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Abstract

Computational automation systems based on machine learning have seen sig-

nificant development in recent years, with examples including image recognition

technology, man-machine interfaces and temporal data models for stock price pre-

diction. In the fields of welfare and medicine, effectiveness in pattern recognition

technology has also been reported for anomaly detection in medical imagery and

the development of myoelectric prosthetic hands.

Classifiers in general simply identify classes predefined in training, but cannot

be applied to consideration of specific undefined classes with abnormal patterns.

If unknown patterns belonging to undefined classes are input into a trained clas-

sifier, misclassification relating to predefined classes will inevitably result. This

can cause misclassification of unknown diseases in diagnosis assistance and crit-

ical errors in interface control. To address this, unlearned patterns not included

in training data need to be recognized.

A variety of classifiers are used to detect unexpected outliers during train-

ing. The authors also performed research to enable highly accurate anomaly

detection with the novel stochastic OVRGMN (One-vs.-Rest Gaussian Mixture

Network) approach, with definition and application of complementary Gaussian

distribution. The main issues of previous methods involve the difficulty of stable

optimization with small pools of learning data and appropriate thresholds, along

with the challenges involved in setting appropriate empirical thresholds. The

OVRGMN is also premised on application of the static characteristics of input

data, and cannot be used to handle time-series data.

This research was performed to develop novel unlearned class detection supe-

rior to previous methods and support classification and evaluation of biological

signals.

The Normal and Complementary Gaussian Mixture Network (NACGMN) was

applied as a novel probabilistic neural approach with unlearned class detection

for high classification performance and stable training even with small training



samples. The NACGMN incorporates Gaussian mixture models (GMMs) and

complementary Gaussian mixture models (CGMMs) representing distribution of

training and unlearned classes, respectively. Since the parameters of both distri-

butions can be determined as weighting coefficients of the network with relaxed

statistical constraints, the NACGMN supports more stable training. The out-

comes of classification experiments employing artificial data and EMG signals

demonstrated the validity of the NACGMN.

To extend the proposed network to a classifier capable of handling time-series

information, novel One-vs.-Rest hidden Markov Model (OVRHMM) classification

was proposed in which time-series data for trained classes are modeled using hid-

den Markov models (HMMs) with GMMs and unlearned patterns are expressed

using HMMs with CGMMs. Based on a posterior probabilities estimated us-

ing Bayes’ theorem, the OVRHMM can be used to stochastically evaluate the

degree of abnormality for input signals. Experimental results indicated that the

ORVHMM enabled classification of time-series data that cannot be discriminated

using static classifiers.

A time-series data classification model based on the Hidden Semi-Markov

Model (HSMM), in which an anomaly state with the CGMM is introduced, was

also proposed for more detailed anomaly detection. The related novel classifi-

cation method combining Bayesian discrimination in consideration of temporal

information and estimation of state transition sequencing supports highly accu-

rate classification and detailed anomaly detection. To evaluate the effectiveness

of the proposed HSMM for real data, the approach was applied to the classifica-

tion of care-worker motion with outcomes demonstrating accurate detection and

recognition of important work among innumerable movements.

The above achievements show that unlearned-class detection based on comple-

mentary event models enabled stable training independent of learning conditions

and high-precision classification in consideration of time-series data.
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あらまし

近年，機械的な自動化を目的として機械学習を利用した画像認識システムや
マンマシンインタフェース，数値予測が可能な時系列データモデルなどの開発が
盛んに行われている．医療・福祉分野では医療画像に対する異常検知や生体信号
による制御が可能な電動義手の開発など様々な課題に対してパターン識別法が適
用され，その有効性が確認されている．
一般的なパターン識別問題では識別モデルの生成のために教師データが存在

し，予め識別対象クラスのサンプルデータやクラスの数を与えることで識別器の
学習を実現する．しかしながら，事前に全ての起こりうるパターンを網羅する学習
を行うことは極めて困難であり，学習対象としていないパターンが入力された場
合には定義されていない事象を適切に分類できず，必然的に誤識別が誘発されて
しまう．この問題は病症の診断支援における未知の症例の誤識別やインタフェー
スの制御における想定しない操作ミスなどを誘発する可能性があり，事前の学習
に含まれていない未学習のパターンを推定する機構が必要不可欠である．
未学習のパターンは学習時に想定しない異常値として捉えることができ，扱う

データの性質や学習時の条件などに応じた様々な手法が提案されている．我々の
研究グループにおいても未学習クラスの分布を仮想的に表現する余事象分布を導
入した新たな確率モデル (OVRGMN: One-Vs-Rest Gaussian Mixture Network)

によって高精度な異常検知を可能にした．一方，これらの従来法の主要な課題と
して，学習データが少ない場合に安定的な学習が困難になることや異常の有無を
判断する適切な閾値設定が難しいことなどが挙げられる．また，OVRGMNにお
いては入力データの静的特徴の利用を前提としており，時間とともに変動する時
系列データを取り扱うことはできない．データの時間情報を利用可能な識別手法
が高い分類性能を有することが広く知られており，時系列データへの適用が求め
られる．
本論文では従来の課題を解消する新たな未学習クラス推定法および学習則を

提案し，生体信号の分類・評価へ応用することである．
まず少ない学習データからも高精度な分類および安定的な学習を実現するため

に，新たな未学習クラス推定確率ニューラルネット (Normal And Complementary



Gaussian Mixture Model: NACGMN)を提案した．NACGMNは学習クラスの分
布を表現する混合正規分布 (Gaussian Mixture Model: GMM)と未学習クラスの
分布を仮定した混合余事象分布 (Complementary GMM: CGMM)を内包し，両分
布のパラメータを統計的制約が緩和されたネットワークの重み係数として獲得で
きるため，より安定的な学習を実現できる．実験では人工データや筋電位信号の
分類を行い，学習データ数が少ない場合においても従来法と比較して優れた識別
精度が得られることが示された
次に，提案法を時系列情報を考慮可能な分類モデルへ拡張するための基礎的

検討を行い，データの時間変化を状態遷移により表現する隠れマルコフモデル
(Hidden Markov Model: HMM)に基づく新たな分類モデル (One-Vs-Rest HMM:

OVRHMM)を提案した．OVRHMMでは事前に想定しない時系列データをCGMM

を有するHMMによりモデル化することで，入力信号に対する異常度を確率的に
評価できる．評価実験の結果から従来の静的な識別器では分類不可能な時系列
データをORVHMMにより分類できることが示された．また，足圧データによる
神経変性疾患の検知問題において，OVRHMMは健常者データのみを学習し，異
常を含む患者のデータを未学習クラスに識別することで，両データを学習に用い
た従来法と同等の精度で歩行時の異常を検出できた．
さらに，適用範囲の拡大を目的としてOVRHMMの機能を拡張し，時系列デー

タの含まれる瞬間的な異常も検知可能な時系列データ分類モデルを検討した．提
案法では隠れセミマルコフモデル (Hidden Semi-Markov Model: HSMM)の内部
に異常値の分布を表現する未分類状態を導入し，時間情報を考慮したベイズ識別
と状態遷移列推定を組み合わせた新たな識別法により高精度な多クラス分類と詳
細な異常検知の両方を実現する．評価実験では実際の介護施設で計測した介護士
の姿勢情報に対して提案法を適用し，無数に存在する動作の中で重要な要素作業
のみを検出し，分類できるか検討した．結果では慣性センサから推定した簡易な
姿勢情報からも高精度に特定作業を検知できる可能性が示唆され，提案法の有効
性を確認した．
以上のことから，提案した余事象モデルに基づく未学習クラス推定法によっ

て従来法の課題であった学習条件に依存しない安定的な学習や時系列データの時
間変化を考慮した高精度な分類を実現できたことが示された．
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Chapter 1

Introduction

1.1 Background and Purpose

Computational automation systems based on machine learning have seen sig-

nificant development in recent years, with examples including image recognition

technology, man-machine interfaces and temporal data models for stock price

prediction [1]. In the felds of welfare and medicine, the effectiveness of pattern

recognition technology has also been reported for anomaly detection in medical

imagery [2] and the development of myoelectric prosthetic hands [3–6]. A num-

ber of advanced approaches have also been proposed for the accurate pattern

recognition algorithms required by these systems toward biological signal classif-

cation [4, 7]. Classifers in general simply identify classes predefined in training,

but cannot be applied to consideration of specifc undefined classes with abnor-

mal patterns. If unknown patterns belonging to undefined classes are input into a

trained classifer, misclassification relating to predefined classes will inevitably re-

sult. This can cause misclassification of unknown diseases in diagnosis assistance

and critical errors in interface control.

To address this issue, unlearned patterns not included in training data need

to be recognized. A variety of classifiers are used to detect unexpected outliers

during training, and related methods can be classified roughly in terms of data

characteristics and training conditions. In this regard, pattern recognition tools

1



based on temporal data, such as the hidden Markov model (HMM) [7], have been

applied to handle time-series data. Image classification tools such as convolutional

neural networks [8, 9] and variational autoencoders [15] have also demonstrated

effectiveness in abnormal-point detection.

Although extensive normal data are observed in anomaly detection problems,

the number of abnormal values that can be applied in learning is generally very

limited. As standard learning regulations involve consideration of discrimination

accuracy for overall imbalanced data as described above, discrimination accu-

racy for rare outliers may be neglected [12]. To address this, oversampling for

outliers [11,12], undersampling for the majority [12] and suppression of misiden-

tification for minorities based on boosting have been proposed [13]. Lu et al.

developed electrocardiogram (ECG) classification with random oversampling to

address imbalanced data problems, with results from application to the MIT-

BIH Arrhythmia Database and MIT-BIH ST Change Database demonstrating

the approach as a promising alternative superior to state-of-the-art methods. In

addition, while many normal data are observed in anomaly detection problems,

the number of abnormal values that can be applied in learning is generally very

limited.

To tackle anomaly detection issues in which abnormal values are occasion-

ally observed, semi-supervised learning considerations such as Mahalanobis dis-

tance [16], single-class support vector machine (SVM) [17,18], isolation forest [19]

and single-class neural network [20] approaches are often used, as these do not

require training data for anomalies. However, these methods involve difficulty

in determining appropriate thresholds and do not guarantee both high-accuracy

multiclass discrimination and anomaly detection. To address this, the authors

previously proposed a probabilistic classifier based on a novel Gaussian mixture

model (GMM) that can be used to estimate a posteriori probability for unlearned

classes [21]. Although this approach can be used for a variety of problems, model

parameter optimization is challenging with training data sets. The static nature

of these approaches also makes them incompatible with time-series data analysis.

– 2 –



Against such a background, this research was performed to support the de-

velopment of novel unlearned class detection superior to previous methods and

enable the application of classification and evaluation for biological signals. The

content of this paper is summarized below.

・Improved parameter optimization for small datasets

Unlearned class determination based on the novel stochastic One-vs.-Rest

Gaussian Mixture Network (OVRGMN) proposed by Shima [21] supports

probabilistic evaluation of anomalies in input data and enables multi-class

classification and anomaly detection with single classifiers. Although the

effectiveness of this approach has been confirmed in previous studies, stable

learning is difficult when training datasets are small as with other conven-

tional methods. The main causes of learning instability are the inability to

calculate the inverse of a covariance matrix due to statistical constraints and

the difficulty of learning for multiple components. Accordingly, this paper

proposes novel complementary Gaussian distribution (CGD) and parame-

ter transformation based on Log-linearization techniques [22] for relaxation

of statistical constraints in parameter estimation. Thus, learning stability

is improved for small data sets by expanding probability calculation using

deformed parameters for a neural network structure.

・Probabilistic evaluation of abnormalities for time-series data

To expand the rather limited range of application for the proposed method

(in which only the static characteristics of data are considered) to the classi-

fication of actual data, unlearned class estimation based on a hidden Markov

model (HMM) is proposed for time-series data. The HMM enables proba-

bilistic anomaly determination independent of threshold settings as well as

semi-supervised learning without the need for outlier learning data. The

approach was applied to biological signal classification and evaluated for

applicability to medical diagnosis.

・Detailed anomaly detection with unlearned sequential pattern recognition

– 3 –



Abnormalities in time-series data include unlearned patterns as well as spike

noise and sudden trend changes. The proposed HMM can be used to eval-

uate the degree of abnormality for an entire input signal, but may not fully

detect abnormal points or exhibit sufficient discrimination performance de-

pending on the magnitude and extent of the abnormalities involved. Hence,

this paper proposes a novel pattern recognition model based on the hidden

semi-Markov model (HSMM) [23, 24] with an anomaly state for detailed

anomaly detection. The classification combines Bayesian discrimination

in consideration of temporal information and estimation of state transi-

tion sequencing, thereby enabling highly accurate classification and detailed

anomaly detection.

1.2 Related Work

1.2.1 Semi-supervised anomaly detection with static fea-

tures

The many anomaly detection methods previously proposed include that of

Domingues et al., which involves categorization of probabilistic, distance-based,

information theory, neural network-based, domain-based and isolation-based meth-

ods [25]. The probabilistic method includes the robust kernel density estima-

tor (RKDE) proposed by Kim et al. [26] and the probabilistic principal compo-

nent analysis (PPCA) proposed by Tipping et al. [27]. For the isolation-based

method, Liu et al. proposed an isolation forest (IF) tree structure-based classifier

and demonstrated effectiveness in detecting anomalies with no teacher label [19].

However, these approaches to semi-supervised learning premise two-class discrim-

ination to evaluate input data normality, therefore requiring multiple classifiers

to achieve both multi-class identification and anomaly detection. In addition,

evaluating only the degree of abnormality often requires the setting of threshold

values, with complex empirical results and training for multiple classifiers poten-

– 4 –



tially hindering classification accuracy. The OVRGMN approach proposed by

Shima et al. helps to address these issues, but separate regulations are required

for the learned and unlearned classes.

This paper proposes a novel classification approach enabling multi-class dis-

crimination and anomaly detection with a single classifier.

1.2.2 Conventional GMM parameter determination

The statistical parameters of probability density functions (PDFs) must be

estimated to determine target-class training sample distribution. For the GMM,

typical estimation involves the k -means algorithm [21], the expectation-maximization

(EM) algorithm [28], variational training [29], Markov chain Monte Carlo (MCMC)

methods [30] and infinite GMM application [31]. The k-means algorithm and EM

algorithm are popular in parameter estimation because they are simpler and faster

than other algorithms. It is also widely known that the variational training and

MCMC methods enable highly accurate training data distribution, but require a

large body of learning data for high-precision estimation and are sub-optimal for

determination of the covariance matrix for training data with small variances. In

addition, training in the MCMC and infinite GMM approaches also involves a

significant time burden.

Meanwhile, if the probabilistic models determined are used for multiclass clas-

sification, accuracy is more important than in estimation for distribution param-

eters. To address this issue, Tsuji et al. proposed the Log-Linearized Gaussian

Mixture Network (LLGMN) approach [22] involving parameter transformation to

convert GMM statistical parameters (such as mean vector and covariance matrix

values) into weighting coefficients without statistical constraints. This enables

handling of the GMM as a stochastic neural network, and parameter estimation

in consideration of classification accuracy can be realized using error backpropa-

gation. As the number of estimated parameters can be reduced in this approach,

highly accurate classification can be achieved even with a small body of data.

However, this technique cannot be applied with the unlearned class estimation
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model reported by Shima et al. [21]. In the LLGMN, statistical parameters also

cannot be extracted from the acquired weighting factors, and readability in its

role as a generative model is impaired.

This paper proposes novel training based on log-linearization in considera-

tion of unlearned class data and stochastic parameter extraction from the weight

coefficients determined.

1.2.3 Anomaly detection for time-series data

Abnormalities for time-series data include unlearned patterns as well as spike

noise and sudden changes in trends, with methods based on data characteristics

and training conditions [32, 33]. Most previously proposed anomaly detection

methods have featured a classifier specialized for the data [34]. Bae et al. re-

ported on classification allowing the identification of unusual gait phase transition

and absent gait phases in subjects with Parkinson’s disease based on ground re-

action [36]. Fuse et al. proposed abnormal-period detection based on a sticky

hierarchical Dirichlet-process hidden Markov modeling (sHDP-HMM) [35]. In

this method, two sHDP-HMMs were trained using normal data and test data in-

volving anomalies, respectively, and comparing the structure of the two outcomes

enabled anomaly detection and modeling. The proposed method was applied

to mesh population data, and demonstrated accurate detection performance for

anomalous temporal population changes.

The unlearned detection proposed by Shima et al. does not utilize temporal

information relating to time-series data, but features extensibility to time-series

data models. The introduction of probabilistic models of this kind (such as the

HMM and HSMM) may enable unlearned class detection for time-series data.

The HSMM can be used for detailed modeling of changes in time-series data and

has a wide range of applications, making it ideal for the development of a highly

versatile anomaly detection approach.

Against such a background, this paper proposes novel unlearned pattern recog-

nition utilizing temporal information on input signals and a related training al-
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gorithm.

1.3 Dissertation Outline

This paper proposes novel unlearned class detection based on a complemen-

tary event model for stable unsupervised training with small datasets and pattern

recognition utilizing temporal information from time-series data. To demonstrate

related performance, the approach was applied to biological signal classification.

The structure of the paper is outlined below.

Section 2 details the novel probabilistic neural Normal and Complementary

Gaussian Mixture Network (NACGMN), which can be used to estimate a pos-

terior probability for unlearned classes. The network can be optimized using a

back-propagation algorithm and handle semi-supervised learning in which only

normal training data with no abnormal samples are used. The method does not

require trial-and-error determination for thresholds, and enables multi-class clas-

sification and anomaly detection with a single network. Parameter extraction for

the NACGMN was also developed with focus on readability improvement, and

two pattern recognition experiments were performed to evaluate the approach.

For artificial data, the NACGMN was found to support superior classification

with a small training sample set. The validity of the proposed parameter extrac-

tion was also confirmed from the decision region of estimated probability models.

In motion classification experiments, the approach was applied to recognition of

EMG signals from seven subjects each performing eight forearm motions. The

results showed that the method produced significantly higher classification accu-

racy for all subjects.

Section 3 outlines the novel One-vs.-Rest Hidden Markov Model (OVRHMM)

as a prototype for sequential pattern recognition to extend the proposed network

to a classifier capable of handling time-series information. The model allows iden-

tification of unexpected classes in the learning process based on time-series data

characteristics. In the OVRHMM, time-series data for trained classes are pro-
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duced using hidden Markov models (HMMs) with GMMs, and unlearned patterns

are expressed using HMMs with CGMMs. Based on a posterior probabilities esti-

mated using Bayes’ theorem, the OVRHMM can be used to stochastically evalu-

ate degrees of abnormality for input signals. Experiment results indicated that the

model enabled classification of time-series data that static classifiers were unable

to discriminate. Here, three pattern recognition experiments employing artificial

signals, EMG signals and foot pressure data from ambulation were performed

to validate the performance of the approach. In neurodegeneration evaluation

experiments based on gait data, subjects were placed in the unlearned class for

training without disorder gait data. The OVRHMM was found to demonstrate

a level of performance similar to that of the previous method, in which disorder

data are used for training.

Section 4 details development of the OVRHMM and outlines novel HSMM-

based sequential pattern recognition incorporating unlearned states to represent

unexpected anomalies in the learning process based on time-series data character-

istics. The newly developed classification method, combining Bayesian discrim-

ination in consideration of temporal information and state transition sequence

determination, provides high classification performance with focus on time-series

information relating to signals, and allows more detailed anomaly detection than

the OVRHMM. Application for classification of care-worker motion to evaluate

the effectiveness of the proposed HSMM for real data demonstrated accurate

detection and recognition of important actions among innumerable movements.

Section 5 concludes the paper, outlining a number of remaining challenges

and plans for future work.
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Chapter 2

A novel probabilistic neural

network with unlearned-class

detection based on normal and

complementary Gaussian mixture

models

2.1 Introduction

Chapter 2 involves the proposal of a novel probabilistic neural network (re-

ferred to as a normal and complementary Gaussian mixture network, or NACGMN)

that can be used to handle multiclass classification and anomaly detection. The

network incorporates a GMM and a newly defined complementary GMM (CGMM),

and allows optimization of statistical model parameters as network coefficients.

With a unique error backpropagation algorithm, the method allows accurate mul-

ticlass classification and anomaly detection.

In this chapter, Section 2.2 here outlines the incorporated probability func-

tion for unlearned classes and multi-class classification based on Bayes’ theorem
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in consideration of the unlearned classes involved, Section 2.3 describes the struc-

ture of the proposed neural network and related learning methods, Section 2.4

covers performance evaluation using artificial data and discusses application to

electromyogram (EMG) discrimination and NACGMN validity, and Section 2.5

draws conclusions and outlines future study plans.

2.2 GMM- and CGMM-based pattern recogni-

tion

2.2.1 Bayesian estimation based on Gussian mixture mod-

els

The GMM represents probability distribution as the linear sum of a finite

number of Gaussian distributions, and demonstrates high expressiveness even for

data with complex distributions. A GMM with K classes is used to express

the probability density functions (PDF) of a D-dimensional feature vectorxn ∈
�D(n = 1, · · · , N) as

f(xn) =
K∑

k′=1

Mk′∑
m′=1

αk′,m′g (xn; k
′, m′) (2–1)

g (xn; k,m) = (2π)−
D
2 |Σk,m|−

1
2 exp {q(xn; k,m)} (2–2)

q(xn; k,m) = −1

2

(
xn − μk,m

)T
Σ−1

k,m

(
xn − μk,m

)
, (2–3)

where g (xn; k,m) represents normal distribution, N is the number of training

samples, Mk is the number of Gaussian components in each event, and each

component has the mixture coefficient αk,m > 0, the mean vector μk,m ∈ �D and

the covariance matrix Σk,m ∈ �D×D. Here,
∑K

k=1

∑Mk

m=1 αk,m = 1 is met. Based

on Bayes’ theorem, the a posteriori probability of individual classes p(k|xn) (k =

1, · · · , K) is implemented with

p(k|xn) =
1

f(xn)

Mk∑
m=1

αk,mg (xn; k,m) . (2–4)
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Based on the assumption that multiple events do not occur simultaneously, se-

lection of the class with the maximum p(k|xn) value reaches the classification of

xn in a K class.

2.2.2 Unlearned class detection using complementary GMMs

This section discusses probabilistic anomaly detection premised on novel PDF-

based complementary Gaussian mixture models (CGMMs). In Bayes’ theorem

(Eq. 2–4), the a posteriori probability of each class is estimated from the likeli-

hood ratio of predefined K classes. Hence, general GMMs cannot be used to iden-

tify unlearned classes that do not belong to a particular class. Accordingly, aK+1

classification problem based on the unlearned class (k = 0) was considered. Shima

et al. assumed that anomaly data do not belong to a Gaussian component {k,m}
of training samples, and estimated the occurrence probability of data belonging

to other components based on the following PDF hpr(xn;μk,m,Σk,m, ξk,m) [21]:

hpr (xn; k,m) = (2π)−
D
2 |Σk,m|−

1
2

(
ξ

D
2
k,m − 1

)−1

× [exp{ξ−1
k,mq(xn; k,m)

}− exp {q(xn; k,m)}] (2–5)

Here, ξk,m > 1 is a parameter contributing to the variance of hpr, and exp{ξ−1
k,mq(xn)} ≥

exp{q(xn)} must be met. However, hpr parameter estimation for multiple com-

ponents with the PDF is extremely challenging due to the above statistical con-

straints.

Based on the above, the authors propose complementary Gaussian distribu-

tion (CGD) expressed by the product of a multivariate quadratic function and

normal distribution. The proposed PDF h(xn;μk,m,Σk,m, εk,m) is defined as

h (xn; k,m) = −2D−1(2π)−
D
2 ε−1

k,m |εk,mΣk,m|−
1
2

× q(xn; k,m) exp
{
ε−1
k,mq(xn; k,m)

}
. (2–6)

Here, h is defined as a PDF satisfying
∫∞
−∞ h(x)dx = 1, and εk,m > 0 is met. Here,

the likelihood of an unlearned class can be estimated from a CGMM expressed
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using the linear sum of h. GMM and CGMM examples are shown in Figure

2.1. Based on the above assumptions, occurrence probability F (xn) relating to

the unlearned class is calculated from a mixture model involving the GMM and

CGMM, and is represented as

F (xn) = p(k �=0)

K∑
k′=1

Mk′∑
m′=1

αk′,m′g (xn; k
′, m′)

+ p(k=0)

K∑
k′=1

Mk′∑
m′=1

βk′,m′h (xn; k
′, m′) (2–7)

p(k �=0) = 1− p(k=0) (2–8)

K∑
k=1

Mk∑
m=1

αk,m +
K∑
k=1

Mk∑
m=1

βk,m = 1 (2–9)

Here, each complementary Gaussian component has the mixture coefficient βk,m,

and p(k=0) represents the a priori probability of the unlearned class. In K + 1

classification based on Bayes’ theorem, the a posteriori probability for the feature

vector xn is estimated as

p(k|xn)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p(k �=0)

F (xn)

Mk∑
m=1

αk,mg(xn; k,m) (k �= 0)

p(k=0)

F (xn)

K∑
l=1

Ml∑
m=1

βl,mh(xn; l, m) (k = 0).

(2–10)

Based on Eq. (2–10), pattern classification with unlearned-class consideration

can be achieved if the parameter set

θ =
{
p(k=0), αk,m, βk,m,μk,m,Σk,m, εk,m

}
k=1,··· ,K,
m=1,··· ,Mk

is adequately optimized with training samples.

2.2.3 Parameter conversion based on log linearization

For the GMM and CGMM, θ values maximizing likelihoods for training sam-

ples must be estimated for each class. However, θ involves statistical parameters
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Fig. 2.1: GMM and CGMM examples

such as μk,m and Σk,m, as well as statistical constraints that make learning dif-

ficult. As Σk,m has to satisfy positive-semidefinite matrices, the determination

of appropriate values with few training samples is problematic, and appropriate

optimization of εk,m requires a wealth of training data [21]. Although various

training method of GMM has been developed so far, k -means algorithm and EM

algorithm [28] has a problem that the calculation of a posterior probabilities be-

comes unstable, and the MCMC methods [30] requires a huge amount of learning

time and training data. In addition, most of those training methods of GMM

cannot apply to the optimization of CGMM. Accordingly, to deal with those

problems, the proposed model parameter θ is converted into weight coefficients

with eased restrictions using the log-linearization approach developed by Tsuji

et al. [5]. The log-linearization enables to avoid the inverse matrix operations of

Σk,m, and solve the problem of the EM algorithm.

First, the mean vector and the precision matrix for GMMs is defined as

μk,m =
[
μ
(k,m)
1 , · · · , μ(k,m)

D

]T
, Σ−1

k,m =
[
s
(k,m)
i,j

]
1≤i≤D
1≤j≤D

.

and the multivariate quadratic function q(xn; k,m) in Eq. (2–3) is given as

q(xn; k,m) = w(k,m)Xn (2–11)
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Here, Xn ∈ �H and w(k,m) ∈ �H are defined as

Xn =
[
1,xT, x2

1, x1x2, · · · , x1xD, x
2
2, x2x3, · · · ,

x2xD, · · · , x2
D

]T
(2–12)

w(k,m) =
[
w

(k,m)
0 , w

(k,m)
1 , · · · , w(k,m)

H−1

]
(2–13)

=

[
w

(k,m)
0 ,

D∑
j=1

s
(k,m)
j,1 μ

(k,m)
j , · · · ,

D∑
j=1

s
(k,m)
j,D μ

(k,m)
j ,

−1

2
s
(k,m)
1,1 ,−s

(k,m)
1,2 , · · · ,−s

(k,m)
1,D , · · · ,

−1

2
(2− δj,l)s

(k,m)
j,l , · · · ,−1

2
s
(k,m)
D,D

]
(2–14)

w
(k,m)
0 =− 1

2

D∑
j=1

D∑
l=1

s
(k,m)
j,l μ

(k,m)
j μ

(k,m)
l (2–15)

where δi,j represents the Kronecker delta (δi,j = 1 when i = j and δi,j = 0 when

i �= j) and the dimension H – a new feature vector transformed non-linearly with

Xn – is H = 1 +D(D + 3)/2. With Eq. (2–11), the a posteriori probability for

each component of the GMM and CGMM, Y
(k,m)
n and Z

(k,m)
n , can be given as

Y (k,m)
n = log {αk,mg (xn; k,m)}

= w(k,m)Xn + w
(k,m)
N (2–16)

Z(k,m)
n = log {βk,mh (xn; k,m)}

= w(k,m)
ε w(k,m)Xn + log

(−w(k,m)Xn

)
+ w

(k,m)
C . (2–17)

Here, w
(k,m)
N , w

(k,m)
C and w

(k,m)
ε are defined as

w
(k,m)
N = logαk,m − D

2
log 2π − 1

2
log |Σk,m| (2–18)

w
(k,m)
C = log 2 + log βk,m − D

2
log 2π − 1

2
log |Σk,m|

−
(
1 +

D

2

)
log εk,m (2–19)

w(k,m)
ε = ε−1

k,m. (2–20)

Equations (2–16) and (2–17) enable concise probabilistic calculation utilizing a

matrix product of transformed input Xn and a coefficient vector w(k,m). Based
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on this definition, exp(Y
(k,m)
n ), exp(Z

(k,m)
n ) are equal to the occurrence probability

calculated from each component of the GMM and CGMM, respectively. Hence,

the a posteriori probability in consideration of unlearned classes can be redefined

based on Eq. (2–10) as

p(k|xn) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p(k �=0)

FLL(xn)

Mk∑
m=1

exp
(
Y (k,m)
n

)
(k �= 0)

p(k=0)

FLL(xn)

K∑
l=1

Ml∑
m=1

exp
(
Z(l,m)

n

)
(k = 0)

(2–21)

FLL(xn) = p (k �=0)
K∑
l=1

Ml∑
m=1

exp
(
Y (l,m)
n

)

+ p(k=0)

K∑
l=1

Ml∑
m=1

exp
(
Z(l,m)

n

)
(2–22)

With the above transformations, the structure of a parameter set θ transmutes

to

θ′ =
{
p(k = 0),w(k,m), w

(k,m)
N , w

(k,m)
C , w(k,m)

ε

}
k=1,··· ,K,
m=1,··· ,Mk

Optimization of θ′ supports pattern classification based on GMM and CGMM

operation. Here, θ′ allows relaxation of the statistical constraints of θ and op-

timization based on sequential training as typified by error backpropagation al-

gorithm usage. Accordingly, the log-linearization operations enable to optimize

both GMM and CGMM in parallel based on a assumption that normal training

data should not be misclassified into the unlearned class.

2.3 Network model incorporating the GMM and

CGMM

2.3.1 Network structure

Figure 2.2 shows the structure of the proposed neural network incorporating

the GMM and CGMM. The feedforward network contains five layers and has
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weight coefficients in the second layer. First, the input feature vector x ∈ �D is

preprocessed and converted into the modified input vector X ∈ �H based on Eq.

(2–12). The first layer consists of H units corresponding to the dimensions of X.

The input-output relationship of the first layer is defined as

(1)Ih = Xh (2–23)

(1)Oh =(1) Ih (2–24)

Here, (1)Ih and (1)Oh denote the input and an output of the hth unit, respectively.

The second layer consists of
∑K

k=1Mk training target class units, and is rep-

resented by Eq. (2–11). Each unit receives output weighted by w(k,m) as

(2)Ik,m =
H∑

h=1

(1)Ohw
(k,m)
h (2–25)

(2)Ok,m =(2) Ik,m. (2–26)

Here, (2)Ik,m and (2)Ok,m denote the input-output of the training target classes.

The third layer consists of target class {k,m} and unlearned class
{
k,m

}
units, and involves the execution of Eqs. (2–16) and (2–17) with (2)Ok,m, the

bias terms w
(k,m)
N and w

(k,m)
C , and the coefficient w

(k,m)
ε . To simplify the network

structure, Eq. (2–17s) was divided into two units: one involving calculation of

the first and third terms, and the other implementing calculation of the second

term. Thus, the input-output relationship of the third layer is defined as

(3)Ik,m = (2)Ok,m + w
(k,m)
N , (3)Ok,m = (3)Ik,m (2–27)

(3)Ik,m = w(k,m)
ε

(2)Ok,m + w
(k,m)
C , (3)Ok,m = (3)Ik,m (2–28)

(3)I ′
k,m

= −(2)Ok,m,
(3)O′

k,m
= log(3) I ′

k,m
(2–29)

where (3)Ik,m and (3)Ok,m denote the input-output of training target classes,

and (3)Ik,m,
(3)Ok,m,

(3)I ′
k,m

and (3)O′
k,m

represent the input-outputs of unlearned

classes. The outputs of the third layer represent the log-likelihood of each com-

ponent based on (2–16) and (2–17), and can be used to calculate the a posteriori
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probability of each component. Hence, the input-output relation of the fourth

layer is defined as

(4)Ik,m = (3)Ok,m (2–30)

(4)Ok,m =
p(k �= 0)

FNN
exp

(
(4)Ik,m

)
(2–31)

(4)Ik,m = (3)Ok,m + (3)O′
k,m

(2–32)

(4)Ok,m =
p(k = 0)

FNN

exp
(
(4)Ik,m

)
(2–33)

FNN = p(k �= 0)

K∑
k′=1

Mk′∑
m′=1

exp
(
(4)Ik′,m′

)

+ p(k = 0)
K∑

k′=1

Mk′∑
m′=1

exp
(
(4)Ik′,m′

)
. (2–34)

The fifth layer consists of K + 1 units corresponding to the number of target

classes, and is used to estimate the a posteriori probability of each class p(k|θ′).

The input-output relation of this layer is defined as

(5)Ik =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Mk∑
m′=1

(4)Ok,m′ (k �= 0)

K∑
k′=1

Mk′∑
m′=1

(4)Ok′,m′ (k = 0)

(2–35)

(5)Ok =
(5)Ik. (2–36)

2.3.2 Parameter optimization

The nth training sample consists of the input vector xn and the teacher vector

T (n) =
(
T

(n)
0 , · · · , T (n)

K

)T
(n = 1, · · · , N). When xn belongs to class k̂, T

(n)

k̂
= 1

and T
(n)
k = 0 for all other classes. If the probability of each class’s occurrence

is expressed by continuous values,
∑K

k=0 T
(n)
k = 1 and T

(n)
k ≥ 0. To minimize

Kullback-Leibler divergence between T (n) and network output (5)Ok, network
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Fig. 2.2: Proposed neural network structure

parameters are trained based on an error function defined as

J =

N∑
n=1

Jn = −
N∑

n=1

K∑
k=0

T
(n)
k log (5)O

(n)
k . (2–37)

The a priori probability of the unlearned class p(k = 0) is initialized using the

appropriate preset value (p(k=0) = 0.01), and the backpropagation algorithm is

applied. The weight of w(k,m) is modified both by differentiation of the evaluation

value g
(k,m)
h and a learning ratio calculated as

g
(k,m)
h =

N∑
n=1

∂Jn

∂w
(k,m)
h

(2–38)

w
(k,m)
h,New = w

(k,m)
h,Old − ηwg

(k,m)
h (2–39)

Here, ηw > 0 is the preset learning ratio for w(k,m) training. w
(k,m)
N , w

(k,m)
C and

w
(k,m)
ε are also updated using the same algorithm with corresponding learning

ratios ηA, ηB and ηE . Differentiation of evaluation values for each weight are
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determined using chain regulation and expressed by the network input-output

relationship

∂Jn

∂w
(k,m)
h

=

{(
(5)O

(n)
k − T

(n)
k

) (4)O
(n)
k,m

(5)O
(n)
k

+

(
w(k,m)

ε +
1

(2)O
(n)
0

)

×
(
(5)O

(n)
0 − T

(n)
0

) (4)O
(n)

k,m

(5)O
(n)
0

⎫⎬
⎭Xh (2–40)

∂Jn

∂w
(k,m)
N

=
(
(5)O

(n)
k − T

(n)
k

) (4)O
(n)
k,m

(5)O
(n)
k

(2–41)

∂Jn

∂w
(k,m)
C

=
(
(5)O

(n)
0 − T

(n)
0

) (4)O
(n)

k,m

(5)O
(n)
0

(2–42)

∂Jn

∂w
(k,m)
ε

=
(
(5)O

(n)
0 − T

(n)
0

) (4)O
(n)

k,m
(2)O

(n)
k,m

(5)O
(n)
0

. (2–43)

However, as w(k,m) values involve weak statistical constraints derived from

Σk,m covariance matrices, some weights corresponding to diagonal components of

Σ−1
k,m will be negative. In particular,

w
(k,m)
H′ < 0, H ′ =

{
d

2
(2D + 3− d) | d = 1, · · · , D

}
(2–44)

must be fulfilled. If this constraint deviates in the update process, an appropriate

negative value is reassigned and training is restarted. If (3)I ′
k,m

< ρ, outputs of

the unlearned class unit in the second layer are overwritten as (3)I ′
k,m

= ρ, where

ρ is a sufficiently small positive constant.

2.3.3 Estimation of statistical model parameters based on

trained NACGMN

The proposed NACGMN is a probabilistic neural network incorporating GMM

and CGMM parameters, enabling calculation of a posterior probabilities in con-

sideration of unlearned class variables with Log-linearization transformation for

θ. Thus, while a NACGMN model enables Bayesian discrimination based on
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probabilistic modeling, it also displays the properties of an original generative

model. However, the recovery of statistical parameters from optimized weight

coefficients has not been discussed in relation to conventional methods [5, 22],

and trained NACGMN output cannot be simply treated as generative data. The

readability of complex neural networks has also long been problematic, and var-

ious ways to visualize internal network structures have been proposed [38, 39].

Establishing a statistical parameter extraction method for a NACGMN model

will enable mathematical expression of the discrimination space and improve

readability. Accordingly, this paper proposes NACGMN parameter extraction

employing a gradient-based method.

The covariance matrix Σk,m can be restored from the weight coefficient w(k,m).

Based on Eq. (2–13),w
(k,m)
h (h = D + 1, · · · , H − 1) corresponds to each element

of the precision matrix Λk,m ∈ �D×D ≡ Σ−1
k,m. Hence, Λ̂k,m estimated from a

NACGMN model can be derived as

λ̂k,m =

⎡
⎢⎢⎢⎢⎢⎣

w
(k,m)
D+1 w

(k,m)
D+2 . . . w

(k,m)
2D

0 w
(k,m)
2D+1 . . . w

(k,m)
3D−1

...
...

. . .
...

0 0 . . . w
(k,m)
H−1

⎤
⎥⎥⎥⎥⎥⎦ (2–45)

Λ̂k,m = −λ̂k,m − λ̂
T

k,m. (2–46)

Here, λ̂k,m ∈ �D×D is an upper triangular matrix. From these results, the esti-

mated covariance matrix Σ̂k,m ∈ �D×D can be calculated using

Σ̂k,m = Λ̂−1
k,m. (2–47)

The mean vector μ̂k,m ∈ �D can then be estimated from gradient descent using

Λ̂k,m. As q(x; k,m) is a convex upward multivariate quadratic function, the

point with the maximum value coincides with μ̂k,m, and gradient descent can be

applied to μ̂k,m determination. An arbitrary initial value is set for μ̂k,m, which is

reiterated until a preset threshold value is satisfied. The i-th update formula is
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expressed as

μ̂
(i+1)
k,m = μ̂

(i)
k,m + ηµ̂∇q(μ̂

(i)
k,m; k,m) (2–48)

∇q(μ̂
(i)
k,m; k,m) = W − Λ̂k,mμ̂

(i)
k,m (2–49)

W =
[
w

(k,m)
1 , w

(k,m)
2 , . . . , w

(k,m)
D

]T
(2–50)

Here, W ∈ �D is a matrix with elements extracted from w(k,m). The absolute

value of ∇q(μ̂
(i)
k,m; k,m) can be used as a threshold, and iteration ends when the

differential value is sufficiently small. The mixture coefficients α̂k,m, β̂k,m and ε̂k,m

of the relevant CGMMs are then calculated analytically. Values are estimated

based on the definition using

ε̂k,m =
1

w
(k,m)
ε

(2–51)

α̂k,m = exp

(
w

(k,m)
N +

D

2
log 2π +

1

2
log
∣∣∣Σ̂k,m

∣∣∣) (2–52)

β̂k,m = exp

{
w

(k,m)
C +

D

2
log 2π +

1

2
log
∣∣∣Σ̂k,m

∣∣∣
+

(
1 +

D

2

)
log ε̂k,m − log 2

}
. (2–53)

As estimated mixture coefficients may deviate from the statistical constraint ex-

pressed by Eq. (2–9), normalization is performed using

α̂
(Norm)
k,m = σ−1

Normα̂k,m (2–54)

β̂
(Norm)
k,m = σ−1

Normβ̂k,m (2–55)

σNorm =
K∑
k=1

Mk∑
m=1

α̂k,m +
K∑
k=1

Mk∑
m=1

β̂k,m (2–56)

Based on the above, all model parameters of the GMM and CGMM for θ can be

extracted from the weight coefficient of NACGMN θ′.

Finally, by examining the rank of Σ̂k,m, qualitative evaluation of whether the

application of NACGMN was appropriate and whether the hyperparameter set-

tings of NACGMN were correct can be performed. In the case where data with a
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very complicated distribution structure is the target of classification, the appro-

priate number of GMM components and the effectiveness of NACGMN cannot

be known in advance. If the application of NACGMN is inappropriate, the train-

inga will not be successful and θ′, in particular Σ̂k,m, that satisfies the statistical

constraints cannot be obtained. Accordingly, the effectiveness of NACGMN can

be evaluated by the calculation of eigenvalues of Σ̂k,m. When Σ̂k,m contains a

negative eigenvalue, the remediation of parameter settings and the dimension

reduction of input data will be required. In contrast, if all the components do

not have negative eigenvalues, the application of NACGMN can be found to be

appropriate.

2.4 Experiments

2.4.1 Classification performance evaluation with GMM-

based data

To evaluate performance with the proposed NACGMN, pattern classification

experiments were conducted with two-dimensional artificial data including four

training classes. To generate training samples, GMM application with five com-

ponents was utilized. Five situations with differing numbers of training data were

established with training data Nk numbers of 10, 20, 30, 40, 50 and 100 with the

total N as
∑3

k=1Nk. The test data were divided into five classes in consideration

of unlearned classes, with each class containing 10,000 samples and information

not including unlearned-class data (for a total of 40,000 data points). To eval-

uate the variance of identification accuracy, ten data sets output from the same

GMMs were produced. Scaling to make the maximum training data value 1 and

the minimum -1 was also applied to both data types in advance. For NACGMN

training there were Mk = 2 components, the a prior probability of the unlearned

class was p(k=0) = 10−1, and the learning ratios for each weight were ηw = 10−3,

ηA,B = 10−4 and ηε = 10−5. In initialization for NACGMN weighting coefficients,

the k-medoids method was applied to the training data of each class, and the θ
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value obtained was converted to the network coefficient θ′.

NACGMN classification results were compared with those from the method

proposed by Shima et al. [21], an SVM-based multi-class classifier with a single-

class SVM, and an approach combining a probabilistic neural network (LLGMN)

[5] and the isolation forest (IF) technique [19]. The number of components in

Shima’s method was matched by the Mk value for a NACGMN model. For the

SVM-based classifier, an RBF (radial basis function) kernel approach was used

and all training data were defined as positive in the single-class SVM training

phase. The IF approach included 100 trees, and the training method proposed

by Liu et al. was used to determine the threshold from training data.

Figure 2.3 shows changes corresponding to Nk in the classification ratios of

each method, detailing averages for ten test data sets and the related standard er-

ror. The outcomes indicate that differences in classification performance among

the methods tend to decrease as Nk increases. For Nk = 100, the proposed

NACGMN and SVM-based classifiers produced high performance (97.56±0.24%

and 97.24 ± 0.33%, respectively). With very limited training data, the classifi-

cation ratios of Shima’s previous method and the SVM were reduced. As the

SVM-based classifier produced a narrow decision region strongly fitted to a small

number of training samples, it is inferred that performance was degraded due to

increased misclassification for the unlearned class. The proposed method showed

higher levels of classification performance (83.35± 1.41%) even for Nk = 10, and

significant differences were observed among a NACGMN model, SVM and Shima

approaches.

The LLGMN+IF approach produced the highest discrimination ratio regard-

less of the number of training data, presumably due to a lack of appropriate

threshold values in IF. Figure 2.4 details decision regions corresponding to each

Nk, with (left to right) training data used and the decision regions of NACGMN

and LLGMN+IF. In (b) and (c), the decision regions of classes 1 to 4 are shown

in blue, yellow-green, ocher and yellow, and the areas of unlearned classes are

shown in dark blue. The outcomes indicate that classification performance for
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the unlearned class was significantly degraded by inappropriate threshold set-

tings. In particular, the decision region of the unlearned class disappears in the

neighborhood of training samples for Nk = 10. The proposed NACGMN pro-

duced stable decision regions regardless of N , indicating that the incorporated

GMM expressed training data distribution correctly.

To demonstrate the additional effectiveness of log-linearization, the training

time of NACGMN was compared to the MCMC method. Two situations with

differing numbers of training data were established with Nk numbers of 100 and

1,000, and the time, until the end condition (Finish 10,000 iteration or No pa-

rameter changes) was satisfied, was measured. To evaluate the variation in train-

ing time, NACGMN and GMM with MCMC was trained five times. For both

NACGMN and GMM, the number of components was set Mk = 2. The MCMC

method sampled not only statistical parameters such as the mean vector but also

the number of GMM components in the training process.

Figure 2.5 shows the training time of each method in each case. The outcomes

indicate that the computational effort of the backpropagation and the MCMC

can derive O(N) and O(N2) respectively. Thus, the proposed method can be

found to achieve faster learning than an optimization using sampling techniques.

These desirable results may be attributable to the low number of dimensions

of input features and the definition of teacher labels. In a NACGMN model with a

small input dimension such as D = 2, the number of required parameters and the

number of statistical constraints to be satisfied also decrease, since a dimension

of the second layer weight w(k,m) is determined by D. Accordingly, it can be

inferred that stable training using the gradient descent method was achieved.

Besides, Figure 2.4 (b) also shows that the decision region of NACGMN train-

ing classes was larger than the distribution of training data, which may be partly

attributable to the teacher vector setting method. The T (n) value used in training

is expressed by a discrete value (1 or 0), while NACGMN outputs are continuous

values. As a NACGMN model clearly outputs unclear decisions during the gener-

ation of decision region maps, a wider discrimination space containing ambiguous
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Fig. 2.3: Relationship between training data numbers and classification accuracy

decision regions was produced in all cases. In other words, this phenomenon can

be regarded as a brake to prevent overfitting of training data and it is inferred

that the phenomenon gave good affection to classification performance in the

case that training data is very limited. For more detailed and stable anomaly

detection, an appropriate teacher vector based on a posteriori probability is re-

quired for each training sample, along with the establishment of a teacher vector

generation method.

2.4.2 Evaluation of parameter extraction performance

Performance using the above artificial data approach was evaluated to demon-

strate the effectiveness of NACGMN parameter extraction. The NACGMN com-

ponents and training samples were set as Mk = 3 and Nk = 200, with the other

parameters as detailed in the previous section. After NACGMN training, the

proposed parameter extraction was applied and the validity of the restored gen-

erative model was examined.

Figure 2.6 (a) shows the training data and original mean vectorss μ used in
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Nk=10

(a) Training samples (b) Decision region of
      the proposed method
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Fig. 2.4: Relationship between training data numbers and decision regions

data generation, and Figure 2.6 (b) shows an NCCGMN model decision region

determined with the mean vectors μ̂ extracted. The outcomes indicate that the

estimated μ̂ matched the vertices of the Gaussian distributions in the NCCGMN

model, suggesting the validity of estimation based on gradient descent. Figure

2.7 (a) shows the decision region produced by the extracted probabilistic model,

and Figure 2.7 (b) shows differences in the decision region between the NCCGMN

model and the extracted model in black. The results indicate that the shape of

the discrimination space for the extracted model was very similar to that of the
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NCCGMN model, demonstrating that the proposed method can be applied to

determine this shape roughly and analytically. However, differences are seen, and

comparison of Figures 2.6 (b) and 2.7 (a) shows a reduction in the training class

decision region. This is attributed to the normalization process used in the esti-

mation of mixture coefficients for the GMM and the CGMM, as log-linearization

completely removes mixture coefficient restrictions in NACGMN training, and

analytically estimated α̂ and β̂ values may not meet the relevant stochastic con-

straints. Thus, although estimated mixture coefficients can be converted to ap-

propriate values via normalization, the extraction of GMM and CGMM values

fully reproducing those obtained from the NACGMN is problematic. Accord-

ingly, a stochastic constraint related to mixture coefficients must be considered

in NACGMN training. In future work, the authors plan to redesign the rele-

vant constraints and employ advanced training algorithms such as AdaGrad [52],

which is valid for complex optimization problems.

2.4.3 Classification performance evaluation with non-linearly

separable data

To demonstrate the capacity of the NACGMN for non-linearly separable data,

evaluation experiments were conducted with two-dimensional data distributed
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Fig. 2.7: Decision region evaluation for the extracted probabilistic model

concentrically. Figure 2.8 shows generated training samples with four circles,

each representing a cluster targeted for training. For trained classes, a total of
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Fig. 2.8: Training samples of non-linearly separable data

800 samples (200 for each class) were used as training data. For evaluation,

a total of 40,000 samples (10,000 for each class) with no abnormalities in the

unlearned class were employed. To evaluate variations in discrimination accu-

racy, five sets of training and classification were performed on the same data set.

Comparison involved the approach reported Shima [21], an SVM-based classifier

approach and a method combining LLGMN and IF. The GMM components of

the NACGMN and Shima’s approach numbered Mk = 8, and an RBF kernel

method was employed for SVM-based classification.

Figure 2.9 details decision regions determined with each method. The blue,

yellow-green, ocher and yellow areas represent classes 1 to 4, respectively, and

the dark-blue area shows the unlearned-class region. The outcomes indicate that

the SVM-based classifier determined the most appropriate decision region, with

appropriate concentric-circle structure representation. The NACGMN also sup-

ported appropriate region decision with increased Mk values, thereby demonstrat-

ing NACMN applicability. Although other comparative methods produced the
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concentric-circle structure of classes 1 to 3, suitable decision regions for Class 4

and the unlearned class were not achieved. The results of LLGMN+IF may be

attributed to a lack of training data and inappropriate thresholding. The results

of Shima’s approach infer that CGD optimization was inadmissibly difficult due

to increased Mk values. Comparison of Figures 2.9 (a) and (d) indicates that

NACGMN application sufficiently resolved the limitations of Shima’s training

method.

Discrimination accuracy from the NACGMN and SVM-based classifier, which

produced appropriate decision regions, was also compared. Figure 2.10 shows

average classification ratios and standard errors, with “Average” representing

the average for all classes. The accuracies of the NACGMN and SVM were

97.50± 1.37% and 99.58± 0.22%, respectively, representing no significant differ-

ence. Thus, the NACGMN achieved high classification performance comparable

to that of the SVM-based classifier. However, its accuracy was lower for classes

other than 1, and especially for Class 4. Figure 2.9 (b) shows multiple occasions

when the concentric structure was interrupted, which may be attributable to

an inappropriate number of components. The representation of concentric circle

structures may require more components, but the lower volume of training data

for each component hinders optimization. To address this trade-off, the optimum

number of components needs to be determined in advance. In future work, the

authors plan to introduce non-parametric Bayesian decision with approaches such

as the Infinite GMM method [31, 56].

2.4.4 Validity assessment for artificial data with complex

distribution

Capacity evaluation experiments were conducted with three-dimensional arti-

ficial data to assess the applicability of the NACGMN with data for which GMM

representation is unsuitable. Figure 2.11 shows the artificial data employed for

the assessment with geometric and complex distributions (from left: Swiss roll,

helix and twin peaks). Each data set is divided into four trained classes, with
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Fig. 2.9: Comparison of decision regions determined with each method

samples of classes 1 to 4 shown in blue, orange, yellow and purple. For trained

classes, 400 samples (100 for each class) were used as training data. To evaluate

classification accuracy, 40,000 samples (10,000 for each class) with no abnormal-

ities belonging to the unlearned class were used, and training and classification

were performed five times with the same data set. A total of Mk = 6 GMM

components from the NACGMN were used.

Figure 2.12 shows the decision spacing of the NACGMN for each data set.

Classified areas for each class are colored, with colorless spaces indicating those

classified as unlearned. The outcomes indicate that the discriminant region of

the trained classes did not diverge, and the NACGMN was found to produce
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Fig. 2.11: Complex artificial data types

model parameters that satisfied the statistical constraints from complex geomet-

ric data. Figure 2.13 also shows the average classification ratio for trained classes
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with the standard error representing the variance of discrimination accuracy asso-

ciated with initial weights. The results demonstrate high NACGMN classification

performance and stable training with small standard deviations for all data.

The effectiveness of the proposed method was thus demonstrated, and the

suitability of the NACGMN can be evaluated from the determined discrimina-

tion space for unlearned classes. Figure 2.14 shows the distribution of training

data and the determined decision space in a two-dimensional plane. The upper

row represents employed training samples, and the lower row details the decision

space of the NACGMN. The Swiss roll data show that the NACGMN has ade-

quate unlearned space inside the roll, and the decision space of the twin-peaks

data enabled appropriate representation of related peaks and troughs. However,

the NACGMN trained using Helix did not produce an appropriate unlearned

class area inside the spiral. This may be attributable to the narrowness of the

identification space for the unlearned class inside the spiral and the limitations of

semi-supervised learning. As such learning does not involve the use of unlearned-

class data, it is not possible to suppress the over-expanded decision space for

trained classes. It can be inferred that the narrower the area of the unlearned

class surrounded by trained classes is, the higher the probability of disappearance

will be. To address this, the use of training data for the unlearned classes and

the introduction of penalties for the expansion of decision areas in training target

classes should be considered.

2.4.5 Forearm arm motion classification with EMG sig-

nals

To verify the validity of the proposed method, experiments involving fore-

arm motion classification were conducted with seven right-handed males. Four

electrodes were attached to the right extensor carpi ulnaris (Ch. 1), flexor carpi

ulnaris (Ch. 2), abductor pollicis longus (Ch. 3) and extensor carpi radialis

(Ch. 4) (Figure 2.15). EMG signals were monitored using wireless EMG loggers

(ID3PAD, Oisaka Electronic Equipment) with a sampling frequency of 200 [Hz],
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and data were collected with the subjects performing (Figure 2.15) four learned

motions (wrist flexion: M1; wrist extension: M2; radial flexion: M3; ulnar flexion:
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Fig. 2.14: Evaluation of decision spaces

M4) and four unlearned motions (grasp: M5; opening: M6; V-sign: M7; pinching:

M8). For the learned class, the subjects performed the motions three times. A

total of 1,500 samples for each motion were obtained for use as training data. For

data evaluation, the subjects were asked to perform all motions (including those

of the unlearned class) twice for approximately three seconds.

The EMG signals were subjected to full-wave rectification to provide feature

vectors X(t) ∈ �D (D: measurement channel count) leveraging past research [4],

and smoothing was performed via second-order Butterworth low-pass filtering

(cut-off frequency: 2 [Hz]). The smoothed-signal Ed values were normalized using

the maximum E
(max)
d , and

E
(norm)
d (t) =

Ed(t)−E
(st)
d

E
(max)
d − E

(st)
d

(2–57)

was used to set normalized signals E
(norm)
d (E

(st)
d average resting EMG signals).

The value ofE
(norm)
d was then normalized so that the sum of all channels was 1.
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Fig. 2.15: Movements in motion recognition experiments

The feature vector X(t) = {xd(t)}d=1,...,D was represented by

xd(t) =
E

(norm)
d (t)

F (t)
(d = 1, . . . , D) (2–58)

F (t) =
D∑

d′=1

E
(norm)
d′ (t). (2–59)

Here, force information F (t) was was applied to establish the period of active

movement. To ensure precise evaluation of movement, a force threshold Fth was

established for all subjects, and values of F (t) > Fth were taken to represent

motion.

The feature vectors x(t) were input to the proposed NACGMN to classify

forearm motion. A value of Mk = 2 was set based on the results of preliminary

experiments, and other parameters were as per the above artificial data experi-

ment. The outcomes of the approach reported by Shima et al. [21], SVM-based

classifier application [17] and the LLGMN+IF method [5, 19] were compared to

evaluate the capacity of the proposed NACGMN. The SVM-based classifier em-

ployed a combination of kernels with the highest classification accuracy in prelim-

inary experiments, and the multiclass classifier and single-class SVM employed

third-order polynomial and RBF kernels, respectively.

Figure 2.16 details outcomes from classification for the eight forearm motions
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(from the top: untreated EMG data, force data from EMG-pattern estimation,

and classification with the proposed approach). The grey parts represent periods

in which force was below Fth (the threshold set in advance), and M0 indicates

classification of performed motions as unlearned. The outcomes indicate the

capacity of the proposed approach in discrimination for learned and unlearned

classes with a low misclassification ratio. The reduced classification ratios were

caused by vague motion information in EMG signals. Thus, in periods of motion

transition, the likelihood of training classes will be lower. As a result, the a

posteriori probability of unlearned classes sees a relative increase, and EMG

signals may be misclassified. This means that classification with the proposed

method can prevent ambiguous results in an unlearned state.

Figure 2.17 shows average classification ratios for each subject and standard

errors. “Average” here indicates the average classification ratio for all subjects.

Subject C, who was less experienced in the use of EMG signals to classify move-

ments, had the lowest ratios. Higher discrimination ratios are observed for the

other subjects, who were accustomed to motion classification experiments involv-

ing the use of EMG signals. The lower classification capacity may be attributable

to increased variations in EMG patterns. Due to Subject C’s lack of experience,

appropriate pre-experiment training for improved performance was considered

necessary. However, the proposed method produced remarkable classification re-

sults even with this level of inexperience, demonstrating its superiority over other

anomaly detection approaches. Average classification ratios for all subjects also

exhibited significant variations.

Figure 2.18 details average classification ratios and standard errors between

learned and unlearned classes for all subjects. The proposed NACGMN exhibited

the highest discrimination rate for trained classes, with a classification ratio of

91.97 ± 2.78%. In contrast, the classification ratio of the SVM classifier was

significantly reduced for learned classes. This may be attributable to a lack of

training data, and it is inferred that single-class SVMs did not obtain sufficient

discrimination space for trained classes. As a result, many samples belonging
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to trained classes were misclassified as unlearned, and the accuracy of unlearned

class detection was relatively high. The capacities of other comparative methods

were also reduced for both classes, which may be attributable to difficulties in

setting appropriate thresholds and in CGD training. The proposed NACGMN

and training method are effective in resolving these problems. However, the

classification ratio for the NACGMN model unlearned class was 85.35± 10.29%

with a large standard deviation. These outcomes indicate that the decision region

of the unlearned class changed with each training instance. Accordingly, learning-

rule improvement is needed to enable stable training.

Figure 2.19 shows changes corresponding to the number of used training sam-

ples in average classification ratios of each method with standard errors. The

results empirically confirm that the proposed method stably outperforms alter-

native approaches with smaller variances even when training data is limited. Al-

though the accuracy tends to decrease as the number of utilized training motions

decreases in all methods as with the results of the experiments of artificial data,

the proposed method can maintain the identification accuracy of 80% or more

with training data including only one-trial. However, considering the implemen-

tation of NACGMN in myoelectric prosthetic hands, accurate identification with

a classification ratio of over 90% is required. Thus, if there are no restrictions

on the measurement time or measurement instruments, it is desirable to collect

EMG signals three times or more for each classified motion.

2.5 Concluding remarks

Chapter 2 describes the proposed probabilistic neural network referred as

NACGMN (normal and complementary Gaussian mixture network) capable of

determining a posterior probabilities for unlearned classes. The network incor-

porates the GMM and CGMM, and enables determination of related statistical

model parameters for network weighting. It can be optimized using a backpropa-

gation algorithm and be applied for semi-supervised learning in which only normal
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Fig. 2.16: EMGs and classification results

training data without abnormal samples are applied. No trial-and-error determi-

nation of thresholds is required, and the approach allows multi-class classification

and anomaly detection with a single network. A parameter extraction method

for the NACGMN model was also developed, and efforts were made to improve

readability.

Two pattern recognition experiments were performed to validate the perfor-

mance of the approach. In artificial data classification, the NACGMN model

was found to enable superior classification even with a small number of training

samples. The validity of the proposed parameter extraction method was also
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confirmed from the decision region of estimated probability models. In motion

classification experiments, the approach was applied for recognition of EMG sig-

nals from seven subjects each performing eight forearm motions (four learned

and four unlearned). The classification ratios were 91.97%±2.78 (learned) and

85.35%±10.29 (unlearned), representing significantly higher accuracy than other

methods for all subjects. Moreover, it is empirically validated that NACGMN

stably derives high classification accuracies with a limited number of training

data. These outcomes indicate that the proposed approach is suitable for dis-

crimination problems with fewer training samples.
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However, when NACGMN is applied to the classification of unexpected data

that does not follow GMM, model parameter setting with trial and error are

required, and it is difficult to judge whether the use of NACGMN is appropriate.

To deal with this problem, it is desirable to enable to automatically optimize

up to model parameters based on nonparametric Bayesian estimation. Although

the Bayesian estimation requires a lot of learning data, and when it is difficult

to apply it, eigenvalues of Σ̂k,m can be useful to evaluate the applicability of

NACGMN. As the presence of negative eigenvalues indicates that the stochastic

model contained in NACGMN has collapsed, the problems of parameter setting

and feature extraction method can be clarified. In future work, the authors plan

to enhance NACGMN functionality, improve learning rules in consideration of

statistical constraints, conduct additional performance evaluation, analyze the

internal structure of unlearned classes and extract new clusters.
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Chapter 3

The one-vs-rest hidden Markov

model-based pattern

discrimination method with

anomaly identification

3.1 Introduction

Chapter 3 proposes a novel one-vs-rest hidden Markov model (OVRHMM)

that is applicable to classification of time-series data for both learned and un-

learned classes using a hidden Markov model to model the data structures of both

classes based on Shima et al.’s Gaussian mixture model [21, 37].

In this chapter, Section 3.2 outlines the structure of the proposed hidden

Markov model-based classifier, the incorporated probability function for unlearned

classes, and the learning methods involved, Section 3.3 explains performance eval-

uation using artificial time-series data, Section 3.4 discusses the electromyogram

discrimination approach and the validity of the method, Section 3.5 covers perfor-

mance for anomaly identification with neurodegenerative disorders, and Section

3.6 draws conclusions and outlines future study plans.

42



3.2 Sequential pattern recognition based on one-

vs-rest hidden Markov models

3.2.1 Bayesian estimation based on a hiddenMarkov model

Classification of the signal sequence X into C classes is based on the premise

that events (classes) do not arise at the same time. The relevant hidden Markov

model is taken as incorporating signal sources with an arbitrary probability den-

sity function linked by a primary Markov chain as a variant of the finite state

machine. For X = {xn ∈ �D}n=1,...,N (the observation variable) the follow-

ing is used to express the probability function for the hidden Markov models of

individual classes p(X|θc):

p(X|θc) =
Kc∑
k′=1

αc,k′(N) (3–1)

αc,k(1) = πc,kp(x1|φc,k) (3–2)

αc,k(n) = p(xn|φc,k)
Kc∑
k′=1

αc,k′(n− 1)Ac,k′,k. (3–3)

Here, πc = {πc,k}k=1,...,Kc (c = 1, . . . , C) is the initial state distribution, Ac =

{Ac,k′,k}k′=1,...,Kc

k=1,...,Kc
represents the probabilities of transition from the current state

k′ to the subsequent k condition, φc = {φc,k}k=1,...,Kc expresses the variables of

output probability distribution for individual states, c represents the number of

classes (c = 1, . . . , C), and Kc expresses the hidden Markov model state count.

The hidden Markov model parameters are collectively represented by the expres-

sion θc = {πc,Ac,φc}. In this context, PDFs (Probability density functions) may

be included in output probability distribution with expression in the Gaussian

mixture model-based hidden Markov model as follows:

p(xn|φc,k) =

Mc,k∑
m=1

rc,k,mg
(
xn;φc,k,m

)
(3–4)

In this case, the parameters for Gaussian distribution are expressed by φc,k,m =

{μ(c,k,m),Σ(c,k,m)} (k = 1, . . . , Kc, m = 1, . . . ,Mc,k), the term m represents the
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number of components (m = 1, . . . ,Mc,k),Mc,k expresses the Gaussian component

count for each condition, and the mixture coefficient rc,k,m > 0, the mean vector

μ(c,k,m) ∈ �D and the covariance matrix Σ(c,k,m) ∈ �D×D are associated with the

individual components {c, k,m}. Here, the expression
∑Mc,k

m′=1 rc,k,m′ = 1 is met.

Calculation to determine the a posteriori probability of the individual classes

p(c|X) (c = 1, . . . , C) is implemented with the following in consideration of the

above and Bayesian estimation:

p(c|X) =
p(c)p(X|θc)∑C

c′′=1 p(c
′′)p(X|θc′′)

. (3–5)

Selection of the class with the maximum a posteriori probability from Bayesian

discrimination allows recognition of patterns based on the proviso that individual

events are dependent.

3.2.2 The proposed hidden Markov model with unlearned

class probability density function

The work discussed here involved the use of the Gaussian mixture model

reported by Shima et al.. This model allows consideration for the probability

distribution of unlearned classes, which can be determined from time-series in-

formation via the incorporation of PDFs for unlearned classes in hidden Markov

models. In this approach, one-versus-the-rest classification is adopted to estab-

lish whether the relevant data should be within the {c, k,m} component. To this

end, the PDF of data outside this scope is established as [21]:

p(xn|φc̄,k,m) = h(xn;μ
(c,k,m),Σ(c,k,m), εc,k,m) (3–6)

h(xn;φc̄,k,m) = (2π)−
D
2

∣∣ε2,c,k,mΣ(c,k,m)
∣∣− 1

2

×
(
ε
D
2
1,c,k,m − 1

)−1

exp
(
ε−1
1,c,k,mε

−1
2,c,k,m

)
× [exp {q(xn; c, k,m)} − exp {ε1,c,k,mq(xn; c, k,m)}] . (3–7)

In this calculation, φc̄,k,m = {μ(c,k,m),Σ(c,k,m), εc,k,m} (k = 1, . . . , Kc̄, m = 1, . . . ,Mc̄,k)

is defined. The expression εc,k,m = {ε1,c,k,m, ε2,c,k,m} is a new representation for
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the form of PDFs for unlearned classes. ε1,c,k,m is applied to establish variations

in h(·). The expressions ε1,c,k,m > 1 and ε2,c,k,m > 0 both hold. In a situation

where ε1,c,k,m = 1,

h(xn;μ
(c,k,m),Σ(c,k,m), εc,k,m) = 0 (3–8)

is also valid. Input data are taken to fit with these PDFs, and distribution of in-

formation in the unlearned class is established around the individual components.

Based on the above, the following is used to express the hidden Markov model

output probability distribution in consideration of the unlearned class PDFs:

p(xn|φc̄,k) =
1

Mc̄,k

Mc̄,k∑
m=1

h
(
xn;φc̄,k,m

)
. (3–9)

In this case, φc̄ = {φc̄,k}k=1,...,Kc̄ , θ̄c = {πc̄, Ac̄,φc̄} are defined.

Redefinition of the Bayesian classification is then implemented to enable the

sorting of time-series data into C +1 classes (including C learned classes and the

unlearned class), and the probability function of the unlearned class p(X|θ0) (c
′ =

0) is expressed using

p(c′|X) =
p(c′)p(X|θc′)∑C

c′′=1 p(c
′′)p(X|θc′′) + p(0)p(X|θ0)

=
p(c′)p(X|θc′)∑C

c′′=0 p(c
′′)p(X|θc′′)

. (3–10)

In this case, the a priori probability of the unlearned class is represented by

p(0). C + 1 discrimination involves the assumption that no non-defined classes

fall within the scope of the predefined components determined with C classifiers.

Based on this, the expression p(X|θ0) can be used to represent the joint proba-

bility of p(X|θ̄c), and approximation to establish the a priori probability of the

unlearned class is conducted using

p(X|θ0) � ψ

C∏
c=1

p(X|θ̄c). (3–11)

Here, ψ > 0.
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The eventual a posteriori probability can be expressed as follows based on the

above two expressions:

p(c′|X) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ψp(c′)
∏C

c=1 p(X|θ̄c)

f(X)
(c′ = 0)

p(c′)p(X|θc′)

f(X)
(otherwise).

(3–12)

Here,

f(X) =
C∑
c=1

p(c)p(X|θc) + ψp(0)
C∏
c=1

p(X|θ̄c). (3–13)

As determination of probability for the hidden Markov models p(X|θc), p(X|θ̄c)

is established via a forward algorithm [40], C + 1 classes (including unlearned

ones) can be identified with appropriate estimation of θc = {πc,Ac,φc} and

θ̄c = {πc̄,Ac̄,φc̄}. The proposed approach is valid for static-model classification

if the hidden Markov model state count isKc = 1, and the static model is basically

as per the classifier proposed by Shima et al. [21].

3.2.3 Determination of model parameters in OVRHMM

The training parameters for θc are determined for optimal probability in the

measurement signals Xc,r = {xc,r,n ∈ �D}n=1,...,N (c = 1, . . . , C, r = 1, . . . , R)

using

θcmax = arg max{p({Xc,r}r=1,...,R|θc)}. (3–14)

In this case, N represents data length and R expresses the training data set count.

The work reported here involved application of the Baum-Welch algorithm [28,40]

with the hidden Markov model for learned classes, thereby allowing parameter de-

termination with expectation-maximization algorithm. The learning parameters

of this model enable multi-class classification for all classes.

Despite these advantages, the Baum-Welch algorithm does not support esti-

mation of θ̄c due to a lack of training data sets for unlearned classes. In the
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hidden Markov model spectrum, models for class c are expressed as Hc and those

applied to determine the probability of presence outside this class are expressed

as Hj. Expressions 3–15 and 3–16 below i = 1, . . . , C, j = 1, . . . , C are applied to

determine the log probabilities Li,j,r and Ui,j,r (as obtained from Hc and Hj with

training data X i,r) in one-versus-the-rest classification.

Li,j,r = log[p(X i,r|θj)] (3–15)

Ui,j,r = log[p(X i,r|θ̄j)] (3–16)

Based on the premise that Hc may be applied to determine the likelihood of

values being outside class c, Hc and Hc can be deemed incompatible. As a result,

Lc,c,r > Uc,c,r should be valid if Xc,r is applied to both hidden Markov models.

The expression Lc̄,c,r < Uc̄,c,r should also be valid if a vector not belonging to

Xc̄,r (c̄ �= c) is applied.

This work involved the assumption that some Hc parameters detemined from

the Baum-Welch algorithm apply to Hc (and in particular to πc̄ = πc and Ac̄ =

Ac) for simplification. Optimization of Hc can therefore be achieved via learning

of εc,k,m from learned-class data. A gradient descent approach is used for training

on εc,k,m, and the following expression is used to update εc,k,m:

εnewq,c,k,m = εoldq,c,k,m +Δq (Δq > 0, q ∈ {1, 2}). (3–17)

In this case, Δq (q = 1, 2) represents update coefficients. Learning is conducted

as follows:

i. Training data X i,r in class i are applied to Hi and Hi. Comparison of Li,i,r

and Ui,i,r is then conducted, and Expression (3–17) is applied to update

ε2,c,k,m until Li,i,r > Ui,i,r (i = 1, . . . , C, r = 1, . . . , R).

ii. Values of X i,r for all classes are input into Hi, and comparison of the

likelihoods thus determined is performed. Expression (3–17) is applied to

update ε2,c,k,m until Ui,i,r < Uj,i,r (i �= j, i = 1, . . . , C, j = 1, . . . , C)
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iii. The values of X i,r from 1. are input into Hv (v = 1, . . . , C), and compar-

ison of the likelihoods thus determined is performed among values of Hv.

Expression (3–17) is again applied to update ε2,c,k,m until Ui,i,r < Ui,j,r. This

procedure produces a value of Hc exhibiting levels of likelihood contrary to

the value of Hi.

iv. Expression (3–17) is applied to update ε1,c,k,m until Li,i,r > Ui,i,r for test

data X̃c,r created using Hc.

X̃c,r is set as fresh sample content with a level of measurement error approxi-

mating probability distribution. Values are produced with based on a primary

Markov chain and PDFs with Σ
(c,k,m)
Test values determined from the Σ(c,k,m) of Hc

with

Σ
(c,k,m)
Test = αc,k,mΣ

(c,k,m). (3–18)

In this case, the expression αc,k,m > 1 represents a coefficient for increased co-

variance.

3.3 Experiments

3.3.1 Artificial-data experiments

To evaluate performance with the proposed OVRHMMs, pattern classifica-

tion experiments were conducted with two-dimensional artificial signals including

nine classes (six learned and three unlearned). To generate these signals, hidden

Markov models incorporating Gaussian mixture models were utilized. Predefined

hidden Markov models can be used to generate complex time-series data based

on first-order Markov chains and output PDFs. Each hidden Markov model has

two states, and each state has a Gaussian mixture model with two Gaussian dis-

tributions. Classification of time-series data generated using existing methods is

sub-optimal because data classes overlap in the feature space.
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Fig. 3.2: Artificial time-series data generated

For learned classes, a total of 6,000 samples (1,000 for each class) were used

as training data. For performance evaluation, three signals in unlearned classes

were also generated, and a total of 90,000 samples (learned-class data: 10,000;

unlearned-class data: 30,000) were employed. The number of the data samples

input to the proposed classifier were 100 for training and 50 for classification.

Examples of artificial data are shown in Figure 3.2. To validate the performance

of the proposed approach, classification results were compared with those from

the method proposed by Shima et al. [21] and a multi-class classifier consisting

of hidden Markov models with Gaussian mixture models.

The classification ratios obtained with each method for artificial signals are

shown in Fig. 3.3. The proposed method produced high ratios (100±0 % for

learned classes and 99.17 % for unlearned classes), and those of the previous
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Fig. 3.3: Classification results for artificial time-series data

method proposed by Shima et al. were 48.82±23.27 % (learned) and 0 % (un-

learned). Multi-class classification based on a hidden Markov model also produced

high performance for learned classes but was unsuitable for unlearned classes.

These results demonstrate the proposed method’s outstanding classification per-

formance for complex time-series data.

The lower classification ratios may be attributable to the comparative method

of Shima et al. using only static features of artificial data. As the feature space

in the artificial data employed involves class overlap, classification results for

overlapping regions can be ambiguous. For example, in Fig. 3.3, the classification

ratio for Class 4 is higher than those for Classes 3 and 5. It can be inferred that the

decision region for Class 4 was larger than those of the adjacent classes, and data

in Classes 3 and 5 were classified as Class 4. As a result, the classification ratio

of Class 4 increased and those of Classes 3 and 5 decreased. In addition, as the

time-series data of unlearned classes is distributed in learned classes, the previous

method resulted in classification of these data as a learned class, and classification

performance for unlearned classes deteriorated significantly. However, the as

proposed method is applicable to time-axis information, accurate classification

can be achieved when feature spaces have overlapping regions.
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3.3.2 EMG signal experiments

To verify the validity of the proposed OVRHMM, motion recognition experi-

ments that are the same as Section 2.4.4 were conducted. Xc,r(t) = {xd(t)}d=1,...,D

(representing the results of feature vector calculation) were input to the pro-

posed hidden Markov models to classify motion. Values of Kc = 2, Mc,k = 2,

αc,k,m = 1.1, p(c = 0) = 0.01 and ψ = 1 were applied to the proposed classifier

for time-series data application, and comparison of the outcomes with those from

NACGMN and OVRGMN reported by Shima et al. [21] was performed to eval-

uate the accuracy of the technique’s classification for unlearned class data. This

comparison was based on anomaly identification with hidden Markov models and

a threshold premised on previously reported trial and error values [42].

Figure 3.4 details outcomes from classification for the eight forearm motions

(from the top: untreated EMG data, force data from EMG-pattern estimation,

and classification with the approach reported here). The grey parts represent

periods in which force was below Fth (the threshold set in advance), and M0

indicates classification of performed motions as unlearned. The outcomes indicate

the capacity of the approach reported here in discrimination for learned and

unlearned classes with a low misclassification ratio. Lower ratios of classification

relate to unclear information on movement in EMG signals, meaning that learned-

class likelihood will be lower. The a posteriori probability of unlearned classes

therefore rises in relative terms, and classification of EMG signals may not be

accurate. In this context, the proposed method can be implemented to mitigate

the instance of ambiguous results with classification for unlearned scenarios.

Figure 3.5 details the subjects’ average EMG classification ratios and stan-

dard errors. It can be seen that the best performance for learned classes was

achieved with the multi-class approach with a hidden Markov model, but this

was not applicable to unlearned-class movements. A hidden Markov model with

a threshold value performed well in classification of unlearned-class movements,

but the challenges inherent in setting the threshold reduced ratios for learned

classes considerably. For learned and unlearned classes alike, ratios were higher
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with the proposed OVRHMM and OVRGMN proposed by Shima. The incorpo-

ration of time information results in the superior performance of the proposed

technique with learned classes. Compared with the results of NACGMN, it was

shown that OVRHMM achieved equal or better discrimination performance in

both classes. As the reason why the performance was not significantly improved,

it can be inferred that the covariance matrix could not be obtained correctly

due to statistical constraints and the time series characteristics of the EMG sig-

nal were not complicated. In the employed EM algorithm, a weighted identity

matrix was added to the estimation results in order to realize stable precision

matrix calculation. This operation changed the decision space of OVRHMM,

and the sufficient improvement was not found to the accuracy of the unlearned

class detection.

Average classification ratios and standard errors are shown in Figure 3.6, with

“Ave” representing the average for all subjects. Subject C, who was less experi-

enced in the use of EMG signals to classify movements, had the lowest ratios. The

lower classification capacity may be attributable to increased variations in EMG

patterns. Subject C’s familiarity with EMG signal-related interfaces was limited,

giving rise to the need for training before the experiment. The subject’s rela-

tively positive results despite this inexperience suggest that the method provides

more positive performance as compared to other methods for anomaly identifi-

cation. Average classification ratios for all participants also exhibited significant

variations.

3.3.3 Anomaly identification based on gait analysis

The previous section described application of the proposed method to human

interfaces and related performance evaluation. The approach can be applied to

a variety of anomaly identification problems. This section discusses its potential

use in neurological disorder identification using gait data among the range of

anomaly identification applications possible.

It is widely known that neurodegenerative conditions such as Parkinson’s dis-
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ease and amyotrophic lateral sclerosis (ALS) significantly influence neuromuscular

control and motor function [43]. Walking rhythm and kinetics are especially af-

fected, and changes in the foot/ground contact cycle and period are observed [44].

In this regard, analysis of walking characteristics such as stride time allows non-

invasive evaluation of such conditions. Extensive research into diagnostic assis-

tance based on gait data has already been performed, and various classification

methods have been proposed [36, 41]. However, most such methods require data

both on non-impaired subjects and individuals with the relevant condition for

classifier training, and have limited application to disorders for which training
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samples are insufficient. In addition, binary classification between non-impaired

subjects and patients with specific conditions involves the problem of misiden-

tification for unlearned diseases. The proposed method addresses these issues

by enabling binary classifier training without disorder data. Disorder classes are

defined as unlearned, and abnormalities are identified using data exclusively from

non-impaired subjects.

Performance evaluation was based on the gait data of Hausdorff et al. [43,44],

which are available from PhysioNet [45] and relate to 64 subjects with conditions

of varying severity (16 non-impaired (age range: 20-74), 15 with Parkinson’s

(:PD, 44-80), 20 with Huntington’s (:HD, 29-71) and 13 with ALS (29-71). The

data were recorded using shoe-mounted force sensors, and include stride time,

swing time, stance time and double-support periodicity. Figure 3.7 shows stride

times for each neurodegenerative condition. Zeng et al. proposed a diagnostic

system for such conditions based on gait analysis and evaluated related classifica-

tion performance using this database [41]. In this work, four-dimensional feature

vectors were created from data on left/right stance times and leg swing times,

and anomaly identification for diagnosis of neurodegenerative conditions was per-

formed using a radial basis function network. Baratin et al. proposed a novel

feature extraction method based on the discrete wavelet transforms (DWT), and

this approach was applied to the same gait database [46]. The paper evaluated the
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Fig. 3.7: Examples of stride time of each group [43]

classification performance using the linear discriminant analysis (LDA) in various

binary classification problems such as Control vs. ALS+PD+HD. Although other

methods using the same database have been proposed [47, 48], there are almost

no studies that treat four-class classification all classes are training targets. From

these studies, the difficulties of multiple disease classification considering healthy

peoples were indicated.

The experiments involved the use of the feature vector employed by Zeng et

al. and a two-dimensional feature vector consisting of swing time and double-

support time for the left foot as determined via trial and error from preliminary

experiments. These feature vectors are time-series-based, but the sampling inter-

val in the process of feature extraction is inconsistent. To address this problem,

cubic spline interpolation was performed for each feature and re-sampling was
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iterated with a frequency of 10 [Hz]. The training set consisted of gait data from

non-impaired subjects, and the test set consisted of data from all subjects, in-

cluding those with neurodegenerative conditions. With reference to the method

of Zeng et al., the gait data of each subject was divided into a first half used

for training and a second half used for evaluation. A total of 1,000 consecutive

samples were extracted from the learning data in the training phase, and all test

data for each subject were input using the proposed method in the classifica-

tion experiments. The parameters of the proposed classifier were set as Kc = 3,

Mc,k = 2, αc,k,m = 1.1, p(c = 0) = 0.01 and ψ = 1. To validate the capacity

of the approach in anomaly identification, the classification results of Zeng et al.

with the leave-one-out approach are cited [41]. The results of binary classification

based on hidden Markov models with training data from both classes were also

compared.

Figure 3.8 shows the classification ratios for both classes with the proposed

and comparative methods. The proposed method with two-dimensional features

exhibits a level of classification performance equal or superior to that of the previ-

ous method. It is also noteworthy that the proposed method produced the same

classification ratio for the disorder class as the previous method without disorder

training data. However, classification ratios under the proposed method with

four-dimensional features were lower for both classes. For appropriate classifica-

tion performance and applicability of the proposed method to diagnostic support,

the utilization of appropriate feature vectors needs to be considered.

Although the hidden Markov model approach enabled precise classification

for non-impaired subjects, it produced a significantly lower classification ratio for

those with disorders. This may be attributable to the use of gait data for all disor-

der groups in training. As gait data characteristics vary by condition as shown in

Fig. 3.7, and the use of information from all subjects resulted in a complex data

structure, learning appears to have been insufficient. Although classifiers for indi-

vidual conditions are needed to help determine whether a subject has a particular

condition, the creation of classifiers for a wide variety of impairments is highly

– 57 –



challenging. Additionally, multi-class classification for various conditions will

inevitably involve misclassification for certain unlearned instances. The results

obtained here indicate the applicability of the proposed method for identifying

remarkable characteristics of diseases in subjects. However, as the approach does

not necessarily allow recognition of specific conditions, further improvement of

classification is required.

To elucidate the classification capacity of the proposed method, the relation-

ship linking classification ratios and condition severity in subjects misidentified as

being non-impaired was analyzed. The severity of all patients is expressed in the

database via the Hoehn-Yahr scale for Parkinson’s disease, the total functional

capacity measure (TFCM) for Huntington’s disease and the number of months

since diagnosis for ALS. Higher Hoehn-Yahr values and lower TFCM values rep-

resent greater symptom severity. Averages and standard deviations of severity

in the correctly classified group and the misclassified group are shown in Fig.

3.9 (a), (b) indicate minor symptoms in the latter. If symptoms are severe, gait

abnormalities facilitate classification. However, the duration of the condition in

the misclassified ALS group was longer, as shown in Fig. 3.9 (c). As the standard

deviation is considerable for both groups and the prognosis varies among individ-

uals, this cannot be considered an effective index for evaluating discrimination

performance with the proposed method. Since ALS severity is generally evalu-

ated from its influence on daily life, evaluation of classification capacity based

only on time since diagnosis may be considered ineffective. In future work, the

authors plan to develop a learning algorithm that enables anomaly identification

in the initial stages of conditions.

3.4 Concluding remarks

This chapter proposes a novel hidden Markov model-based sequential pattern

recognition method allowing identification of unexpected unlearned classes in the

learning process based on time-series data characteristics. Three pattern recog-
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nition experiments were performed to validate the performance of the approach.

In artificial signal classification, complex time-series data were generated from

hidden Markov models. The proposed method based on time-series information

was found to enable superior classification in anomaly identification. In motion

classification experiments, the approach was applied for recognition of EMG sig-

nals from seven subjects each performing eight forearm motions (four learned
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and four unlearned). The classification ratios were 91.72%±3.30 (learned) and

89.22%±8.01 (unlearned). The results demonstrated that the proposed approach

allows classification of unlearned classes with no deterioration in classification skill

for learned classes, and that its performance was superior to those of other meth-

ods. The approach was also applied to anomaly identification for neurodegener-

ative conditions using gait data to verify its applicability to professional medical

diagnosis. PhysioNet gait data were used, and neurodegenerative-condition pa-

tients were placed in the unlearned class for training without disorder gait data.

The technique was found to demonstrate a level of performance similar to that

of the previous method, in which disorder data are used for training. Based on

these characteristics, the applicability of OVRHMM to deal with complicated and

special cases with multiple diseases can be expected.

In future work, to establish the effectiveness of OVRHMM, the application of

OVRHMM to various time series data needs to be considered. It is inferred that

OVRHMM is also effective for temporal data with larger changes and faster tran-

sitions than the biological signals employed in this chapter, since the applicability

of the proposed method depends on whether the input data can be represented by

GMM. Thus, the author aims to expand the range of applications from biological

signals and research the applicability of OVRHMM to signals with strong non-

stationary. Besides, the authors plan to develop a new unlearned class estimation

classifier based on OVRHMM and formulate a new approach to unlearned-class

structure analysis. This is expected to support a wide range of applications, in-

cluding diagnostic assistance and rehabilitation in the medical and welfare fields

and abnormality detection in the industrial field. To control myoelectric pros-

thetic hands [6], the authors also aim to develop a novel hardware implementation

method optimized for our approach. Furthermore, to eliminate the complexity

of setting model parameters in advance, the introduction of a nonparametric

Bayesian optimization method can be considered. However, since those meth-

ods required huge training time, the sampling rate of model parameters must be

improved. The author plan to log-linearize gauss-Wishart distribution, and the
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improvement of calculation speed based on parallel computing.
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Chapter 4

Development of anomaly

detection with a novel hidden

semi-Markov model

incorporating unlearned states

4.1 Introduction

This section proposes a novel pattern recognition method based on hidden

semi-Markov models (HSMMs) incorporating unlearned states with unpredicted

distribution of outliers toward more detailed anomaly detection. The approach in-

corporates HSMM usage for consideration regarding the time dependency of state

transition and efficient training in relation to actual data, and allows anomaly de-

tection at individual time points via estimation of hidden-state transitions inside

the model.

Section 4.2 outlines pattern recognition based on the model with unlearned

states and parameter estimation, 4.3 covers performance evaluation with artificial

signal and application to human behavior classification, and 4.4 draws conclusions

and discusses future study plans.
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4.2 A hidden semi-Markov model incorporating

unlearned states

4.2.1 Estimation for the state transition sequence of a hid-

den semi-Markov model

The HMM involves a statistical time-series data approach in which signal

sources with an arbitrary probability density function are connected via a primary

Markov chain. However, it is unsuitable for describing state transitions stochas-

tically with real data, such as speech signals and electrocardiograms (ECGs).

The timing of state transition in the handling of biomedical signals depends

on the time remaining in each state, making it desirable to utilize an HSMM

representing an improved HMM. The HSMM has the state duration density

Pj(d) (j = 1, · · · , K, d = 1, · · · , D) representing the probability of maintenance

in each state, and allows consideration of the time dependency of state transi-

tion. Here, K is the number of HSMM states and D represents the maximum

state duration. In the study reported here, an explicit-duration hidden Markov

model (ED-HMM) with a relatively simple structure among HSMMs was em-

ployed [23, 24]. Given the observed time-series data X = {xt ∈ �U}t=1,...,T , the

likelihood p(X|θ) calculated from the ED-HMM is

p(X|θ) =
K∑
j=1

αj(T ) (4–1)

αj(t) =
K∑
i=1

D∑
d=1

αi(t− d)ai,jPj(d)ut(j, d) (4–2)

ut(j, d) =
t∏

τ=t−d+1

bj(xτ ) (4–3)

αj(1) = πjPj(1)bj(x1) (4–4)

where πj (j = 1, · · · , K) is the initial state distribution, A = {ai,j}i=1,...,K, j=1,...,K

represents the probability of transition from the current state i to the next state
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j (ai,i = 0, i ∈ K) and bj(xt) represents the probability of xt output from state

j at time t. Arbitrary PDFs such as the GMM can be incorporated into output

probability distribution bk(·) as with HMMs.

If the set of all HSMM parameters with GMM θ = {πk,A, Pk(d),φk} k=1,...,K

is appropriately determined, hidden state transition not directly determined from

observation time-series data can be estimated. Based on the use of αj(t) deter-

mined from likelihood calculation, the hidden state sequence Ŝ = {ŝ(t)}t=1,...,T

can be predicted as

ŝ(t) = arg max
j∈K

αj(t). (4–5)

4.2.2 Proposed classification model with an unlearned-

class probability density function

Anomalous time-series data not assumed in the training phase can be inter-

preted as not following the probability density function determined from training

for all states. The incorporation of PDFs for unlearned classes into the state

of the HSMM allows estimation of the probability of not belonging to trained

states, and newly included states can be labeled as unlearned. In this approach,

the complementary Gaussian distribution (CGD) technique developed by Shima

et al. [21] was employed. Based on the assumption that input data follow Shima’s

CGD pattern, data in the unlearned class are distributed around each component.

From these definitions, the output probability distribution of the unlearned state

is defined from the linear sum of CGD as

bK+1(xt; φ̄k) =
1∑K

k′=1Mk′

K∑
k=1

Mk∑
m=1

h
(
xt; φ̄k,m

)
. (4–6)

Here, K + 1 is the number of unlearned states, and the parameter set φ̄k =

{φ̄k,m}m=1,··· ,Mk
is defined. Optimization of the new set of HSMM parameters in

consideration of the unlearned state θnew = {π′
k,A

′, P ′
k(d), φ̄k}k=1,...,K+1 is needed

to enable hidden-state estimation and anomaly detection using (4–5).
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Fig. 4.1: Hidden semi-Markov model with the unlearned state

4.2.3 Model parameter estimation for the proposed hid-

den semi-Markov model

In the HSMM training process, the parameters of θ̂ are optimized to maximize

likelihoods θ̂ for measurement signals X. In the work reported here, the EM

algorithm is used to train normal states other than the unlearned state. The

forward-backward algorithm proposed by Yu et al. [23,24] was employed to avoid

very low values with underflow resulting from likelihood computation using long

time-series data.

For the HSMM pre-trained using the EM algorithm, an unlearned state is

additionally applied with unoptimized parameters. However, as training data sets

for unlearned classes are not provided, θ̂new cannot be estimated using the Baum-

Welch algorithm. Thus, it is necessary to estimate parameters for the unlearned

state using the training data X, which do not include anomalies. First, it is

assumed that the transition of probability to an unlearned state in the initial

state is very small and is defined as π′
K+1 = pπ′, where pπ′ is an actual constant

close to 0. Then, assuming that outliers do not occur frequently, the probability

of transition to the unlearned state a′i,K+1 contained within the matrix of state

transition probabilities A′ ∈ �(K+1)×(K+1) can be determined as

a′i,K+1 = aconst (4–7)

a′i,j = (1− aconst)ai,j (i, j = 1, · · · , K). (4–8)
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Here, aconst < 1 is a constant. As there is no prior information relevant to

transitions from the unlearned state to normal states, the probability of transition

from the unlearned state a′K+1,j is calculated from

a′K+1,j =
a∗j∑K
i=1 a

∗
i

(4–9)

a∗j =
K∑
i=1

ai,j (j = 1, · · · , K) (4–10)

a′K+1,K+1 = 0. (4–11)

In addition, assuming that the time remaining in the unlearned state is brief,

P ′
K+1(·) is modeled via gamma distribution.

Finally, the parameters of the PDF h of unlearned classes φ̄k,m is optimized.

As φ̄k,m is composed of φk,m and εk,m, h based on the parameters of φk,m can be

used to represent anomaly distribution. Thus, φ̄k,m can be determined via the

optimization of εk,m using training samples. In the training of εk,m, p(X|θ̂new)

is calculated for normal training data, and hidden-state estimation with the un-

learned state can be performed as

ŝ′(t) = arg max
j∈K+1

α′
j(t). (4–12)

As the training data do not include transition to an unlearned state, εk,m, which

allows a reduction in the number of training data recognized for the state Nŝ=K+1,

is required. Thus, using gradient descent, εk,m is updated until Nŝ′=K+1/T ≤ Nth

is satisfied as

εnewq,k,m = εoldq,k,m +Δq (Δq > 0). (4–13)

Here, Nth is an actual constant close to 0, and Δq (q = 1, 2) represents update

coefficients.
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4.2.4 A multi-class classifier based on the proposed hid-

den semi-Markov models

The proposed HSMMs incorporating unlearned states are trained for all clas-

sification target events, and pattern recognition is achieved based on Bayesian

discrimination. The a posteriori probability of class c, p(c|X) (c = 1, · · · , C),

can be calculated from the likelihood of each class p(X|θc
new) using

p(c|X) =
p(c)p(X|θc

new)∑C
c′=1 p(c

′)p(X|θc′
new).

(4–14)

Here, C is the number of classes. Given that each event is dependent, multiclass

classification is enabled by selecting the class with the maximum a posteriori

probability based on Bayesian discrimination. After the assignment of class la-

bels to the input time-series data, anomaly detection with the unlearned state is

performed on the data for each time.

For anomaly detection, α′
c,j(t) (c = 1, · · · , C, k = 1, · · · , K + 1) as deter-

mined via likelihood calculation for each class is utilized. As per Eq. (4–12), the

transition sequence of the hidden state ŝ′c(t) can be estimated from α′
c,j(t). If

ŝ′c(t) = K + 1 is satisfied, xt is classified as an unlearned state not belonging to

class c. If transition to the learned normal state is labeled as 0 and transition to

the unlearned state is labeled as 1, a binary signal fc(t) can be obtained using

fc(t) =

⎧⎨
⎩0 (ŝ′c(t) �= K + 1)

1 (ŝ′c(t) = K + 1).
(4–15)

The conjunction is performed at each time between classes, and the results of

anomaly detection F (t) are determined as

F (t) =
C∏

c′=1

fc′(t). (4–16)

If F (t) = 1 is satisfied, xt belongs to the unlearned class and is classified as an out-

lier. Combining the results of multiclass classification and hidden-state sequence

estimation enables accurate multi-class discrimination and detailed anomaly de-

tection.
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4.3 Experiments

4.3.1 Classification experiments for artificial signals

To evaluate the performance of the proposed method, artificial data classifica-

tion experiments were conducted for two-dimensional artificial signals incorporat-

ing four learned classes and an unlearned class. To generate training time-series

data, ED-HMMs with GMMs were employed. Predefined ED-HMMs can be used

to produce complex signals based on the semi-Markov chain and output PDFs.

Each ED-HMM has four states, each with a GMM consisting of four Gaussian

distributions, and the maximum duration value was set as 500.

In test data generation, new ED-HMMs with unlearned states added to the

ED-HMM applied for training data generation were used to evaluate anomaly

detection performance. The new ED-HMM set-up has four normal and four

abnormal states incorporating GMMs. As the added unlearned states are com-

mon to all classes, the test data generated are signals with four abnormal values

added to normal time-series data (Fig. 4.2). Class transitions occur randomly

in line with predefined transition probabilities. Here, the probability of outliers

was about 20%, and uniform random numbers were used to generate the model

parameters.

For the learned classes, a total of 8,000 samples (2,000 for each class) were

used as training data, and the model parameters for the training were K =

3, Mk = 2, D = 200. The duration density of the unlearned state was modeled

on gamma distribution with a value of 10 for both the shape parameter and the

scale parameter, and εk,m was updated until Nth fell below 0.01. For classification

performance evaluation, 10,000 evaluation data values containing anomalies were

generated and classified using the proposed method based on Eqs. (4–14) and

(4–16). The length of the signal input to the classifier was set to 100 samples,

and the overlap with the signal to be input next was set to 90 samples.

To validate the capacity of the approach in producing accurate classification,

the results were compared with those from previous methods. For anomaly de-
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tection with time-series data, the method previously proposed by the authors [37]

was employed because it has similar training conditions appropriate for perfor-

mance comparison. A multi-class SVM along with a single-class SVM were also

used for anomaly detection in addition to the ED-HMM with the GMM [23,24].

The single-class SVM allows state-of-the-art anomaly detection, and is often used

as a comparative approach to semi-supervised training problems normally associ-

ated with non-anomalous data [33]. The SMV-based classifier employed a radial

basis function (RBF) kernel, and the model structure of the comparative method

was as per the proposed technique (K = 3,Mk = 2). To validate the capacity

of the approach in producing accurate classification, the results were compared

with those from the previously proposed method.

Figure 4.2 details classification results produced using the proposed and previ-

ous methods (from top to bottom: true class label, generated evaluation signals,

classification results obtained with the proposed method and those obtained with

the previous method). C0 indicates data classification to the unlearned class as

outliers, and grey areas represent abnormal parts in test data. The outcomes indi-

cate that both learned and unlearned classes can be classified using the proposed

method. However, although both are essentially recognized using the previous

method, many misidentifications in unlearned classes occur after inter-class tran-

sition. This may be partially attributable to the utilization of classification for

the unlearned class based on a posteriori probability. If the input signal contains

boundaries between classes or instantaneous outliers, the reduced likelihood of

each class will cause ambiguous discrimination results. As the previous method

involves estimation regarding the degree of abnormality for entire input signals,

time-series data with an ambiguous class will belong to the unlearned category. In

contrast, as the proposed method involves the performance of anomaly detection

at each time, even short anomalies can be classified with high accuracy.

Figure 4.3 shows average classification ratios for all classes and standard er-

rors. The proposed method produced high ratios of 95.7% for evaluation data

and 99.1% for the unlearned class. The corresponding values were 88.8% and
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92.0% with the previous method and 87.31% and 92.9% with the SVM classifier.

The outcomes showed that a multi-class classifier based on ED-HMM achieved

the highest classification ratio for learned classes, but was unable to identify mo-

tions of unlearned classes. The results demonstrated that the proposed method

enabled anomaly detection with no degradation of discrimination performance for

learning classes as compared to an ED-HMMs classifier. In addition, a significant

difference between the proposed method and the SVM was observed. The recog-

nition performance of the comparison methods exhibited some degeneration, with

the previous method not allowing consideration of state duration and the SVM

not allowing the use of information from time-series data.

4.3.2 Human action recognition for simulated care tasks

To demonstrate the effectiveness of the proposed approach with real data,

motion classification for simulated care tasks was conducted. Due to Japan’s

rapid demographic aging, the heavy burden placed on care workers has become a

major issue in the country. Accordingly, there is a need to reduce the workload

of such staff and analyze the roles involved in personal care work.

Individual care involves a variety of small operations as shown in Table 4.1,

which details a chair-to-bed transfer sequence. As the major operations here

(such as assistance for a standing posture) are predefined among related care

tasks, motion classification can be achieved via classifier training. However, the

definition of connections between individual actions is ambiguous, and often in-

cludes unpredictable actions such as unexpected movement and squatting. If

conventional methods are used for observation in actual care work, unclassified

motions may adversely affect recognition performance. In the part of the study

reported here, minor unexpected movements were recognized to verify the capac-

ity of the proposed method.

In the experiment, care task data based on simulation of transfer from a

wheelchair to a bed were recorded via motion capture, and classification for mi-

nor operations was performed. Figures 4.4 and 4.5 show the experimental en-
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Fig. 4.2: Artificial data generated from ED-HMM and classification results

vironment and an example of the simulated care operation, respectively. In the

simulated tasks, a trolley was used as a wheelchair, and a water bag (WB) was

treated as the care recipient. The tasks were implemented in a fixed order with

the objective of laying the WB on a table (Table 4.1). Data for three trials were

recorded from one subject, and the posture angles of each body link determined

from motion capture were used for training and evaluation. Principal component

analysis (PCA) was employed to extract characteristics from 54-dimension data,
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Fig. 4.3: Classification ratios of anomaly detection methods

and 7-dimension characteristics were generated to enable ED-HMM training with

a contribution ratio of approximately 80%. The proposed method for each minor

operation was applied for training based on the definitions and recorded labels

for simulated care tasks, with model parameters set as C = 5, K = 2, Mk = 1

and D = 100. Although the training data included unclassified motions, training

for the proposed model utilized only normal time-series data with unexpected

motions excluded. Threefold cross-validation for two trials and test data for one

trial were implemented to evaluate classification with the proposed method as

compared with the previous method and the single-class SVM with RBF kernel

application.

Figure 4.6 shows average classification ratios (based on six classes, including

the unlearned one, represented by “Ave.”) and standard deviations determined

from cross-validation. The results indicate that the proposed method produced

better classification ratios for cross-validation and exhibited stabler performance.

In addition, significant differences were observed between the proposed method

and the comparison method. However, the standard deviation in each trial ap-

pears large, and incorrect learning was seen with some tasks. Figure 4.7 shows the

average classification ratio for each operation and the related standard deviation
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Table 4.1: Wheelchair-to-bed transfer

Practical care tasks Simulated care tasks Motion 
label

Push a wheelchair Push a dolly cart E1
Put a brake Move

E0Undefined action
Move etc.) Crouch down

Foot support operation Move weights E2
Undefined action Stand up & move E0
Sitting assistance Transfer WB into the frame E3

Assistance for standing up
Change the handle of BW E5

Move the wheelchair
Assistance to lie in a bed Lay WB on the table E4
Raise fences of the bed Move E0

Table

Water bag : WB
(11 kg)

Wight B

Wight A

Frame for
placing WB Frames for placing wights

Fig. 4.4: Experimental environment

obtained from cross-validation. The performance of the proposed method is dete-

riorated in E4 and E0, and significant variance was observed. This indicates that

classification performance largely depends on the training data used, and that

a lack of appropriate training data can adversely affect the discrimination ratio.

However, it is also seen that the unlearned class with the previous method is not
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(a) Push a dolly cart: E1 (b) Move weights: E2

(c) Transfer WB into the frame: E3 (d) Lay WB on the table: E4

Fig. 4.5: Examples of simulated transfer operations

classified at all, and the classification ratio of learned classes was significantly

deteriorated with the SVM method. These results indicate the effectiveness of

the proposed method for data whose handling was problematic with the previous

method. In future work, the authors plan implementation with a larger body of

learning data and improved identification accuracy.

4.3.3 Evaluation of work recognition performance for ac-

tual care tasks

Posture monitoring and motion detection experiments were conducted in an

actual work environment to evaluate the classification performance of the pro-

posed method in discrimination involving actual care tasks.

As methods involving multiple cameras (such as motion capture systems and
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Fig. 4.7: Classification ratios for individual motions

Kinect) that are widely used in human behavior monitoring [49–51] are inappro-

priate for use in nursing homes due to issues with privacy, obstacle avoidance and

difficulty in tracking movement, the proposed system involves posture monitor-

ing using wearable inertial sensors (Figure 4.8 (a)). These determine acceleration,

angular velocity and orientation, providing data that can be used to calculate in-

clination in three-dimensional space (i.e., the spatial relationships of monitoring

points). The sensors are small and light, enabling attachment within clothes for
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low-load monitoring.

As the installation of inertial sensors all over the body for detailed monitoring

may interfere with caregiver tasks, the number of monitoring points should be

minimized for accuracy of work classification. In preliminary experiments, de-

tailed monitoring with N inertial sensors across the body was conducted. Nini

links with high-posture-angle monitoring accuracy were selected from the result-

ing data, and a work discriminator for target tasks was trained from the charac-

teristics of the selected regions. Discriminative performance was then evaluated

using the test data, and Nini links for target values with high classification accu-

racy were determined as sensor attachment positions. Where the target accuracy

was not reached, an unselected region was chosen and learning accuracy was ver-

ified via addition to the relevant characteristics. One link among the unselected

options was also added to the characteristics, and learning accuracy was verified

again. This re-validation was performed for all unselected links, and the link

with the highest classification accuracy was added to the monitoring points. The

process was repeated as necessary to determine appropriate sensor location.

In the work classification process, a new hierarchical HSMM was applied to

the wheelchair-to-bed transfer task, which is a major operation involving a large

physical load. The HSMM consists of two layers and is suitable for classification

of small to large operations. The first layer models individual minor care tasks

with an unlearned state, and the second calculates the probability that a transfer

operation has been performed from the small-operation sequence determined in

the first layer. The number of states in the second layer matches that of target

small operations, and categorical distribution is introduced as output.

A monitoring experiment on care-giver work postures was conducted with two

subjects in a nursing home (Ashihara Nozomien, Fukuoka), and wheelchair-to-

bed transfer was evaluated offline. Inertial sensors were fitted at six locations

determined from preliminary experiments during monitoring (Figure 4.8 (b)).

Posture information obtained from the sensors was expressed in 24 dimensions,

and 16-dimensional characteristics were determined via PCA. The task labels used
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(a) Used inatial sensor (b) Location of sensors

Fig. 4.8: Posture monitoring with wearable inertial sensors

in training were based on observation of actual nursing care tasks by experts in

the field. Table 4.2 shows classification targets in minor operation relating to

wheelchair-to-bed transfer, and other operations were identified as unlearned.

The HSMM parameters in the first layer were set as K = 3,Mk = 2 and D =

200, and the number of states in the second layer was K ′ = 6. The training

data for the first layer excluded unlearned tasks, and the test data contained all

monitoring information, including unlearned/unclassified tasks. Small-operation

classification was implemented, and the probability of transfer assistance was

calculated every 0.1 seconds.

Figure 4.9 (a), (b) shows transfer task results for Subjects A and B, respec-

tively (from the top: input characteristics (three dimensions) and transfer task

probability determined from the HSMM of the second layer). Shaded areas rep-

resent periods during which transfer assistance was provided. The results for

Subject A indicate that all transfer operations were correctly identified, while

those for Subject B contained many misidentifications and probabilistic ambigu-

ities. These outcomes help to indicate the effectiveness of the proposed method.

The lower classification capacity observed may be attributable to the work rate

of Subject B, who was observed to perform nursing care tasks significantly faster
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Table 4.2: Bed-to-wheelchair transfer

Push a wheelchair
Put a brake

Undefined action (Move etc.)
Foot support operation

Undefined action
Sitting assistance

Assistance for standing up
Move the wheelchair

Assistance to lie in a bed
Raise fences of the bed

(a) Routine of practical care tasks

Le
ar

ne
d

Shoes & Foot support operation
Assistance for standing up
Assistance to lie in a bed

or get up from bed
Postural change
Sitting assistance
Jack operation

U
nl

ea
rn

ed

Move the wheelchair
Operation for the fence of  bed

Walk
Other…

(b) Learned and Unlearned motions

than Subject A. Accordingly, the transition between small tasks was unclear,

making it difficult to record task labels. As a result, labels different from the

actual work were created in the training data, causing reduced discrimination ac-

curacy for both layers. It can also be inferred that monitoring performance was

affected by the small training data set, variations in the degree of care required

by the recipient, and inappropriate manually set hyperparameters.

In future research, it will be necessary to develop new learning regulations

based on log-linearization for appropriate training from a small training data set,

to create a general classification model that does not require individual training,

and to consider increasing the number of detectable actions.

4.4 Concluding remarks

Section 4 outlines a novel HSMM-based sequential pattern recognition method

incorporating unlearned states to represent unexpected anomalies in the learning

process based on time-series data characteristics. The approach provides high

classification performance in consideration of time-series information relating to

signals, and allows more detailed anomaly detection than the previous method.

In the study, two pattern recognition experiments were performed to evaluate
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Fig. 4.9: Probability calculation results for transfer assistance work

the technique. In artificial signal classification, generation of complex time-series

data from ED-HMMs indicated the method’s suitability for this purpose. In ex-

periments relating to simulated care tasks, motion classification performed with

characteristics determined from motion capture demonstrated the method’s su-

periority over other approaches.

To further highlight the competitive performance of this technique, additional

evaluation will be performed with artificial signals generated from various time-

series models, a greater number of subjects and application to other anomaly
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detection problems.
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Chapter 5

Conclusion

This paper proposes novel unlearned class determination based on complemen-

tary Gaussian distribution to overcome the limitations of conventional anomaly

detection. To improve training performance with small datasets, a novel proba-

bilistic neural network (NACGMN) for multi-class discrimination incorporating

unlearned classes with a single classifier was developed. The proposed approach

involves learning with relaxed statistical constraints based on a back-propagation

algorithm and stochastic parameter extraction with improved network readability.

To expand the range of application for the network, unlearned pattern recogni-

tion based on a hidden Markov model (OVRHMM) was proposed for time-series

data classification. To enhance anomaly detection performance for time-series

data, a hidden semi-Markov model incorporating an unlearned state and novel

pattern classification involving the proposed HSMMs were also developed. These

approaches were applied to classification problems with specialized artificial data

and biological signals to validate performance.

Section 2 outlines the probabilistic neural Normal and Complementary Gaus-

sian Mixture Network (NACGMN) for determination of a posterior probability

for unlearned classes. The network incorporates the GMM and CGMM, which

represent the distribution of training samples for each class and the imaginary

distribution of unlearned classes, respectively. In the NACGMN structure, the
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stochastic parameters of the GMM and CGMM are converted to unconstrained

weight coefficients based on log linearization [5], and can be optimized using the

back-propagation algorithm and applied to semi-supervised learning only with

normal training data free of abnormal samples. Stable learning can thus be

achieved even with small data sets. Parameter extraction for the NACGMN was

also developed, and efforts were made to improve readability. The superiority of

the proposed method was verified from two experiments. In artificial data classi-

fication, the NACGMN was found to support superior classification even with a

small number of training samples, and enabled more stable decision than compar-

ative methods. It was also shown that the GMM and CGMM approach enabled

extraction from a trained NACGMN with a similar decision region. In motion

classification experiments, the approach was applied to recognition of EMG sig-

nals from seven subjects each performing eight forearm motions. NACGMN

classification ratio accuracy was significantly higher than those of other methods

for all subjects. These outcomes demonstrated the effectiveness of the proposed

technique.

Section 3 outlines novel hidden Markov model-based sequential pattern recog-

nition (OVRHMM) allowing identification of unexpected unlearned classes in the

learning process based on time-series data characteristics. The OVRHMM is an

extension of the unlearned class detection proposed by Shima [21] to time-series

data classification, and enables evaluation of the degree of anomaly for all input

signals. In this model, Bayesian discrimination for unlearned classes is realized

based on likelihood calculated from HMMs and complementary HMMs. To vali-

date the performance of the approach, three pattern recognition experiments were

conducted. In artificial signal classification, the time-series information-based

OVRHMM was found to enable superior classification in anomaly identification.

The outcomes of motion classification experiments also demonstrated that the

proposed approach allows classification of unlearned classes with no deterioration

in skill for learned classes, and that its performance was superior to those of

other methods except the NACGMN. The approach was also applied to anomaly
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identification for neurodegenerative conditions using gait data. In the scenario of

this experiment, subjects with neurodegenerative conditions were placed in the

unlearned class for training without disorder gait data. The technique was found

to demonstrate a level of performance similar to that of the previous method, in

which disorder data are used for training. These results indicated the effective-

ness of the complementary event model for time-series data and the expandability

of the NACGMN.

Section 4 discusses the validation of HSMM-based sequential pattern recog-

nition incorporating unlearned states to represent unexpected anomalies in the

learning process based on time-series data characteristics, with the objective of

OVRHMM improvement. The approach cannot be used to identify abnormalities

in time-series data, and the clarity of identification results may depend on the

ratio of abnormal values included. The proposed approach helps to resolve these

issues and provides high classification performance in consideration of time-series

information relating to signals, as well as allowing more detailed anomaly detec-

tion than the previous method. In the artificial signal experiment, the approach

produced less misidentification than the OVRHMM, indicating its suitability for

this purpose. In experiments with simulated care tasks, motion classification

performed with characteristics determined from motion capture demonstrated

the method’s superiority over other approaches. The results indicated that the

approach involves the use of a sufficiently general-purpose stochastic model struc-

ture for anomaly detection in time-series data. It should be noted that the method

incorporates a number of points that will require improvement in future work.

Although this paper discusses the probabilistic anomaly detection method

based on complementary event models and the training method, it should be

noted that the proposed approach incorporates a number of points that will re-

quire improvement in future work.

As reported in Section 2, learning was significantly slower than that of the

EM algorithm because the proposed NACGMN employs the constrained error

back-propagation method. High-speed parameter optimization is required for
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implementation with myoelectric prosthetic hands, either with improved param-

eter updating or faster hardware. Adaptive adjustment of the learning rate is

an effective way to speed up parameter updates, and this can be achieved with

the AdaGrad algorithm [52] and a terminal attractor [53]. Research on GMM

hardware acceleration [54, 55] has also indicated the effectiveness of implemen-

tation on the field-programmable gate array (FPGA). In future work, it will be

necessary to consider faster learning from both software and hardware based on

these methods.

In consideration of discussions regarding issues with the proposed method, the

authors plan to revalidate the characteristics of the NACGMN for high discrimi-

nation capacity with very limited training data sets. In application to biological

signal classification with few training samples, work is needed to examine the

network’s applicability to classification in regard to individual differences. Fur-

ther work is also needed to clarify the versatility of the NACGMN with learning

from individuals and the trade-off between the number of samples in the target

cluster and NACGMN capacity. One approach in this regard may involve reusing

a NACGMN model trained for a particular subject for other subjects in motion

classification using EMG signals.

Sections 3 and 4 highlight the difficulty of developing training with relaxed

statistical restrictions for the HMM and HSMM. Stable estimation of covariance

matrix content for real data is extremely challenging, but this can be addressed

with the addition of a correction term during parameter estimation. However,

as this process adversely affects identification accuracy, learning based on log-

linearization is required. Since the outcomes described in Section 4 demonstrate

the effectiveness of HSMMs with unlearned states, a new stochastic neural net-

work needs to be developed based on this structure. For more efficient learning,

the advance determination of appropriate hyperparameters (such as the number

of states and components) is important. Future work will also involve considera-

tion using an infinite GMM [56] and an infinite HMM [57] for pre-learning.

As the proposed approach enables only determination of the presence or ab-
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sence of abnormalities in the application of technology for disease diagnosis, the

structure of the unlearned class involves a simple black-box technique, and the

characteristics of outliers cannot be known. To address this, analysis of struc-

ture from samples in the unlearned class is required. As no prior information

on unlearned classes can be obtained, future work will involve application of the

nonparametric Bayes method for learning hyperparameters [56, 57].

The proposed method is regarded as an anomaly detection approach, and is

intended for application to diagnostic support for biological signals and medi-

cal data as well as machine failure detection. In classification with innumerable

discrimination targets using this approach, only certain important elements are

identified and other events are placed in the unlearned class, thereby avoiding sig-

nificantly reduced discrimination accuracy. Related issues include human motion

classification, for which the experiment results outlined here show the method’s

effectiveness. In future work, the approach will be applied to automatic genera-

tion of action records in combination with wearable sensors and stable control of

myoelectric prosthetic hands.

To improve classification performance with the proposed method, future work

will also include the development of a classification model integrating the NACGMN

and OVRHMM unlearned class detection approaches, with the integrated classi-

fier defined as a novel probabilistic recurrent neural network capable of consid-

ering unlearned class data. In contrast to regular novel technique development,

the introduction of expertise on conventional neural networks to the NACGMN

is also important. As the NACGMN model is more applicable to the handling

of low-dimensional data, it requires reduction for high-dimensional input. Hence,

the introduction of a convolution layer to enable feature extraction, dimension

reduction, handling of image data and a wider application range is also desir-

able. The capacity for end-to-end learning from the feature extraction section

to the a posteriori probability calculation section via model integration will also

enable fine-tuning of the encoder section during NACGMN training. Accord-

ingly, the generation of feature vectors that are difficult to misidentify in the
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unlearned class will be possible. Consideration of various functional extensions

based on additional PDF introduction is expected to support the proposed un-

learned class estimation for use as a classifier providing superior versatility and

discrimination performance. Gamma distribution, Rayleigh distribution, John-

son SU distribution and others are candidates for expansion, but the definition

of complementary event distribution for each PDF is a significant issue, and the

linearization of complex functions such as the gamma function is important. Fu-

ture work will require the development of a new neural network technology that

supports simple understanding via probabilistic-model introduction and fusion.
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A Appendix: Complementary Gaussian distri-

bution

In the proposed method, the distribution of abnormal samples unexpected in

the training phase was defined as

h (x; k,m) = D−1(2π)−
D
2 ε−1

k,m |εk,mΣk,m|−
1
2

× (x− μk,m

)T
Σ−1

k,m

(
x− μk,m

)
× exp

{
−1

2

(
x−μk,m

)T
(εk,mΣk,m)

−1(x−μk,m

)}
. (A–1)

By substituting q(x) as defined in Eq. (2–3) into this definition, Eq. (2–6) can

be derived.

Here, the antiderivative of h (x; k,m) can be derived for x. When x′ =

x− μk,m and S = εk,mΣk,m are set, the antiderivative is expressed as∫
h (x; k,m) dx

= Aεk,m

∫
dx′ x′TS−1x′ exp

(
−1

2
x′TS−1x′

)
. (A–2)

Here, A is defined as

A = D−1(2π)−
D
2 ε−1

k,m |εk,mΣk,m|−
1
2 . (A–3)

As S is symmetric and positive semi-definite, the eigenvalues of S: {λ1, · · · , λD}
satisfy λd ≥ 0 (d = 1, · · · , D). Using an orthogonal matrix Φ = {v1, · · · , vD},
S−1 can also be diagonalized as

R = ΦTS−1Φ

= diag
(
λ−1
1 , · · · , λ−1

D

)
(A–4)

where vd (d = 1, · · · , D) represents eigenvectors of S−1. When z = ΦTx′ is set,
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Eq. (A–2) can be transformed as

Aεk,m

∫
dz zTRz exp
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−1

2
zTRz

)
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Consideration of the dth element produces∫
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d z2d exp
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These results can be substituted into Eq. (A–5) to prove

Aεk,mD(2π)
D
2 |εk,mΣk,m|

1
2 = AA−1

= 1. (A–7)

Thus,
∫

h (x; k,m) dx = 1 is met. When εk,m > 0 is met, A > 0, −2q (x) ≥ 0

and exp [q (x)] > 0 are also met. Hence, h (x; k,m) ≥ 0 can be met for arbitrary

values of x. Accordingly, it is proved that CGD h is a probability density function.
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