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Abstract

In recent years, with the development of technologies such as the Internet of
Things (IoT) and cyber-physical systems (CPS), research that applies them to
various fields has attracted attention.　 In particular, with the aging society and
the shortage of medical staff, the demand for research on medical ICT that ap-
plies information and communication technology to medical care is increasing.
Among them, the anesthesia control technology during surgery is that can

reduce the burden on anesthesiologists, which is lacking in the medical field,
and is expected to contribute to the efficiency and reliability of medical care. In
order to control proper anesthesia, it is necessary tomeet various restrictions and
requirements based on medical knowledge and laws. The medical guidelines
provide guidelines for dosages that take patient safety into consideration, which
is one of the restrictions in anesthesia control. In addition, while satisfying these
restrictions, theBIS (Bispectral index) valueused to evaluate the sedative effect of
anesthesia during surgery and the vital vitality for evaluating the analgesic(pain
reduction) effect such as pulse wave and heart rate (HR) should be within an
appropriate range. It is also required that the time from the start of surgery until
various vitals fall within the appropriate range (anesthesia induction time) and
the time until the BIS value after the end of surgery returns to the value at which
the patient awakens are as short as possible.
On theotherhand, thepopulationofdiabetic patients is increasingworldwide,

and maintaining good health is becoming a social issue. In particular, insulin
therapy for diabetics is based on blood sugar levels in daily life, including sleep.
The dose must be calculated administered by the patient, which imposes a
heavy psychological burden for them. In addition, the number of patients with
congenital type 1 diabetes called childhood diabetes is increasing. However, if
the patient is a child, there is also an increased risk of accidents such as forgetting
to take improper doses or administering them.
For both problems of anesthesia and blood glucose control using insulin for

diabetic patients, methods for controlling the desired value have been studied.
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Abstract viii

In those studies vital changes due to medication are predicted using a model.
However, there is a problem that existing numerical models do not completely
take into account individual differences of patients and time-varying effects of
drugs that change from moment to moment.
Based on these problems, this thesis proposes a predictive control system for

patient vitals based on this study using a recurrent neural network (RNN). In
the proposed system, RNNs are used to model patient efficacy as a non-linear
time-varying system.
In theproposed system, in this study, in improving the identification (learning)

accuracy of the prediction model by RNN, two main problems were raised and
proposals were made for each.
One is the stochastic gradient descent method (SGD), which is generally used

for learning RNNs. In SGD, there is a problem that the estimation accuracy
of the model changes depending on the value learning rate. In this study,
we analysed theoretically the relationship between the learning rate and the
learning stability, and proposed a method of adaptively updating the learning
rate under the condition that the stability of the RNN can be guaranteed.
Secondly, if the vital data used for model training contains artifacts due to

measurement errors or contamination with other vitals such as ECG, there is a
problem that the identification accuracymaydecrease due to the artifacts. In this
study, a method to detect artifacts from the context of vital data is proposed. In
particular, this thesis proposes a method specialized in detecting instantaneous
artifacts such as R waves of ECG, and erroneous due to the detection threshold.
Also, it is considered that the detected / undetected trade-off and its effect on
vital estimation using RNN.



あらまし

近年，Internet of Things (IoT)や Cyber Physical System (CPS)などの技術の
発展に伴い，これらを様々な分野に応用した研究への注目が集まっている．特に，
高齢化社会や医療従事者の不足といった問題に伴い，情報通信技術を医療へ応用
した医療 ICTの研究の需要は高くなっている．
その中でも，手術中における麻酔の制御技術は医療現場において不足している

麻酔医の負担を軽減できる技術であることから，医療の効率化や高信頼化への貢
献が期待されている．高信頼な麻酔の制御を行うためには，医学的な知見や法律
に基づいた様々な制約や要求を満たす必要がある．法律に基づいたガイドライン
や文章には，患者の安全を考慮した投与量の目安が記載されており，これが麻酔
制御における制約として挙げられる．また，その制約を満たしつつ手術中の麻酔
による鎮静作用評価に用いられるBIS　 (Bispectral index)値や，脈波・心拍 (HR:
Heart rate)などから得られる鎮痛作用評価に用いられるバイタルを適切な範囲に
収めること，手術開始してから各種バイタルが適切な範囲に収まるまでの時間（麻
酔導入時間）および手術終了してから患者が覚醒するまでにかかる時間がなるべ
く短くなることが要求される．
一方で，糖尿病患者の人口も世界的に増加傾向にあり，彼らの健康維持も一つ

の社会問題となっている．特に,糖尿病患者のインスリン療法は日常生活で睡眠時
も含めた血糖値に基づいて投与量を計算して自己投与しなければならず，患者に
対する精神的負担も大きい．そして小児糖尿病と呼ばれる先天的な１型糖尿病患
者も増加しているが，患者が小児の場合は投与を忘れることや不適切な量を投与
してしまうなどの事故のリスクも増加すると考えられる．
これらの，手術中麻酔および糖尿病患者へのインスリンを用いた血糖値制御と

いう問題に対して，医師および患者の負担軽減および安全保障のために投薬によ
るバイタル変化を，数値モデルを用いて予測しバイタル値を所望の値に制御する
ための方式が研究されているが，既存の数値モデルは患者の個人差や時々刻々と
変化する薬の効き方の時変性まで考慮されてないという問題がある．これらの問
題に基づいて，本研究ではリカレントニューラルネットワーク（RNN）を使用し
た予測に基づく患者のバイタルの予測制御システムを提案した．提案されたシス
テムでは，患者の薬効を非線形時変システムと仮定し RNNによってモデル化し

– ix –



あらまし x

ている．
提案システムにおいて本研究では，RNNによる予測モデルの同定（学習）精度

を向上させるにあたり主に二つの問題を提起しそれぞれに対して提案を行った．一
つ目の問題として，RNNの学習に一般的に用いられる確率的勾配降下法（SGD）
についてであるが，SGDでは設定した学習率によりモデルの推定精度が変化して
しまうという問題がある．その問題に対して本研究では，学習率と学習安定性の
関係を理論的に解析し，RNNの安定性が保証できる条件を満たすように学習率を
適応的に更新する方法を提案した．また，モデルの学習に用いるバイタルデータ
に測定ミスやECGなどのほかのバイタルの混入によるアーティファクトが含まれ
る場合，アーティファクトによって同定精度が低下する恐れがあるという問題があ
る．その問題に対して本研究では，アーティファクトをバイタルデータの前後関
係から検出する手法を提案した．特に，ECGのR波などの瞬時的なアーティファ
クトの検出に特化した手法を本研究では提案し，検出閾値による誤検出・未検出の
トレードオフおよびそれがRNNを用いたバイタル推定に及ぼす影響を考察した．



Chapter 1

Introduction

In recent years, services that can make people life convenient, such as cyber-
physical systems (CPS), have been attracting attention. Along with this, the
application of machine learning (ML) and data science to the medical field is
being studied to support the medical field, which is in a difficult situation due
to the aging population and the shortage of medical staffs [4, 5, 6].

Figure 1.1 Cyber Physical System (CPS) for medical application

– 1 –



Chapter 1. Introduction 2

The shortage of medical staff,(e.g., anesthesiologists) presents major problem
[7, 8]. The shortage of anesthesiologists may lead to poor management of
the patient’s anesthesia and an increased risk of postoperative sequelae. To
ameliorate this problem and to ensure the safety of surgical operations, dosage
control systems for total intravenous anesthesia (TIVA) have been proposed
[9, 10].
While, as another problem, The population of diabetics is also increasing

around the world [11], and maintaining their health has become a social prob-
lem. In particular, insulin therapy for diabetic patients imposes a heavy mental
burden on the patients because the patients themselves adjust the dose based
on the blood glucose level even during sleep in daily life. In addition, the
number of patients with congenital type 1 diabetes called childhood diabetes is
increasing, but in the case of children, the risk of accidents such as forgetting
to administer or administering an inappropriate amount is thought to increase.
Based on these issues, glycemic control systems using glycemic sensors and
insulin pumps have been studied for the treatment of diabetic patients [11] [12].
To improve performances of those dosage control system, control method

using model predictive control (MPC) were proposed [13, 14, 15, 16, 17, 18].
TheMPCmethod is effective to control complex conditions such as maintaining
patient health, assuming the model is accurate. As the model of the drug effect
in human body, the parametric model was built with the assumption that drug
absorption in the human body is limited to four fluid compartments. Moreover,
scientific researchers have proposed the estimation scheme of time variation of
vital value using a parametric model [19, 20] and extended Kalman filter (EKF)
[21, 22].
However, although the relationship betweendrug concentration in the human

body and drug effect assumed to be estimated by nonlinear equation [20], the
full picture of the action mechanism of drugs is much more complicated. There
are more hidden factors like degradation of the liver function through alcoholic
liver disease [23] or stimulation to the patients by the treatment during surgery
[17, 18].
Considering those problems, this paper proposes an estimation systemof time

transition of vital value using recurrent neural network (RNN). Since the vital
changes due to drug administration can be assumed to be a nonlinear time-
varying system, in this study, the model constructed by RNN was applied in
order to predict the dosing response.
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Figure 1.2 shows the conceptual diagram of our proposed system.

Figure 1.2 The conceptual diagram of the proposal

The flow of the processing is as follows:

Step1. The vital monitors measures the current vital value of the patient.

Step2. The vital monitors sends the current vital value to the ML server.

Step3. The ML server updates the RNN model using the current vital values
with following learning algorithm.

Step4. The ML server calculates the optimum dosage by the prediction using
RNN model.

Step5. If the medical doctors accepted the optimized dosage, The ML server
sends the control command (the optimized dosage) to the infusion pump.
Otherwise, the medical doctors decides the dosage.

Step6. The dosage controller controls the infusion pump based on the received
command.

Step7. Back to the Step 1 and repeat the Step 1-6 until the infusion is finished.

In general, stochastic gradient descent (SGD) is used to learn neural networks.
However, the stability of the scheme learned by SGD dependent on the learning
rate to update the network parameters. In previous research on similar issues,
although other scientific researchers proposed an estimation scheme of time
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transition of drug effects using neural networks [24, 25, 26], the stability of those
schemeswere not discussed. Hence, this paper proposes learning the prediction
model using the RNN to predict the anesthetic effect considering the network
stability.
In addition, vital data may contain artifacts due to measurement errors and

contaminationbyother vital signals (ECG,EMG, etc.). LearningRNNswithdata
that contains artifacts and predicting significant changes causes the problem of
poor estimation performance. Based on this, in this study, it is proposed that
an artifact detection and removal method using difference value information,
assuming that the sample values of the vital data before and after are close to
each other when the artifact is not included.
The main contribution and novelty of the manuscript are as follows

1. The stability of the RNN is analyzed based on Lyapunov analysis [27, 28].
From the analysis, the condition of the stability and optimum learning
rate for each parameter in the RNN model are derived. Furthermore, the
manuscript proposes the scheme that learning rate updates adaptability
and make identification speed faster within a condition of stability.

2. To prevent the prediction performance fromdeteriorating due to the artifacts
of each vital, this thesis proposes an artifact detectionmethod based on the
difference before and after the vital data. Then, the trade-off between false
positive and false negative of the artifact detection performance based on
the threshold value of the proposed detection method was theoretically
analyzed.

3. Novel performance evaluations considering various patient are conducted.
Especially, the proposed method was compared with the existing learning
methods SGD, RMSprop, and Adam. From the evaluation, the efficiency
of our proposed scheme is confirmed and discussed. Also, it is confirmed
and discussed that the case where the performance of proposal became
lower compared with existing method.

This paper is organized as follows. In Chap.2, related description and prob-
lems about ML for application of drug administration. In Chap. 3, the whole
system model of the proposed scheme is explained. In Chap. 4, modeling
and estimation scheme of drug effect using RNN is explained. In Chap. 5,
the dependable learning algorithm based on theoretical analysis of the learning
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stability is performed and the optimum learning rate is discussed. In Chap. 6,
the pre-processing method of the vital data for the artifact detection and can-
cellation is explained. in Chap. 7, conclusions our work and discussion of the
future research are described.Figure 1.3 shows the relation of these chapters in
the paper.
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Figure 1.3 Flowchart of the thesis



Chapter 2

Related Description

2.1 Existing study to predict drug effect usingNeural
Networks

2.1.1 Overview of the related study

In the section, the related description about vital estimation using Neural
Networks. Several studies have proposed methods for predicting vital changes
due to medication. In the paper[24, 25], prediction scheme of blood glucose
level usingNeural Networks is proposed. Moreover, in the paper[26] prediction
scheme the behavior of vital that indicates hypnotic and analgesic effect using
Neural Network.
However, there is a problem that these studies do not theoretically decide

the hyper-parameters of neural networks. In particular, for existing learning
methods (e.g. SGD ,RMSprop, Adam), The learning speed accuracy changes
depending on the parameter design.In addition, it is considered that the op-
timum values of the parameters that determine the learning speed to differ
depending on the handled data and the patient to be estimated. Therefore, con-
sidering that it is formedical use, it can be said that it is necessary to theoretically
support the parameters used for learning in order to guarantee the accuracy of
prediction.
In addition, vital data sometimes contains electrical signals derived fromother

vitals called artifacts. It can be said that the prediction accuracy will decrease
if learning is performed using data that includes artifacts. However, there is
a problem that the method for detecting artifacts has not been examined in
existing studies[24, 25, 26].

– 7 –



Chapter 2. Related Description 8

2.1.2 Existing learning algorithm of neural networks

Here, existing learning method to update weights in neural networks.

Stochastic Gradient Decent(SGD)[29, 30]

Stochastic Gradient Descent (SGD)[29, 30] is one of the gradientmethods used
for learning neural networks. Thismethod is different from the gradient descent
method in that training is performed using only one sample of the training data.
Therefore, it can be used for online learning of neural network models.The
neural network weight update formula by SGD is as follows:

w[t+ 1] = w[t]− µ
∂E[t]

∂w[t]
, (2–1)

where, w[t] is the weighting coefficient in the neural network, E[t] is the evalua-
tion function of learning, and µ is the learning rate that determines the learning
speed. As shown in the e.q (2–1), if the learning rate is too small, the weight of
neural networkswill not converge to the optimum solution. Another problem is
that if the learning rate is too large, learning becomes unstable and the optimum
solution cannot be reached. Therefore, it is important to properly determine this
learning rate in order to guarantee the learning performance of neural networks.

RMSprop[31]

RMSprop[31] is one of the improved methods of SGD mentioned above.
Specifically, in RMSprop, the learning rate can be adaptively changed in consid-
eration of the gradient in the past time, thereby preventing the learning from
becoming unstable due to a sudden change in the gradient. The neural network
weight update formula by RMSprop is as follows:

v[t+ 1] = βv[t] + (1− β)(
∂E[t]

∂w[t]
)2

w[t+ 1] = w[t]− µ√
v[t+ 1] + ϵ

∂E[t]

∂w[t]
, (2–2)

where, v[t] is moving average of the the square of the gradient of each weights,
β is the parameter that determines the rate of previous moving average, and
µ is the parameter that determines impact of the current gradient on learning,
and ϵ is the parameter to prevent division by zero. As shown in the e.q (2–2),
since the learning rate adaptively changes according to the moving average of
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the gradient magnitude so far, divergence due to abrupt gradient changes is less
likely to occur compared to SGD. However, RMSprop also has the problem that
the learning result depends on the parameter setting.

Adam[32]

Adam[32] is a learning method that is a further improvement of the above-
mentioned RMSprop. Specifically, by using not only the absolute value of the
gradient but also the moving average of the gradient itself, it is possible to
prevent learning from becoming unstable at the point where the positive and
negative of the gradient changes. The neural network weight update formula
by Adam is as follows:

v[t+ 1] = β1v[t] + (1− β1)(
∂E[t]

∂w[t]
)

s[t+ 1] = βsv[t] + (1− βs)(
∂E[t]

∂w[t]
)2

w[t+ 1] = w[t]− µv[t+ 1]√
s[t+ 1] + ϵ

, (2–3)

where, v[t] is moving average of the gradient of each weights,v[t] is moving
average of the squared gradient in each weights, β1 and β2 are the parameters
that determines the rate of previous moving average, and µ is the parameter
that determines moving average of the gradient of each weights v[t], and ϵ

is the parameter to prevent division by zero. Adam is an improved version of
RMSprop, but the problem remains that performance depends on parameter set-
tings.Although Recommended parameters are also described in the paper[32],
depending on the problem, another better parameter need to be searched.

2.2 Problem in Total intravenous anesthesia case

2.2.1 Overview of demands in total intravenous anesthesia

The shortage of anesthesiologists may lead to poor management of the pa-
tient’s anesthesia and an increased risk of postoperative sequelae. To ameliorate
this problem and to ensure the safety of surgical operations, dosage control
systems for total intravenous anesthesia (TIVA) have been proposed [9, 10].
Generally, the administration of anesthesia during surgery for sedation, analge-
sia, and muscle relaxation of patients has to guarantee patient’s satisfy after the
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operation [33]. For example, the constrained dosage propofol [34] for sedation
and the physiological information indicating anesthetic depth has to be taken
into consideration. Thus the bispectral index (BIS) [1] is often used as an index
of anesthetic depth. Table 2.1 shows the relationship between the BIS value
and the patients’ condition. Hence. it shows that the desired BIS value during
surgery ranges from 40 to 60.

Table 2.1 Bispectral Index [1]
Condition of the patients Value of BIS

Awaken From 90 to 100
Light Hypnosis From 60 to 90
Desired range From 40 to 60
Deep Hypnosis From 0 to 40

2.2.2 Problem in prediction anesthetic effect using recurrent
neural network

Here, the problems in predicting the effect of anesthetics using a recurrent
neural network are described. One problem is that it is necessary to study
the interaction of multiple drugs when predicting the anesthetic effect during
surgery. Specifically, since sedatives and analgesics mutually affect vital signs
such as BIS value, a learningmodel that takes this into consideration is required.
Another problem is that various vitals are assumed to measure during surgery.
Hence, the artifacts from each vital have to be considered during learning of
RNN model. In particular, it has been reported that EMG and ECG-derived
artifacts are mixed in the BIS value[35, 36]. Therefore, it is necessary to perform
pre-processing to remove the artifacts before using the BIS value as training
data.
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System Model

In this section, the process of our proposed system in details is described.

3.1 Overview of the proposed system

3.1.1 Novelty of the proposed system

First, the novelty of this study is described in this section. The novelty of
this study is that in addition to the conventional prediction of drug effects by
neural networks, this thesis proposes a learning method to make the estimation
performance highly reliable. In order to perform model predictive control of
drug dose, it is necessary to guarantee the estimated performance by the model.
Based on this, the following two proposals were made in this study.

1. The stability of the RNN is analyzed based on Lyapunov analysis [27, 28].
From the analysis, the condition of the stability and optimum learning
rate for each parameter in the RNN model are derived. Furthermore, the
manuscript proposes the scheme that learning rate updates adaptability
and make identification speed faster within a condition of stability.

2. Toprevent the prediction performance fromdeteriorating due to the artifacts
of each vital, this thesis proposes an artifact detectionmethod based on the
difference before and after the vital data. Then, the trade-off between false
positive and false negative of the artifact detection performance based on
the threshold value of the proposed detection method was theoretically
analyzed.

– 11 –
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3.1.2 Applicable class of the proposed system

The classes (problems) assumed tobe applied in this studyaredescribed in this
section. First, the problem envisioned in this study is the system identification
problem of significant changes to human medication using RNN. Specifically,
it is assumed that change of the vital (output) by administration (input) is
predicted using RNN. In this system, RNN is used to model the medication
effects of patients. Also, it is assumed that learning of RNN is performed by
vitals sensed from the patient.

3.2 Structure of the proposed system

Figure 3.1 shows the diagram of our proposed system.

Figure 3.1 The block diagram of the proposed system

The aim of the system is to predict an drug effects and optimize drug dosages
based on the prediction. In this paper, the estimation aspect of the system is
focused, in which drug dosagesu[t] are optimized in each time t. The prediction
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is based on estimator usingRNNmodel. Specifically, themedication response to
the human body is regarded as an unknown system, and the system is identified
by RNN. Moreover, the network parameters were updated using training data,
y[t](vital values sensed from the patient).
In next chapter, the overview dependable learning scheme of drug dosage

model usingRNNand the estimation scheme of the vital behavior are explained.



Chapter 4

Dependable learning scheme of
model for predicting drug dosage
effect using RNN

4.1 Predictionmodelusing recurrentneuralnetworks

In this subsection, our proposed RNNmodel for predicting the vital behavior
is described. Figure 4.1 shows the structure of the RNN.

– 14 –
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Figure 4.1 RNNmodel

In our proposed system drug dosages in each time u[t] served as input to
the RNN. In the hidden layer, it is assumed that the time variance of the drug
absorption in the human body is expressed as the feature of nodes. When
applying a neural network to a regression problem, the sigmoid function is
generally used for the hidden layer, so the following sigmoid function σ(x)was
also applied in this study:

σ(x) =
1

1 + e−x
. (4–1)

Here, the hidden layer output h[t] at time t is expressed as follows:

h[t] = σ(Whhh[t− 1] +Wihu[t]), (4–2)

where, Wih is a matrix that summarizes the weights of edges that connect the
input layer to the hidden layer, andWhh is amatrix that summarizes theweights
of edges that connect the hidden layer of time t − 1 to the hidden layer of time
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t. In addition, since output linearity is commonly used in regression problems,
linear output neurons were applied in this study as well. The estimated vital
ŷ[t], which is the output of the RNN model, is expressed as follows:

ŷ[t] = Whoh[t], (4–3)

where, Who is a matrix that summarizes the weights of the edge that connect
the hidden layer to the output layer.
These weight parameters were updated in our RNN model by the learning

algorithm.

4.2 Process flow of the proposed system

Figure 4.2 shows the flowchart of our proposed system.
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Figure 4.2 Flowchart of the proposed scheme
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The tend denotes the end time of the dosing period. In this flowchart, each
vital values y[t] is sensed from patients and used to update RNNmodel in each
time step.
In each step time, weights in the RNN model are updated using learning

algorithm.
In general, weights in the RNN are updated by stochastic gradient descent

(SGD) [29, 30] algorithm. In the SGD algorithm, the weights of the Neural
Network are updated to minimize the value of evaluation function. The eval-
uation function E[t] in each time step is defined as square error between the
training data y[t] and the output of the RNN model ŷ[t] in order to minimize
the prediction error of BIS value. Hence, the function E[t] is defined as follows:

E[t] =
1

2
||y[t]− ŷ[t]||2. (4–4)

Using the evaluate function in (4–4),Here, let W be the set of weights in the
RNN. The weighting factor wi(i = 1, 2, · · · , N(W)) is updated as follows:

wi[t+ 1] = wi[t]− µi
∂E[t]

∂wi[t]
, (4–5)

where, µi denotes learning rate for each weight, and ∂E[t]
∂wi[t]

is partial derivative
of E[t] with respect to wi[t]. Based on (4–5), weights wi[t] are updated sequen-
tially to minimize evaluate function E[t] while the learning of the RNN model
proceeds. However, learning performance depends on the value of the learning
rate µi. When the learning rate µi is too small, the speed to improve the estima-
tion accuracy by the RNN becomes slow. When the learning rate µi is too large,
convergence stability and estimation accuracy using the RNN model cannot be
guaranteed. Therefore, it is analyzed that the stability of learning theoretically
and proposed stable learning scheme using an optimum learning rate µi based
on the analysis. In the Chap. 5, the stability analysis and proposed learning
algorithm is described in detail.
Another problem is that the data obtained at each step time may contain

measurement errors and other vital artifacts. If the data with the artifact is used
to train the RNNmodel, there is a risk that the prediction accuracy of the model
will decrease. Therefore, to improve the reliability of the prediction results by
the model, pre-processing method to detect artifact before learning the RNN.
The details of this method are described in Chap. 6 below.
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Dependable Learning Algorithm
based on Lyapunov Stability Theory

5.1 Overview of the proposed algorithm

This chapter describes an online learning method that improves SGD[29, 30].
First, normal SGD always uses a constant learning rate, but as mentioned in
Chapter 3, the RNN output becomes unstable depending on the value. There-
fore, in the proposed method, the optimum learning rate for each weighting
coefficient is first obtained based on the Lyapunov analysis[27, 28], which is an
analysis method for nonlinear systems, and a stable learning method using it is
proposed. The theoretical analysis of the optimal learning rate will be described
in the next chapter.

5.2 Theoretical analysis and optimum learning rate

In this section, the stability of the learning algorithm is analysed based on
Lyapunov analysis [27, 28]. The Lyapunov analysis is used to analyze the
stability of systems based on the Lyapunov function L(t). From the Lyapunov’s
stability theorem, if the nonlinear function L(t) is positive-definite and the time
derivative of the function L̇(t) takes negative value, the system became stable.
In the discrete-time system, the differential of Lyapunov function∆L[t] = L[t+

1]−L[t] is used to analyze the stability. Here, the condition that the square error
between the RNN output and the true value asymptotically converges to 0 is
analysed. Moreover, since the squared error is a positive-definite function that
is 0 at the origin and takes a positive value otherwise, it can be analyzed as a
Lyapunov function. Thus, the evaluation function E[t] is applied as Lyapunov

– 19 –
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function for the stability analysis in our RNNmodel. The error between training
data y[t] and the output of the RNN model ŷ[t] are expressed as:

e[t] = y[t]− ŷ[t], (5–1)

the Lyapunov function L[t] can be expressed as

L[t] =
1

2
||e[t]||2. (5–2)

From(5–1) and (5–2), timedifferential of Lyapunov function∆L[t] = L[t+1]−L[t]

can be expressed as

∆L[t] = L[t+ 1]− L[t]

=
1

2
(||e[t+ 1]||2 − ||e[t]||2)

=
1

2
(||e[t] + ∆e[t]||2 − ||e[t]||2)

= ∆e[t]T (e[t] +
1

2
∆e[t]) (5–3)

where, ∆e[t] = e[t + 1]− e[t] denotes the differential of error in each time step.
Using partial derivative ∂e[t]

∂wi[t]
and (4–5), ∆e[t] can be also expressed as

∆e[t] =
N∑
i=1

(
∂e[t]

∂wi[t]
)(wi[t+ 1]− wi[t]).

=
N∑
i=1

(
∂e[t]

∂wi[t]
)(wi[t]− µi

∂E[t]

∂wi[t]
− wi[t])

= −
N∑
i=1

(
∂e[t]

∂wi[t]
)(
∂E[t]

∂wi[t]
), (5–4)

where,N denotes the number ofweights inRNN.Here, the relationship between
partial differential ∂E[t]

∂wi[t]
and ∂e[t]

∂wi[t]
can be expressed as

∂E[t]

∂wi[t]
= e[t]T

∂e[t]

∂wi[t]
(5–5)

From (5–4) and (5–5), supposing e[t] , 0, the differential∆e[t] can be re-written
as

∆e[t] =
N∑
i=1

µi

||e[t]||2
e[t](

∂E[t]

∂wi[t]
)2

=
µi

||e[t]||2
e[t]

N∑
i=1

µi||
∂E[t]

∂wi[t]
||2

=
µi

||e[t]||2
e[t]qTµ (5–6)
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where, q = [|| ∂E[t]
∂w1[t]

||2, || ∂E[t]
∂w2[t]

||2, · · · , || ∂E[t]
∂wN [t]

||2]T , µ = [µ1, µ2, · · · , µN ]
T respec-

tively. From (5–6) and (5–3), the differential of the Lyapunov function ∆L[t] =

L[t+ 1]− L[t] can be re-written as

∆L[t] = − 1

||e[t]||2
e[t]TqTµ(e[t]− 1

2

1

||e[t]||2
e[t]qTµ)

= − 1

||e[t]||2
qTµ[||e[t]||2 − 1

2
qTµ]

=
1

4E[t]
qTµ(qTµ− 4E[t]). (5–7)

Therefore, from (5–7), the condition to guarantee stability of the RNN can be
expressed as

0 ≤ qTµ ≤ 4E[t]. (5–8)

While, when the value o qTµ take the upper bound of (5–7) the following
formula is established:

qTµ = 4E[t]. (5–9)

Then, solving the formula (5–9), the optimum learning rate µ∗ can be expressed
as follows:

µ∗ =
4E[t]

||q||2
q. (5–10)

In this paper, learning rate µ is updated adaptively based on (5–10).

5.3 Performance evaluation

5.3.1 Simulation conditions

In this section, some evaluations to confirm the prediction accuracy of our
proposal are performed. Here, assuming the administration of anesthesia to the
patient during surgery, the estimation performance of vitals corresponding to
each of the administration of a sedative and an analgesic is evaluated. First,
the effectiveness of sedatives is assumed to be assessed using the Bispectral
Index (BIS). On the other hand, the effectiveness of analgesics is assumed to be
assessed using the pain index(PI) used in the paper[3].
Thus, the BIS and PI behaviors of 12 patients are simulated to evaluate the

efficiency of our proposal. To simulate the true BIS value for each patient,
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the Schnider and Minto model [19] and response surface model[3] are ap-
plied(Details of those models are disrobed in detail in the Appendix.). Also,
the parameter sets used in [2] is applied; they are shown in Table 5.1.

Table 5.1 Parameter of the Patient model [2]
Patient ID Age Height[cm] Weight[kg] Gender

1 74 164 88 Male
2 67 161 69 Male
3 75 176 101 Male
4 69 173 97 Male
5 45 171 64 Male
6 57 182 80 Male
7 74 155 55 Female
8 71 172 78 Male
9 65 176 77 Male
10 72 192 73 Male
11 69 168 84 Female
12 60 190 92 Male

TheDosages in each time stepwere controlled by the a PID control [37]with an
target BIS value of 50 and that of PI value is 4.5　 that is applied in[3]. The gain of
the PID controllerwas decided based onZiegler-Nichols’method [37] that is one
of the typicalmethods to decide the gain. Furthermore, to evaluate the efficiency
of our proposed scheme, it is compared that the prediction performance of our
proposed scheme with that of the conventional scheme. In the study, proposed
scheme is compared with SGD[29, 30], RMSprop[31],and Adam[32] that is the
generally used learning algorithm to train neural networks. Table 5.2 shows the
simulation parameters.
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Table 5.2 simulation parameters
simulation time[min.] 10

Sampling Period Ts[sec.] 2.0
Gain of the PID controller
Proportional Gain: Kp 0.055

Integral Gain: Ki 0.001
Derivative Gain: Ki 2.68

Target BIS value in the control 50.0
Target PI value in the control 4.5
Parameter for SGD[29, 30]

(Conventional)
Learning rate µ 0.004, 0.04, 0.40

Parameter for RMSprop[31]
(Conventional)

µ 0.004, 0.04, 0.40
β 0.9
ϵ 10−8

Parameter for Adam[32]
(Conventional)

µ 0.004, 0.04, 0.40
β1 0.9
β2 0.999
ϵ 10−8

Number of units in hidden layer N
(the size of weight vectors) 10

Activation function in hidden layer Sigmoid
Activation function in output layer Linear

Number of hidden layers 1

Note that the simulation time indicates the maximum elapsed time since
drugs are first administered to the patient in the simulation. Moreover, it is
assumed that the sampling period of the BIS and PI value from each monitors
to be 2.0 second, which is the same as the BIS monitor used in [1]. The number
of units in the hidden layer was decided experimentally. It is evaluated that
the estimated vital value and the absolute error between estimated BIS value
and the true vital value in each patients. Also, the mean absolute error (MAE)
during surgery which denotes the average of absolute error over a period of
time is also evaluated. The MAE is defined as follows:

MAEi =
1

T

T∑
t=1

|yi[t]− ŷi[t]| (5–11)
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where T denotes the number of samples. yi[t] and ŷi[t] denote the true and
estimated vital values. When the index i is 1, yi[t] and ŷi[t] corresponds to the
BIS value.　 Similarly, when the index i is 2, yi[t] and ŷi[t] corresponds to the PI
value.

5.3.2 Numerical results

Comparison between SGD and proposed scheme

Here, the simulation results is described. The MAE of this period is shown in
Figure 5.1 and 5.2 .

Figure 5.1 Mean Absolute Error in each patient(BIS,Compared with SGD)
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Figure 5.2 Mean Absolute Error in each patient(PI, Compared with SGD)

The MAE values in the proposal are lower than all comparison in all patients.
In particular, MAE value in the case learning rate is fixed to 0.004 takes higher
compared with other case. Next, the performance evaluation for each patient
will be described.　 Figure 5.3 and 5.4 shows the transition of the BIS value of
the Patient 1.
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Figure 5.3 Transition of the BIS value in the Patient 1(Compared with SGD)
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Figure 5.4 Transition of the PI value in the Patient 1(Compared with SGD)

From Fig. 5.3 and 5.4, the estimated BIS and PI value from the proposed
scheme(i.e., blue line) seems to be close value to true value in the simulation
(i.e., the dotted line) compared to the value in the case learning rate is fixed to
0.004 and 0.04.The estimated BIS and PI values in the case learning rate is fixed
to 0.004 and seem to be converged slower compared to the other cases. While,
the estimated BIS and PI values in the case learning rate is fixed to 0.4 seem to
be converged as fast as proposal. However, it can also be confirmed that the
estimated values oscillates in the result when the learning rate is fixed at 0.4
around 1 minute. Especially, estimated BIS value in the case learning rate is fix
to 0.4 oscillates from 80 to 110 of BIS. It is unstable output and can be said that
it cannot be used as a prediction model.
Figure 5.5 and 5.6 shows the squared error between the estimated BIS and PI

values by the RNN model and the true value.



Chapter 5. Dependable Learning Algorithm based on Lyapunov Stability
Theory 28

Figure 5.5 Transition of squared error in the Patient 1(BIS,Compared with
SGD)
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Figure 5.6 Transition of squared error in the Patient 1(PI,Compared with SGD)

From figure 5.5 and 5.6, it is confirmed that the absolute error in the proposal
(i.e., the blue line) takes lower than 5.0 and 1.0. Those worst value are lowest
value compared with the worst values of all conventional. The absolute error in
the case learning rate is fixed to 0.004 sometimes takes higher than 15(BIS) and
5(PI). Also, the absolute error in the case learning rate is fixed to 0.4 takes higher
than 15(BIS) and 2(PI) around 1 minute.
From those results, it is confirmed that the efficiency of our proposed scheme

compared to the scheme with a fixed learning rate in the worst error.
Next, stability of the in each cases are evaluated. From eq. (5–8), stability

index can be defined by following equation:

S(µ) =
4E[t]

qTµ
(5–12)

This equation (5–12) shows that the stability of the output cannot be guaran-
teed when the stability index is 1 or more, but conversely, the stability can be
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guaranteed when the stability index is 1 or less. Figure 5.7 shows the transition
of the stability index S(µ) in the Patient 11.

Figure 5.7 Stability index in the Patient 1

Fromfigure 5.7, it can be confirmed that stability index of the proposed scheme
takes 1.0. It is the theoretical result.Also, it can be confirmed that the stability
in the case learning rate is fixed to 0.4 takes higher than 1.0 and especially takes
higher than 2 around the 1 minute. It can be said that this state is far from the
region where stability can be guaranteed, and it is considered that the estimated
value oscillate significantly in about 1 minute.
Next, fig. 5.8 shows the transition of the power of gradients in the proposed

scheme.
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Figure 5.8 Power of gradients in each weights (Patient 1)

From fig. 5.8, it can be confirmed that the average power of gradients takes
around 10−6 around 1 minutes. However, the average power of gradients be-
come higher around 3minutes and converged after 3minutes. From the result of
fig. 5.8, it can be considered that the solution of the RNN drops local minimum
around one minutes. Therefore, we need to propose the scheme to escape local
minimum in the future works.

Comparison between RMSprop and proposed scheme

Here, the comparison between proposed scheme and RMSprop is described.
The MAE of this period is shown in Figure 5.9 and 5.10 .
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Figure 5.9 MeanAbsolute Error in each patient(BIS,Comparedwith RMSprop)
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Figure 5.10 MeanAbsolute Error in each patient(PI,Comparedwith RMSprop)

The MAE values in the proposal are lower than comparison in the case the
parameter µ is fixed to 0.4 and 0.04 in all patients. In particular, MAE value in
the case the parameter µ is fixed to 0.4 takes higher compared with other case.
However, the MAE values in the proposal are higher than the conventional in
the case the parameter µ is fixed to 0.004 in all patients. Next, the performance
evaluation for each patient will be described. Figure 5.11 and 5.12 shows the
transition of the BIS and PI value of the Patient 1.
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Figure 5.11 Transition of the BIS value in the Patient 1(Compared with RM-
Sprop)
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Figure 5.12 Transitionof thePI value in thePatient 1(ComparedwithRMSprop)

From Fig. 5.11 and 5.12, the estimated BIS and PI value from the proposed
scheme and all conventional seems to be close value to true value in the simula-
tion (i.e., the dotted line). However, it can also be confirmed that the estimated
values oscillates in the result when the parameter µ is fixed at 0.4. In particular,
estimated BIS value in the case the parameter µ is fixed to 0.4 oscillates from 75
to 200 of BIS. It is unstable output and can be said that it cannot be used as a
prediction model.
Next, fig. 5.13 and 5.14 shows enlarged view of fig. 5.11 and 5.12
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Figure 5.13 Transition of the BIS value in the Patient 1(Compared with RM-
Sprop,enlarged view)
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Figure 5.14 Transition of the PI value in the Patient 1(Compared with RM-
Sprop,enlarged view)

From Fig. 5.13 and 5.14, the estimated BIS and PI when the parameter µ is
fixed at 0.04 seems oscillates around 1 minutes. Moreover, the estimated BIS
and PI when the parameter µ is fixed at 0.004 seems to be similar to those of
proposal.
Figure 5.15 and 5.16 shows the squared error between the estimated BIS and

PI values by the RNN model and the true value.
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Figure 5.15 Transition of absolute error in the Patient 1(BIS,Compared with
RMSprop)
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Figure 5.16 Transition of absolute error in the Patient 1(PI,Compared with
RMSprop)

From figure 5.15 and 5.16, it is confirmed that the absolute error in the case the
parameter µ is fixed to 0.4 takes higher value compared with the other results.
Especially, the absolute error takes higher than 120(BIS) and 50(PI) around 1
minute.
Next, fig. 5.17 and 5.18 shows enlarged view of fig. 5.15 and 5.16
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Figure 5.17 Transition of absolute error in the Patient 1(BIS,Compared with
RMSprop,enlarged view)
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Figure 5.18 Transition of absolute error in the Patient 1(PI,Compared with
RMSprop,enlarged view)

From Fig. 5.17 and 5.18, maximum absolute error in each vital when the
parameter µ is fixed at 0.04 takes higher than those of proposal.
Moreover, the estimated BIS and PI when the parameter µ is fixed at 0.004

seems to be similar to those of proposal. It is considered that the reason for
such a result is that the vital signs started to change suddenly from around 2
minutes, so that the speed of change cannot be followed when online learning
is performed at a lower learning rate.
From those results, it is confirmed that the efficiency of our proposed scheme

compared to the scheme with a various parameter µ. It was also confirmed that
the performance of the proposed method may be almost the same as that of
RMSprop depending on the parameter selection.
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Comparison between Adam and proposed scheme

Here, the comparison between proposed scheme and Adam is described. The
MAE of this period is shown in Figure 5.19 and 5.20 .

Figure 5.19 Mean Absolute Error in each patient(BIS,Compared with Adam)
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Figure 5.20 Mean Absolute Error in each patient(PI,Compared with Adam)

The MAE values in the proposal take lower than the case the parameter µ is
fixed to 0.004 and 0.4 in all patients. In particular, MAE value in the case the
parameter µ is fixed to 0.004 takes higher compared with other case. However,
The MAE in the case the parameter µ is fixed to 0.04 take lower value compared
with proposed scheme.
Next, the performance evaluation for each patient will be described. Figure

5.21 and 5.22 shows the transition of the BIS and PI value of the Patient 1.
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Figure 5.21 Transition of the BIS value in the Patient 1(Compared with Adam)
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Figure 5.22 Transition of the PI value in the Patient 1(Compared with Adam)

From Fig. 5.21 and 5.22,It can be seen that the estimated BIS and PI value
from the proposed scheme and all conventional converge to true value in the
simulation (i.e., the dotted line). However, it can also be confirmed that the
estimated values oscillates in the result when the parameter µ is fixed at 0.4.
In particular, estimated BIS value in the case the parameter µ is fix to 0.4 takes
larger than 100 of BIS even though the true value takes around 90. It is unstable
output and can be said that it cannot be used as a prediction model.
Next, fig. 5.23 and 5.24 shows enlarged view of fig. 5.21 and 5.22(from 2 to 5

minutes).
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Figure 5.23 Transition of the BIS value in the Patient 1(Compared with
Adam,enlarged view)
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Figure 5.24 Transition of the PI value in the Patient 1(Compared with
Adam,enlarged view)

From Fig. 5.23 and 5.24,it can be seemed that the estimated BIS and PI when
the parameter µ is fixed at 0.004 converges slowly compared with other cases.
Moreover, the estimated BIS and PI when the parameter µ is fixed at 0.04 and
0.4 seem to be closer to the true value compared with those of proposal.
Figure 5.25 and 5.26 shows the squared error between the estimated BIS and

PI values by the RNN model and the true value.
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Figure 5.25 Transition of absolute error in the Patient 1(BIS,Compared with
Adam)
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Figure 5.26 Transition of absolute error in the Patient 1(PI,Compared with
Adam)

From figure 5.25 and 5.26, it is confirmed that the absolute error in the case
the parameter µe are fixed to 0.004 and 0.4 takes higher value compared with
the other results. Especially,in the parameter µ is fixed to 0.4, the absolute error
takes higher than 10(BIS) and 1.2(PI) around 1 minute.
Next, fig. 5.27 and 5.28 shows enlarged view of fig. 5.25 and 5.26(from 2 to 5

minutes).
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Figure 5.27 Transition of absolute error in the Patient 1(BIS,Compared with
Adam,enlarged view)
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Figure 5.28 Transition of absolute error in the Patient 1(PI,Compared with
Adam,enlarged view)

From Fig. 5.27 and 5.28, absolute error in each vital when the parameter µ is
fixed at 0.004 takes higher than those of proposal. However, it can also be seen
that the absolute error of the proposed method is slightly higher than that of
the conventional method when the parameter µ are fixed at 0.04 and 0.4. The
reason for such a result is that the proposed method uses a learning rate limited
within the range satisfying the stability condition, so that the follow-up speed
for a steep change is suppressed.
From those results, it is confirmed that the efficiency and drawbacks of our

proposed scheme compared to the scheme with a various parameter µ. In
particular, although the advantage of the proposed method is that it does not
require tuning of hyper-parameters, it was also found that Adam gives better
results depending on Adam’s parameter settings. Therefore, it is considered
necessary to further improve the proposedmethod in consideration of the nature
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of Adam.

5.4 Summary of the chapter

This section describes the summary of the proposed stable learning scheme.
This section proposes the stable learning scheme based on the Lyapnov’s sta-
bility of the RNN. Using proposed scheme, the RNN can be learned not to
oscillate the output compared with the some conventional case in the SGD and
RMSprop. Also, it can be confirmed that the output of the RNN can reached
faster using proposed scheme comparedwith the conventional. However, it was
confirmed that Adam gave better results than the proposed method depending
on parameter tuning of Adam.
As the further study, the drawback of the proposal is need to be analysed.

For example, in the proposal, calculation complexity is higher than SGD due
to the calculation of adaptive learning rate. Especially, as the total number of
weighting coefficients increases, the amount of calculation increases. Therefore,
the dimensions and computational complexity of RNNs need to be evaluated.
In addition, although the proposed method was devised by modifying SGD, it
is also an issue to improve the proposed method considering the moment of
gradient like Adam.Furthermore, although the initial value of the weight in the
RNN was determined by performing pre-learning this time, it is also necessary
to evaluate the performance of the proposed method when pre-learning is not
performed. In particular, depending on the initial value, the neural network
converges to a local optimum far from the global optimum solution. Therefore,
it is necessary to analyze based on the existence of the local optimum and
propose a method to get out of the local optimum.



Chapter 6

Pre-processing of the Training Data
for the Artifact Detection

6.1 Overview of the pre-processing and artifacts in
vital data

This chapter describes the artifact detection method for each vital data. First,
in this study, it is assumed that instantaneous artifacts such as ECG R waves as
detection targets. (Artifacts that last for a long time are not included.) Also, as
a premise, the subject in this proposal is time-series data, and it is considered
that it does not change suddenly in adjacent sample times. On the contrary, if it
changes suddenly, it is highly likely that it is an artifact.
Based on the above assumptions, this thesis proposes a method to detect

artifacts based on the difference information by taking the difference between
the previous sample time t− 1 and the current sample time t.

6.2 Pre-processing algorithm using difference of vi-
tal data

Here, the details of the artifact detection method will be described. From the
assumptions mentioned in the previous section, it is considered that the values
before and after the vital data do not change abruptly. Therefore, if the current
data x[t] does not artifact, the difference between the values one step before
∆x[t] is considered to be close to 0. On the contrary, when the current data x[t]

is an artifact, ∆x[t] is considered to be larger than when it is not an artifact.
Based on the above, this thesis proposes an artifact detection method using the
difference before and after each data point. Figure 6.1 shows a flowchart of
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artifact detection.

Figure 6.1 Flowchart of the artifact detection algorithm

As shown in Figure 6.1, first calculate the difference∆x[t] between the current
time data and the data up to one step before. If ∆x[t] is equal to or greater than
the threshold value dt, y[t] is regarded as an artifact, and if not, it is regarded as a
normal value. If even one artifact is detected in the vital data at each time used
for learning by this method, the proposed system warns the vital sensor that it
may contain artifacts and requests that the vitals be re-transmission as shown
in Fig. 4.2.
In this method, there is a false-positive / false-negative trade-off depending

on the threshold value for detecting artifact. Specifically, if the threshold value
is set low, the probability of detecting an artifact (true positive) increases, but
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the probability of treating non-artifact data as an artifact (false positive) also
increases. Conversely, if the threshold is set high, false positives will be low,
but there is a high possibility that artifacts will be missed. Therefore, in the next
section, it is analyzed that theoretically the trade-off between false positives and
true positives.

6.3 Theoretical analysis of trade-off between TP/FP

This chapter describes the trade-off between True positive and False positive
in the results of artifact detection.
First, non-artifact vital observations are modeled as white Gaussian noise is

added to the true value. The observed normal value yn[t] is as shown in the
following equation:

yn[t] = y[t] + n[t]. (6–1)

Here, since the probability density function pn(x) of the amplitude of the noise
n[t] is AWGN, it becomes as follows:

pn(x) =
1√
2πσn

exp(− x2

2σn

). (6–2)

where, σn denotes the standard deviation(SD) of the noise. Next, the vital data
with added artifacts will be described. This is also modeled as adding noise a[t]
to the true value. In other words, the equation is expressed as follows:

yo[t] = y[t] + a[t]. (6–3)

Assuming that the mean amplitude of the artifact is ā and the probability den-
sity function of the amplitude is normally distributed with the variance of the
amplitude σa, then the probability density function of the amplitude of a[t] can
be expressed as follows:

pa(x) =
1√
2πσa

exp(−(x− ā)2

2σa

). (6–4)

Here, assuming that the error between the true values of the y[t] and y[t] approx-
imated to be 0, The difference when the vital values of the adjacent step times
are both normal values is expressed by the following equation:

∆y[t]nn = yn[t]− yn[t− 1]

= (y[t] + n[t])− (y[t− 1] + n[t− 1])

= n[t]− n[t− 1]. (6–5)
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Since n[t] and n[t − 1] are independent and the probability density function
is expressed by eq. (6–2), based on the reproductive property of the normal
distribution, theprobability density function of∆y[t]n is representedby anormal
distribution with mean 0 and variance 2σ2

n:

pdnn(x) =
1

2
√
πσn

exp(− x2

4σn

). (6–6)

While, if an artifact is observed in the step time t − t and current step time t

is not, the difference between the observed values ∆y[t]an a is expressed by the
following equation:

∆y[t]an = yn[t]− yn[t− 1]

= (y[t] + n[t])− (y[t− 1] + a[t− 1])

= n[t]− a[t− 1]. (6–7)

Here, n[t] and a[t − 1] are independent of each other, and a[t − 1] is expressed
by the probability density function of eq. (6–4) and n[t] is expressed by the
probability density function of eq. (6–2). Therefore, from the reproductive
property of the normal distribution, the probability density function of ∆y[t]an

(pdan(x)) is represented by the normal distribution with mean −āand variance
σ2
n + σ2

a:

pdan(x) =
1

2
√

π(σ2
n + σ2

a)
exp[− (x+ ā)2

2(σ2
n + σ2

a)
]. (6–8)

In other words, the probability density function when the value of the current
step is a normal value is expressed by a gaussian mixture model of equations
(6–6) and (6–8):

pda(x) = αpdnn + (1− α)pdan

=
α

2
√
πσn

exp(− x2

4σn

) +
1− α

2
√
π(σ2

n + σ2
a)

exp[− (x+ ā)2

2(σ2
n + σ2

a)
], (6–9)

where, α denotes the abundance ratio of normal values in the data. Also,
the cumulative distribution function of the normal distribution with mean x̄

variance σ2 can be expressed as follows:

P (x) =

∫ x

−∞

1

2
√
πσ2

exp[−(a− x̄)2

2σ2
]da

=
1

2
erfc(−x− x̄√

2σa

), (6–10)
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where, erfc(x) is called the complementary error function and is defined by the
following equation:

erfc(x) =
2√
π

∫ ∞

x

exp(−t2)dt. (6–11)

Therefore, considering that it is determined to be an artifact when the differ-
ence ∆y[t] is equal to or greater than the threshold value dt, the probability that
a normal value is determined to be an artifact from the equation (false positive
probability) PFPR(x) is as follows:

PFPR(x) =

∫ ∞

dt

pdn(x)dx

=

∫ ∞

dt

α

2
√
πσn

exp(− x2

4σn

) +
1− α

2
√

π(σ2
n + σ2

a)
exp[− (x+ ā)2

2(σ2
n + σ2

a)
]dx

= α[1− 1

2
erfc(− x

2σn

)] + (1− α){1− 1

2
erfc[− x+ ā√

2(σ2
n + σ2

a)
]}

= 1− α

2
erfc(− x

2σn

)− 1− α

2
erfc[− x+ ā√

2(σ2
n + σ2

a)
]. (6–12)

While, if an artifact is observed in the step time t and previous step time t− 1

is not, the difference between the observed values ∆y[t]na a is expressed by the
following equation:

∆y[t]na = yn[t]− yn[t− 1]

= (y[t] + a[t])− (y[t− 1] + n[t− 1])

= a[t]− n[t− 1]. (6–13)

Here, a[t] and n[t− 1] are independent of each other, and a[t] is expressed by the
probability density function of eq. (6–4) and n[t] is expressed by the probability
density function of eq. (6–2). Therefore, from the reproductive property of
the normal distribution, the probability density function of ∆y[t]a (pda(x)) is
represented by the normal distribution with mean āand variance σ2

n + σ2
a:

pda(x) =
1

2
√

π(σ2
n + σ2

a)
exp[− (x− ā)2

2(σ2
n + σ2

a)
]. (6–14)

Therefore, from eq. (6–14), the probability that an artifact can be detected
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correctly(True Positive Rate: PTPR(x)) can be expressed as follows:

PTPR(x) =

∫ ∞

dt

pda(x)dx

=

∫ ∞

dt

1

2
√
π(σ2

n + σ2
a)

exp[− (x− ā)2

2(σ2
n + σ2

a)
]dx

= 1− 1

2
erfc(− x− ā√

2(σ2
n + σ2

a)
). (6–15)

Using the TPR/FPR theoretical formulas shown in equations (6–12) and (6–15),
the next section compares the TPR/FPR obtained from the simulation results
with the theoretical formulas and evaluates a trade-off relationship.

6.4 Performance evaluation

6.4.1 Simulation conditions

In this section, some evaluations to confirm the prediction accuracy of our
proposal are performed. Here, assuming the administration of anesthesia to
the patient during surgery, the estimation performance of vitals corresponding
to each of the administration of a sedative and an analgesic is evaluated using
same vital as Chap. 5.
Thus, the BIS and PI behaviors of 12 patients are simulated to evaluate the

efficiency of our proposal. Model used in simulation is the same as Chap. 5 and
parameter of the patient is shown in table 5.1.
The Dosages in each time step were controlled by the same way of Chap.

5. Furthermore, to evaluate the efficiency of the threshold used in the artifact
detection, four type of threshold are given in the simulation.
Table 6.1 shows the simulation parameters.
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Table 6.1 simulation parameters
simulation time[min.] 20

Sampling Period Ts[sec.] 2.0
Gain of the PID controller
Proportional Gain: Kp 0.055

Integral Gain: Ki 0.001
Derivative Gain: Ki 2.68

Target BIS value in the control 50.0
Target PI value in the control 4.5

Learning method Proposed in Chap. 5
Number of units in hidden layer N

(the size of weight vectors) 10
Activation function in hidden layer Sigmoid
Activation function in output layer Linear

Number of hidden layers 1
Signal to Noise Ratio(SNR) [dB] 20
Artifact adding interval [sec.] 30

Artifact parameters
Relative average amplitude 0.56

Relative standard deviation of amplitude 0.10
Relative average amplitude of noise(to normal data) 0.10

Threshold of the proposed scheme 0.14,0.28,0.42,0.56

In this simulation, the detection rate and false detection rate of artifacts and
their influence on vital estimation are evaluated. To simulate the noise in real
vital data, White Gaussian Noise are added in observed vital. The relative
average amplitude of noise shown in the table 6.1 is a relative value supposing
that the average amplitude of standardised vitals is 1. Moreover, to simulate
artifact(e.g. ECGR-wave), artifacts are added to the true value every 30 seconds.
Theprobablydensity functionof the artifact is shown in eq. (6–4) andparameters
are shown in table 6.1. Notice that, this decibel notation is a relative value when
the average amplitude of standardised BIS value is 1. Finally, in the simulation,
threshold of the artifact detection is changed. In the simulation, threshold are
decided to became integer multiple of the

√
2σn. The value σdn =

√
2σn denotes

the SD of the difference ∆y[t]n.

6.4.2 Numerical results

Here, the simulation results is described. The MAE of this period is shown in
Figure 6.2.
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Figure 6.2 Mean Absolute Error in each patient(BIS with artifact)

From figure 6.2, it can be confirmed that the higher the threshold value, the
higher theMAE value. It is considered that this is because if the threshold value
is too high, the number of undetected artifact increases.
Next, the performance evaluation for each patient will be described.　 Figure

6.3 and shows the transition of the BIS value of the Patient 1.
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Figure 6.3 Transition of the BIS value in the Patient 1(with artifact)

From Fig. 6.3, the estimated BIS value in the case that threshold is σdn seems
to take closer to true value compared with other case. Also, it can be confirmed
that estimated BIS in the case threshold are 3σdn and 4σdn sometime deviates
from the true value at the timing when the artifact occurs. This may be because
the threshold is too high to detect the artifact.
Figure 6.4 shows the squared error between the estimated BIS and PI values

by the RNN model and the true value.
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Figure 6.4 Transition of squared error in the Patient 1(BIS,with artifact)

Fromfigure 6.4 and, it is confirmed that the absolute error in the case threshold
are 3σdn and 4σdn (i.e., the blue line) takes higher value.
From these results, it can be confirmed that many undetected cases occur

depending on the threshold value of artifact detection.
Next, relationships between True/False Positive and True/False Negative is

evaluated. Figure 6.5 ,6.6, 6.7 and 6.8 show the distribution of differences in vital
values (standardized) and the judgment results of all patients during simulation
for each threshold.
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Figure 6.5 Distribution of judgment results(Threshold:σdn)
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Figure 6.6 Distribution of judgment results(Threshold:2σdn)
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Figure 6.7 Distribution of judgment results(Threshold:3σdn)



Chapter 6. Pre-processing of the Training Data for the Artifact Detection 66

Figure 6.8 Distribution of judgment results(Threshold:4σdn)

From fig. 6.5 ,6.6, 6.7 and 6.8,it can be seen that the higher the threshold, the
greater the number of undetected artifacts(False Negative). While, it can also
be seen that the lower the threshold value, the greater the number of erroneous
defections of normal values(False Positive). In this proposed system, the more
false positives, the more times the determiner warns the system. Therefore, it
can be said that the threshold value for artifact detection needs to be determined
in consideration of the trade-off between false detection and non-detection.
Finally, the theoretical value of the ROC curve and the simulation result are

compared in order to evaluate the trade-off relationship between TPR and FPR.
The theoretical value of ROC curve is calculated using eqs. (6–12) and (6–15).
Figure 6.9 shows the ROC curve and TPR and FPR evaluated in the simulation.
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Figure 6.9 ROC curve

From the figure, it can be seen that the TPR / FPR calculated from the simu-
lation results generally agrees with the theoretical values derived in previous
sections. For each simulation value, the false positive rate is almost 0 in the
result when the threshold value is 4σdn. However, since the detection rate is
about 0.5, it can be seen that about half of the artifacts cannot be detected.　
While, when the threshold value is 1, the TPR is close to σdn. However, the false
positive rate is also around 0.15. This means that an artifact detection warning
is issued to the system once every 10 samples on average, and it can be said that
the load on the system due to the warning is higher than in the case of other
threshold values. Regarding the results when other threshold values are used,
it can be said that when the threshold value is 2σdn, the value is closest to the
cutoff point (FPR = 0, TPR = 1) of the ROC curve and is close to the equilibrium
point of the trade-off.　 Finally, looking at the results at threshold 3σdn, it seems
that they are farther from the cutoff point than at threshold 2σdn, and the TPR is
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about 0.15 lower.

6.5 Summary of the chapter

This section describes the summary of the proposed stable learning scheme.
This section proposes the artifact detection method using difference of the data.
Also, theoretical analysis of trade-off between TPR/FPR in the detecting artifacts
using proposed scheme is performed. Numerical evaluation shows the effect
of artifact in the learning of RNN. Furthermore, the trade-off of TPR / FPR
due to the threshold of artifact detection and its effect on the system were also
considered.
Future issues include not only the instantaneous artifacts assumed this chap-

ter, but also countermeasures when continuous artifacts are mixed in the learn-
ing data. In particular, it seems to be sufficient to determine whether the data
that appear to be continuous artifacts are true artifacts or due to abrupt changes
in pharmacokinetics and pharmacodynamics of the patient. In addition, con-
sidering the practicality, it is also an issue to propose a method of learning the
probability distribution of the amplitude of the artifact and determining the
artifact detection threshold based on the learning result.



Chapter 7

Conclusion and future works

7.1 Conclusion

This thesis proposes a dependable learning scheme for the prediction model
of the drug effect using RNN. RNNs are effective in identifying non-linear and
non-stationary systems. However, in order to performmore reliable learning, it
is necessary to consider the characteristics of vitals used for parameter tuning
and learning. Based on the above, this thesis made two proposals in order to
make the prediction of drug effect by RNN more dependable.
First, when predicting the medication effect with RNN, the stability of the

output of RNN is important. From the point of view, this thesis proposed a
method that can learn at high speed without making the output of the neural
network unstable during learning. In particular, the stability of the RNNmodel
is analysed using Lyapunov analysis and the optimum learning rate for each
parameter of the RNN model is derived. The prediction performance of our
proposed scheme against a conventional learning method is evaluated by the
numerical simulation.
It is also proposed that an artifact detection method using the difference in

vital data in order to improve the robustness against artifacts derived from the
electrocardiogram mixed in vitals. It also evaluated that the trade-off between
TPR and FPR (TNR and FNR) of artifacts due to the threshold value in artifact
detection in the proposed method.

7.2 Future works

In the future research, It is necessary to study a method for predicting and
controlling the medication effect using the proposed system. For that purpose,
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the effective control scheme of drug effect using the RNN model learned with
our proposed scheme should be considered. Furthermore, it is necessary to
consider a method for detecting not only the instantaneous artifacts assumed
this time but also continuous artifacts. In addition, the proposed scheme should
be implemented for using similar applications. For example, the application to
predict risk of the car accident andautonomous car control shouldbe considered.



付録 A

Numerical model of anesthetic effect

This section describes numerical model of the drug effects which is applied in
numerical evaluation.

A.0.1 Compartmental model

In this study, it is applied that the fourth-order compartmental model pro-
posed by Schnider and Minto [19] as the Pharmacokinetic (PK) and Pharma-
codynamics (PD) model for Propofol (Sedative) and Remifentanil (Analgesics).
The compartmental model is shown in Fig. A.1 and expressed as

Ċ1(t) = −(k1o + k12 + k13) · C1(t) + k21 · C2(t)

+k31 · C3(t) +
u̇(t)

V1

Ċ2(t) = k12 · C1(t)− k21 · C2(t)

Ċ3(t) = k13 · C1(t)− k31 · C3(t)

Ċe(t) = −ke · Ce(t) + ke · C1(t). (A–1)

where, Ci represents the concentration in the compartment i and Ce denotes the
concentration in the effect site compartment[mg/L], kij (i , j) is the drug absorp-
tion frequency from compartment i to j, k1o is the drug metabolize frequency
from compartment 1 and ke is the drug absorption frequency from compart-
ment 1 to effect site compartment and the frequency of drug removal from effect
site compartment, The parameter u̇ represents the drug infusion rate [mg/s],
and Vi is the volume of the compartment i respectively. In the Model [19], it
is assumed that the effect site compartment is included in the compartment1.
Consequently, the drug concentration of the compartment 1 is not decreased by
the drug absorption to the effect site compartment.

– 71 –



付録 A. Numerical model of anesthetic effect 72

Figure A.1 PK-PD model

Each rate constant and volume of each compartment are modeled by age,
weight, height andgender .In thehypnotic drug case, eachparameter aredefined
as follows[19]:

k1o =
Cl1
V1

[s−1], k12 =
Cl2
V1

[s−1], k13 =
Cl3
V1

[s−1]

k21 =
Cl2
V2

[s−1], k31 =
Cl3
V3

[s−1], ke = 0.0076[s−1]

V1 = 4.27[L],V2 = 18.9− 0.391 · (a− 53)[L]

V3 = 2.38[L]

Cl1 = [1.89 + 0.456(w − 77)− 0.0681(lbm− 59)

+0.264(h− 177)]/60[L/s]

Cl2 = [1.29 + 0.024(1− 53)/60[L/s]

Cl3 = 0.0139[L/s], (A–2)

where, Cli is the rate at which the drug is removed from compartment i and
parameters a,h and w denotes age, height[cm] and weights[kg] of the patients
respectively. Also, the parameter lbmmeans lean body mass and the parameter
is defined as follows:

lbm =

{
1.1 · w − 128w2

h2 (male)

1.07 · w − 148w2

h2 (female)
. (A–3)
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Similarly, parameters for analgesics are defined as follows[2]:

k1o =
Cl1
V1

[s−1], k12 =
Cl2
V1

[s−1], k13 =
Cl3
V1

[s−1]

k21 =
Cl2
V2

[s−1], k31 =
Cl3
V3

[s−1], ke = 0.595− 0.007(a− 40)[s−1]

V1 = 5.1− 0.0201(a− 40) + 0.072(lbm− 55)[L],

V2 = 9.82− 0.0811(a− 40) + 0.108(lbm− 55)[L]

V3 = 5.42[L]

Cl1 = [2.6− 0.0162(a− 40) + 0.0191(lbm− 55)]/60[L/s]

Cl2 = [2.05 + 0.0301(a− 40)/60[L/s]

Cl3 = [0.076− 0.00113(a− 40)]/60[L/s]. (A–4)

A.0.2 Hill equation and response surface model

The BIS value is related to the effect site concentration. The empirical static
relationship is typically expressed by the nonlinear function: Hill equation [20]

BIS(t) = fb(Ce(t)) = E0(1−
Ce(t)

γ

Ce(t)γ + ECγ
50

) (A–5)

where, E0 denotes the value of BIS when effect site concentration Ce is zero,
EC50 denotes concentration of effect site compartment when value of BIS is
E0/2 ,and γ denotes steepness of BIS variation depending on change of effect
site concentration Ce respectively.
Similarly, the pain index(PI)[3]may be related to the concentration of the effect

side. In addition, sedatives and analgesics interact with each other for BIS and
PI values. Considering those phenomenon, in the paper [3], a response model
that extends Hill’s equation is constructed:

BIS(t) = E0 − Emax[
(Ce,p + ϕCe,pCe,r)

γ

(Ce,p + ϕCe,pCe,r)γ + Cγ
50

], (A–6)

PI(t) = E0 − Emax[
(Ce,r + ϕCe,pCe,r)

γ

(Ce,r + ϕCe,pCe,r)γ + Cγ
50

], (A–7)

where, Ce,p and Ce,r denotes effect site concentration of sedative(propofol) and
analgesic(remifentanil) drug. average parameter of each coefficients in e.q.
(A–6) and (A–7) are shown in table A.1.
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Table A.1 Average value of response surface model[3]
Parameter For BIS For PI

E0 90.9 19.7
Emax 50.4 19.5
C50 2.86 3.01
γ 2.5 1.27
ϕ 2.28 2.53

In this paper, above average values are applied to simulate BIS and PI value.
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