 which has a

weak 2-coloring.

Proof. To construct desired embeddings, we shall prepare two simple graphs, both of

which have a large number of vertices.

De Brandes, Phelps and Rödl [22] showed that for each positive integer k ≥ 3, there

are k-chromatic Steiner Triple Systems, that is, 3-uniform hypergraphs such that every

pair of vertices appears in exactly one edge, with O(k2 log k) vertices. Kündgen and

49



Ramamurthi [44, Theorem 8.2] constructed an embedded complete graph whose face-

hypergraph has such a Steiner Triple System as a subhypergraph (see also [44, Theorem

7.1]). Let K be such an embedded graph with k fixed to n + 1. Hence χw(K) ≥ n + 1

and K has a triangular face, denoted by F .

Let u1, u2 and u3 be the vertices bounding F . Although there are such embeddings

on both of orientable and non-orientable surfaces, we now assume that K is embedded on

an orientable surface, and denote its genus by g0. Let f1(K) be a maximum (orientable)

genus embedding ofK and g be the maximum genus ofK. That is, f1(K) is an embedding

of K on Sg, and K has no (cellular) embedding on any orientable surface of genus at least

g + 1. (see [76] for details of maximum genus embeddings).

Second, we let T be a simple triangulation on the sphere. We assume that |V (T )| is
so large that T has an embedding f2(T ) on Sg1 , where g1 = g − g0, such that there is

a triangle face F ′ in T whose boundary cycle also bounds a face of f2(T ), denoted by

f2(F
′). Let v1, v2 and v3 be the vertices bounding F ′.

Now we construct an embedding of a simple graph in which a weak coloring requires

many colors. For two embedded graphs K and f2(T ), paste the two faces F and f2(F
′)

so that ui is identified with vi for 1 ≤ i ≤ 3 (this operation corresponds to the connected

sum of Sg0 and Sg1). Thus, we obtain a simple graph embedded on Sg, denoted by G.

That is, G has a 3-cycle which separates Sg into two surfaces Sg0 and Sg1 where K and

f2(T ) are embedded, respectively. Since all faces of K other than F are still faces in G,

we have χw(G) ≥ n.

We next construct another embedding of G on Sg which has a weak 2-coloring. Since

K is a complete graph, f1(K) has at most two faces (see [76]). Thus, it is easy to see

that it has a weak 2-coloring c such that the second color is assigned to only one vertex,

say, w. By the symmetry of a complete graph, we may assume that w corresponds to u1,

and the path P = u1u2u3 forms a consecutive part of a walk bounding a face of f1(K).

Add a second edge e joining u1 and u3 in f1(K) which yields a triangle face bounded by

u1, u2 and u3. (Then the resulting graph has two edges joining u1 and u3.) We denote

this triangle face by F ′′. For this embedded graph and T , paste the two faces F ′′ and

F ′ so that ui is identified with vi for 1 ≤ i ≤ 3. After that, we remove the edge e.

Then we obtain another embedding f(G) of G on Sg. Since every planar graph is weakly

2-colorable (see [44, Theorem 2.1]), one can easily deduce that T has a weak 2-coloring c′

such that c′(v1) = 2 and c′(v2) = c′(v3) = 1. Therefore, two 2-colorings c and c′ construct

a weak 2-coloring of f(G).

Note that we can also construct desired embeddings on non-orientable surfaces by

using a maximum non-orientable genus embedding of K instead of f1(K) in the proof of

Theorem 5.1.
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5.2 Two triangulations obtained from a multiple graph

In this section, we define a “complete” triangulation G on a surface F 2 and construct

another embedding of G which also triangulates F 2.

We denote the complete graph of order n by Kn. Moreover, for a positive integer

m ≥ 2, we denote the graph obtained from Kn by replacing each edge with m multiple

edges by Km
n .

A triangulation G on a surface is complete if its face-hypergraph is isomorphic to a

complete 3-uniform hypergraph, that is, G has exactly
(|V (G)|

3

)
faces and there is a face

bounded by each triple of vertices. Kündgen and Ramamurthi [44] introduced this notion,

and gave a criterion for the existence of complete triangulations.

Theorem 5.2 (Kündgen and Ramamurthi [44, Theorem 6.1]). There is a complete tri-

angulation of order n on a surface if and only if n is even and at least 4.

Suppose that a triangulation G of order 2m ≥ 4 is complete. Each edge is incident with

exactly two faces, and each pair of vertices must be bounded by 2m− 2 faces. Thus, G is

isomorphic to Km−1
2m and embedded on a surface of Euler genus (m−1)(m−2)(2m+3)/3.

Actually, Kündgen and Ramamurthi [44] constructed a complete triangulation of order

2m on an orientable surface. Moreover, they remarked in [44, Remark 6.2] that we can

also obtain complete triangulations on non-orientable surfaces of the same Euler genus by

simple replacements.

It is easy to check that for a complete triangulation G of order 2m, we have χw(G) = m

by the pigeon-hole principle. Our goal is to construct another triangulation by G whose

weak chromatic number is smaller than G.

Let T be a simple triangulation on a surface, and G be a triangulation on a surface,

which may have multiple edges, with the same vertex set as T . We call G a T -face-

hypergraph-isomorphic triangulation (a T -FHI triangulation, for short) if the edge set

of H(G) coincides with that of H(T ) by ignoring the multiplicity of the edge sets. For

example, suppose that graphs T = K4 and G = K2
4 are embedded on the sphere and the

torus as a triangulation, respectively. Note that both graphs are uniquely embeddable on

the surfaces (see [57]). Then it is easy to check that G is a T -FHI triangulation.

By Ringel’s Map Color Theorem [65], for each positive integer m, the complete graph

K12m of order 12m can be embedded on the orientable surface Sg′ , where g
′ = (4m −

1)(3m− 1), as a triangulation, denoted by T . We shall show that the graph G = K6m−1
12m

has a T -FHI triangulation on an orientable surface.

Theorem 5.3. Let T be any triangulation on Sg′ isomorphic to K12m, where g
′ = (4m−

1)(3m − 1). Then the graph G = K6m−1
12m has a T -FHI triangulation on Sg, where g =

(6m− 1)(3m− 1)(4m+ 1).
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To prove this theorem, we introduce a transformation of an embedded graph. Let G

be a graph embedded on a surface F 2 and u1v1 and u2v2 be two disjoint edges of G. We

define the digon pasting for u1v1 and u2v2 as follows:

(1) Add a second edge in parallel with each of u1v1 and u2v2 so that parallel edges form

digons (Fig. 5.1).

(2) Cut away each digon from F 2. Then the resulting surface has two boundary compo-

nents. Next, paste these boundaries so that u1 and v1 are identified with u2 and v2,

respectively (and so that the resulting surface is orientable if F 2 is orientable; see

Fig. 2). Note that this operation can be regarded as adding a handle (see [50, p.80]).

Let G′ be the resulting graph. Then G′ is embedded on Sg+1 if F 2 = Sg, and Nk+2 if

F 2 = Nk. All faces in G are still faces in G′ and there are no new faces in G′.

𝑢1 𝑣1 𝑣2 𝑢2 𝑢1 𝑣1 𝑣2 𝑢2

Figure 5.1: The digon pasting (1)

 = 

   

 = 

Figure 5.2: The digon pasting (2)

Proof of Theorem 5.3. Let v1, v2, . . . , v12m be the vertices of T . Prepare 6m− 1 copies of

Sg′ triangulated by T . We denote these surfaces and triangulations by F 2
1 , F

2
2 , . . . , F

2
6m−1

and T1, T2, . . . , T6m−1, respectively, where Ti is embedded on F 2
i for 1 ≤ i ≤ 6m − 1.
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Moreover, we let the vertices of Ti be v
i
1, v

i
2, . . . , v

i
12m so that vij ∈ V (Ti) corresponds to

vj ∈ V (T ) for 1 ≤ i ≤ 6m− 1 and 1 ≤ j ≤ 12m.

We perform the digon pasting for two edges v11v
1
2 and v21v

2
2 (the digon pasting can be

naturally extended to disconnected surfaces, and the second step of the digon pasting

corresponds to the operation of the connected sum of surfaces). We denote the joint 2-

cycle by CJ . After that, perform the digon pasting again for v31v
3
2 and an edge contained in

CJ . Repeat these operations until all vi1’s and v
i
2’s are identified. Then we have repeated

digon pastings 6m − 2 times so far, and obtained the connected orientable surface of

genus (6m− 1)g′. Moreover, for any positive integer 2 ≤ l ≤ 6m, perform such a series of

operations for edges vi2l−1v
i
2l’s. Thus, all vertices corresponding to a vertex vj ∈ V (T ) are

identified for 1 ≤ j ≤ 12m. After that, we re-label the identified vertex corresponding to

vj as vj itself.

Let G be the resulting embedded graph. All edges and faces of Ti’s still exist in G (but

labels are changed), and G has 12m vertices. That is, G is a triangulation and isomorphic

to K6m−1
12m . We have repeated digon pastings 6m(6m − 2) times in total, but the first

6m − 2 times corresponds to the operations of the connected sum. Thus, the resulting

surface is orientable and its genus is

(6m− 1)g′ + (6m− 1)(6m− 2) = (6m− 1)(3m− 1)(4m+ 1).

For each face F of T , G has 6m − 1 faces bounded by the same vertices as F , and

there are no other faces in G. Therefore, G is a T -FHI triangulation.

Remark 5.4. In Theorem 5.3, for a triangulation T = K12m on an orientable surface, we

obtain a T -FHI triangulation G = K6m−1
12m on an orientable surface. By Ringel’s Map Color

Theorem [65], a complete graph Kn of order n can be embedded on an orientable surface

(resp. a non-orientable surface) as a triangulation if and only if n ≡ 0, 3, 4, 7 (mod 12)

(resp. n ≡ 0, 1, 3, 4 (mod 6)). Then for any triangulation T on an orientable surface (resp.

T ′ on a non-orientable surface) which is isomorphic to K12m+4 (resp. K6m or K6m+4), we

can construct a T -FHI triangulation on an orientable surface (resp. T ′-FHI triangulation

on a non-orientable surface) in the same way as Theorem 5.3, which is isomorphic to a

complete triangulation.

For a simple triangulation T and a T -FHI triangulation G, it is clear that χw(T ) =

χw(G).

Lemma 5.5. For any positive integer m, let T be any triangulation on a surface isomor-

phic to K12m. Then T has a weak 4m-coloring.

Proof. Since T is a complete graph of order at least five, we can find a non-facial 3-cycle

C1 in T . Moreover, T − V (C1) is also a complete graph of order at least five and hence T

53



has another non-facial 3-cycle C2 so that C1 and C2 are disjoint. Repeating this operation,

we can find 4m− 1 mutually disjoint and non-facial 3-cycles C1, C2, . . . , C4m−1 in T . Let

u1, u2 and u3 be the three vertices not contained in any of these cycles, and let C4m be

the cycle induced by these three vertices.

We assign color i to the vertices of Ci for 1 ≤ i ≤ 4m. If C4m is not facial, then no

facial cycle is monochromatic, and hence this 4m-coloring is a weak coloring of T . So we

may assume that C4m is facial.

Since T is a triangulation, there is exactly one facial cycle containing the edge u1u2

other than C4m. We may assume that this cycle contains a vertex in C1. Then u1, u2

and any vertex in Ci for 2 ≤ i ≤ 4 − 1 induce a non-facial cycle. Let v1, v2 and v3 be

the vertices in C2. It is easy to see that there is at least one edge of C2, say, v1v2, not

belonging to any facial cycle containing u3. Thus, the cycle C = u3v1v2 is not facial. Since

the cycle C ′ = v3u1u2 is not facial, if we interchange the colors of u3 and v3, then there is

no monochromatic face. Hence the resulting coloring is a weak 4m-coloring of T .

Based on Theorem 5.3 and Lemma 5.5, we shall show the following theorem.

Theorem 5.6. For any positive number m, put g = (6m− 1)(6m− 2)(12m+3)/6. Then

K6m−1
12m has two triangulations on Sg whose weak chromatic numbers differ by at least 2m.

Proof. It follows from Theorem 5.2 that K6m−1
12m can be embedded on Sg as a complete

triangulation, denoted by G. Then we have χw(G) = 6m. On the other hand, by Theorem

5.3, K6m−1
12m can also be embedded on Sg as a T -FHI triangulation, where T is a complete

graph of order 12m embedded on an orientable surface as a triangulation. We denote

this embedding by f(G). Since χw(f(G)) = χw(T ), it follows from Lemma 5.5 that

χw(f(G)) ≤ 4m. Hence, χw(G)− χw(f(G)) ≥ 2m.

This theorem implies that for any non-negative integer g, there is a graph having

two triangulations on the same surface of Euler genus at least g, whose weak chromatic

numbers differ from Ω( 3
√
g). Theorem 1.11 implies that for two embeddings of the same

graph on the same surface of Euler genus g, the difference of these weak chromatic numbers

is O( 3
√
g). Our construction attains this order.

5.3 Weak k-colorability of triangulations

Theorem 5.6 implies that the weak colorability of triangulations depends on the embed-

ding. On the other hand, we will show that the weak 2-colorability of triangulations does

not depend on the embedding.

A polychromatic k-coloring of a graph embedded on a surface is a k-coloring so that

all k colors appear in the boundary of each face. Note that a weak k-coloring and a
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polychromatic k-coloring are equivalent if and only if k = 2. As with a triangulation, a

quadrangulation on a surface F 2 is defined as a graph embedded on F 2 so that each facial

closed walk has length 4. Nakamoto, Noguchi and Ozeki [56] noticed that a triangulation

G on a surface has a polychromatic 2-coloring if and only if G has a spanning bipartite

quadrangulation. If G has a spanning bipartite quadrangulation then its bipartition

induces a polychromatic 2-coloring of G. On the other hand, if G has a polychromatic

2-coloring then the subgraph obtained from G by deleting the monochromatic edges is a

spanning bipartite quadrangulation. Using this result, we prove the following theorem.

Theorem 5.7. For two triangulations T and T ′ on the same surface obtained from the

same graph, if T has a polychromatic 2-coloring then this coloring is also a polychromatic

2-coloring of T ′.

Proof. Suppose that T has a polychromatic 2-coloring c. Then T has the spanning bipar-

tite subgraph H whose bipartition is associated with c, that is, H is a spanning bipartite

quadrangulation of T . If the embedding of H in T ′ had a digon, then T ′ would have at

least one vertex in this digon, which contradicts the fact that H is a spanning subgraph

of T ′. Thus, H is also a spanning bipartite quadrangulation of T ′. This implies that c is

also a polychromatic 2-coloring of T ′.

This theorem implies that the polychromatic 2-colorability, or the weak 2-colorability,

of triangulations on a surface does not depend on the embedding, while Theorem 5.6

implies that for many positive integers k, the weak k-colorability of triangulations depends

on the embedding. Actually, we shall show that it is true for any k ≥ 3.

Theorem 5.8. For any positive integer k ≥ 3, there are graphs having two triangulations

on a surface, only one of which has a weak k-coloring.

Proof. For any positive integer m, the graph K6m−1
12m has a complete triangulation, denoted

by G, on an orientable surface. Since χw(G) = 6m, G is not weakly (6m − 1)-colorable.

By Theorem 5.6, G has another triangulation on the same surface which is weakly 4m-

colorable. Therefore, Theorem 5.8 holds for k = 4, 5 and k ≥ 8.

We now consider the case for k = 3. The rotation system in [65, p.82] represents a

triangulation T = K12 on S6, whose vertices are the element of Z12. It is easy to check that

the three sets {0, 1, 6, 7}, {2, 3, 8, 9} and {4, 5, 10, 11} construct the color classes of a weak

3-coloring. By Theorem 5.3, the graph K5
12 has a T -FHI triangulation on an orientable

surface, which is weakly 3-colorable. On the other hands, it follows from Theorem 5.2

that K5
12 has a complete triangulation on the orientable surface, whose weak chromatic

number is 6.

We next consider the case for k = 6, 7. Sun [70] constructed a current graph which

generates a triangulation T ′ = K24 on S35, whose vertices are the elements of Z24. It is
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easy to check that there is no face in T ′ bounded by three of the four vertices 4i, 4i+ 1,

4i + 2 and 4i + 3 for each integer 0 ≤ i ≤ 5. Thus, assigning color i + 1 to the four

vertices 4i, 4i+ 1, 4i+ 2 and 4i+ 3, we can obtain a weak 6-coloring of T ′. By Theorem

5.3, the graph K11
24 has a T ′-FHI triangulation on an orientable surface, which is weakly

6-colorable. On the other hands, it follows from Theorem 5.2 that K11
24 has a complete

triangulation on the orientable surface, whose weak chromatic number is 12.

5.4 Remarks

In this chapter, to give an affirmative answer of Conjecture 1.10, we constructed two

embeddings of a simple graph in Section 5.1. However, these embeddings are far from

minimum genus embeddings. On the other hand, in Section 5.2, we constructed two

triangulations obtained from the same multiple graph. Thus, Conjecture 1.10 remains

open for simple triangulations (or minimum genus embeddings of simple graphs). More-

over, Theorem 5.7 holds even if triangulations are simple, while we do not know whether

Theorem 5.8 is true for simple triangulations.
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Chapter 6

Facial Achromatic Number of

Triangulations on Surfaces

In this chapter, we focus on facial 3-complete coloring of triangulations on surfaces and

the following theorem is our main result.

Theorem 6.1. Let G be a graph which has two triangulations f1(G) and f2(G) on a

surface F 2, and let g be the Euler genus of F 2. If F 2 is orientable, then

|ψ3(f1(G))− ψ3(f2(G))| ≤

9g/2 (g ≤ 2)

27g/2− 27 (otherwise).

If F 2 is non-orientable, then

|ψ3(f1(G))− ψ3(f2(G))| ≤

3g (g = 1)

21g − 27 (otherwise).

6.1 Cycles in a triangulation

To prove Theorem 6.1, we prepare some lemmas.

Lemma 6.2. Let G be a triangulation on a surface, and C1, C2, . . . , Ck be vertex-disjoint

facial cycles of G. If there is no chord in the union H = C1 ∪C2 ∪ · · · ∪Ck, then there is

only one H-bridge in G.

Proof. Let C = uvw be a facial cycle of G bounded by three vertices u, v and w. Suppose

that C is not contained in H. Since H consists of vertex-disjoint cycles and has no chord,

C meets at most one cycle of H. Suppose that C meets C1 at a vertex, say u, and

v, w ̸∈ V (Ci) for any 1 ≤ i ≤ k. If v and w belongs to different H-bridges in G, then
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the edge vw joins these H-bridges, a contradiction. Hence, v and w belongs to the same

H-bridge in G. It implies that all vertices and edges around Ci belongs to one H-bridge in

G. Suppose that C meets none of C1, C2, . . . , Ck. Then it is clear that u, v and w belong

to the same H-bridge in G. Therefore, there is only one H-bridge in G.

Lemma 6.3. Let G be a graph which has two triangulations f1(G) and f2(G) on a surface,

and C be a 3-cycle of G. If f1(C) is facial in f1(G) but f2(C) is not facial in f2(G), then

f2(C) is non-contractible in f2(G).

Proof. Suppose to that f2(C) is contractible in f2(G). Since f2(C) is not facial in f2(G),

it separates f2(G) into two components. On the other hand, since f1(C) is facial in f1(G),

it follows from Lemma 6.2 that G has only one C-bridge in G, a contradiction.

We introduce two lemmas about sets of pairwise non-homotopic cycles. The second

lemma closely follows from the proof of [47, Proposition 3.7], which corresponds to the

first one. However, to keep the thesis self-contained, we give its proof.

Lemma 6.4 (Malnič and Mohar [47]). Let G be a graph embedded on a surface F 2, and

let g be the Euler genus of F 2. Let Γ be a set of pairwise disjoint, non-contractible and

pairwise non-homotopic cycles of G. If F 2 is orientable, then

|Γ| ≤

g/2 (g ≤ 2)

3g/2− 3 (otherwise).

If F 2 is non-orientable, then

|Γ| ≤

g (g ≤ 1)

3g − 3 (otherwise).

Lemma 6.5. Let G be a graph embedded on a non-orientable surface F 2 of Euler genus g.

let Γ1 (resp. Γ2) be a set of pairwise disjoint, non-contractible and pairwise non-homotopic

1-sided (resp. 2-sided) cycles of G. Then |Γ1| ≤ g and

|Γ2| ≤

0 (g = 1)

2g − 3 (otherwise).

Proof. It is easy to see that this lemma holds for g ≤ 2. Hence, we may assume that

g ≥ 3. Moreover, we may assume that Γ1 is maximal, that is there is no 1-sided cycle

in G disjoint from Γ1. Cutting F
2 along the cycles in Γ1, we obtain a connected surface,

denoted by F̃ 2, which has |Γ1| boundary components. Thus, χ(F̃ 2) ≤ 2 − |Γ1|. Since

χ(F̃ 2) = χ(F 2) = 2− g, we have |Γ1| ≤ g.

58



We may also assume that Γ2 is maximal, that is, all 2-sided cycles in G disjoint from

Γ2 is contractible or homotopic to some element of Γ2. Cut F 2 along the cycles in Γ2.

Then F 2 is separated into some connected surfaces, denoted by F 2
1 , F

2
2 , . . . , F

2
k . Note that

they are all compact and with non-empty boundary. We denote by b(∂F 2
i ) the number

of boundary components of F 2
i for 1 ≤ i ≤ k. Since each cycle in Γ2 gives rise to two

boundary components, we have
∑k

i=1 b(∂F
2
i ) = 2|Γ2|.

Let F̂ 2
1 , F̂

2
2 , . . . , F̂

2
k be the surfaces obtained from F 2

1 , F
2
2 , . . . , F

2
k by pasting a disk to

each boundary component. By the maximality of Γ2, F̂
2
i is the sphere or the projective-

plane for 1 ≤ i ≤ k. We denote by ns and np the numbers of the spheres and the projective-

planes among F̂ 2
i ’s, respectively. Then we have np ≤ g and

∑k
i=1 χ(F̂

2
i ) = 2ns + np.

Now we shall show that if F̂ 2
i is the sphere, then b(∂F 2

i ) ≥ 3. If b(∂F 2
i ) = 1, then

F 2
i is a closed disk, that is, the cycle bounding F 2

i is contractible in F 2, a contradiction.

Suppose that b(∂F 2
i ) = 2. Then F 2

i is an annulus. If two cycles of Γ2 corresponding to the

boundary components F 2
i are the same, then F 2 must be the Klein bottle, a contradiction.

Thus, these two cycles are different from each other. However, in this situation, they are

homotopic in F 2, a contradiction. Therefore, we may assume that b(∂F 2
i ) ≥ 3. It implies

that we have 3ns + np ≤ 2|Γ2|.
Since χ(F 2) is equal to the sum of all F 2

i ’s, we have

χ(F 2) =
k∑

i=1

χ(F 2
i ) =

k∑
i=1

χ(F̂ 2
i )−

k∑
i=1

b(∂F 2
i ) = 2ns + np − 2|Γ2|

=
2

3
(3ns + np − 2|Γ2|) +

1

3
np −

2

3
|Γ2|

≤ 1

3
g − 2

3
|Γ2|.

Since χ(F 2) = 2− g, we have |Γ2| ≤ 2g − 3.

6.2 Proof of the main theorem

Proof of Theorem 6.1. Suppose that ψ3(f1(G)) = k and ψ3(f2(G)) < k. Let c : V (G) →
{1, 2, . . . , k} be a facial 3-complete k-coloring of f1(G). Then, every triple of k-colors

appears in some face of f1(G). On the other hand, some triples do not appear in the faces

of f2(G). Let T be a set of triples in k colors such that any triple in T does not appear

in the faces of f2(G), and for any pair of triples T and T ′ in T , T ∩ T ′ = ∅. Moreover, we

choose T so that |T | is as large as possible. Let T1, T2, . . . , Tm be the triples in T , and

so |T | = m. By the maximality of T , we can choose k− 3m colors so that every triple in

these colors appear in some face of f2(G). It implies that f2(G) has a facial 3-complete

(max{3, k − 3m})-coloring. Then, |ψ3(f1(G))− ψ3(f2(G))| ≤ 3m.
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Let C = {C1, C2, . . . , Cm} be a set of facial cycles in f1(G) such that c(V (Ci)) = Ti for

1 ≤ i ≤ m. Since every Ci is not facial in f2(G), it follows from Lemma 6.3 that every Ci

is non-contractible in f2(G).

Claim 1. There are at most three pairwise homotopic cycles of C in f2(G).

Proof. Suppose that C1, C2, C3 and C4 are pairwise homotopic in f2(G), and appear on

the annulus bounded by C1 and C4 in this order. Thus, the union C2 ∪ C4 separates C1

from C3, and hence there are no chords of C1 ∪ C3. Similarly, C1 ∪ C3 also separates C2

from C4. It implies that there are at least two C1 ∪ C3-bridges in G. On the other hand,

since both of C1 and C3 are facial in f1(G) and C1 ∪ C3 has no chord, it follows from

Lemma 6.2 that there is only one C1 ∪ C3-bridge in G, a contradiction. Therefore, there

are at most three pairwise homotopic cycles of C in f2(G).

Now we shall give the upper bound for |T | = m, which induces the upper bound for

|ψ3(f1(G))−ψ3(f2(G))|. We first consider the case when the surface F 2 is homeomorphic

to one of the sphere, the projective-plane, and the torus. Suppose that F 2 is the sphere.

All cycles in G is contractible, and hence C = ∅. Actually, it follows Lemma 6.3 that

f1(G) and f2(G) are essentially equivalent embeddings. (In general, Whitney [74] showed

that every 3-connected planar graph has essentially unique embedding in the sphere.)

Suppose that F 2 is the projective-plane. There is no pair of disjoint non-contractible

cycles in f2(G), and hence m ≤ 1. Suppose that F 2 is the torus. All non-contractible and

pairwise disjoint cycles in G are pairwise homotopic. Then, all cycles in C are pairwise

homotopic by Lemma 6.4, and hence it follows from Claim 1 that m ≤ 3.

Second, suppose that F 2 is an orientable surface of genus at least two. If m > 9g −
9, then there are at least four pairwise homotopic cycles in C by Lemma 6.4, which

contradicts Claim 1. Hence, we have m ≤ 9g − 9. Finally, suppose that F 2 is a non-

orientable surface of genus at least two. If m > 7g − 9, then there are at least 6g − 8

2-sided cycles in C, and hence some four of them are pairwise homotopic by Lemma 6.5,

which contradicts Claim 1. Therefore, in any case, the desired inequality holds.

6.3 Facial complete colorings of multigraphs

In this section, we consider graphs which may have multiple edges. In Chapter 5, we

constructed two triangulations f1(G) and f2(G) obtained from the graph G = K6m−1
12m on

a surface for any positive integer m, whose weak chromatic numbers differ by at least 2m.

We now show that the facial 3-achromatic numbers of these triangulations also differ.
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For details of constructions of f1(G) and f2(G), see Chapter 5. The face-hypergraph

H(f1(G)) of f1(G) is isomorphic to a complete 3-uniform hypergraph. That is, the trian-

gulation f1(G) is complete. Then it is easy to see that ψ3(f1(G)) = |V (G)| = 12m.

Let T be a triangulation on a surface obtained from K12m The edge-set of H(f2(G))

coincides with that of H(T ) by ignoring the multiplicity of the edge-sets. It implies that

ψ3(f2(G)) = ψ3(T ). Suppose that T is facially 3-complete k-colorable. Then, T must

have at least
(
k
3

)
faces, and hence we obtain the following inequality:

|F(T )| = 4m(12m− 1) ≥ k(k − 1)(k − 2)/6

288m2 − 24m ≥ (k − 2)3

3
√
288m2/3 ≥ k − 2

7m+ 2 ≥ k.

Then, ψ3(f2(G)) ≤ 7m+ 2 (this bound might be loose), and hence we have

ψ3(f1(G))− ψ3(f2(G)) ≥ 5m− 2.

Since G is isomorphic toK6m−1
12m , both of two triangulations f1(G) and f2(G) are embedded

on a surface of Euler genus (m−1)(m−2)(2m+3)/3. It implies that for any non-negative

integer g, there is a graph having two triangulations on a surface of Euler genus at least

g, whose facial 3-achromatic numbers differ from Ω( 3
√
g).
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