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Preface

This thesis is written on the subject ’Colorings and dominating sets of graphs on surfaces’

and is to be submitted to the degree of Doctor at Yokohama National University.

When I was a junior high school student, I was recommended to take Japan Junior

Mathematical Olympic by my homeroom teacher. In those days, I could not solve those

problems at all. However, I saw another view of mathematics, which I could not see from

the regular educations. These problems taught me to have a wide and various views in

order to solve problems. Then I would like to know mathematics more and more.

After my entering in Yokohama National University, I met discrete mathematics

and graph theory at Professor Negami and Professor Nakamoto. In these subjects,

I got a lot of lessens, not only abundant ideas or techniques, but also mathematical

attitudes, backgrounds of the problems as well. Especially, I was very impressed when

difficult problems are solved without hard calculations by considering the ideas of discrete

mathematics. These incidents made me a decision to study graph theory.

From 4th year grade, I study the domination of graphs. The problems of domination in

Graph Theory, there are several open problems still now. Meanwhile, Professor Nakamoto

gave me very attractive problems about this subject. In those days, I was so immature

that I got many failure in an effort to solve the problem. However, Professor Nakamoto,

Professor Matsumoto, who was a student in the same laboratory at that time, and

Professor Ozeki gave me very helpful comments both solving problems and writing papers.

Moreover, by discussing with Professor Tokunaga, who works in Tokyo Medical and Dental

University, we develop the coloring methods and finally complete the problems.

From the last half of my master’s course, I studied Combinatorial Nullstellensatz and

its applications under the instruction of Professor Ozeki. This theorem seems to belong to

the Algebra rather than Graph Theory, but I learned that this has a lot of applications in

the graph theory as well, such as finding specific subgraphs, graph coloring, orientations

and so on. Since I was interested in the graph coloring, I have studied list-coloring up to

now.

At first, we roughly introduce our research and results on graph colorings and its

application. In Chapter 1, we prepare some basic terminologies and notations on Graph

theory. In Chapter 2, we introduce the research and results about some vertex colorings

for planar graphs. In Chapter 3, we focus on some known results and proofs of our results

about the Alon-Tarsi number. In Chapter 4, we give some known and our results about
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the applications of the Alon-Tarsi number. In Chapter 5, we introduce some known results

and prove our results about dominating set, which are obtained by using coloring method

in planar graphs.

Finally, I am grateful to Professor Ozeki for enormous supports and insightful

comments. He gave me a lot of opportunities to glow up in the various things. I would also

like to appreciate to Professor Nakamoto to give me a lot of chances in my developments.

I gratefully acknowledge the work of past and present members of my laboratory and

researchers. I would like to appreciate my family for their supports and encouragements.
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Introduction

A graph consists of points, called vertices and arcs, called edges, each of which joins a

pair of vertices. For a graph G, we denote a vertex set by V (G) and edge set by E(G)

respectively. A graph can be regarded as a mathematical model which expresses such

structures of finite sets with some relation.

An embedding of a graph G on a surface F is a drawing of G on F without crossing

edges. We sometimes call an embedded graph on a surface an embedding. For embedded

graph G on F, each region which is bounded by vertices and edges is called a face. We

denote the set of faces of G by F (G). An embedded graph G is said to be a 2-cell

embedding if each face of G is isomorphic to a 2-cell, that is, {(x, y) ∈ R2 : x2 + y2 ≤ 1}.
A graph G is said to be planar if G can be embedded on the plane. An embedded graph on

the plane is said to be a plane graph. A triangulation G on a surface is a graph embedded

on F such that each face of G is bounded by a cycle of length 3 and any two faces of G

share at most one edge.

A vertex k-coloring of a graph G is a mapping c : V (G) → {1, ..., k}. A coloring c is

called proper if c(x) ̸= c(y) for each xy ∈ E(G). We often refer to a k-coloring instead of

a proper vertex k-coloring. A graph G is k-colorable if G admits a k-coloring.

At first, we introduce the well known Four Color Theorem.

Theorem 0.0.1 (Appel and Haken [5]) Every planar graph is 4-colorable.

After this theorem, a lot of variations of graph colorings are considered and studied

by many researchers. In this thesis, we study several graph colorings and dominating set

as the application of graph colorings.

First, we focus on the list coloring, which was introduced by P. Erdős, A.L.Rubin

and H. Taylor [12] and Vizing [29] independently. We associate a list assignment, L,

with a graph G such that each vertex v is assigned a list L(v) of colors. The graph

G is L-colorable if G has a proper coloring c such that c(v) ∈ L(v) for each vertex v.

Let f : V (G) → N be a function and let k be a positive integer. We say that G is

f -choosable if G is L-colorable for every list assignment L such that |L(v)| ≥ f(v) for

every vertex v. Especially, we say that G is k-choosable if G is f -choosable where f is

the constant function taking the value k. The list-chromatic number of G, denoted by

χℓ(G), is the minimum integer k such that G is k-choosable. For the chromatic number

and list-chromatic number, the following holds in general graphs.
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Proposition 0.0.2 Let G be a graph. Then χ(G) ≤ χℓ(G).

Proof. Let G be a graph with χℓ(G) = k. Then we give the list L with L(v) = {1, ..., k}
for each v ∈ V (G). Since G is k-choosable, we have an L-coloring c. This implies that G

is k-colorable. ■
The converse of the inequality of Proposition 0.0.2 does not hold since the complete

bipartite graphK2,4 satisfies χℓ(K2,4) = 3. Moreover, it is also shown that the gap between

χ(G) and χℓ(G) can be arbitrary large [12].

In the following, let us focus on planar graphs. By a celebrated result of Appel and

Haken, the chromatic number of a planar graph is at most 4 [5] and one may think that

list-chromatic number of every planar graph is also bounded by 4. However, the latter

one is not true and Voigt [30] constructed a planar graph G with χ(G) = 4 and χℓ(G) = 5

in 1993. Moreover, Thomassen proved the following.

Theorem 0.0.3 (Thomassen [27]) Let G be a planar graph. Then χℓ(G) ≤ 5.

In the following, we focus on two extensions of the list coloring, DP-coloring and

the Alon-Tarsi number. First, we define the DP-coloring. This notion was introduced

by Dvořák and Postle [9] as the correspondence coloring in [9]. However, this notion is

also called DP-coloring by taking their initials. In this thesis, we also use the notation

DP-coloring instead of correspondence coloring.

Suppose that G is a graph and L is a list assignment of G. For each edge uv in

G, let Muv be a matching between the sets {u} × L(u) and {v} × L(v). Moreover, let

ML = {Muv : uv ∈ E(G)}, which we call a matching assignment. Let H = H(G,L,ML)

be the graph that satisfies all of the following conditions:

(i) V (H) = {(w, a) : w ∈ V (G), a ∈ L(w)},

(ii) for each w ∈ V (G) and distinct a, b ∈ L(w), (w, a)(w, b) ∈ E(H),

(iii) if uv ∈ E(G), then the set of edges between {u}×L(u) and {v}L(v) form Muv, and

(iv) if uv /∈ E(G), then there are no edges between L(u) and L(v).

If H contains an independent set of size |V (G)|, then G is said to be ML-colorable. A

graph G is DP-k-colorable if G is ML-colorable for any list assignment L with |L(v)| ≥ k

for every v ∈ V (G) and for any matching assignment ML. The minimum integer k such

that G is DP-k-colorable is the DP-chromatic number of G, denoted by χDP (G).

Let G be a graph and let L be a list assignment. If we take the matching assignment

as Muv = {(u, a)(v, b) : a ∈ L(u), b ∈ L(v), a = b} for every uv ∈ E(G), then the

ML-coloring coincides with the L-coloring. Therefore, we have the following.

Proposition 0.0.4 Let G be a graph. Then χℓ(G) ≤ χDP (G).
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Figure 1: The left is C4 and the right denotes a graph H(C4, L,ML), where the ellipse

in the right shows the set of the pair of vertex and given colors contained in the list. In

this case, we see that H(C4, L,ML) does not have an independent set of size |C4| and this

implies that C4 is not DP-2-colorable..

Since χℓ(C2n) = 2 and χDP (C2n) = 3, the converse of inequality does not hold. (See

Figure 2.1.)

For the DP-coloring, Dvořák and Postle [9] observed that the following holds.

Theorem 0.0.5 ([9]) Let G be a planar graph. Then χDP (G) ≤ 5.

Next, we define the Alon-Tarsi number, which is another extension of list coloring.

Let G be a graph and let ‘<’ be an arbitrary fixed ordering of the vertices of G. The

graph polynomial of G is defined as

PG(x) =
∏

u∼v,u<v

(xu − xv),

where u ∼ v means that u and v are adjacent, and x = (xv)v∈V (G) is a vector of |V (G)|
variables indexed by the vertices of G. It is easy to see that a mapping c : V (G) → N is

a proper coloring of G if and only if PG(c) ̸= 0, where c =
(
c(v)

)
v∈V (G)

. Therefore, to

find a proper coloring of G is equivalent to find an assignment of x so that PG(x) ̸= 0.

The following theorem, which was proved by Alon and Tarsi, gives sufficient conditions

for the existence of such assignments as above.

Theorem 0.0.6 (Alon and Tarsi [1]) (Combinatorial Nullstellensatz) Let F be an

arbitrary field and let f = f(x1, x2, . . . , xn) be a polynomial in F[x1, x2, . . . , xn]. Suppose

that the degree deg(f) of f is
∑n

i=1 ti where each ti is a nonnegative integer, and suppose

that the coefficient of
∏n

i=1 x
ti
i of f is nonzero. Then if S1, S2, . . . , Sn are subsets of F with

|Si| ≥ ti + 1, then there are s1 ∈ S1,s2 ∈ S2,. . . ,sn ∈ Sn so that f(s1, s2, . . . , sn) ̸= 0.

In particular, a graph polynomial PG(x) is a homogeneous polynomial and deg(PG)

is equal to |E(G)|. Therefore, if there exists a monomial c
∏

v∈V (G) xv
tv in the expansion

of the graph polynomial PG so that c ̸= 0 and tv < k for each v ∈ V (G), then G is

k-choosable. With this in mind, Jensen and Toft [19] defined the Alon-Tarsi number of a

graph as follows.
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Definition 0.0.7 The Alon-Tarsi number of a graph G, denoted by AT (G), is the

minimum k for which there exists a monomial c
∏

v∈V (G) x
tv
v in the expansion of PG(x)

such that c ̸= 0 and tv < k for all v ∈ V (G).

By the definition of the Alon-Tarsi number, we have the following.

Proposition 0.0.8 Let G be a graph. Then χℓ(G) ≤ AT (G).

It is also known that the gap between χℓ(G) and AT (G) can be arbitrary large.

Nevertheless, it is also known that the upper bounds of χℓ(G) and AT (G) are the same

for several graph classes. For example, Zhu proved the following.

Theorem 0.0.9 ([34]) Let G be a planar graph. Then AT (G) ≤ 5.

In Chapter 2,, we focus on the list-chromatic number and DP-chromatic number of

planar graphs.

As mentioned above, the gap between the chromatic number and the list-chromatic

number can be arbitrary large in general graphs. On the other hand, we see that the

one in a planar graph is bounded by the constant by Theorem 0.0.3. Therefore, it seems

natural to ask whether there exists a planar graph G such that
(
χ(G), χℓ(G)

)
= (i, j) for

a given pair (i, j) ∈ N2. We study this problem and obtain the following.

Proposition 0.0.10 For (i, j) ∈ N2, there exists a plane graph G with (χ(G), χℓ(G)) =

(i, j) if and only if (i, j) ∈ {(1, 1), (2, 2), (2, 3), (3, 3), (3, 4), (3, 5), (4, 4), (4, 5)}.

Moreover, similarly to the case between chromatic number and list-chromatic number,

we considered which types of planar graphs exist when we are given a triple (χ, χℓ, χDP ).

We answer this problem as follows.

Theorem 0.0.11 For (i, j, k) ∈ N3 − {(3, 3, 5)}, there exists a plane graph G with

(χ(G), χℓ(G), χDP (G)) = (i, j, k) if and only if (i, j, k) ∈ {(1, 1, 1), (2, 2, 2), (2, 2, 3),
(2, 3, 3), (2, 3, 4), (3, 3, 3), (3, 3, 4), (3, 4, 4), (3, 4, 5), (4, 4, 4), (4, 4, 5), (4, 5, 5)}.

As mentioned above, every planar graph is 4-colorable. Grytczuk and Zhu have asked

how many numbers of edges in planar graphs G are need to be removed in order to bound

the list-chromatic number of resulting graph is at most 4. They solved this question as

follows.

Theorem 0.0.12 ([15]) Let G be a planar graph. Then there exists a matching M of G

such that AT (G−M) ≤ 4.

In this context, it seems natural to ask whether there exists a subgraph H of G such

that AT (G − E(H)) ≤ 3. For this problem, Kim, Kim and Zhu proved the following in

[18].
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Theorem 0.0.13 ([18]) Let G be a planar graph. Then there exists a forest F in G such

that AT (G− E(F )) ≤ 3.

A graph H is a minor of a connected graph G if we obtain H from G by deleting or

contracting some edges recursively. If multiple edges appear by a contraction, we replace

them with simple edge. A graph G is H-minor-free if H is not a minor of G.

As another extension of Thomassen’s result, it was shown in [17] and [25] that every

K5-minor-free graph is 5-choosable. We extend these results from the list-chromatic

number to the Alon-Tarsi number.

Theorem 0.0.14 Let G be a K5-minor-free graph. Then all of the following hold.

(i) AT (G) ≤ 5.

(ii) There exists a matching M of G such that AT (G−M) ≤ 4.

(iii) There exsits a forest F in G such that AT (G− E(F )) ≤ 3.

In Chapter 4, we consider the edge-colorings. A k-edge-coloring of a graph G is a

map φ : E(G) → {1, 2, ..., k} such that for any pair of edges uv, vw ∈ E(G) sharing

an end vertex v, we have φ(uv) ̸= φ(vw). A graph G is k-edge-colorable if there exists

a k-edge-coloring of G. Moreover, ECk(G) denotes the set of k-edge-colorings of G.

Similarly to the vertex coloring, list-edge-coloring is defined as follows.

A map L : E(G) → 2N is called an edge-list-assignment (or simply list) of G. If

G has an edge-coloring φ such that φ(e) ∈ L(e) for any e ∈ E(G), we say that G is

L-list-edge-colorable and such an edge-coloring φ is called an L-edge-coloring. If G is

L-list-edge-colorable for any list L that satisfies |L(e)| ≥ k for any e ∈ E(G), we say that

G is k-list-edge-colorable. Similarly to Proposition 0.0.2, it is easy to see the following.

Proposition 0.0.15 Let G be a k-list-edge-colorable graph. Then G is k-edge-colorable.

It seems natural to ask whether the converse of Proposition 0.0.15 holds or not. This

question is known as List Coloring Conjecture and still open.

Conjecture 0.0.16 ([4]) (List Coloring Conjecture) Let k be a positive integer. If G is

a graph with k-edge-colorable, then G is k-list-edge-colorable.

It is considered to be extremely difficult to solve Conjecture 0.0.16 completely. On the

other hand, Alon and Tarsi invented the tool to solve this conjecture for regular graphs

by using Theorem 0.0.6. In order to state this theorem, first we introduce the signature

of the k-edge-coloring.

Let G be a k-regular k-edge-colorable graph and let φ be a k-edge-coloring of G. For

i ∈ {1, 2, . . . , k}, the set of edges of color i by φ is denoted by φ−1(i). For a vertex

v ∈ V (G), we denote by E(v) the set of edges that are incident with v. Let ρv be a

bijective map from E(v) to {1, 2, ..., k}. We call ρ = {ρv : v ∈ V (G)} a basis of G. For
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a basis ρ, a k-edge-coloring φ, and a vertex v of the graph G, we have a permutation

πv = φ ◦ ρ−1
v of degree k. The signature sign(πv) is defined as follows.

sign(πv) =

{
+1 if πv is an even permutation,

−1 otherwise.

Especially, we might denote signρ(πv) instead of sign(πv) when we emphasize the basis ρ.

We call
∏

v∈V (G)

sign(πv) the signature of an edge-coloring φ (with respect to ρ) and denoted

by signρ(φ). Alon and Tarsi gave the following interpretation in the edge-coloring of

regular graphs.

Theorem 0.0.17 ([2]) Let G be a k-regular k-edge-colorable graph and ρ be a basis of

G. If G satisfies
∑

φ∈ECk(G)

signρ(φ) ̸= 0, then G is k-list-edge-colorable.

From this result, we have the following corollary.

Corollary 0.0.18 ([2]) Let G be a k-regular k-edge-colorable graph and let ρ be a basis

of G. If a k-edge-colorings φ1 and φ2 of G satisfy signρ(φ1) = signρ(φ2), then G is

k-list-edge-colorable.

Now, let us focus on planar graphs. For the signatures of edge-colorings, the following

are known.

Theorem 0.0.19 ([10]) Let G be a planar k-regular k-edge-colorable graph. Then G

satisfies signρ(φ1) = signρ(φ2) for a basis ρ and k-edge-colorings φ1, φ2.

By Theorem 0.0.18 and 0.0.19, List Coloring Conjecture holds for planar regular

graphs. In this context, we consider the graphs embedded on the projective plane. The

big difference between plane and projective plane is that the plane is orientable but the

projective plane is not orientable. Moreover, it is easy to see that projective planar graphs

might have two edge-colorings with different signatures under a common basis ρ. Thus

we introduce the notion called a type in edge-colorings of the projective planar graphs,

where the types are determined by the topological conditions of G. The definition of the

type is defined in Chapter 4. We characterize the signature of edge-coloring of regular

graphs on the projective plane by the type of the edge-coloring.

Theorem 0.0.20 For k ≥ 3, let G be a k-regular k-edge-colorable graph, let M be a

perfect matching of G, and let D be a dual boundary. Moreover, let ρ[M,D] be a basis of

G. Then for a k-edge-coloring φ of type-s for M , where s ∈ {0, ..., k}, both of following

holds.

(i) If k ≡ 0, 3 (mod 4),

then signρ[M,D](φ) =

{
(−1)

|G|
2

+|M∩D| if k − s ≡ 0, 1 (mod 4),

(−1)
|G|
2

+|M∩D|+1 otherwise.
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(ii) If k ≡ 1, 2 (mod 4),

then signρ[M,D](φ) =

{
+1 if k − s ≡ 0, 1 (mod 4),

−1 otherwise.

By using Theorem 0.0.20, we find the new graph class which List Coloring Conjecture

holds. The details are mentioned in Chapter 4.

In the following, we focus on the applications of the graph colorings. For S ⊂ V (G), the

set of vertices which are adjacent to a vertex of S are denoted by N(S). For S, T ⊂ V (G),

we say that S dominates T if T ⊂ S ∪ N(S). If D ⊂ V (G) dominates V (G), then D is

called a dominating set of G. The domination number of G is the minimum cardinality

over all dominating sets of G and denoted by γ(G). In Chapter 5, we study the domination

number of planar graphs by using graph colorings.

A disk triangulation is a 2-connected plane graph such that every face except for the

infinite face is triangular. Matheson and Tarjan proved the following theorem by an

elegant coloring method.

Theorem 0.0.21 (Matheson and Tarjan [21]) Let G be a disk triangulation with n

vertices. Then γ(G) ≤ ⌊n
3
⌋.

They constructed a disk triangulation with n vertices in which any dominating

sets have cardinality at least ⌊n
3
⌋, and hence the upper bound in Theorem 0.0.21 is

best possible. The examples they constructed are maximal outerplanar graphs, (i.e., a

2-connected plane graph such that there is a single face f containing all vertices on the

boundary cycle, and that every face other than f is triangular). After that, Campos and

Wakabayashi [7] pointed out that maximal outerplanar graphs with a large domination

number have many vertices of degree 2, and they (and Tokunaga independently) proved

the following theorem.

Theorem 0.0.22 (Campos and Wakabayasi [7] and Tokunaga [28]) Let G be a

maximal outerplanar graph with n vertices and t vertices of degree 2. Then γ(G) ≤ ⌊n+t
4
⌋,

where the bound is sharp.

We introduce an “annulus triangulation” and consider its domination number. An

annulus triangulation is a 2-connected plane graph with two disjoint special faces f1 and

f2 such that every face of G except for f1 and f2 are triangular, and that every vertex of

G is contained in the boundary cycle of f1 or f2. This seems to be a natural extension of

maximal outerplanar graphs.

A big difference between maximal outerplanar graphs and annulus triangulations is

that an annulus triangulation G is not necessarily 3-colorable, and that G might not have

vertices of degree 2. We elaborate a coloring method in [21, 28] and prove the following

Theorem.

Theorem 0.0.23 Let G be an annulus triangulation with n vertices and t vertices of

degree 2. If n ≥ 7, then γ(G) ≤ ⌊n+t+1
4

⌋, where this bound is sharp.
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Chapter 1

Foundation

1.1 Graphs

In this section, we will give several terminologies for graphs. A graph consists of points,

called vertices and arcs, called edges, each of which joins a pair of vertices. For a graph

G, we denote a vertex set V (G) and edge set E(G) respectively. A graph can be regarded

as one of mathematical models which expresses such structures of finite sets with some

relations. We represent an edge of G as e = uv if e is joined by the pair of vertices u and v.

For an edge e, we say the vertex u is endpoint of e if uv = e ∈ E(G). If uv is an edge of G,

then u and v are adjacent. Two adjacent vertices are neighborhood of each other. The set

of neighborhood of v, denoted by NG(v) or simply N(v), is called the open neighborhood

of v (or simply neighborhood of v). In particular, we call the set N [v] = {v} ∪N(v) the

closed neighborhood of v. Moreover, for S ⊂ V (G), let N(S) denote the neighborhood of

S, i.e., the set of vertices adjacent to a vertex of S in G. The vertex u and an edge e = uv

are incident to each other. If an edge e joins a vertex itself, that is, for e = uv and u = v,

then it is called a loop. A graph G is called loopless if G dose not have any loop edges.

Edges which join the same pair of vertices are called multiple edges. A graph is said to be

simple if G contains no loop nor multiple edges. The degree of a vertex v is the number

of edges incident with v, denoted by degG(v) or simply deg(v) and we call v a vertex of

degree k or k-vertex when degG(v) = k. Moreover, a graph G is Eulerian if each vertex is

even degree. The maximum degree (minimum degree respectively) of a graph G, denoted

by ∆(G) (δ(G) respectively) is defined as follows.

∆(G) := max {degG(v) : v ∈ V (G)}

δ(G) := min {degG(v) : v ∈ V (G)}

A graph is k-regular if each vertex has degree k.

Two simple graphs G and H are isomorphic, denoted by G ≃ H, if there exists a

bijective mapping σ : V (G) → V (H) such that for uv ∈ E(G) if and only if σ(u)σ(v) ∈
E(H).
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For two vertices u and v, a walk W is a sequence of vertices beginning with u and

ending at v such that consecutive vertices in W are adjacent in G. Such a walk can be

expressed as

W = v1v2...vk

where v1 = u, vk = v and vivi+1 ∈ E(G) for each 1 ≤ i ≤ k − 1. A walk W is called

path when no vertices appear twice in W . A walk W is said to be closed if u = v and

k ≥ 4. A closed walk W = v1...vk for k ≥ 2 is called a cycle if all vi for 1 ≤ i ≤ k − 1

are distinct. The length of a walk W is the number of edges contained in W . A cycle

of length k is called a k-cycle. For a given graph G, a graph H is a subgraph of G if

V (H) ⊂ V (G) and E(H) ⊂ E(G). In particular, a subgraph H is said to be induced if

V (H) = S and E(H) consists of the edges of G whose ends are both in S. For a given

graph G and subset S of V (G), G − S denotes a subgraph of G induced by V (G) − S.

A subgraph H of G is said to be spanning if V (H) = V (G). A graph G is connected if

for each pair of distinct vertices u, v, there exists a path between u and v. On the other

hand, if there is a pair of distinct vertices u and v such that there are no paths between

u and v, we say a graph is disconnected. A vertex-cut of a graph G is a set of vertices

of G such that G − S is disconnected. In particular, a vertex-cut S with |S| = k is said

to be a k-cut. If a graph G is not complete graph, then G has a vertex cut. The vertex

connectivity, denoted by κ(G) is the minimum cardinality of the vertex cut of G if G is

not complete and it is n − 1 if G is a complete graph with n vertices. A graph G with

|V (G)| ≥ k is k-connected if κ(G) ≤ k. An edge-cut of a graph G is a set X of edges of

G such that G − X is disconnected. An edge-cut of minimum cardinality in G is called

minimum edge-cut of G and this cardinality is called the edge-connectivity of G and it is

denoted by κe(G). A graph G with |E(G)| ≥ k is k-edge-connected if κe(G) ≥ k.

A vertex k-coloring of a graph G is a mapping c : V (G) → {1, ..., k}. A coloring c is

called proper if c(x) ̸= c(y) for each xy ∈ E(G). We often refer to a k-coloring instead of

a proper vertex k-coloring. A graph G is k-colorable if G admits a k-coloring. It is not

hard to see that a graph G has a |V (G)|-coloring. The chromatic number of G, denoted

by χ(G) is the minimum number k such that G is k-colorable. In particular, G is said to

be k-chromatic if χ(G) = k.

1.2 Embedding a graph on a surface

In this section, we will give some terminologies for graphs on surfaces. Throughout this

thesis, we call a connected 2-dimensional manifold without boundaries a closed surface.

Let D be a disk, that is, {(x, y) ∈ R2 : x2 + y2 ≤ 1}. If we identify the antipodals of

the boundary of D, then we obtain a closed surface P2. We call this surface P2 projective

plane. If we can distinguish clockwise and counter clockwise orientations around all the

points on it, then we say F is orientable. Otherwise F is non-orientable. For example, the

plane is orientable and the projective plane is not orientable.
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A closed curve on a surface F is a continuous function l : S1 → F or its image, where

S1 is the 1-dimensional sphere, that is, {(x, y) ∈ R2 : x2 + y2 = 1}. A closed curve is said

to be simple if the function l is an injection. A simple closed curve is called separating

(resp. non-separating) if F − l is disconnected (resp. connected). A simple closed curve

is called contractible if l is bounds a 2-cell on F. Two closed curve l1 and l2 is said to be

homotopic to each other on F if there exists a continuous function Φ : [0, 1] × S1 → F
such that Φ(0, x) = l1(x) and Φ(1, x) = l2(x) for each x ∈ S1.

For a curve on the plane, we introduce Jordan Curve Theorem and Shönflies Theorem.

Theorem 1.2.1 (Jordan Curve Theorem) Any simple closed curve C on the plane

divides into exactly two connected components, the interior and the exterior. Both of

these region have the common boundary C.

Theorem 1.2.2 (Shönflies Theorem) The interior of any two simple closed curve on

the plane is homotopic to an open 2-cell.

When we discuss embedding of graphs into surfaces mathematically, we regard graphs

as 1-dimensional topological spaces, not only as combinatorial objects. Let F be a closed

surface, let G be a graph and let f : G → F is an injective and continuous mapping. We

say f is an embedding of G. We often deal with G and f(G) as the same objects and

denote embedded graph by G. On the other hand, in order to distinguish G from the

embedded one f(G), we call G an abstract graph while we call f(G) an embedding or a

map. For an embedded graph G on F, each region which is bounded by vertices and edges

is called a face. We denote the set of faces of G by F (G).

A graph G is said to be planar if G is embeddable on the plane. Similarly, A graph

G is said to be projective planar if G is embeddable on the projective plane.

For a given graph G embedded on a surface F, the dual graph (or simply dual) of G

is defined as follows: A vertex is placed on each face of G and two distinct vertices are

joined by an edge for each common edge on the boundaries of the two corresponding faces

of G. Lastly, by deleting G, we obtain the dual graph of G.

1.3 Polynomials

Let X be a set and let + and · be binary operations of X. We say (X,+, ·) or simply X

is a field if the triple (X,+, ·) satisfies all of the following.

(i) For arbitrary a, b, c ∈ X, (a+ b) + c = a+ (b+ c).

(ii) There exists an element 0 ∈ X such that a+ 0 = a for any a ∈ X.

(iii) For arbitrary a ∈ X, there exists (−a) ∈ X such that a+ (−a) = 0.

(iv) For arbitrary x, y ∈ X, x+ y = y + x.
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(v) For arbitrary a, b, c ∈ X,(a · b) · c = a · (b · c).

(vi) There exists an element 1 ∈ X such that a · 1 = a for any a ∈ X.

(vii) For arbitrary a ∈ X except for 0, there exists (a−1) ∈ X such that a · (a−1) = 1.

(viii) For arbitrary x, y ∈ X, x · y = y · x.

(ix) For arbitrary x, y, z ∈ X, x · (y + z) = x · y + x · z and (x+ y) · z = x · z + y · z.

R denotes the set of real numbers. The following fact is well-known.

Proposition 1.3.1 R is a field.

For a given field F , a polynomial f as a variable x = (x1, ..., xm) on F is defined as follows,

f(x1, ..., xm) :=
∑

0≤i1,...,im

ai1,...,imx
i1
1 x

i2
2 ...x

im
m

where ai1,...,im ∈ F for all nonnegative integers i1, ..., im. For a given polynomial, each

xi11 x
i2
2 ...x

im
m is said to be a term and ai1,...,im is called the coefficient of xi11 x

i2
2 ...x

im
m . The

degree of a term xi11 x
i2
2 ...x

im
m is defined by i1+ ...+ im. The degree of f is defined as follows.

deg(f) := max
{
i1 + ...+ im : xi11 x

i2
2 ...x

im
m is a term of f and ai1,...,im ̸= 0

}
.

We note that deg(0) = −∞. The set of polynomials on F with m variables is denoted by

F [x1, ..., xm]. We say a polynomial f is homogeneous if the degree of each term xi11 x
i2
2 ...x

im
m

with its coefficient ai1,...,im ̸= 0 is exactly deg(f).

20



Chapter 2

Colorings for planar graphs.

In this chapter, we introduce list-coloring and DP-coloring. Then we focus on the

differences between chromatic number, list-chromatic number and DP-chromatic number

for planar graphs. In Section 2.2, we examine which types of plane graphs exist when we

are given a triple (χ, χℓ, χDP ). In Section 2.3, we prove Theorem 2.2.9.

2.1 Introduction

One of the interesting variations of the graph coloring problems is the list coloring, which

was introduced independently by Vizing [29] and Erdős, Rubin and Taylor [12].

We associate a list assignment, L, with a graph G such that each vertex v is assigned

a list of colors L(v). The graph G is L-colorable if G has a proper coloring c such that

c(v) ∈ L(v) for each vertex v. Let f : V (G) → N be a function and let k be a positive

integer. We say that G is f -choosable if G is L-colorable for every list assignment L

such that |L(v)| ≥ f(v) for every vertex v. Especially, we say that G is k-choosable if

G is f -choosable where f is the constant function taking the value k. The list-chromatic

number of G, denoted by χℓ(G), is the minimum integer k such that G is k-choosable. It

is easy to see that the following holds.

Proposition 2.1.1 Let G be a graph. Then χ(G) ≤ χℓ(G).

The converse of the inequality of Proposition 2.1.1 does not hold since the complete

bipartite graphK2,4 satisfies χℓ(K2,4) = 3. Moreover, it is also shown that the gap between

χ and χℓ can be arbitrary large [12].

Next, we define the DP-coloring. This notion was introduced by Dvořák and Postle

[9]. Suppose that G is a graph and L is a list assignment of G. For each edge uv in

G, let Muv be a matching between the sets {u} × L(u) and {v} × L(v). Moreover, let

ML = {Muv : uv ∈ E(G)}, which we call thematching assignment. LetH = H(G,L,ML)

be the graph that satisfies all of the following conditions:

(i) V (H) = {(w, a) : w ∈ V (G), a ∈ L(w)},
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(ii) For each w ∈ V (G) and distinct a, b ∈ L(w), (w, a)(w, b) ∈ E(H),

(iii) if uv ∈ E(G), then the set of edges between {u} × L(u) and {v} × L(v) are Muv,

and

(iv) if uv /∈ E(G), then there are no edges between {u} × L(u) and {v} × L(v).

If H contains an independent set of size |V (G)|, then G is ML-colorable. The graph G is

DP-k-colorable if G is ML-colorable for any list assignment L with |L(v)| ≥ k for every

v ∈ V (G) and for any matching assignment ML. The minimum integer k such that G is

DP-k-colorable is the DP-chromatic number of G, denoted by χDP (G).

Let G be a graph and let L be a list assignment. If we take the matching assignment

as Muv = {(u, a)(v, b) : a ∈ L(u), b ∈ L(v), a = b} for every uv ∈ E(G), then the

ML-coloring coincides with the L-coloring. Therefore, we have the following.

Proposition 2.1.2 Let G be a graph. Then χℓ(G) ≤ χDP (G).

Since χℓ(C2n) = 2 and χDP (C2n) = 3, the converse of inequality does not hold. (See

Figure 2.1.)

Figure 2.1: C4 is not DP-2-colorable. The left is C4 and the right denotes a graph

H(C4, L,ML), which does not have an independent set of size |C4|.

In what follows, we focus on planar graphs as a restricted graph class. By a celebrated

result of Appel and Haken, the chromatic number of a planar graph is at most 4 [5] and

one may think that list-chromatic number of every planar graph is also bounded by 4.

However, the latter one is not true and Voigt [30] constructed a planar graph G with

χ(G) = 4 and χℓ(G) = 5 in 1993. As mentioned above, the gap between chromatic

number and list-chromatic number can be arbitrary large in general graphs. On the other

hand, the one in a planar graph is bounded by the constant. Therefore, it seems natural

to ask whether there exists a planar graph G such that
(
χ(G), χℓ(G)

)
= (i, j) for a given

pair (i, j) ∈ N2.

This problem can be solved as follows. For bipartite plane graphs, Alon and Tarsi

[3] proved that their list-chromatic numbers are at most 3 and this upper bound is tight

since K2,4 satisfies χℓ(K2,4) = 3. Moreover, for non-bipartite planar graphs, Gutner

[16] constructed a planar graph G with (χ(G), χℓ(G)) = (3, 5) and we can construct the

planar graph G with (χ(G), χℓ(G)) = (4, 5) from this result. Thomassen [27] proved

that every planar graph has list-chromatic number at most 5. Thus the left cases are
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only (χ, χℓ) = (3, 3), (3, 4), (4, 4). It is easy to see that (χ(K3), χℓ(K3)) = (3, 3) and

(χ(K4), χℓ(K4)) = (4, 4). Finally, we constructed the graph G with (χG, χℓ) = (3, 4) in

Proposition 2.2.8. Thus we have the following.

Proposition 2.1.3 For (i, j) ∈ N2, there exists a plane graph G with

(χ(G), χℓ(G)) = (i, j) if and only if (i, j) ∈ {(1, 1), (2, 2), (2, 3), (3, 3),
(3, 4), (3, 5), (4, 4), (4, 5)}.

It is shown in [12] that the gap between χ and χℓ can be arbitrary large in general

graphs. However, we have that the one in planar graphs is at most 2 from the above

discussions.

In this paper, we consider which types of planar graphs exist when we are given a triple

(χ, χℓ, χDP ) and answer this problem except for the case (χ, χℓ, χDP ) = (3, 3, 5).

Theorem 2.1.4 For (i, j, k) ∈ N3 − {(3, 3, 5)}, there exists a plane graph G with

(χ(G), χℓ(G), χDP (G)) = (i, j, k) if and only if (i, j, k) ∈ {(1, 1, 1), (2, 2, 2),
(2, 2, 3), (2, 3, 3), (2, 3, 4), (3, 3, 3), (3, 3, 4), (3, 4, 4), (3, 4, 5), (4, 4, 4), (4, 4, 5), (4, 5, 5)}.

2.2 A study of the existence of planar graphs

A graph G is k-degenerate if each nonempty subgraph of G has a vertex of degree at most

k. For the upper bound of the DP-chromatic number, it is easy to see the following.

Proposition 2.2.1 Let G be a k-degenerate graph. Then χDP (G) ≤ k + 1.

Moreover, Dvořák and Postle observed the following.

Theorem 2.2.2 ([9]) Let G be a planar graph. Then χDP (G) ≤ 5.

In the following, we divide the study of the existence of graphs by the chromatic

number.

2.2.1 Bipartite planar graphs

At first, we focus on bipartite plane graphs.

By Euler’s formula, every bipartite plane graph is 3-degenerate. Thus χDP (G) ≤ 4 for a

bipartite plane graph G by Proposition 2.2.1. Since χDP (Cn) = 3 for any n ≥ 3 and every

tree is 1-degenerate, it is easy to see the following.

Proposition 2.2.3 Let G be a graph. Then χDP (G) ≤ 2 if and only if G is a forest.

For graphs with list-chromatic number 2, Erdős et al. [12] gave the following

characterization.
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Theorem 2.2.4 ([12]) Let G be a connected graph. Then χℓ(G) ≤ 2 if and only if the

core of G is isomorphic to K1, C2n+2 or θ2,2,2n, where n is a positive integer.

The core of a graph G is the resulting graph from G by deleting the vertices of

degree 1 recursively. It is a direct consequence of Theorem 2.2.4 that all the graphs with

list-chromatic number 2 are 2-degenerate and hence we have the following corollary.

Corollary 2.2.5 There are no graphs G with χℓ(G) = 2 and χDP (G) ≥ 4.

Thus 2-list-chromatic graphs have DP-chromatic number at most 3. For example, the

even cycle C2n satisfies (χ, χℓ, χDP ) = (2, 2, 3).

Next, we consider the graphs with list-chromatic number 3. Since every bipartite plane

graph is 3-degenerate, its DP-chromatic number is at most 4 and hence we may only

consider the cases (χ, χℓ, χDP ) = (2, 3, 3), (2, 3, 4). For instance, K2,4 satisfies the former

one. Moreover, the latter one was constructed by Bernshteyn and Kostochka [6].

Finally, we note that there are no planar graphs with (χ, χℓ) = (2, 4) since Alon and Tarsi

[3] showed that each bipartite plane graph has list-chromatic number at most 3. Therefore

we have the following table for bipartite plane graphs.

χℓ = 2 χℓ = 3

χDP = 2 ◦ ∅
χDP = 3 ◦ ◦
χDP = 4 ∅ ◦

Table 2.1: The existences of bipartite plane graphs. The symbol ”◦” shows that there

is such a graph with corresponding χℓ and χDP and ”∅” represents that no such graphs

exist.

2.2.2 3-chromatic planar graphs

In this subsection, we focus on 3-chromatic planar graphs.

At first, we consider the graphs with list-chromatic number 3. It is easy to show that

K3 satisfies
(
χ(K3), χℓ(K3), χDP (K3)

)
= (3, 3, 3). Moreover, it is not hard to show the

following.

Proposition 2.2.6 The octahedron satisfies (χ, χℓ, χDP ) = (3, 3, 4).

Proof. Let G be the octahedron as shown in Figure 2.2. First we show that G is

3-choosable. If the list assignments L(v1) and L(v4) have a common color, say a, then we

color v1 and v4 by a. On the other hand, if L(v1) and L(v4) are disjoint, without loss of

generality, let L(v1) = {1, 2, 3} and let L(v4) = {4, 5, 6}. For each vi for i ∈ {2, 3, 5, 6}, we
have min{|L(vi)∩L(v1)|, |L(vi)|∩L(v4)|} ≤ 1. Thus we obtain at most two pairs of colors
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(a, b) such that a ∈ L(v1) ∩ L(vi) and b ∈ L(v4) ∩ L(vi) for each i ∈ {2, 3, 5, 6}. Since

|L(v1) × L(v4)| = 9, we have a pair (s, t) ∈ L(v1) × L(v4) such that |L(vi) − {s, t}| ≥ 2

for each i ∈ {2, 3, 5, 6}. In both cases, the vertices vi have at least two available colors in

their lists and the graph induced by them form the cycle of length 4. Thus we conclude

that G is 3-choosable.

Next, we will show χDP (G) = 4. At first, in order to show that χDP (G) ≤ 4, we color the

vertex v1 arbitrarily. In this situation, the vertex vi has at least three available colors for

each i ∈ {2, 3, 5, 6} and the vertex v4 has 4 available colors. Thus there exists a color c(v4)

in L(v4) which is not covered by a matching assignment Mv2v4 . In this situation, we can

color the vertices greedy v4, v6, v5, v3 and v2 as in this order. Next, we prove that there

exists a list assignment L and a matching-assignment M which implies that G is not

DP-3-colorable. We give the list L(v) = {0, 1, 2} for each v ∈ V (G). Moreover, we assign

+1 to the edges vivj if (i, j) = (4, 5), (4, 6) and assign +0 to any other edges. Then we give

the matching assignment M to each edge depending on the assigned number as shown in

Figure 2.2. It is easy to check that the vertices v1, v2 and v3 receive three distinct colors

and hence the vertices v4, v5 and v6 must be also colored by different colors. If c(v4) = 0,

then we have c(v5) = 1 or c(v6) = 1 and this contradicts the matching assignment in the

edges v4v5 and v4v6 respectively. Similarly, we get the contradictions in either cases with

c(v4) = 1 or c(v4) = 2. □

Figure 2.2: The edges vivj are assigned +1 if (i, j) = (4, 5), (4, 6) and any other edges are

assigned +0.

Planar graphs with (χ, χℓ, χDP ) = (3, 3, 3), (3, 3, 4) have been already constructed.

Therefore, in this context, it is natural to ask whether there exists a graph with

(χ, χℓ, χDP ) = (3, 3, 5). We conjecture as follows.

Conjecture 2.2.7 There are no planar graphs with (χ, χℓ, χDP ) = (3, 3, 5).

Since every planar graph has DP-chromatic number at most 5 by Theorem 2.2.2, there

are no graphs with (χ, χℓ, χDP ) = (3, 3, k), where k > 5.
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Next, we focus on the graphs with chromatic number 3 and list-chromatic number 4.

A graph with (χ, χℓ, χDP ) = (3, 4, 4) is easily obtained as follows.

Proposition 2.2.8 Let Gi be the graph as shown in Figure 2.3, where i ∈ {1, 2, 3}.
Moreover, let G be the graph so that G =

∪
iGi and V (Gj) ∩ V (Gk) = {v} for distinct

j, k ∈ {1, 2, 3}. Then G satisfies (χ, χℓ, χDP ) = (3, 4, 4).

Proof. Similarly to the proof of Proposition 2.2.6, we have χDP (G) ≤ 4. So it suffices

to show that χℓ(G) ≥ 4. let Li be a list assignment of Gi as shown in Figure 2.3, where

i ∈ {1, 2, 3}. Without loss of generality, we color the vertex v by 1. Then we focus on

the subgraph G1. Since the cycle s11s12s13s14 has 4 colors for any Li-colorings, we cannot

color the vertex s15. □

Figure 2.3: The graph Gi and the list assignment Li.

Thus, it is natural to ask whether there exists a planar graph with (χ, χℓ, χDP ) =

(3, 4, 5). We answer this problem affirmatively as follows and the proof is written in

Section 3.

Theorem 2.2.9 There exists a plane graph with (χ, χℓ, χDP ) = (3, 4, 5).

Finally, we focus on the graphs with list-chromatic number 5. In this case, Gutner

[16] constructed the graphs with (χ, χℓ, χDP ) = (3, 5, 5). Therefore, we have the following

table for the graphs with χ(G) = 3.

2.2.3 4-chromatic planar graphs

Finally, we focus on the graphs with chromatic number 4. For example, K4 satisfies

(χ, χℓ, χDP ) = (4, 4, 4). Moreover, a graph H with (χ(H), χℓ(H), χDP (H)) = (4, 4, 5) is

obtained as follows. Let G be the graph in Theorem 2.2.9 and let v be the vertex shown

in Figure 2.5. Let H be the graph with V (H) = V (G) ∪ V (K4), V (G) ∩ V (K4) =
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χℓ = 3 χℓ = 4 χℓ = 5

χDP = 3 ◦ ∅ ∅
χDP = 4 ◦ ◦ ∅
χDP = 5 ? ◦ ◦

Table 2.2: The table for 3-chromatic graphs.

{v} and E(H) = E(G) ∪ E(K4). Since (χ(G), χℓ(G), χDP (G)) = (3, 4, 5), we have

(χ(H), χℓ(H), χDP (H)) = (4, 4, 5). Furthermore, Voigt [30] constructs a graph with

(χ, χℓ, χDP ) = (4, 5, 5). Therefore, we obtain the following table.

χℓ = 4 χℓ = 5

χDP = 4 ◦ ∅
χDP = 5 ◦ ◦

Table 2.3: The table for 4-chromatic graphs.

2.3 Proof of Theorem 2.2.9

2.3.1 Prepare for the proof.

First, in order to show the proof of Theorem 2.2.9, we have following lemmas.

Lemma 2.3.1 Let G be the graph shown in Figure 2.4 and let L be the list assignment

such that L(v1) = {a, b, c, d}, L(v2) = {a}, L(v3) = {a, b, c}, L(v4) = {b, c, d} and L(v5) =

{a, b, d}. Then for any L-coloring of G, the vertices v3 and v5 receive the color b.

Proof. If the cycle C = v2v3v4v5 has 4 colors, then we cannot color v1. Thus, C has

at most 3 colors and hence there exists two vertices which receive the same color. Since

v2 and v4 does not have common colors, v3 and v5 receive the same color, which must be

b. □

Lemma 2.3.2 Let G be a graph shown in the right of Figure 2.4 and let L be a list

assignment such that |L(v1)| = 4, |L(v2)| = 1 and |L(v3)| = |L(v4)| = |L(v5)| = 3. Then

G is L-colorable.

Proof. First, we color v2 with its single available color. Then we may assume that

the lists of available colors for v1, v3, v4, and v5 are of sizes 3, 2, 3, and 2 respectively.

Since the number of available colors for v1 exceeds that for v3, we can assign a color to

v1 that does not correspond to any of the colors available to v3. Now, the lists of v3, v4,

and v5 have sizes 2, 2, and 1 respectively. Thus we can color the vertices v5, v4, and v3
greedily (in this order).□
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Figure 2.4: The graph and list assignment in Lemma 2.3.1 and Lemma 2.3.2.

2.3.2 Proof of Theorem 2.2.9

Proof of Theorem 2.2.9 At first, we construct the graph Gi for i ∈ {1, 2, 3, 4} as shown

in Figure 2.5. All semi-edges in Gi are incident with the vertex v.

Figure 2.5: The graph Gi. All semi-edges are incident with the vertex v.

Then we have the following Claim.

Claim 1 Let Gi be the graph and let Li be the list assignment of Gi as shown in Figure

2.5. Moreover, let L be a list assignment of Gi such that |L(v)| = 1 and |L(z)| = 4 for

z ∈ V (Gi)− {v}. Then all of the followings hold.

(i) Gi is 3-colorable.
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(ii) Gi is L-colorable.

(iii) For every Li-coloring c satisfies c(xi1) = 6, c(xi2) = 5,c(xi3) = 6 or c(xi4) = 5.

Proof of Claim 1 For part (i), we give the 3-coloring as shown in Figure 2.5.

For part (ii), we assign to v the unique color from L(v). After removing this color from

the lists of its neighbors, we may shrink the lists as follows.

� |L(y)| = 1 for y ∈ {yi1, yi2},

� |L(u)| = 3 for u, where u /∈ {yi1, yi2} is adjacent to v, and

� |L(w)| = 4 for w, where w is not adjacent to v.

Then we apply Lemma 2.3.1 and obtain an L-coloring.

For part (iii), for any Li-coloring c, yi1 or yi2 is colored by 5 or 6. Now we assume

c(yi1) ∈ {5, 6}. If c(yi1) = 5, then we have c(xi1) = 6 by Lemma 2.3.1. On the other

hand, if c(yi1) = 6, then we have c(xi2) = 5. For the case c(yi2) ∈ {5, 6}, we have

c(xi3) = 5 or c(xi4) = 6 by the symmetric argument as above. ■
Next, we insert the graph shown in Figure 2.6 into each triangular face xikyi1v for

k ∈ {1, 2} and xikyi2v for k ∈ {3, 4} (the shaded areas in Figure 2.5). The resulting graph

is denoted by G′
i. For the graph G′

i, we have the following.

Claim 2 All of the followings hold.

(i) G′
i has a 3-coloring c such that c(sik1) = c(sik4) and c(sik2) = c(sik3).

(ii) G′
i is L-colorable for a list assignment L such that |L(v)| = 1 and |L(z)| = 4 for

z ∈ V (G′
i)− {v}.

(iii) There exists a list assignment L′
i of G

′
i which satisfies all of the following.

� |L′
i(v)| = 1 and |L′

i(z)| = 4 for z ∈ V (G′
i)− {v}.

� For any Li-coloring c, there exists an integer k such that c(sik1) = c(sik4) = 7 and

c(sik2) = c(sik3) = 8.

Proof of Claim 2. First, we color the vertices of V (Gi) by Claim 1. Without loss of

generality, we may assume c(v) = 1, c(xik) = 2 and c(yij) = 3. Then we color the vertices

of V (G′
i) as in Figure 2.6.

For part (ii), at first we give an L-coloring to the vertices contained in V (Gi) by Claim

1 (ii). Since each vertex of V (G′
i) − V (Gi) which is adjacent to v has at least three

available colors, we can apply Lemma 2.3.2 to the graphs which are induced by Wik1 =

{xik, sik1, tik1, uik1, rik1} or Wik4 = {xik, sik4, tik4, uik4, rik4}. After that, we apply Lemma

2.3.2 to the graphs which are induced by Wik2 = {sik1, sik2, tik2, uik2, rik2} or Wik3 =

{sik4, sik3, tik3, uik3, rik3} and we obtain a desired L-coloring.

For part(iii), at first we give the list assignment L′
i so that L′

i(w) = Li(w) for each
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Figure 2.6: The fragment of the graph G′
i. All semi-edges are incident with the vertex v

and the shaded area represents the hexagonal face.

w ∈ V (Gi), L
′
i(sikj) = {i, n(k), 7, 9}, L′

i(uikj) = {i, n(k), 7, 8}, Li(tikj) = {i, 7, 8, 9} and

Li(rikj) = {n(k), 7, 8, 9} for j ∈ {1, 4}, L′
i(sikj) = {i, 7, 8, 9}, L′

i(uikj) = {i, 7, 8, 10},
L′
i(tikj) = {i, 8, 9, 10} L′

i(rikj) = {7, 8, 9, 10} for j ∈ {2, 3}, where n(k) = 6 if k ∈ {1, 3}
and n(k) = 5 if k ∈ {2, 4}. Then we fix an L′

i-coloring c of Gi. By Claim 1 (iii), c satisfies

c(xi1) = 6, c(xi2) = 5,c(xi3) = 6 or c(xi4) = 5. In other words, there exists a positive

integer k such that c(xik) = n(k). Let k with c(xik) = n(k) be fixed. In this situation,

we regard the graph G′
i[Wik1] as the graph in Lemma 2.3.1 so that v1 = xik, v2 = sik1,

a = n(k), b = 7. Thus we must have c(sik1) = 7 by Lemma 2.3.1. Similarly, we must

have c(sik4) = 7. Moreover, we regarded the graph G′
i[Wik2] so that v1 = sik1, v2 = sik2,

a = 7 and b = 8 as shown in Lemma 2.3.1. Thus we must have c(sik2) = 8 and similarly

c(sik3) = 8. ■
Next, we insert the graph shown in Figure 2.7 into each hexagonal face xiksik1sik2vsik3sik4
for any k ∈ {1, 2, 3, 4} in G′

i and the resulting graph is denoted by G′′
i . For the graph G

′′
i ,

we have the following.

Claim 3 All of the followings hold.

(i) G′′
i is 3-colorable.

(ii) G′′
i is L-colorable for a list assignment L of G′′

i such that |L(v)| = 1 and |L(z)| = 4

for z ∈ V (G′′
i )− {v}.

(iii) There exists a list assignment L′′
i of G′

i which satisfies the following.

� |L′′
i (v)| = 1 and |L′′

i (z)| = 4 for z ∈ V (G′
i)− {v}.
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� There exists a matching assignment M ′′
i in L′′

i such that G′′
i is not

DP-M ′′
L′′
i
-colorable.

Figure 2.7: The left is a fragment of the graph G′′
i . The right is the matching assignment

ML′′
i
. The black vertices in sik1 and sik4 correspond to the color 7 and the ones in sik2

and sik3 correspond to the color 8.

Proof of Claim 3. For part (i), G′
i has a 3-coloring c such that c(sik1) = c(sik4) and

c(sik2) = c(sik3) by Claim 2. Without loss of generality, we may assume c(sik1) = c(sik4) =

2 and c(sik2) = c(sik3) = 3. Then we extend the coloring c of G′
i to the 3-coloring of G′′

i

as shown in Figure 2.7.

For part (ii), first we give an L-coloring to the vertices of G′
i by Claim 2. In this situation,

each vertex qikj has at least two available colors in L, where j ∈ {1, 2, 3, 4}. Since a cycle

of even length is 2-choosable, G′′
i is L-colorable.

For part (iii), at first, we give the list assignment L′′
i such that L′′

i (u) = L′
i(u) for each

u ∈ V (G′
i) and L

′′
i (qikj)={7,8,9,10} for j ∈ {1, 2, 3, 4}. By Claim 2 (iii), for any L′

i-coloring

c, there exists a positive integer k such that c(sik1) = c(sik4) = 7 and c(sik2) = c(sik3) =

8. In other words, the vertices which correspond to the color 7 in sik1 and sik4 and

which correspond to the color 8 in sik2 and sik3 must be chosen as an independent set

of size |V (G′
i)| in the graph H(G′

i, L
′
i,M

′
i), where M ′

i is the matching assignment of

G′
i so that each element of M ′

i connects the same colors. Now, we take a matching

assignment M ′′
i = M ′

i ∪ Mi of (G
′′
i , L

′′
i ), where Mi is the matching assignment of the

cycles qk1qk2qk3qk4 for k ∈ {1, 2, 3, 4} as shown in Figure 2.7. It is easy to check that the

graph H(G′′
i , L

′′
i ,M

′′
i) does not have an independent set of size |V (G′′

i )|. ■
Finally, we construct the graph G so that G = G′′

1∪G′′
2∪G′′

3∪G′′
4 and V (G′′

i )∩V (G′′
j ) = {v}

for any distinct i, j ∈ {1, 2, 3, 4}. By Claim 3, we have (χ(G), χℓ(G), χDP (G)) = (3, 4, 5).

□
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Chapter 3

The Alon-Tarsi number of

K5-minor-free graphs.

In this Chapter, we introduce the Alon-Tarsi number.

3.1 Introductions

A d-defective coloring of G is a coloring c : V (G) → N such that each color class induces

a subgraph of maximum degree at most d. Especially, a 0-defective coloring is also called

a proper coloring of G.

A k-list assignment of a graph G is a mapping L which assigns to each vertex v of G a

set L(v) of k permissible colors. Given a k-list assignment L of G, a d-defective L-coloring

of G is a d-defective coloring c such that c(v) ∈ L(v) for every vertex v. We say that G

is d-defective k-choosable if G has a d-defective L-coloring for every k-list assignment L.

Especially, we say that G is k-choosable if G is 0-defective k-choosable. The list chromatic

number χℓ(G) is defined as the smallest integer k such that G is k-choosable.

Let G be a graph and let ‘<’ be an arbitrary fixed ordering of the vertices of G. The

graph polynomial of G is defined as

PG(x) =
∏

u∼v,u<v

(xu − xv),

where u ∼ v means that u and v are adjacent, and x = (xv)v∈V (G) is a vector of |V (G)|
variables indexed by the vertices of G. It is easy to see that a mapping c : V (G) → N is

a proper coloring of G if and only if PG(c) ̸= 0, where c =
(
c(v)

)
v∈V (G)

. Therefore, to

find a proper coloring of G is equivalent to find an assignment of x so that PG(x) ̸= 0.

The following theorem, which was proved by Alon and Tarsi, gives sufficient conditions

for the existence of such assignments as above.

Theorem 3.1.1 (Combinatorial Nullstellensatz [1]) Let F be an arbitrary field and

let f = f(x1, x2, . . . , xn) be a polynomial in F[x1, x2, . . . , xn]. Suppose that the degree
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deg(f) of f is
∑n

i=1 ti where each ti is a nonnegative integer, and suppose that the

coefficient of
∏n

i=1 x
ti
i of f is nonzero. Then if S1, S2, . . . , Sn are subsets of F with

|Si| ≥ ti + 1, then there are s1 ∈ S1,s2 ∈ S2,. . . ,sn ∈ Sn so that f(s1, s2, . . . , sn) ̸= 0.

In particular, a graph polynomial PG(x) is a homogeneous polynomial and deg(PG) is

equal to |E(G)|. Therefore, if there exists a monomial c
∏

v∈V (G) xv
tv in the expansion of

PG so that c ̸= 0 and tv < k for each v ∈ V (G), then G is k-choosable. Jensen and Toft

[19] defined the Alon-Tarsi number of a graph as follows.

Definition 3.1.2 The Alon-Tarsi number of a graph G, denoted by AT (G), is the

minimum k for which there exists a monomial c
∏

v∈V (G) x
tv
v in the expansion of PG(x)

such that c ̸= 0 and tv < k for all v ∈ V (G).

As explained above, χℓ(G) ≤ AT (G) for every graph G. Moreover, it is known that

the gap between χℓ(G) and AT (G) can be arbitrary large. Nevertheless, it is also known

that the upper bounds of χℓ(G) and AT (G) are the same for several graph classes. For

example, Thomassen [27] proved that every planar graph is 5-choosable. Later, Zhu

proved the following.

Theorem 3.1.3 ([34]) Let G be a plane graph. Then AT (G) ≤ 5.

Moreover, it was shown in [8] that every planar graph is 1-defective 4-choosable.

Recently, Grytczuk and Zhu have proved the following theorem.

Theorem 3.1.4 ([15]) Let G be a plane graph. Then there exists a matching M of G

such that AT (G−M) ≤ 4.

This result implies that every planar graph is 1-defective 4-choosable. Furthermore, it was

shown independently in [11] and [24] that every planar graph is 2-defective 3-choosable.

In this context, it seems natural to ask whether there exists a subgraph H of G such that

AT (G− E(H)) ≤ 3 and dH(v) ≤ 2 for every v ∈ V (G). Since if it was true, this implies

that every planar graph is 2-defective 3-choosable. However,this is not true and it was

shown in [18] that there exists a planar graph G such that for any subgraph of H of G

with maximum degree at most 3, G − E(H) is not 3-choosable. On the other hand, the

following was also proved in the same paper.

Theorem 3.1.5 ([18]) Let G be a plane graph. Then there exists a forest F in G such

that AT (G− E(F )) ≤ 3.

A graph H is a minor of a connected graph G if we obtain H from G by deleting or

contracting some edges recursively. A graph G is H-minor-free if H is not a minor of G.

If multiple edges appear by a contraction, we replace them with simple edge.

As another extension of Thomassen’s result, it was shown in [17] and [25] that

every K5-minor-free graph is 5-choosable. Moreover, it is also shown in [33] that every
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K5-minor-free graph is 1-defective 4-choosable. In this paper, we extend these results

from list chromatic number to Alon-Tarsi number.

Theorem 3.1.6 Let G be a K5-minor-free graph. Then all of the following hold.

(i) AT (G) ≤ 5.

(ii) There exists a matching M of G such that AT (G−M) ≤ 4.

Theorem 3.1.7 For every K5-minor-free graph G, there exists a forest F such that G−
E(F ) is 2-degenerate.

Thus we have the following corollary.

Corollary 3.1.8 For every K5-minor-free graph G, there exists a forest F such that

AT (G− E(F )) ≤ 3.

This paper is organized as follows. In Section 2, we prepare some lemmas in order

to show the main theorems. And in Section 3, we prove Theorem 3.1.6 and Theorem

3.1.7. In Section 4, we have some remarks that Theorem 3.1.6 and Corollary 3.1.8 can be

extended to singed graphs.

3.2 Orientations and Alon-Tarsi number

3.2.1 An alternative definition of the Alon-Tarsi number.

Indeed Alon-Tarsi number is already defined algebraically in Section 1, Alon and Tarsi

[3] found a combinatorial interpretation of the coefficient for each monomial in the graph

polynomials in terms of orientations and Eulerian subgraphs. For an orientation D of G,

d+D(v) (resp. d
−
D(v)) denotes out-degree (resp. in-degree) of a vertex v in D. A subgraph

H of D is called Eulerian if V (H) = V (G) and d−H(v) = d+H(v) for every v ∈ V (H) with

respect to D. Note that H might not be connected. Let EE(D) (resp. OE(D)) denote

the set of all Eulerian subgraphs of D with even (resp. odd) number of edges. Especially,

we say that an orientation D is acyclic if D does not contain any directed cycles.

Theorem 3.2.1 ([3]) Let G be a graph, let PG be the graph polynomial of G and let D

be an orientation of G with out-degree sequence d = (dv)v∈V (G). Then the coefficient of∏
v∈V (G) x

dv
v in the expansion of PG is equal to ±(|EE(D)| − |OE(D)|)

We say that orientationD ofG is an AT-orientation ifD satisfies |EE(D)|−|OE(D)| ̸=
0.
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3.2.2 Orientations of planar graphs

Now let us focus on planar graphs. We say a plane graph G is a near triangulation if each

internal face in G is triangular. In the papers [15], [18] and [34], the following are shown

respectively.

Lemma 3.2.2 Let G be a plane graph with simple boundary cycle C = v1v2...vm. Then

all of the following hold.

(i) ([34]) G has an AT-orientation D such that d+D(v1) = 0, d+D(v2) = 1, d+D(vi) ≤ 2 for

each i ∈ {3, ...,m} and d+D(u) ≤ 4 for each interior vertex u.

(ii) ([15]) There exists a matching M and an AT-orientation D of G − M such that

d+D(v1) = d+D(v2) = 0, d+D(vi) ≤ 2− dM(vi) for each i ∈ {3, ...,m} and d+D(u) ≤ 3 for

each interior vertex u.

(iii) ([18]) There exists a forest F in G and an acylic orientation D of G − E(F ) such

that d+D(v1) = d+D(v2) = 0, d+D(vi) = 1 for each i ∈ {3, ...,m} and d+D(u) ≤ 2 for each

interior vertex u.

In order to show the main theorem, we need an orientation which has some stronger

properties.

Lemma 3.2.3 Let G be a plane graph with a boundary cycle v1v2v3. Then all of the

following hold.

(i) There exists a matching M of G and an AT-orientation D of G − M such that

M does not cover v3, d
+
D(v1) = d+D(v2) = 0, d+D(v3) = 2 and d+D(y) ≤ 3 for y ∈

V (G)− {v1, v2, v3}.

(ii) There exists a forest F of G and an acyclic orientation D of G − E(F ) such that

v1v3 ̸∈ E(F ), d+D(v1) = d+D(v2) = 0, d+D(v3) = 1 and d+D(y) ≤ 2 for y ∈ V (G) −
{v1, v2, v3}.

Proof. Let G′ = G− v3 and let N(v3) = {v1, u1, ..., uk, v2} be the neighborhood of v3 as

this rotation. Since G′ is a plane graph, we have a matching M and an AT-orientation D′

of G′−M such that d+D′(v1) = d+D′(v2) = 0, d+D′(ui) ≤ 2 for i ∈ {1, 2, ..., k} and d+D′(u) ≤ 3

for each interior vertex u by Lemma 4.3.1 (See Figure 3.1). Let D be the orientation of

G −M obtained from D′ by adding the vertex v3 and k + 2 oriented edges (ui, v3) for

i ∈ {1, 2, ..., k}, (v3, v1) and (v3, v2).

It is easy to see that D also satisfies the out-degree conditions and that M does

not cover v3. Moreover, since the vertices v1 and v2 have out-degree 0, D is also an

AT-orientation. □
Let G and H be a graph which contain a clique of the same size. The clique-sum of

G and H is a operation that forms a new graph obtained from their disjoint union by
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Figure 3.1: The orientation D of G−M

identifying a clique of G and one of H with the same size and possibly deleting some

edges in the clique. A k-clique-sum is a clique-sum in which both cliques have at most

k-vertices.

Lemma 3.2.4 Let G be a graph which can be obtained by the 3-clique-sum of G1 and G2

and let T = {x1, x2, x3} be its clique. Moreover, let G′
i = G∩Gi. Suppose that G′

1 has an

AT-orientation D′
1 with maximum out-degree at most k and that G2 has an AT-orientation

D2 such that d+D2
(x1) = 0, d+D2

(x2) ≤ 1 and d+D2
(x3) ≤ 2 and xi is directed only to xi′,

where xi, xi′ ∈ V (T ). Then G has an AT-orientation D such that d+D(v) = d+D′
1
(v) for

each v ∈ V (G1) and maximum out-degree of D is at most k.

Proof. Let D′
2 ⊂ D2 be the orientation of G′

2 and let D = D′
1 ∪

(
D′

2 − E(T )
)
. Then

it is easy to see that d+D(v) = d+D′
1
(v) for each v ∈ V (G′

1), d
+
D(v) = d+D′

2
(v) for each

v ∈ V (G′
2)−V (T ) and hence maximum out-degree of D is at most k. For the orientation

D2, the vertices in T has a direction only to other vertices of T and no Eulerian subgraphs

in D2 contain the edge in T by the out-degree conditions of D2. Thus D′
2 is also an

AT-orientation of G′
2 and any spanning Eulerian sub-digraphs H of D has an edge-disjoint

decomposition H = H1 ∪H2 where H1 and H2 are Eulerian sub-digraphs in D′
1 and D′

2,

respectively. Therefore, we have the bijection τ so that

� τ
(
EE(D)

)
=

(
EE(D′

1)× EE(D′
2)
)
∪
(
OE(D′

1)×OE(D′
2)
)
and

� τ
(
OE(D)

)
=

(
OE(D′

1)× EE(D′
2)
)
∪
(
EE(D′

1)×OE(D′
2)
)
.
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Hence

|EE(D)| − |OE(D)|
= (|EE(D′

1)| × |EE(D′
2)|+ |OE(D′

1)| × |OE(D′
2)|)

−(|EE(D′
1)| × |OE(D′

2)|+ |OE(D′
1)| × |EE(D′

2)|)
= (|EE(D′

1)| − |OE(D′
1)|) · (|EE(D′

2)| − |OE(D′
2)|)

̸= 0.

These imply that the orientation D is an AT-orientation of G with desired properties. □

3.2.3 Characterizations of K5-minor-free graphs.

Now, let us focus on K5-minor-free graphs. In order to show the main theorem, we use

the following results.

Lemma 3.2.5 ([31]) A graph G is K5-minor-free if and only if G can be formed from

some 3-clique-sums of graphs, each of which is either planar or the Wagner graph W as

shown in Figure 3.2.

Figure 3.2: The left is the Wagner graph W and the right is an acyclic orientation with

maximum out-degree 3. Doted edges denote elements of a matching or forest.

3.3 Proof of main Theorem.

Theorem 3.1.6 and Theorem 3.1.7 follow from the lemma below.

Lemma 3.3.1 Let G be a K5-minor-free graph and let Hi be a subgraph of Gi which is

isomorphic to uv ∈ E(G) or {uv, vw,wu} ⊂ E(G) for each i ∈ {1, 2, 3}. Then all of the

following hold.
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(i) There exists an AT-orientation D such that d+D(u) = 0, d+D(v) = 1, (d+D(w) = 2 if

H1 is isomorphic to K3) and d
+
D(y) ≤ 4 for y ∈ V (G)− {u, v, w}.

(ii) There exists a matching M of G and an AT-orientation D of G − M such that

d+D(u) = d+D(v) = 0, (d+D(w) = 2 and M does not cover w if H2 is isomorphic to

K3) and d
+
D(y) ≤ 3 for y ∈ V (G)− {u, v, w}.

(iii) There exists a forest F of G and an acyclic orientation D of G − E(F ) such that

d+D(u) = d+D(v) = 0, (d+D(w) = 1 if H3 is isomorphic to K3) and d+D(y) ≤ 2 for

y ∈ V (G)− {u, v, w}.

Proof. Suppose that the Lemma is false and let Gi be a counterexample for each i ∈
{1, 2, 3} respectively with |V (Gi)| as small as possible. By the minimality of Gi, Gi is

connected. Moreover, it is easy to check that Gi does not have a cut vertex by Lemma

3.2.4. Thus we may assume Gi is 2-connected.

First we suppose that Gi is a plane graph. If Hi is isomorphic to K2 or K3 which

bounds a face, without loss of generality, Hi lies on the boundary of G. In this case, a

desired AT-orientation exists by Lemma 4.3.1. Thus Hi consists a separating 3-cycle in

Gi. We let Gi,1 and Gi,2 be subgraphs of Gi so that Gi,1 ∪Gi,2 = Gi and Gi,1 ∩Gi,2 = Hi.

By Lemma 4.3.1 and Lemma 3.2.3, for j ∈ {1, 2} we have an AT-orientation D1,j of G1,j

which satisfies the conditions. Similarly, we have that there exists a matching Mj and

an AT-orientation of G2,j −Mj and that there exists a forest Fj and acyclic orientation

of G3,j − E(Fj), which satisfy the conditions. It is easy to see that M = M1 ∪M2 is

also a matching of G2 and F = F1 ∪ F2 is a forest of G3. Therefore, we get a desired

AT-orientation respectively by Lemma 3.2.4. Thus Gi is not planar.

Next, suppose that Gi is the Wagner graph W . Since W does not contain a triangle,

Hi must be isomorphic to K2. By the symmetry of W , we may assume that Hi = u1u5 or

u5u6. In this case, the orientation in Figure 3.2 is a desired AT-orientation respectively.

Thus we assume that Gi is neither planar graph nor the graph W . By Lemma

3.2.5, there exists K5-minor-free graphs Gi,1 and Gi,2 such that Gi can be obtained by a

3-clique-sum of Gi,1 and Gi,2. Let T be its clique and let G′
i,j = Gi,j ∩ G for j ∈ {1, 2}.

It is easy to see that Hi ⊂ G′
i,1 or G′

i,2. Without loss of generality, we may assume that

Hi ⊂ Gi,1. By the minimality of Gi, we have the following.

(i) There exists an AT-orientation D1,1 of G′
1,1 which satisfies the assumption (i) of

Lemma 3.3.1.

(ii) There exists a matching M1 and an AT-orientation D2,1 of G
′
2,1 −M which satisfies

the assumption (ii) of Lemma 3.3.1.

(iii) There exists a forest F1 and an acyclic orientation D3,1 of G
′
3,1−E(F ) which satisfies

the assumption (iii) of Lemma 3.3.1.
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First, we consider the case when i = 1. By the minimality of G1, we get an AT-orientation

D1,2 of G1,2 with d+D1,2
(x1) = 0, d+D1,2

(x2) = 1, d+D1,2
(x3) = 2 and the maximum degree of

D1,2 is at most 4. By Lemma 3.2.4, we get a desired AT-orientation D in G1.

Next, we consider the case when i = 2. By the minimality of G2, we get a matching

M2 of G2,2 and an AT-orientation D2,2 of G2,2−M2 such that d+D2,2
(x1) = 0, d+D2,2

(x2) = 0,

d+D2,2
(x3) = 2, maximum out-degree of D2,2 is at most 3 and M2 does not cover x3. Let

M =M1 ∪
(
M2 −{x1x2}

)
. It is easy to see that M is a matching of G. By Lemma 3.2.4,

we get a desired AT-orientation D in G2 −M .

Finally, we consider the case when i = 3. By the minimality of G3, we get a forest

F2 of G3,2 and an acyclic orientation D3,2 of G3,2 −E(F2) with d
+
D3,2

(x1) = d+D3,2
(x2) = 0,

d+D3,2
(x3) = 1 and maximum out-degree of D3,2 is at most 2. Let F = F1 ∪ (F2 − E(T )).

Similarly, we can show that F is a forest and D3 is an acyclic orientation of G3 − E(F )

with desired properties. This is a contradiction and we completes the proof. □

[Proof of Theorem 3.1.6 and Theorem 3.1.7]

Theorem 3.1.6 follows immediately from (i) and (ii) in Lemma 3.3.1. For Theorem 3.1.7,

each K5-minor-free graph G has a forest F and and an acyclic orientation D of G−E(F )

with maximum out-degree at most 2 by Lemma 3.3.1. Since G is finite and D is acyclic,

there exists a vertex v with d−D(v) = 0. Therefore, the vertex v has degree at most 2 and

hence G− E(F ) is 2-degenerate. □

3.4 Some remarks

A signed graph is a pair (G, σ), where G is a graph and σ is a signature of G which assigns

to each edge e = uv of G a sign σuv ∈ {1,−1}. Let

Nk =

{
{0,±1, . . . ,±q} if k = 2q + 1 is an odd integer,

{±1, . . . ,±q} if k = 2q is an even integer.

A proper coloring of (G, σ) is a mapping c : V (G) → Nk such that c(x) ̸= σxyc(y) for

each edge xy. The chromatic number χ(G, σ) of (G, σ) is minimum integer t such that

there exists a proper coloring c : V (G) → Nk with |Nk| = t. The list chromatic number

ch(G, σ) of (G, σ) is minimum integer k such that for every k-list assignment L, there

exists a proper coloring c of (G, σ) so that c(v) ∈ L(v) for every v ∈ V (G).

Let (G, σ) be a signed graph and let ‘<’ be an arbitrary fixed ordering of the vertices

of (G, σ). The singed graph polynomial of (G, σ) is defined as

PG,σ(x) =
∏

u∼v,u<v

(xu − σuvxv),

where u ∼ v means that u and v are adjacent, and x = (xv)v∈V (G) is a vector of |V (G)|
variables indexed by the vertices of G. It is easy to see that a mapping c : V (G) → Z
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is a proper coloring of (G, σ) if and only if PG,σ(c) ̸= 0, where c =
(
c(v)

)
v∈V (G)

. The

Alon-Tarsi number of (G, σ) is defined similarly and we have χ(G, σ) ≤ ch(G, σ) ≤
AT (G, σ).

Let (G, σ) be a singed graph and let D be an orientation of (G, σ). Let σEE(D) (resp.

σOE(D)) denote the set of all spanning Eulerian sub-digraphs of D with even (resp. odd)

number of positive edges on σ. It was shown in [32] that Theorem 3.2.1 can be extended

to signed one as follows.

Theorem 3.4.1 ([32]) Let (G, σ) be signed graph, let PG,σ be the signed graph polynomial

of (G, σ) and let D be an orientation of (G, σ) with out-degree sequence d = (dv)v∈V (G).

Then the coefficient of
∏

v∈V (G) x
dv
v in the expansion of PG,σ is equal to ±(|σEE(D)| −

|σOE(D)|).

We say orientation D of (G, σ) is a σAT-orientation if D satisfies |σEE(D)| −
|σOE(D)| ̸= 0.

Let us focus on planar graphs. In the papers [15] and [32], the following are shown

respectively.

Lemma 3.4.2 Let (G, σ) be a signed near triangulation and let C = v1v2...vm be the

boundary cycle of G. Then all of the following hold.

(i) ([32]) G has a σAT-orientation D such that d+D(v1) = 0, d+D(v2) = 1, d+D(vi) ≤ 2 for

each i ∈ {3, ...,m} and d+D(u) ≤ 4 for each interior vertex u.

(ii) ([15]) There exists a matching M and a σAT-orientation D of G −M such that

d+D(v1) = d+D(v2) = 0, d+D(vi) ≤ 2− dM(vi) for each i ∈ {3, ...,m} and d+D(u) ≤ 3 for

each interior vertex u.

Although the Lemma 3.4.2 only deal with near triangulations in the paper [32], it is

not hard to extend the graph class from near triangulations to planar graphs. Moreover,

since all the arguments of Lemmas in Section 2 and Lemma 3.3.1 work even if we replace

AT-orientations into σAT-orientations, we have the following results.

Theorem 3.4.3 Let (G, σ) be a signed K5-minor-free graph. Then all of the following

hold.

(i) AT (G, σ) ≤ 5.

(ii) There exists a matching M of G such that AT (G−M,σ) ≤ 4.

(iii) There exsits a forest F in G such that AT (G− E(F ), σ) ≤ 3.
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Chapter 4

Edge-colorings on the projective

plane

In this Chapter, we focus on the edge-coloring of graphs.

4.1 Introduction

In this chapter, we only deal with graphs which are finite undirected and loopless but

may have multiple edges. Let k be a positive integer. A k-edge-coloring of a graph G is

a map φ : E(G) → {1, 2, ..., k} such that for any pair of edges uv, vw ∈ E(G) sharing

an end vertex v, we have φ(uv) ̸= φ(vw). A graph G is k-edge-colorable if there exists a

k-edge-coloring of G. Moreover, ECk(G) denotes the set of k-edge-colorings of G

In this paper, we study the signature of edge-colorings φ with respect to a base ρ, which is

denoted by signρ(φ) and takes positive or negative. Before defining it formally in Section

3, we first introduce its application.

4.1.1 The List Coloring Conjecture

First, we focus on the List Coloring Conjecture. The definition of list coloring is mentioned

in Section 4.4. The following problem is still open so far.

Conjecture 4.1.1 ([4]) Let G be a graph. If G is k-edge-colorable, then G is

k-list-edge-colorable.

The converse of Conjecture 4.1.1 trivially holds from the definition, but it seems

difficult to prove Conjecture 4.1.1. As a partial solution to Conjecture 4.1.1, Alon and

Tarsi proved the following theorem.

Theorem 4.1.2 ([2]) Let G be a k-regular k-edge-colorable graph and ρ be a basis of G.

If G satisfies
∑

φ∈ECk(G)

signρ(φ) ̸= 0, then G is k-list-edge-colorable.
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From Theorem 4.1.2, by considering the signatures, we could obtain list-edge-colorings.

We explain this more details in Section 4.4.

4.1.2 The number of vertex colorings

Next, we consider the number of vertex colorings. For edge-colorings of plane graphs, the

following fact is well known.

Theorem 4.1.3 ([26]) Let G be a 2-edge-connected plane cubic graph. Then G is

3-edge-colorable if and only if the dual G∗ has a 4-vertex-coloring.

From the proof of Theorem 4.1.3, we have a one-to-one correspondence between

3-edge-colorings in cubic plane graphs and 4-vertex-colorings in the dual planar

triangulations, up to the permutations of colors. Thus, the number of 4-colorings in

planar triangulations can be counted by doing 3-edge-colorings in planar cubic graphs.

On the other hand, it is known in [14] that the number of 3-edge-colorings in planar cubic

graphs can be computed by using the signature.

4.1.3 Kempe switch

Finally, we will see the Kempe switch. Let φ be a k-edge-coloring of a graph G and let

C be a cycle induced by edges with two distinct colors i, j of φ. A Kempe switch at C

is an operation where we recolor the edges on C colored i to j and the ones colored j

to i respectively. We say that φ1 and φ2 are Kempe equivalent if φ2 is obtained from

φ1 by a sequence of Kempe switches. It is easy to see that Kempe equivalence forms an

equivalence relations on the set of k-edge-colorings. For the Kempe switch, the following

is obtained by the easy observations.

Proposition 4.1.4 Let G be a k-regular k-edge-colorable graph with a base ρ and let φ1

and φ2 be k-edge-colorings of G. If φ2 is obtained from φ1 by the Kempe switch, then

signρ(φ1) = signρ(φ2).

By Proposition 4.1.4, if two edge-colorings φ1 and φ2 satisfy that signρ(φ2) ̸= signρ(φ2)

under a common basis ρ, then they are not Kempe equivalent. Thus the signature could

be one of the tools to show that two edge-colorings are not Kempe equivalent.

Related to those works, it seems natural to ask which edge-colorings have the positive

or negative signatures. For plane graphs, it is known that the signatures of any two

edge-colorings are the same under a common basis ρ [10]. However, in general, a graph

may have both edge-colorings with positive signatures and those with negative ones. In

this paper, we study signatures of edge-colorings for graphs on the projective plane.

We organize this paper as follows; First we prepare terminologies and propositions.

In Section 4.2, we give the definition and results of signatures of edge-colorings. and in
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Section 4.3 we prove our main theorem. In Section 4.4, we introduce an application to

the List Coloring Conjecture.

Before proceeding to the main part, we define some terminology. A surface

is a connected compact 2-dimensional manifold without boundary. A triangulation

(respectively a quadrangulation) of a surface F is a graph embedded in F with each face

triangular (respectively a quadrangular).

A closed curve γ on F is essential if γ does not bound a 2-cell region on F. Otherwise,

γ is contractible. A non-separating curve is always essential but the converse does not

generally hold. However, if F is the projective plane, a closed curve γ is non-separating if

and only if it is essential. For the projective plane, the following is well-known.

Proposition 4.1.5 Let γ and γ′ be closed curves on the projective plane. Then γ and γ′

are both essential if and only if they intersect transversally an odd number of times.

4.2 Definition of signatures of edge-colorings

4.2.1 Abstract graphs

In this subsection, we give a formal definition of the signatures of edge-colorings. In the

following, G is always a k-regular k-edge-colorable graph except as noted. Let φ be a

k-edge-coloring of G. For i ∈ {1, 2, . . . , k}, the set of edges of color i by φ is denoted by

φ−1(i). For a vertex v ∈ V (G), we denote by E(v) the set of edges that are incident with

v. Let ρv be a bijective map from E(v) to {1, 2, ..., k}. We call ρ = {ρv : v ∈ V (G)} a

basis of G. For a basis ρ, a k-edge-coloring φ, and a vertex v of the graph G, we have a

permutation πv = φ ◦ ρ−1
v of degree k. The signature sign(πv) is defined as follows.

sign(πv) =

{
+1 if πv is an even permutation,

−1 otherwise.

Especially, we might denote signρ(πv) instead of sign(πv) when we emphasize the basis ρ.

We call
∏

v∈V (G)

sign(πv) the signature of an edge-coloring φ (with respect to ρ) and denoted

by signρ(φ). Figure 4.1 is an example of the signature of an edge-coloring.

Note that the signatures of edge-colorings φ1 and φ2 of G depend on the basis ρ, but

the equivalence relation of φ1 and φ2 does not depend on a basis.

Proposition 4.2.1 Let G be a k-regular k-edge-colorable graph. If k-edge-colorings φ1

and φ2 of G satisfy signρ(φ1) = signρ(φ2) for a basis ρ, then signρ′(φ1) = signρ′(φ2) for

each basis ρ′.

Proof. Let v ∈ V (G) and let π1
v (resp. π2

v) be the permutation of edge-colorings φ1

(resp. φ2) at v with respect to the basis ρ. Moreover, let τ 1v (resp. τ 2v ) be the permutation
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Figure 4.1: An example of the signature of a 3-edge-coloring φ with respect to the basis ρ.

The cyclic arrow around each vertex v shows the order of edges incident to the vertex on ρv.

For example, πv1 =

(
1 2 3

3 1 2

)
and πv2 =

(
1 2 3

2 1 3

)
and hence we have sign(πv1) = +1

and sign(πv2) = −1. In this situation, we have signρ(φ) = (−1)3(+1)3 = −1.

of edge-colorings φ1 (resp. φ2) at v with respect to the basis ρ′. By the definition of τ 1v
and τ 2v , we have τ 1v = π1

v ◦ ρ ◦ ρ′−1 and τ 2v = π2
v ◦ ρ ◦ ρ′−1. Thus signρ(π

1
v) = signρ(π

2
v) if

and only if signρ′(τ
1
v ) = signρ′(τ

2
v ). □

By Proposition 4.2.1, it suffices to consider only one basis in order to see the

equivalence relation between the edge-colorings. In the following, we focus on graphs

embedded on closed surfaces and consider the signatures of edge-colorings under a fixed

basis, which depends on the embedding.

4.2.2 Planar graphs

Let G be a k-regular k-edge-colorable plane graph. Note that G has a perfect matching

M , since in any k-edge-coloring of G, the set of edges with the same color forms a perfect

matching. As a canonical basis, we consider the following: For every vertex v in G, we

take the clockwise permutation on E(v) which starts from the edge of M incident with v.

We denote this basis by ρ[M ]. For example, the dotted edges in Figure 4.1 represent the

edges in a perfect matching M in the graph. Since each ρv is a clockwise permutation on

E(v) that starts from the elements of M , we have ρ = ρ[M ].

Note that the signature of a cyclic permutation of odd degree does not depend on

the first element. Therefore, if k is odd, then signρ[M ](φ) = signρ[M ′](φ) for any perfect

matchings M and M ′ of G. However, when k is even, signρ[M ](φ) and signρ[M ′](φ) could

be either same or different.

The signature of edge-colorings of cubic plane graphs for ρ[M ] can be expressed by

only the order of the graph.
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Theorem 4.2.2 ([14]) Let G be a cubic plane graph and M be a perfect matching of G.

Moreover, let φ be a k-edge-coloring of G. Then signρ[M](φ) = (−1)
|G|
2 .

By Theorem 4.2.2, the signature with respect to ρ[M ] of cubic plane graphs does not

depend on edge-colorings. This indicates that Conjecture 4.1.1 holds for cubic planar

graphs by Theorem 4.1.2. In general, the following is known.

Theorem 4.2.3 ([10]) Let G be a planar k-regular k-edge-colorable graph. Then G

satisfies signρ(φ1) = signρ(φ2) for a basis ρ and k-edge-colorings φ1, φ2.

4.2.3 Graphs on the projective plane

Next, we will focus on the projective planar case. Let G be a k-regular k-edge-colorable

graph on the projective plane and let G∗ be the dual of G. Since the projective plane

is not an orientable surface, we cannot give a clockwise orientation around each vertex.

Thus, we cannot directly define a canonical base, and hence we need some preliminary as

follows.

Let D∗ be an essential cycle of G∗. In this paper, we often regard D∗ as its edge set.

Let D be the set of edges in G which intersect an edge of D∗. If we cut the projective

plane along the essential cycle D∗, then we obtain an open disk, which is orientable. We

call the set D∗ a boundary and D a dual boundary of G, respectively. In this situation, we

get a clockwise permutation on E(v) for each vertex v, which starts from the edge of a

perfect matching M of G on the open disc. We denote this basis by ρ[M,D]. See Figure

5.2.

Figure 4.2: We obtain the projective plane by identifying the antipodal points of the

dotted line, which represents a boundary D∗. The three edges intersecting with the dotted

line D∗ form the dual boundary D and the circle arrows denote the basis ρ[φ−1(1), D].

The matching φ−1(1) satisfies |φ−1(1) ∩D| = 3 and |φ−1(j) ∩D| = 0 for j = 2, 3. Thus,

#{j; |φ−1(1) ∩D| ≡ |φ−1(j) ∩D| (mod 2), 1 ≤ j ≤ 3} = 1 and hence this edge-coloring

is of type-1 for φ−1(1).
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In order to verify the signatures of edge-colorings by the topological conditions, we

introduce the notion called type for edge-colorings. Let M be a perfect matching of G. If

a k-edge-coloring φ satisfies

#{j; |M ∩D| ≡ |φ−1(j) ∩D| (mod 2), 1 ≤ j ≤ k} = s,

then we say that φ is of type-s for M . Note that φ is of type-s for a perfect matching M

for some s ∈ {0, 1, . . . , k}, and φ cannot be of type-0 for φ−1(1). The case of k = 3 and

s = 1 for φ−1(1) is represented in Figure 5.2.

Let e be an edge of a dual boundary D, and v be an end vertex of e. Moreover, let (D′)∗

be the boundary obtained from the boundary D∗ by the homotopic shift beyond v. Note

that D′ = D△ E(v), where △ denotes the symmetric difference between two sets. Since

|φ−1(i)∩D| ̸≡ |φ−1(i)∩D′| (mod 2) for each i ∈ {1, ..., k}, we have |M∩D| ≡ |φ−1(i)∩D|
(mod 2) if and only if |M ∩D′| ≡ |φ−1(i) ∩D′| (mod 2). This implies that the type for

M does not change even if we switch the dual boundary from D to D′. Since any two

essential cycles on the projective plane can be transformed by a homotopic shift, we have

the following.

Proposition 4.2.4 Let G be a k-regular k-edge-colorable graph on the projective plane,

let M be a perfect matching of G, and let φ be a k-edge-coloring of G. Then the type of

φ for M does not depend on the choice of dual boundaries.

Moreover, the type of an edge-coloring is related to the parity of |D| as follows.

Proposition 4.2.5 Let G be a k-regular k-edge-colorable graph on the projective plane

and let D be a dual boundary of G. Let φ be an edge-coloring of type-s for φ−1(1) and φ′

be an edge-coloring of type-s′ for φ′−1(1) of G. Then both of the following hold.

(i) If k is odd and |φ−1(1) ∩D| ̸≡ |φ′−1(1) ∩D| (mod 2), then s ̸≡ s′ (mod 2).

(ii) If k is even, then s ≡ s′ ≡ |D| (mod 2).

Proof. Suppose that k is odd, and |φ−1(1) ∩ D| ̸≡ |φ′−1(1) ∩ D| (mod 2). Without

loss of generality, we may assume |φ−1(1) ∩ D| ≡ 1 (mod 2) and |φ′−1(1) ∩ D| ≡ 0

(mod 2). By the definition of the type, we have
∑k

i=1 |φ−1(i) ∩ D| ≡ s (mod 2) and∑k
i=1 |φ′−1(i) ∩D| ≡ k − s′ (mod 2). Thus,

s ≡
k∑

i=1

|φ−1(i) ∩D| = |D| =
k∑

i=1

|φ′−1(i) ∩D| ≡ k − s′ (mod 2).

Since k is odd, this implies s ̸≡ s′ (mod 2).

Next, suppose that k is even. If |φ−1(1)∩D| ≡ 1 (mod 2), then |D| =
∑k

i=1 |φ−1(i)∩
D| ≡ s (mod 2). On the other hand, if |φ−1(1) ∩ D| ≡ 0 (mod 2), then |D| =∑k

i=1 |φ−1(i) ∩D| ≡ k − s ≡ s (mod 2), since k is even. In either case, we have s ≡ |D|
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(mod 2), which directly shows (ii). □

For cubic graphs on the projective plane, the signature of edge-colorings has already

been verified in [22]. We can translate the statement in terms of the type of edge-colorings.

Theorem 4.2.6 ([22]) Let G be a cubic 3-edge-colorable graph on the projective plane,

M be a perfect matching, and D be a dual boundary. Then

signρ[φ−1(1),D](φ) =

{
(−1)

|G|
2

+|D| if φ is of type-3 for φ−1(1),

(−1)
|G|
2

+|D|+1 otherwise.

As we have described above, the signature of edge-colorings does not depend on

the choice of the perfect matching when the graph is odd regular, say, signρ[M,D](φ) =

signρ[φ−1(1),D](φ) for any perfect matchingM and an edge-coloring φ. Thus, if we fix a dual

boundary D and a 3-edge-coloring φ, then Theorem 4.2.6 gives the signature signρ[M,D](φ)

for any perfect matching M .

However, for an even regular case, in order to see the difference between the

edge-colorings φ and φ′, it is not sufficient to obtain the signatures under the basis

ρ[φ−1(1), D] and ρ[φ′−1(1), D], By considering the types of 4-edge-colorings in 4-regular

graphs, we calculate the signatures of 4-edge-colorings with respect to the basis ρ[M,D],

where M is a fixed perfect matching of G.

Theorem 4.2.7 Let G be a 4-regular 4-edge-colorable graph on the projective plane, let

M be a perfect matching of G, and let D be a dual boundary. For a 4-edge-coloring φ of

G, the following holds.

signρ[M,D](φ) =

{
(−1)

|G|
2

+|M∩D| if φ is of type-0, 3 or 4 for M,

(−1)
|G|
2

+|M∩D|+1 otherwise.

Theorem 4.2.7 has an application for the List Coloring Conjecture, which is mentioned

in Section 5. Extending Theorem 4.2.7 to k-edge-colorings of k-regular graphs on the

projective plane, we also have the following theorem.

Theorem 4.2.8 For k ≥ 3, let G be a k-regular k-edge-colorable graph, let M be a perfect

matching of G, and let D be a dual boundary. Then for a k-edge-coloring φ of type-s for

M , where s ∈ {0, ..., k}, both of following holds.

(i) If k ≡ 0, 3 (mod 4),

then signρ[M,D](φ) =

{
(−1)

|G|
2

+|M∩D| if k − s ≡ 0, 1 (mod 4),

(−1)
|G|
2

+|M∩D|+1 otherwise.

(ii) If k ≡ 1, 2 (mod 4),

then signρ[M,D](φ) =

{
+1 if k − s ≡ 0, 1 (mod 4),

−1 otherwise.
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Since Theorem 4.2.8 can be shown similarly to the proof of Theorem 4.2.7 in the next

section, we leave its proof for the readers.

4.3 Proof of Theorem 4.2.7

In order to prove Theorem 4.2.7, we first consider that the signatures of edge-colorings

with respect to a certain base, which depends on the edge-colorings. Recall that any

4-edge-coloring φ cannot be of type-0 for φ−1(1).

Lemma 4.3.1 Let G be a 4-regular 4-edge-colorable graph on the projective plane and let

D be a dual boundary. For a 4-edge-coloring φ of G, the following holds.

signρ[φ−1(1),D](φ) =

{
(−1)

|G|
2

+|φ−1(1)∩D| if φ is of type-3 or 4 for φ−1(1),

(−1)
|G|
2

+|φ−1(1)∩D|+1 otherwise.

We define a notation used in the proof of Lemma 4.3.1. For a 4-edge-coloring in a

4-regular graph G and for distinct i, j ∈ {1, 2, 3, 4}, we denote by C(i, j) the subgraph

induced by the edges of color i or j. Note that each vertex of C(i, j) has degree exactly

2 and hence C(i, j) is a 2-factor, i.e. a spanning 2-regular subgraph of G. Since C(i, j)

consists of vertex-disjoint cycles, we regard it also as a set of such cycles. Note that any

edge of color 1 is contained in a cycle in C(1, j) for j ∈ {2, 3, 4}.

Proof of Lemma 4.3.1. Let G be a 4-regular graph, let D be a dual boundary, and

let φ be a 4-edge-coloring of G. We give a partition of φ−1(1) into S and NS as follows.

(The notation S and NS stands for “singular” and “non-singular” as in [13].)

Definition 4.3.2 For an edge e = uv ∈ φ−1(1), the sets S and NS are defined as follows.

(i) If e /∈ D, then

{
e ∈ NS if signρ[M,D](πu) · signρ[M,D](πv) = 1,

e ∈ S otherwise.

(ii) If e ∈ D, then

{
e ∈ NS if signρ[M,D](πu) · signρ[M,D](πv) = −1,

e ∈ S otherwise.
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By Definition 4.3.2, we have

signρ[φ−1(1),D](φ) =
∏

v∈V (G)

signρ[φ−1(1),D](πv)

=
∏

uv∈φ−1(1)

(
signρ[φ−1(1),D](πu) · signρ[φ−1(1),D](πv)

)
= (−1)|(S−D)|+|D∩NS|

= (−1)|(S−D)|+|S∩D|+|S∩D|+|NS∩D|

= (−1)|φ
−1(1)|−|NS|+|φ−1(1)∩D|

= (−1)
|G|
2

+|φ−1(1)∩D|+|NS|. (4.1)

Thus, it suffices to focus on the parity of |NS|. For e ∈ φ−1(1), Inte
(
φ
)
denotes the

number of pairs {i, j} such that C(1, i) and C(1, j) intersect transversally at e, see Figure

4.3. We have its relation to S and NS as follows.

Figure 4.3: In the left, for any 2 ≤ i < j ≤ 4, the 2-factors C(1, i) and C(1, j) intersect

transversally at e, where e is the middle edge of color 1. In the right, the 2-factors C(1, 2)

and C(1, 3) (and also C(1, 2) and C(1, 4)) intersect transversally at e, while the ones

C(1, 3) and C(1, 4) intersect at e but not transversally.

Claim 4 For every e ∈ φ−1(1), we have e ∈ NS if and only if Inte
(
φ
)
≡ 1 (mod 2).

Proof. Let e = uv. Suppose first e /∈ D and e ∈ NS. If πu and πv are both identity

mappings (see the left of Figure 4.3), then C(1, i) and C(1, j) intersect transversally at e

for all the pairs {i, j} with 2 ≤ i < j ≤ 4, and hence Inte
(
φ
)
= 3 ≡ 1 (mod 2). Thus,

we consider the other cases. By the definition of NS, sign(πu) and sign(πv) are both

positive or negative. Thus, we obtain the product sign(πu) · sign(πv) from the product

of the identity mappings by transpositions an even number of times in total. Since any

transposition changes the number of pairs {i, j} such that C(1, i) and C(1, j) intersect

transversally at e by one, we have Inte
(
φ
)
≡ 1 (mod 2).

Suppose next e /∈ D and e ∈ S. Without loss of generality, we may assume that

sign(πu) = 1 and sign(πv) = −1. In this case, we obtain the product sign(πu) · sign(πv)
from the product of the identity mappings by transpositions an odd number of times. By

the same way, we have Inte
(
φ
)
≡ 0 (mod 2). Therefore, Claim 4 holds when e ̸∈ D.
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The same arguments work even when e ∈ D, which proves Claim 4. ■

By Claim 4, we directly obtain

|NS| ≡
∑

e∈φ−1(1)

Inte
(
φ
)

(mod 2). (4.2)

Thus, in order to discuss the parity of |NS|, we focus on
∑

e∈φ−1(1) Inte
(
φ
)
. To think

this in detail, for 2 ≤ i < j ≤ 4, we denote by Inti,j
(
φ
)
the number of edges in φ−1(1)

at which C(1, i) and C(1, j) intersect transversally. Since any pairs C(1, i) and C(1, j)

intersect at only edges in φ−1(1), we have∑
e∈φ−1(1)

Inte
(
φ
)
=

∑
2≤i<j≤4

Inti,j
(
φ
)
, (4.3)

in which both sides represent the total number of transversal intersections between C(1, i)

and C(1, j) for all possible pairs {i, j} with 2 ≤ i < j ≤ 4. As in Proposition 4.1.5, this

number is closely related to the topology of cycles in C(1, i)’s, which will be handled in

the next claim.

Claim 5 For i ∈ {2, 3, 4}, both of the following hold.

(i) If φ satisfies |φ−1(1) ∩ D| ≡ |φ−1(i) ∩ D| (mod 2), then every cycle in C(1, i) is

contractible.

(ii) If φ satisfies |φ−1(1) ∩ D| ̸≡ |φ−1(i) ∩ D| (mod 2), then there exists exactly one

cycle in C(1, i) which is essential.

Proof. Without loss of generality, we may assume i = 2. Suppose that |φ−1(1) ∩ D| ≡
|φ−1(2)∩D| (mod 2). Then the total number of points at which C(1, 2) intersects with the

boundary D∗ is |φ−1(1)∩D|+ |φ−1(2)∩D|, that is, C(1, 2) intersects D∗ an even number

of times by the assumptions. Since the cycle D∗ is essential, it follows from Proposition

4.1.5 that the number of essential cycles in C(1, 2) is even. Moreover, since two distinct

cycles in C(1, 2) cannot intersect with each other, the number of essential cycles in C(1, 2)

is at most one by Proposition 4.1.5. Thus, every cycle in C(1, 2) is contractible and hence

(i) holds. By the similar discussion, we also obtain (ii). ■

We are ready to discuss
∑

2≤i<j≤4 Inti,j
(
φ
)
, depending on the type of the edge-coloring

φ for φ−1(1).

Case 1: φ is of type-4 for φ−1(1)

By Claim 5, each cycle of C(1, i) is contractible for any i ∈ {2, 3, 4}. Thus, Proposition

4.1.5 implies that Inti,j
(
φ
)
is even for 2 ≤ i < j ≤ 4, which concludes that |NS| is even
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by Equalities (4.2) and (4.3).

Case 2: φ is of type-3 for φ−1(1).

Without loss of generality, we may assume

|φ−1(1) ∩D| ≡ |φ−1(2) ∩D| ≡ |φ−1(3) ∩D| ̸≡ |φ−1(4) ∩D| (mod 2).

By Claim 5, any cycles of C(1, 2) and C(1, 3) are contractible but exactly one of C(1, 4)

is essential. By Proposition 4.1.5, Inti,j
(
φ
)
is even for 2 ≤ i < j ≤ 4, which concludes

that |NS| is even by Equalities (4.2) and (4.3).

Case 3: φ is of type-2 for φ−1(1).

Without loss of generality, we may assume

|φ−1(1) ∩D| ≡ |φ−1(2) ∩D| ̸≡ |φ−1(3) ∩D| ≡ |φ−1(4) ∩D| (mod 2).

By Claim 5, every cycle in C(1, 2) is contractible but one of C(1, i) is essential for i ∈
{3, 4}. By Proposition 4.1.5, Int2,i

(
φ
)
is even for i ∈ {3, 4} and Int3,4

(
φ
)
is odd, which

concludes that |NS| is odd by Equalities (4.2) and (4.3).

Case 4: φ is of type-1 for φ−1(1). In this case, we have

|φ−1(1) ∩D| ̸≡ |φ−1(2) ∩D| ≡ |φ−1(3) ∩D| ≡ |φ−1(4) ∩D| (mod 2).

By the similar discussion, Inti,j
(
φ
)
is odd for 2 ≤ i < j ≤ 4, and hence |NS| is odd.

By Cases 1–4 together with Equality (4.1), the proof of Lemma 4.3.1 is completed. □

Next, we proof the Theorem 4.2.7.

Proof of Theorem 4.2.7. We divide the proof into two cases.

Case 1: φ is not of type-0 for M .

In this case, there exists i ∈ {1, 2, 3, 4} such that |M ∩ D| ≡ |φ−1(i) ∩ D| (mod 2). By

symmetry, we may assume that i = 1.

We show this case by the induction on M \φ−1(1). IfM = φ−1(1), then we obtain the

desired result from Lemma 4.3.1. Thus, we may assume M ̸= φ−1(1), and hence there

exists a cycle C consisting of edges inM and φ−1(1) alternately. By the similar discussions

as Claim 5 in the proof of Lemma 4.3.1, the assumption |M ∩D| ≡ |φ−1(1)∩D| (mod 2)

implies that C is contractible. Let M ′ =M △E(C). Since C is contractible, Proposition

4.1.5 implies that C intersect D an even number of times. Thus, |M ′ ∩ D| ≡ |M ∩ D|
(mod 2), and hence the type of φ for M ′ does not change from the type for M . Since

M ′\φ−1(1) = (M \φ−1(1))\E(C), it follows from the induction hypothesis that it suffices

to show signρ[M,D](φ) = signρ[M ′,D](φ).
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Since C is contractible, C separates the projective plane into the inside and the outside.

Let A be the set of vertices v in C such that the numbers of edges incident with v from

the inside of C is odd, and let B = V (C) − A. Since G is 4-regular, each vertex in

A is incident with an odd number of edges from the outside of C, and each vertex in

B is incident with an even number of edges from both the inside and the outside of C.

(See Figure 4.4.) This condition and the definition of πv imply that for a vertex v in C,

signρ[M,D](πv) ̸= signρ[M ′,D](πv) if and only if v ∈ B. Thus, signρ[M,D](φ) = signρ[M ′,D](φ)

if and only if |B| is an even integer.

Figure 4.4: The contractible cycle C, where the bold (resp. dotted) edges denote the

elements of φ−1(1) (resp. M). The black (resp. white) vertices belong to A (resp. B).

Since C is an even cycle, |A| + |B| ≡ 0 (mod 2). Moreover, since G is 4-regular, it

follows from applying Handshaking lemma to the subgraph induced by C and its inside

that |A| ≡ 0 (mod 2). Thus, we have |B| ≡ 0 (mod 2). This completes the proof of Case

1.

Case 2: φ is of type-0 for M .

For 1 ≤ i ≤ 4, let C(i,M) denotes the set of cycles consisting of the edges of color i or

edges in M . In this case, each i ∈ {1, 2, 3, 4} satisfies |M ∩ D| ̸≡ |φ−1(i) ∩ D| (mod 2),

and hence there exists exactly one cycle Ci in C(i,M) which is essential. By Proposition

4.1.5, Ci and Cj intersect transversally an odd number of times for 1 ≤ i < j ≤ 4.

LetM ′ =M△E(C1). Since C1 is essential, Proposition 4.1.5 implies that C1 intersects

D an odd number of times. Thus, |M ′ ∩D| ̸≡ |M ∩D| (mod 2), and hence φ is of type-4

for M ′. By Case 1, we already have

signρ[M ′,D](φ) = (−1)
|G|
2

+|M ′∩D| = (−1)
|G|
2

+|M∩D|+1.

Therefore, it suffices to show signρ[M,D](φ) ̸= signρ[M ′,D](φ).

We contract all edges of M and obtain a 6-regular graph, say G′ on the projective

plane. We denote by [uv] the vertex in G′ corresponding to the contraction of uv ∈ M .
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From the essential cycle Ci, we obtain an essential cycle in G′, say C ′
i, by contracting all

edges in M ∩ E(Ci). Note that all edges in C ′
i are colored with i. Let A′ be the set of

vertices [uv] in C ′
1 such that the number of edges incident with [uv] from one side of C ′

1

is odd, and let B′ = V (C ′
1) − A′. Since G′ is 6-regular, if [uv] is incident with an odd

number of edges from one side of C ′
1, then it is incident with an odd number of edges

from the other side, too. (See Figure 4.5.)

Figure 4.5: In the left, the vertex [uv] belongs to A′, while [uv] belong to B′ in the center

and right.

Figure 4.6: The first one represent the situation of an edge uv in M such that [uv] ∈ A′,

while the other three represent the case [uv] ∈ B′.

It is easy to see that [uv] ∈ A′ if and only if an odd number of C(2,M), C(3,M) and

C(4,M) intersect with C ′
1 transversally at [uv]. By Proposition 4.1.5, C ′

1 and C(i,M)

intersect transversally an odd number of times for i ∈ {2, 3, 4}, which implies |A′| ≡ 1

(mod 2).

On the other hand, for each vertex [uv] in C ′
1, we see that

signρ[M,D](πu) · signρ[M,D](πv) ̸= signρ[M ′,D](πu) · signρ[M ′,D](πv)

if and only if [uv] ∈ A′ (See Figure 4.6). These directly imply signρ[M,D](φ) ̸=
signρ[M ′,D](φ), which completes the proof of Theorem 4.2.7. □
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4.4 Application to the List Coloring Conjecture

In the remaining of this paper, for an ease of notation, we always denote by φ−1(1) the

set of edges of color 1 under the edge-coloring we are dealing with.

In this section, we introduce an application of the signature to list-edge-colorings. Let

G be a graph. A map L : E(G) → 2N is called a list of G. If G has an edge-coloring

φ such that φ(e) ∈ L(e) for any e ∈ E(G), we say that G is L-list-edge-colorable and

such an edge-coloring φ is called an L-edge-coloring. If G is L-list-edge-colorable for any

list L that satisfies |L(e)| ≥ k for any e ∈ E(G), we say that G is k-list-edge-colorable.

By Theorems 4.2.3 and 4.1.2, Conjecture 4.1.1 holds for k-regular k-edge-colorable planar

graphs. We consider its analogy to graphs on the projective plane.

Let G be a k-regular k-edge-colorable graph on the projective plane. By Theorem

4.2.7, the signature depends on only types of edge-colorings if a dual boundary D is fixed.

When G is a cubic graph, we have the following theorem. (Recall that the type does not

depend on a perfect matching if a graph is odd-regular.)

Theorem 4.4.1 ([22]) Let G be a cubic 3-edge-colorable graph on the projective plane.

Then G has an edge-coloring of type-3 if and only if the dual triangulation G∗ is

4-vertex-colorable.

Therefore, it follows from Theorem 4.2.6 that if G∗ is not 4-vertex-colorable, then all

3-edge-colorings of G has the same signature. Thus, together with Theorem 4.1.2, we

conclude the following.

Theorem 4.4.2 ([22]) Let G be a cubic 3-edge-colorable graph on the projective plane.

If G∗ is not vertex 4-colorable, then G is 3-list-edge-colorable.

To look for the analogy of Theorem 4.4.1, we now focus on the existence of

edge-colorings of type-k for φ−1(1). Let G be a k-regular k-edge-colorable graph on

the projective plane. A Zk−1
2 -face-coloring is a map from F (G) to Zk−1

2 , where Zk−1
2 is

the direct product of (k− 1) copies of Z2, and F (G) is the set of all faces of G. Let Ωk−1

be the standard basis of the (k − 1)-dimensional space Zk−1
2 together with the all-ones

vector, that is,

Ωk =
{
(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 0, 1), (1, 1, . . . , 1)

}
.

We say that a Zk−1
2 -face-coloring ψ of G is bad if the following holds:

For each vertex v ∈ V (G), if f1, f2, ..., fk ∈ F (G) are the faces incident to v in

the clockwise order around v, then

{ψ(fi)⊕ ψ(fi+1); 1 ≤ i ≤ k} = Ωk−1,

where the subscript of fi is taken modulo k and ⊕ denotes the sum on Zk−1
2 .

56



(See the right of Figure 4.7 for the case of k = 4.) In the following, we will show that

there exists a one-to-one-correspondence between k-edge-colorings of type-k for φ−1(1)

and bad Zk−1
2 -face-colorings up to the permutation of colors.

Figure 4.7: For a 4-regular graph on the projective plane, a 4-edge-coloring of type-4 for

φ−1(1) in the left and a bad Z3
2-face-coloring in the right. They correspond to each other

in the sense of Theorem 4.4.3.

Theorem 4.4.3 Let G be a k-regular k-edge-colorable graph on the projective plane. Then

G has an edge-coloring of type-k for φ−1(1) if and only if G has a bad Zk−1
2 -face-coloring.

Proof. First we show the only if part. Let φ be an edge-coloring of type-k for φ−1(1).

Let i ∈ {2, . . . , k}. Recall that C(1, i) denotes the 2-factor consisting of the edges of color

either 1 or i. Since φ is of type-k for φ−1(1), all cycles in C(1, i) are contractible, and

hence we can color the regions of C(1, i) properly by two colors 0 and 1. For f ∈ F (G),

if f is colored by 0, then let ai−1 = 0: Otherwise, let ai−1 = 1. Let ψ(f) = (a1, . . . , ak−1).

Then each face receives the element of Zk−1
2 by ψ.

Let e be an edge, and let f and f ′ be the two faces incident to e. If φ(e) = i ∈
{2, . . . , k}, then ψ(f) ⊕ ψ(f ′) = (b1, . . . , bk−1) where bi−1 = 1 and bj = 0 for j ∈
{1, 2, . . . , k−1}−{i−1}. On the other hand, if φ(e) = 1, then ψ(f)⊕ψ(f ′) = (1, 1, . . . , 1).

Thus ψ(f)⊕ψ(f ′) is equal to one element of Ωk−1. Moreover, since φ is a k-edge-coloring,

the vectors ψ(fi)⊕ ψ(fi+1) are distinct for each i. This proved the only if part.

Next, we will show the if part. Suppose that G has a bad Zk−1
2 -face-coloring. Then

we define a mapping φ from E(G) to {1, 2, . . . , k} as follows. For an edge e in G, let f

and f ′ be the faces incident to e. Then

φ(e) =


1 if ψ(f)⊕ ψ(f ′) = (1, . . . , 1),

i if ψ(f)⊕ ψ(f ′) = (b1, . . . , bk−1),

where bi−1 = 1 and bj = 0 for j ∈ {1, 2, . . . , k − 1} − {i− 1}.

57



By the definition of ψ, the edges incident to a vertex receive pairwise distinct colors, and

hence φ is a k-edge-coloring. Suppose that φ is not of type-k for φ−1(1). Then, there

exists i ∈ {2, . . . , k} such that |φ−1(1) ∩ D| ̸≡ |φ−1(i) ∩ D| (mod 2). This implies that

there exists exactly one essential cycle Ci in C(1, i). Let e ∈ E(Ci) with φ(e) = 1 and let

W = f1f2 · · · fm be an essential cycle of G∗ so that f1 and fm are incident to e. Moreover,

let ψ(f1) = (a1, . . . , ak−1) and ψ(fm) = (a′1, . . . , a
′
k−1). Since any cycle in C(1, i) except

for Ci is contractible, ai−1 and a′i−1 must be the same if we trace W from f1 to fm. This

contradicts ψ(f1)⊕ ψ(fm) = (1, · · · , 1). □

If k = 3, then Theorem 4.4.3 coincides with Theorem 4.4.1. Then, we focus on the

4-regular case as a next step. In particular, we have the following.

Corollary 4.4.4 Let G be a 4-regular projective plane graph and D be a dual boundary

of G. If |D| is even and G does not have a bad Z3
2-face-coloring, then G is

4-list-edge-colorable.

Proof. By the definition of types, recall that G has no edge-colorings of type-0 for φ−1(1).

By Theorem 4.4.3, G has no edge-colorings of type-4 for φ−1(1). Thus, it follows from

Proposition 4.2.5 that all edge-colorings φ of G are of type-2 for φ−1(1). Together with

Theorems 4.2.7 and 4.1.2, this implies that G is 4-list-edge-colorable. □

Thus, Corollary 4.4.4 gives a new class of graphs for which the List Coloring Conjecture

is true. We conclude this paper by showing that there exist infinitely many graphs G that

satisfy the assumptions of Corollary 4.4.4.

Figure 4.8: The left is an example of a graph having no bad Z3
2-face-colorings. The right

is a 4-edge-coloring of type-2 for φ−1(1) in the same graph.

Proposition 4.4.5 There exist infinitely many 4-regular 4-edge-colorable graphs G on

the projective plane such that G does not have bad Z3
2-face-colorings.
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Proof. Let G be the graph in Figure 4.8, and let φ be a 4-edge-coloring of G. Since each

φ−1(i) is a perfect matching of G and the subgraph induced by {v1, v2, v3, v4, v5} has an

odd number of vertices, the edges e1, e2, e3 and e4 receive pairwise distinct colors by φ.

This implies that φ must be type-2. (In fact there is a 4-edge-coloring of type-2 as in the

right of Figure 4.8.)

The argument in the previous paragraph holds if a graph contains a 4-edge-coloring

and the subgraph induced by {v1, v2, v3, v4, v5} such that two of the four edges e1, e2, e3
and e4 intersect with the boundary D∗. Thus, we can construct infinitely many graphs

with desired properties. □
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Chapter 5

Dominating set

In this chapter, we introduce the domination. The domination number is also one of the

important invariants of graphs and we consider this by applying the coloring methods.

5.1 Introduction

For v ∈ V (G), let N(v) denote the set of vertices which are adjacent to v. In particular,

we call the set N [v] = {v} ∪N(v) the closed neighborhood of v. Moreover, for S ⊂ V (G),

let N(S) denote the neighborhood of S, i.e., the set of vertices adjacent to a vertex of S

in G. For S, T ⊂ V (G), we say that S dominates T if T ⊂ S ∪ N(S). If D ⊂ V (G)

dominates V (G), then D is called a dominating set of G. The domination number of G is

the minimum cardinality over all dominating sets of G and denoted by γ(G).

A disk triangulation is a 2-connected plane graph such that every face except for the

infinite face is triangular. Matheson and Tarjan proved the following theorem by an

elegant coloring method:

Theorem 5.1.1 (Matheson and Tarjan [21]) Let G be a disk triangulation with n

vertices. Then γ(G) ≤ ⌊n
3
⌋.

They constructed a disk triangulation with n vertices in which any dominating sets

have cardinality at least ⌊n
3
⌋, and hence the estimation in Theorem 5.1.1 is best possible.

The examples they constructed are maximal outerplanar graphs, (i.e., a 2-connected plane

graph such that there is a single face f containing all vertices on the boundary cycle, and

that every face other than f is triangular), and so they have asked what happens if every

face is triangular:

Conjecture 5.1.2 (Matheson and Tarjan [21]) Let G be a planar triangulation with

n vertices. If n is sufficiently large, then γ(G) ≤ ⌊n
4
⌋.

They constructed a plane triangulation G with n vertices satisfying γ(G) = ⌊n
4
⌋ for

any large n. but the conjecture is still open so far. For this conjecture, Plummer, Ye
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and Zha [23] proved that every 4-connected plane triangulation with n ≥ 26 vertices

satisfies γ(G) ≤ ⌊5n/16⌋. In addition, King and Pelsmajer [20] proved that every plane

triangulation G of maximum degree 6 with n vertices satisfies that γ(G) ≤ ⌊n
4
⌋.

Let us focus on maximal outerplanar graphs. By Theorem 5.1.1, every maximal

outerplanar graph G with n vertices has domination number at most ⌊n
3
⌋. This result is

easily obtained by a proper 3-coloring, as follows: A maximal outerplanar graph is known

to have a proper 3-coloring c : V (G) → {1, 2, 3}. Observe that for i = 1, 2, 3, the set c−1(i)

dominates G where c−1(i) is the set of vertices colored by i for the coloring c. Hence for

some i ∈ {1, 2, 3}, we have |c−1(i)| ≤ n
3
since |c−1(1)| + |c−1(2)| + |c−1(3)| = n, and we

are done. Moreover, there exists a maximal outerplanar graph each of whose dominating

set requires ⌊n
3
⌋ vertices [21]. Campos and Wakabayashi [7] pointed out that maximal

outerplanar graphs with a large domination number have many vertices of degree 2, and

they (and Tokunaga independently)proved the following theorem.

Theorem 5.1.3 (Campos and Wakabayasi [7] and Tokunaga [28]) Let G be a

maximal outerplanar graph with n vertices and t vertices of degree 2. Then γ(G) ≤ ⌊n+t
4
⌋,

where the bound is sharp.

In this thesis, we introduce an “annulus triangulation” and consider its domination

number. An annulus triangulation is a 2-connected plane graph with two disjoint special

faces f1 and f2 such that every face of G except for f1 and f2 are triangular, and that

every vertex of G is contained in the boundary cycle of f1 or f2. We say f1 and f2 holed

face and any other faces facial 3-cycles. The boundary cycle of f1 and that of f2 are called

the boundary of G. This seems to be a natural extension of maximal outerplanar graphs.

Our main theorem is as follows:

Theorem 5.1.4 Let G be an annulus triangulation with n vertices and t vertices of degree

2. If n ≥ 7, then γ(G) ≤ ⌊n+t+1
4

⌋, where this estimation is sharp.

A big difference between maximal outerplanar graphs and annulus triangulations is

that an annulus triangulation G is not necessarily 3-colorable, and that G might not have

vertices of degree 2. In this thesis, we elaborate a coloring method in [21, 28] and prove

Theorem 5.1.4. In Section 2, we will prove lemmas to show the main theorem, and in

Section 3, we prove the main theorem.

5.2 Dominating k-set-assignment

Let G be a graph and k be a positive integer. A k-coloring is a map c : V (G) →
{1, 2, ..., k}, and c is proper if c(x) ̸= c(y) for any xy ∈ E(G). A k-coloring c is said to be

a dominating k-coloring if for any i ∈ {1, . . . , k}, the vertex set c−1(i) is a dominating set

of G. By the definition, we have the following:
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Proposition 5.2.1 If a graph G admits a dominating k-coloring, then γ(G) ≤ ⌊ |V (G)|
k

⌋.
■

Proposition 5.2.1 is useful to prove that a maximal outerplanar graph G with n vertices

has a dominating set with cardinality at most ⌊n
3
⌋, since every proper 3-coloring of G is

a dominating 3-coloring of G, as is mentioned in the previous section.

Extending the notion of a dominating k-coloring of a graph G, we define a “dominating

k-set-assignment”, as follows: An assignment f : V (G) → 2{1,...,k} is a dominating

k-set-assignment if for any i ∈ {1, . . . , k}, the vertex set

Df (i) = {v ∈ V (G) : i ∈ f(v)}

is a dominating set of G. It is easy to see that f is a dominating k-set-assignment if and

only if every vertex v has all k colors in its closed neighborhood. Let

dG(f) =
k∑

i=1

|Df (i)|.

By the definition, we have:

Proposition 5.2.2 If a graph G admits a dominating k-set-assignment f , then γ(G) ≤
⌊dG(f)

k
⌋.

Note that if |f(v)| = 1 for every vertex v ∈ V (G) in Proposition 5.2.2, then the

statement coincides with Proposition 5.2.1. In order to prove our theorem, we give the

definition of a property called good. Let G be a graph embedded on the plane. We say a

4-set-assignment f of a graph G is good if f satisfies all of the following conditions,

(D1) for each vertex v of degree at least 3 except for at most one vertex u, |f(v)| = 1,

(D2) for each vertex w of degree 2 or the vertex u as above (if exists), |f(w)| = |f(u)| = 2,

and

(D3) for every facial 3-cycle C = xyz of G, there exist three distinct colors i1, i2, i3 ∈
{1, . . . , 4} such that i1 ∈ f(x), i2 ∈ f(y), i3 ∈ f(z).

Note that if f is good, then we have dG(f) ≤ n + t + 1, where n is the number of

vertices of G and t is the number of vertices of degree 2 in G. In particular, Tokunaga

[28] proved Theorem 5.1.3 by constructing, for a maximal outerplanar graph, a good

dominating 4-set-assignment with additional properties.

Proposition 5.2.3 ([28]) Let G be a maximal outerplanar graph with n vertices and t

vertices of degree 2. Then G has a good dominating 4-set assignment f such that

(P1) there is no exception in (D1) and hence dG(f) = n+ t, and
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(P2) for any 4-cycle xyzw in G, the four colors 1, 2, 3, 4 are contained in the four sets

f(x), f(y), f(z), f(w) bijectively.

Let G be an annulus triangulation and let C1 and C2 denote boundary components

of G. An edge e is a boundary edge if e is contained in C1 or C2. An edge e is trivial

if e is not a boundary edge but the endpoints of e are contained in the same boundary

component. For example, the edge x0x1 in Figure 5.1 is a boundary edge and y1y3 is

trivial. We usually represent an annulus triangulation G by a rectangle cutting G along

a non-trivial and non-boundary edge x0y0, as in Figure 5.1. By identifying the arrows of

both ends, we obtain the annulus triangulation.

Figure 5.1: Different representations of an annulus triangulation.

Suppose that an annulus triangulation G has a trivial edge e = xy whose endpoints

are contained in C1. Let P and P ′ be the two paths of G such that V (P )∪V (P ′) = V (C1),

that V (P ) ∩ V (P ′) = {x, y}, and that the cycle P ∪ {e} bounds a maximal outerplane

subgraph D of G. We call D the ear of G separated by the edge xy. In particular, we

say D is maximal if G has no trivial edge separating an ear including D as a proper

subgraph. Removing an ear except for x and y decreases the number of trivial edges.

So, repeating this operation, we finally get one with no trivial edges, which is called an

essential subgraph of G and taken uniquely in G. See Figures 5.2 and 5.3. The graph

drawn in Figure 3 is the essential subgraph of the graph in Figure 2.

In an essential annulus triangulation G, an edge e is called a spoke if an endpoint of

e has degree 3. (We note that G has no vertex of degree less than 3 since G is essential.)

An edge e is called a frame edge if e is neither a spoke nor boundary edge. The frame of

G is the subgraph of G induced by the frame edges.

We first introduce two propositions for an annulus triangulation.

Proposition 5.2.4 Let G be a non-essential annulus triangulation and let Y be a

maximal ear of G separated by a trivial edge e = xy. Let G′ be the annulus triangulation

such that G′ ∪ Y = G and V (G′) ∩ V (Y ) = {x, y} (See Figure 5.4). Then if G′ admits a
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Figure 5.2: An annulus triangulation

Figure 5.3: The thick edges are frame and

the dotted ones are spoke

good dominating 4-set-assignment or if G′ is isomorphic to the octahedron, then G has a

good dominating 4-set-assignment.

Figure 5.4: The ear reduction. The shaded area in the left figure is the maximal ear Y of

G.

Proof. Without loss of generality, we may assume degY (y) ≥ degY (x). First, we will

show that the edge xy is incident to a facial 3-cycle in G′. Let f1 and f2 be two distinct

holed faces such that the vertices x and y are on the boundary of f1. The edge xy is

incident to exactly two faces, say f1 and f3 in G. If f3 = f1, then the edge xy is a

cut edge of G, which contradicts 2-connectivity of G. Moreover, if f3 = f2, e is on the

boundary of both f1 and f2, which contradicts that f1 and f2 are disjoint with each other.

Thus e is incident to a facial 3-cycle f3 = xyv. Moreover, since Y is a maximal ear, the

vertex v is on the boundary of f2.

Next, we show that G has a good dominating 4-set-assignment. If G′ has a good

dominating 4-set-assignment f ′, without loss of generality, we may assume 1 ∈ f ′(x)

and 2 ∈ f ′(y). On the other hand, if G′ is isomorphic to the octahedron, then we let f ′

be as shown in Figure 5.5.

We divide the proof into two cases depending on |V (Y )|.

Case 1 Suppose |V (Y )| ≥ 4.

Since Y is a maximal outerplane graph and degY (y) ≥ degY (x), we have degY (y) ≥ 3.

Thus we may assume that Y has a cycle C = xyzw such that wy ∈ E(Y ). By Proposition

5.2.3, Y admits a good dominating 4-set-assignment fY such that 1 ∈ fY (x), {2} = fY (y),

3 ∈ fY (z) and 4 ∈ fY (w).
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Figure 5.5: The 4-set-assignment f ′ of the octahedron.

We define the assignment f as

f(u) =

{
f ′(u) (u ∈ V (G′)),

fY (u) (u ∈ V (Y )− {x, y}).

By the construction of f , it is sufficient to prove that every vertex which is adjacent

to x or y or which is x or y itself has all 4 colors in its closed neighborhood. We see

that every vertex in V (G′) − {y} has all 4 colors in its closed neighborhood by f ′ in

either case. Moreover, since y is contained in the cycle C in Y , y has all 4 colors in

its closed neighborhood in Y . Thus every vertex in V (G′) has all 4 colors in its closed

neighborhood for f . Next, we show that every vertex which is adjacent to x or y in Y

has all 4 colors for f . Since fY (y) ⊂ f(y) in either case, the vertices which are adjacent

to y also have all 4 colors for f . Moreover, if degY (x) = 2, then NY (x) = {y, w} and

hence fY (x) = {1, 3} by the assumptions and Proposition 5.2.3. Since 3 ∈ fY (z), the

vertices which are adjacent to x in Y have all 4 colors for f . On the other hand, if

degY (x) ≥ 3, then we have fY (x) = {1}. In this case, we have fY (x) ⊂ f(x) and hence

the vertices which are adjacent to x have all 4 colors for f . Therefore, we see that f is a

good dominating 4-set-assignment in G.

Case 2 Suppose |V (Y )| = 3.

In this case, Y is isomorphic to the complete graph K3. Let w ∈ V (Y ) be the vertex

which is neither x nor y. In this case, we get a good dominating 4-set-assignment f of G

from f ′ such that

f(u) =

{
f ′(u) (u ∈ V (G′)),

{3, 4} (u = w). ■

Proposition 5.2.5 Let G be an essential annulus triangulation and v be a vertex to

which at least three consective spokes av, bv, cv are incident. Moreover, let G′ be

the graph obtained from G by removing the three edges av, bv, cv and smoothing the

vertices a, b, c of degree 2, as shown in Figure 5.6. If G′ is simple and admits a good

dominating 4-set-assignment or if G′ is isomorphic to the octahedron, then G admits a

good dominating 4-set-assignment.
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Figure 5.6: the spoke reduction

Proof. We devide the proof into two cases whether G′ has a dominating 4-set-assignment

f ′ or G is isomorphic to the octahedron.

Case 1 Suppose G′ has a good dominating 4-set-assignment f ′.

Clearly, G′ has no vertices of degree 2. Let vL (vR respectively) be the vertex which is

adjacent to v and a (v and c respectively) with vL ̸= b (vR ̸= b respectively) as in Figure

5.6. Without loss of generality, we may assume 1 ∈ f ′(vL), 2 ∈ f ′(v) and 3 ∈ f ′(vR).

We define f : V (G) → 2{1,2,3,4} as

f(z) =


f ′(z) (z ∈ V (G′)),

{3} (z = a),

{4} (z = b),

{1} (z = c).

We can easily check that all vertices except for vL and vR in G have all 4 colors in their

closed neighborhoods and all facial cycles have distinct three colors. Suppose f is not a

good dominating 4-set-assingment. By symmetry, we may assume vL does not have four

colors in its closed neighborhood. Since f ′ is a good dominating 4-set-assignment in G′,

we have f(vR) = {3, 4} and NG[vL] ∩Df (4) = ∅. On the other hand, G has a facial cycle

uvLv such that u ̸= vR. Since f
′ is good, we have f(u) = {3}. In this case, by exchanging

the color of the vertices a and b in f , we obtain a good dominating 4-set-assignment in

G.

Case 2 Suppose G′ is isomorphic to the octahedron.

By symmetric, G is isomorphic the graph as shown in Figure 5.7 and we assign a 4-set

assignment f to G as follows.

It is easy to see that f is a good dominating 4-set-assignment in G. ■

5.3 Domination number of annulus triangulations

For a graph G, a proper 4-coloring c : V (G) → {1, 2, 3, 4} is an admissible 4-coloring of G

if every four vertices of G contained in a 4-cycle have four distinct colors. We can easily
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Figure 5.7: The graph G obtained from the octahedron by adding three spokes.

check that a 4-set-assignment f which includes an admissible coloring c (i.e. c(v) ∈ f(v)

for every v ∈ V (G)) satisfies the conditions (D3) and (P2). It is easy to see following.

Lemma 5.3.1 Every maximal outerplane graph with n ≥ 4 vertices has an admissible

4-coloring.

Let G be a maximal outerplane graph and c : V (G) → {1, 2, 3, 4} be an admissible

4-coloring. Since every 4-cycle has all 4 colors, each color class c−1(i) dominates all vertices

of degree at least 3. On the other hand, every vertex v of degree 2 has exactly one color i

such that the set c−1(i) does not dominate v. In this case, the color i is the missing color

for v.

The following is a key claim for the proof.

Theorem 5.3.2 Let G be an annulus triangulation with n vertices which is not

isomorphic to the octahedron. If G has no vertex of degree 2 or at least 7, then G has a

good dominating 4-set-assignment.

Proof. Let G be a minimum counterexample of Theorem 5.3.2.

Claim 6 G does not have a vertex of degree 6.

Proof. Suppose not. Let v be a vertex of degree 6 and let v1, v2, v3, v4, v5, v6 be the

neighbors of v in this order with respect to the rotation of v, as in Figure 5.8. Let G′ be

the maximal outerplane graph obtained from G by removing v, v3 and v4, where we note

that exactly one of v1 and v2, say x, has degree 2 in G′ and so does exactly one of v5
and v6, say y. Since G is essential, G′ has no vertex of degree 2 except for x and y, and

hence by Lemma 5.3.1, G′ has an admissible 4-coloring c such that each of x and y has

a missing color. Without loss of generality, we may assume c(v1) = 1, c(v2) = 2 and the

missing color of x is 4. Let c(v6) = a1, c(v5) = a2 and let the missing color of y be a3. By

Lemma 5.3.1, it is easy to see that a1, a2 and a3 are distinct. Now we construct a good

dominating 4-set-assignment f in G as follows.

Case 6.1 Suppose a3 ∈ {1, 2, 3}.
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Figure 5.8: The vetex v and the neighbor of v

We let b3, b4 ∈ {1, 2, 3, 4} as follows.

b4 ∈

{
{2} (a2 ̸= 2, a3 ̸= 2),

{1, 3} − {a2} (otherwise).

b3 ∈

{
{1, 3} − {a3} (a2 ̸= 2, a3 ̸= 2),

{1, 3} − {b4} (otherwise).

Then we define an assignment f as

f(z) =


{c(z)} (z ∈ V (G′)),

{a3, 4} (z = v),

{b4} (z = v4),

{b3} (z = v3).

If a2 ̸= 2 and a3 ̸= 2, then we have {b3, b4, a3} = {1, 2, 3}. Otherwise, we have

{b3, b4} = {1, 3}. In either case, we can easily check that every vertex has distinct four

colors in its closed neighborhood and that f also satisfies good in G, which contradicts

the assumption.

Case 6.2 Suppose a3 = 4.

We assign

f(z) =


{c(z)} (z ∈ V (G′)),

{4} (z = v),

{1, 2} (z = v4),

{3} (z = v3).

In this case, it is easy to see this assignment f is also a good dominating 4-set-assignment.

It contradicts the assumption. □
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Suppose G has a vertex of degree 5, say v. Let v1, v2, v3, v4, v5 be the neighbors of v

in this order with respect to the rotation of v, as in Figure 5.9. Let G′ be the maximal

outerplane graph obtained from G by removing v and v3, where we note that exactly one

of v1 and v2, say x, has degree 2 in G′ and so does exactly one of v4 and v5, say y. By the

assumption, G′ has no vertex of degree 2 except for x and y, and hence by Lemma 5.3.1,

G′ has an admissible 4-coloring c such that each of x and y has a missing color. Without

loss of generality, we may assume c(v1) = 1, c(v2) = 2 and the missing color of x is 4. Let

c(v5) = a1, c(v4) = a2 and the missing color of y be a3.

Figure 5.9: a vertex of degree 5

Claim 7 If G has a vertex v of degree 5, then a2 = 4 and a3 = 2 where a2 and a3 are

defined as above.

Proof. Suppose not.

Case 7.1 Suppose a3 ∈ {1, 2, 3}.
We let b3 as follows.

b3 ∈

{
{1, 3} − {a2} (a2 /∈ {2, 4}),
{1, 3} − {a3} (otherwise).

Then we define f as

f(z) =


{c(z)} (z ∈ V (G′)),

{a3, 4} (z = v),

{b3} (z = v3),

If a2 /∈ {2, 4}, then b3 is uniquely obtained and it is easy to see that f is a good

dominating 4-set-assignment in G. If a2 = 2, then we have {a3, b3} = {1, 3} and it is easy

to see that f is a good dominating 4-set-assignment in G. Moreover, if a2 = 4 and a3 ̸= 2,

then we have {a3, b3} = {1, 3} and hence f is a good dominating 4-sat-assignment in G.
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Case 7.2 Suppose a3 = 4

We define f as

f(z) =


{c(z)} (z ∈ V (G′)),

{4} (z = v),

{1, 3} (z = v3),

In this case, we have f is a good dominating 4-set-assignment in G. □

Suppose G does not have a vertex of degree 4. In this case, every vertex in G has degree

3 or 5. Now we will show that G is uniquely obtained in this case. Since G is essential, we

see that every vertex v ∈ V (G) is an endpoint of a frame edge if and only if degG(v) = 5.

Let C = x0x1...xk−1 and C ′ = y0y1...ym−1 be two distinct boundary components in G.

First, suppose that G has a boundary edge xixi+1 such that degG(xi) = degG(xi+1) = 5,

where the subscript is taken modulo k. Since xi and xi+1 are endpoints of the frame edges

and xixi+1 ∈ E(G), G has a vertex yj ∈ V (C ′) such that xiyj, yjxi+1 are frame edges

of G. Moreover, since yj is endpoint of the frame edges and xixi+1 ∈ E(G), we have

degG(yj) = 4. This contradicts the assumption. Next, suppose that G has a boundary

edge xixi+1 such that degG(xi) = degG(xi+1) = 3. In this case, neither xi nor xi+1 are

endpoints of frame edges. Since they are endpoints of the spokes, they are adjacent to

a common vertex y ∈ V (C ′). This indicates that y has degree at least 6 and this fact

contradicts the assumption. Thus, the vertices of degree 3 and ones of degree 5 appear

alternatively in C and C ′. Moreover, by counting the number of non-boundary edges, we

have 2k = 2m. This indicates that |V (C)| = |V (C ′)|. Without loss of generality, we may

assume degG(x0) = 3 and x0y0 ∈ E(G). Since G is an annulus triangulation, we have

degG(y0) = 5 and hence y0x1 ∈ E(G). Moreover, we see that x1y1, x1y2 ∈ E(G) and that

y2x2 ∈ E(G) by the same reason as above. By repeating these argument, G is uniquely

obtained as shown in Figure 5.10.

Figure 5.10: A situation without vertices of degree 4

Let G′ = G − {x1, y1}. By lemma 5.3.1, G′ has an admissible coloring c so that

c(x2) = 1, c(y2) = 2 and missing color of x2 is 4. We can easily check this coloring c

satisfies that if c(y0) = 4, then the missing color of x0 is 1 and hence c does not satisfy

Claim 7. Thus we may assume G has a vertex of degree 4. Next, we prove that G must
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be a 4-regular graph.

Claim 8 G does not have a vertex of degree 5.

Proof. Suppose not. Since G has a vertex of degree 4, G has a frame edge connecting a

vertex of degree 5 and one of degree 4. Let v be a vertex of degree 5 and let v1, v2, v3, v4, v5
be the neighbors of v in this order with respect to the rotation of v, as in Figure 5.9. We

may assume that v2 is a vertex of degree 4. Let u be the endpoint of the frame edge which

is incident to v1 with u ̸= v2. Since G
′ = G− {v, v3} is a maximal outerplanar graph, G′

has an admissible coloring c by Lemma 5.3.1. Without loss of generality, we may assume

c(v1) = 1, c(v2) = 2 and the missing color of v2 is 4. By Claim 7, c(v4) = 4 and hence

u ̸= v4. Next, we construct a good dominating 4-set-assignment as follows.

Case 8.1 Suppose degG(v1) = 4. We define an assignment f as

f(z) =


{c(z)} (z ∈ V (G′)− {v2}),
{2} (z = v),

{4} (z = v2),

{1, 3} (z = v3).

In this case, it is easy to see that every vertex which is not adjacent to u and whose

degree is at least 3 in G′ has all 4 colors in its closed neighborhood by f . Moreover, since

u ̸= v4 and any 4-cycles in G′ except for the cycle bounded by v2v1wu have all 4 colors

by Lemma 5.3.1, where w is a vertex which is adjacent to v1 and u with w ̸= v2, we have

|N [u] ∩ c−1(2)| = 2. Thus the vertex u also has all 4 colors in its closed neighborhood by

f . Moreover, it is easy to see that every vertex vi(i ∈ {1, 2, ..., 5}) has all 4 colors in its

closed neighborhood by f . Thus f is a good dominating 4-set-assignment in G.

Case 8.2 Suppose degG(v1) = 5.

In this case, v1 has one spoke v1w
′. If u = v4, then it is easy to see that NG′ [v4] ∩

NG′ [v5] ∩ c−1(2) ̸= ∅, which contradicts Claim 7. Thus we conclude u ̸= v4. We define an

assignment f as

f(z) =



{c(z)} (z ∈ V (G′)− {v2, w′}),
{2, 4} (z = v),

{3} (z = v2),

{1} (z = v3),

{2} (z = w′).
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By the similar argument as before, we conclude f is a good dominating 4-set-assignment.

□

By Claim 6 and 8, the degree of every vertex in G is at most 4. Suppose that G

has a vertex of degree 3, say v. Since G does not have a vertex of degree 2, v must

be an endpoint of a spoke vw. This implies that the degree of w is at least 5, which

is a contradiction. Thus G is a 4-regular graph. Let C = x0x1...xk and C ′ = y0y1...ym
be two distinct boundary components of G. Without loss of generality, we may assume

x0y0, x0y1 ∈ E(G). We can easily check |V (C)| = |V (C ′)| and G is uniquely obtained, as

shown in Figure 5.11.

Figure 5.11: A 4-regular graph

Claim 9 |V (G)| is at most 6.

Proof. Suppose not. Since G′ = G − {x1, y1} is a maximal outerplanar graph, G′ has

the admissible coloring c by Lemma 5.3.1. Without loss of generality, we may assume

c(x2) = 1, c(y2) = 2 and c(y3) = 3. If k is odd, then we see that (c(x0), c(y0)) = (1, 2) and

hence we can get a good dominating 4-set-assignment f in G naturally as follows.

f(z) =


{c(z)} (z ∈ V (G′)),

{4} (z = x1),

{3} (z = y1).

Otherwise, we see that (c(x0), c(y0)) = (4, 3). In this case, we define f as

f(z) =


{c(z)} (z ∈ V (G′)− {y2}),
{2} (z = x1),

{1, 3} (z = y1),

{4} (z = y2).

Since G is not isomorphic to the octahedron, we see that k ≥ 4. Every vertex in V (G′)−
{x0, x2, y2, y3} has all 4 colors in its closed neighborhood by f . Moreover, since c(y4) = 2,
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the vertex y3 also has all 4 colors in its closed neighborhood. It is easy to see that any

other vertices have all 4 colors in their closed neighborhood. Thus f is a good dominating

4-set-assignment in G. Therefore, by Claim 6, 8 and 9, if G is not isomorphic to the

octahedron, then G has a good dominating 4-set-assignment. ■

5.4 Proof of Theorem 5.1.4

Proof. By Proposition 5.2.2, it is sufficient to prove that G has a good domminating

4-set-assignment unless G is the octahedron. Let G be a counterexample as above with

minimum cardinality. Suppose G is non-essential (i.e. G has a trivial edge xy). Let G′

be a graph obtained by removing a maximal ear Y of G except for xy. It is easy to see

that G′ is an annulus triangulation. By the minimality of G, G′ has a good dominating

4-set-assignment or that G′ is isomorphic to the octahedron. On the other hand, by

Proposition 5.2.4, we conclude that G has a good dominating 4-set-assignment, which

contradicts the assumption. Thus we may assume G is essential.

Suppose G has a vertex of degree at least 7. Then G has a vertex v such that v is

an endpoint of at least three spokes av, bv, cv. Let G′ be the graph obtained from G by

removing the three edges av, bv, cv and smoothing the vertices a, b, c of degree 2. Let

vL (vR respectively) be the vertex which is adjacent to v and a (v and c respectively)

with vL ̸= b (vR ̸= b respectively) as in Figure 5.6. It is easy to see that G′ is not

simple if and only if vLvR ∈ E(G) and degG(v) = 7. If G′ is simple, then G′ has a

good dominating 4-set-assignment or G′ is isomorphic to the octahedron. By Proposition

5.2.5, G has a good dominating 4-set-assignment for either case, which contradicts the

assumption. Therefore, we may assume that G is not simple, then G has the edge vLvR
and degG(v) = 7. Since vLvR ∈ E(G) and since G is a simple annulus triangulation, the

structure of G is restricted as shown in Figure 5.12. The ? areas in Figure 5.12 may have

some spokes.

Figure 5.12: A situation of G such that G′ is not simple.

By symmetry, we may assume degG(vL) ≤ degG(vR). If G satisfies that degG(vR) ≥ 8
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or that degG(vR) = 7 and xv /∈ E(G), then we obtain the simple annulus triangulation

G′′ by focusing on vR instead of v. Thus G has a good dominating 4-set-assignment by

the induction hypothesis, which contradicts the assumption. Moreover, if degG(vR) = 4,

then degG(vL) = 4 and hence G has a multiple edge. Thus we have 5 ≤ degG(vR) ≤ 7 We

construct a good dominating 4-set-assignment in G depending on degG(vR) as follows.

Case 1 Suppose that degG(vR) = 7 and xv ∈ E(G).

We assign the 4-set-assignment as shown in Figure 5.13.

Figure 5.13: The degree of vR is 7 and xv ∈ E(G).

Case 2 Suppose that degG(vR) = 6.

In this case, we see that 4 ≤ degG(vL) ≤ 6. We assign the 4-set-assignment of G as in

Figures 5.14 to 5.16.

Figure 5.14: degG(vL) = 4 Figure 5.15: degG(vL) = 5 Figure 5.16: degG(vL) = 6

Case 3 Suppose that degG(vR) = 5.

In this case, we see that 4 ≤ degG(vL) ≤ 5. We assign the 4-set-assignment as in

Figures 5.17 and 5.18.

Figure 5.17: degG(vL) = 4 Figure 5.18: degG(vL) = 5
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In either case, we see that each assignment as above is a good dominating

4-set-assignment in G, which contradicts the assumption. Thus we may assume that

G does not have a verex of degree at least 7.

By Theorem 5.3.2, G has a good dominating 4-set-assignment. Thus in any cases

except for the octahedron, we constructed a good dominating 4-set-assignment with

dG(f) ≤ n+ t+ 1. ■

In order to prove the sharpness of the theorem, we construct an annulus triangulation

satisfying the equality of the estimation. See Figure 5.19. We show γ(G) = 7. Let Ai

be the closed neighborhood of ai, for i = 1, 2, 3, 4, 5, 6. Then observe that A1, . . . , A6 are

pairwise disjoint. Thus we must have γ(G) ≥ 6, since we have to choose at least one

vertex from Ai for i = 1, 2, 3, 4, 5, 6, in order to dominate ai. Hence we suppose that G

has a dominating set S with |S| = 6. It is trivial |S ∩Ai| = 1 for any i. Observe that b1 is

the only vertex in
∪
Ai adjacent to x and so S ∩ A1 = {b1}. Next, in order to dominate

the vertex c1, we have S∩A3 = {b3}. By the same reason, we have b5 ∈ S to dominate c3.

By any choice of three vertices in A2, A4, A6, S does not dominate y. Hence γ(G) > 6.

Figure 5.19: n = 24, t = 3, γ(G) = 7

By the similar discussion, we have an annulus triangulation with γ(G) = ⌊n+t+1
4

⌋ for

some n ≥ N , where N is a large constant.
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