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Abstract For an n-dimensional spherical unit speed curve r and a given point P , we

can define naturally the pedal curve of r relative to the pedal point P . When the dual

curve germs are non-singular, singularity types of such pedal curves depend only on

locations of pedal points. In this paper, we give a complete list of normal forms for

singularities and locations of pedal points when the dual curve germs are non-singular.

As an application of our list, we characterize C∞ left equivalence classes of pedal curve

germs (I, s0) → Sn produced by non-singular dual curve germ from the viewpoint of

the relation between L tangent space and C tangent space.
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1 Introduction

Let I be an open interval and Sn be the n-dimensional unit sphere in Rn+1. A C∞

regular map r : I → Sn is said to be a spherical unit speed curve if each of the following

ui(s) (1 ≤ i ≤ n−1) is inductively well-defined for any s ∈ I (in other words, each of

the following κi(s) (1 ≤ i ≤ n − 1) is a positive function), where initial information

are u−1(s) ≡ 0, u0(s) = r(s), ‖u′
0(s)‖ ≡ 1 and κ0(s) ≡ 0.

ui(s) =
u′

i−1(s) + κi−1(s)ui−2(s)

‖u′
i−1(s) + κi−1(s)ui−2(s)‖ (1 ≤ i ≤ n− 1)

κi(s) = ‖u′
i−1(s) + κi−1(s)ui−2(s)‖ (1 ≤ i ≤ n− 1)

Note that the above inductive conditions for a spherical unit speed curve r are not

so strong restrictions. This is because first by using Thom transversality theorem (for
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instance, see [6]) (n − 2) times for any C∞ regular map r : I → Sn we can obtain a

sufficiently near C∞ map �r in C∞(I, Sn) with Whitney C∞ topology such that

�r(s), d�r
ds

(s), · · · , d
n−1�r
dsn−1

(s) are linearly independent for any s ∈ I.

Then the so-called arc-length parameter gives a C∞ diffeomorphism h : I → I such

that �r ◦ h−1 is a spherical unit speed curve.

For a spherical unit speed curve we see that any two of ui,uj (0 ≤ i, j ≤
n − 1, i �= j) are perpendicular (see §2). Therefore, we can define one more vector

un(s) uniquely so that {u0(s),u1(s), · · · ,un(s)} is an orthogonal moving frame and

det(u0(s), · · · ,un(s)) = 1 for any s ∈ I . The map un : I → Sn is called the dual curve

of r ([1]). By using the dual curve un we define κn as follows, where the dot in the

center means the scalar product:

κn(s) = u′
n−1(s) · un(s).

We see that the dual curve un is non-singular at s if and only if κn(s) �= 0 (see §2).

For any i (−1 ≤ i ≤ n), we put

Si
ui(s) = (Sn − {±un(s)}) ∩

i�
j=−1

Ruj(s).

Given a spherical unit speed curve r : I → Sn, choosing a point P of Sn−{±un(s) | s ∈
I} gives the map which maps s ∈ I to the unique nearest point in Sn−1

un−1(s)
from P .

Such a map is called the pedal curve relative to the pedal point P for an n-dimensional

unit speed curve r and is denoted by pedr,P . Note that since all points in Sn−1
un−1(s)

are

the nearest points from ±un(s) the pedal point P for the map-germ pedr,P at s must

be outside {±un(s)}.
The purpose of this paper is to show the following.

Theorem 1.1 Let r be an n-dimensional spherical unit speed curve. Let s0 ∈ I be

such that κn(s0) �= 0. Then the following hold.

1. The pedal point P is inside Sn
un(s0)−Sn−2

un−2(s0)
if and only if the map-germ pedr,P :

(I, s0) → Sn is C∞ left equivalent to the map-germ given by s 	→ (s, 0, · · · , 0).

2. For any i (0 ≤ i ≤ n − 2), the pedal point P is inside Si
ui(s0)

− Si−1
ui−1(s0)

if and

only if the map-germ pedr,P : (I, s0) → Sn is C∞ left equivalent to the map-germ

given by the following:

s 	→ (sn−i, sn−i+1, · · · , s2n−2i−1� �� �
(n−i) elements

, 0, · · · , 0� �� �
i elements

).

Here, two map-germs f, g : (R, 0) → (Rn, 0) are said to be C∞ left equivalent if there

exist a germ of C∞ diffeomorphism ht : (Rn, 0) → (Rn, 0) such that the identity

g = ht ◦ f is satisfied.

As a corollary of theorem 1.1, we can characterize C∞ left equivalence classes of

pedal curve germs (I, s0) → Sn with κn(s0) �= 0 from the viewpoint of the relation

between L tangent space and C tangent space. For the definitions of L tangent space

and C tangent space, see [7] or [9]. Let O(1, n) be the set of C∞ map-germs f : (R, 0) →
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(Rn, 0) such that TL(f) = TC(f) (O means “open”) with finite codimensions ; and let

P(1, n) be the set of C∞ map-germs (R, 0) → (Rn, 0) which are C∞ left equivalent

to some pedal curve germ (I, s0) → Sn with κn(s0) �= 0 (P means “pedal”). Since any

normal form in theorem 1.1 belongs to O(1, n), any map-germ in P(1, n) is C∞ left

equivalent to one of normal forms in theorem 1.1 and any map-germ in O(1, n) is C∞

left equivalent to one of normal forms in theorem 1.1 1, we have the following.

Corollary 1.1 O(1, n) = P(1, n).

Note that it is impossible to obtain the same result as in corollary 1.1 if we replace

TL(f) = TC(f) with TA(f) = TK(f) in the definition of O(1, n) since the equality

TA(f) = TK(f) holds even for f(s) = (s3, s4). Thus, in our situation the C∞ right-left

equivalence does not work well, but the C∞ left equivalence does so. This is a merit

since the C∞ left equivalence is easy to deal with as pointed out in [4]. Furthermore, in

our situation we can truncate higher terms quite easily by using Malgrange preparation

theorem only one time, we need no calculations by using semigroups as in [2] (see §5).

On the other hand, note also that it is impossible in general to characterize P (1, n)

as the set of tops of hierarchies of A-simple singularities since normal forms in 2 of

theorem 1.1 are A-simple if and only if n ≤ 6 due to [2]. Thus, it seems that the notion

of simple singularity is not suitable for singularities of pedal in general.

In §2 we investigate several properties of the set {u0(s), · · · ,un(s)}. §3 is devoted

to factor pedr,P as the composition of the dual curve, the canonical projection and one

map �ΨP . In §4 we show that the map �ΨP introduced in §3 is C∞ right-left equivalent

to the blow up of Rn at the origin. Proof of theorem 1.1 is given in §5.

2 Several properties of the set �u0(�)� � � � � un(�)�

Lemma 2.1 For any s ∈ I and any i, k (−1 ≤ i < k ≤ n − 1) the following three

hold.

ui(s) · uk(s) = 0,

ui(s) · u′
k(s) = 0 (i < k − 1),

uk−1(s) · u′
k(s) = −κk(s).

Proof of lemma 2.1 We show lemma 2.1 by induction on k.

First, by definitions it is trivial that u−1(s) ·u0(s) = 0 and u−1(s) ·u′
0(s) = −κ0(s).

Next, we assume that for any i, j (−1 ≤ i < j < k ≤ n − 1), the following three

hold.

ui(s) · uj(s) = 0,

ui(s) · u′
j(s) = 0 (i < j − 1),

uj−1(s) · u′
j(s) = −κj(s).

1 The last assertion on map-germs in O(1, n) is easily obtained by Gaffney’s criterion on
L-equivalence (for Gaffney’s criterion on L-equivalence, see theorem 2.7 of [9]).
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Under this assumption, we see that

uk−2(s) · uk(s) =
1

κk(s)
uk−2(s) · (u′

k−1(s) + κk−1(s)uk−2(s))

=
1

κk(s)
(−κk−1(s) + κk−1(s)) = 0

and for i < k, i �= k − 2 we see that

ui(s) · uk(s) =
1

κk(s)
ui(s) · (u′

k−1(s) + κk−1(s)uk−2(s))

=
1

κk(s)
(0 + 0) = 0.

Next, under the same assumption we see that for any i (0 ≤ i < k − 1)

ui(s) · u′
k(s) = −u′

i(s) · uk(s)

= −(κi+1(s)ui+1(s) − κi(s)ui−1(s)) · uk(s)

= −(0 + 0) = 0

and in the case that i = k − 1 we see

uk−1(s) · u′
k(s) = −u′

k−1(s) · uk(s)

= −(κk(s)uk(s) − κk−1(s)uk−2(s)) · uk(s)

= −(κk(s) + 0) = −κk(s).

Of course, u−1(s) · u′
k(s) = 0 holds under no assumption.

Therefore, lemma 2.1 is proved by induction. �

Lemma 2.1 shows that {u0(s), · · · ,un(s)} is an orthogonal moving frame.

Lemma 2.2 For any s ∈ I the following two hold.

1. u′
n−1(s) = −κn−1(s)un−2(s) + κn(s)un(s),

2. u′
n(s) = −κn(s)un−1(s).

Proof of lemma 2.2 First we show 2 of lemma 2.2. By definition, for any i (i <

n− 1)

u′
i(s) · un(s) = (κi+1(s)ui+1(s) − κi(s)ui−1(s)) · un(s) = 0.

Thus, we have that ui(s) · u′
n(s) = 0. Combining this result with u′

n(s) · un(s) = 0

implies that we may put u′
n(s) = α(s)un−1(s). Then,

α(s) = un−1(s) · u′
n(s) = −u′

n−1(s) · un(s) = −κn(s).

Next, we show 1 of lemma 2.2. By similar arguments as in the proof of 2 of lemma

2.2 we may put u′
n−1(s) = β(s)un−2(s)+κn(s)un(s). Then, lemma 2.1 and 2 of lemma

2.2 show that β(s) = −κn−1(s). �
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By lemma 2.2, we see that the dual curve un(s) is non-singular if and only if κn(s) �= 0

and we obtain the following Serret Frenet type formula.

�
�����������������

u′
0(s)

u′
1(s)

u′
2(s)

...

u′
n−2(s)

u′
n−1(s)

u′
n(s)

	
















�

=

�
�����������������

0 κ1(s) 0 · · · 0 0 0

−κ1(s) 0 κ2(s)
. . . 0 0 0

0 −κ2(s) 0
. . . 0 0 0

...
. . .

. . .
. . .

. . .
. . .

...

0 0 0
. . . 0 κn−1(s) 0

0 0 0
. . . −κn−1(s) 0 κn(s)

0 0 0
. . . 0 −κn(s) 0

	
















�

�
�����������������

u0(s)

u1(s)

u2(s)

...

un−2(s)

un−1(s)

un(s)

	
















�

By using the Serret Frenet type formula again and again, we obtain the following

lemma 2.3.

Lemma 2.3 For any i (0 ≤ i ≤ n− 2), we have the following.

1. ui(s) · djun

dsj (s) = 0 (1 ≤ j ≤ n− i− 1),

2. ui(s) · dn−iun

dsn−i (s) = (−1)n−i�n−i−1
j=0 κn−j(s).

3 Explicit formula for the pedal curve relative to �

Let r be an n-dimensional spherical unit speed curve and let P be any point in

Sn − {±un(s) | s ∈ I}. By using the orthogonal frame {u0(s), · · · ,un(s)}, we may

decompose P as

P =
n�

i=0

(P · ui(s))ui(s).

Lemma 3.1

pedr,P (s) =
1

1 − (P · un(s))2
(P − (P · un(s))un(s)).

Proof of lemma 3.1 For any s ∈ I , by subtracting (P ·un(s))un(s) from P we obtain

the vector P − (P ·un(s))un(s) in Rn+1 which is positive scalar multiple of pedr,P (s).

Normalizing this vector gives the right hand side of the formula in lemma 3.1, which

must be the vector pedr,P (s). �

By this formula, we have the following.

Lemma 3.2

ped′r,P (s) = 0 ⇐⇒ κn(s) = 0 or P ∈ Sn−2
un−2(s)

.
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Proof of lemma 3.2 By differentiating pedr,P and using lemmata 2.2 and 3.1, we have

the following.

ped′r,P (s)

= −κn(s)
(P · un(s))(P · un−1(s))

(1 − (P · un(s))2)
3
2

n−1�
i=0

(P · ui(s))ui(s)

+κn(s)
1

(1− (P · un(s))2)
1
2

�
(P · un(s))un−1(s) + (P · un−1(s))un(s)

�
.

Since {u0(s), · · · ,un(s)} is an orthogonal frame, we see that ped′r,P (s) = 0 if and only

if κn(s) = 0 or P ∈ Sn−2
un−2(s)

. �

Let P be a point of Sn − {±un(s) | s ∈ I}. We consider the following C∞ map

ΨP : Sn − {±P} → Sn:

ΨP (x) =
1

1 − (P · x)2
(P − (P · x)x).

We see that the image ΨP (Sn − {±P}) is inside the open hemisphere centered at P .

Let this open hemisphere, the set π(Sn − {±P}) be denoted by XP , BP respectively,

where π : Sn → Pn(R) is the canonical projection. Note that XP is C∞ diffeomorphic

to the n-dimensional open ball {(x1, · · ·xn) | �n
i=1 x

2
i < 1}.

Since ΨP (x) = ΨP (−x), ΨP induces the map �ΨP : BP → XP . Then, lemma 3.1

shows that pedr,P is factored into three maps in the following way.

pedr,P (s) = �ΨP ◦ π ◦ un(s).

4 Map of blow up type

Let p : B → Rn be the blow up of Rn centered at the origin.

Lemma 4.1 Let P be a point of Sn−{±un(s)}. Then, there exist C∞ diffeomorphisms

hs : BP → B and ht : XP → Rn such that the equality ht ◦ �ΨP ≡ p ◦ hs is satisfied.

By lemma 4.1, it is reasonable to call �ΨP a map of blow up type.

Proof of lemma 4.1 By a suitable rotation of Sn if necessary, we may assume that

P = (0, · · · , 1). For any i (1 ≤ i ≤ n) and any (x1, · · · , xn+1) ∈ Sn − {±P} with

xi �= 0 we put

ϕP,i(π(x1, · · · , xn+1)) = (
x1

xi
, · · · , xi−1

xi
,− tan(λ)xi,

xi+1

xi
, · · · , xn

xi
),

where λ = sin−1(xn+1) (−π
2 < λ < π

2 ). Then, we see easily that for any i, j (1 ≤
i, j ≤ n) the following equality holds

ϕP,j ◦ ϕ−1
P,i ≡ ϕj ◦ ϕ−1

i ,

where {(U1, ϕ1) · · · , (Un, ϕn)} is the standard atlas for the blowing up p : B → Rn.

Thus, the set

{(UP,1, ϕP,1), · · · , (UP,n, ϕP,n)}
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can be an atlas for π(Sn − {±P}), where UP,i = {π(x1, · · · , xn+1) |xi �= 0}.
Next, we express our map �ΨP by using euclidean coordinates (u1, · · · , un). Since

we have assumed P = (0, · · · , 0, 1), for x = (x1, · · · , xn, sin(λ)) we have

1
1 − (P · x)2

(P − (P · x)x) = (− tan(λ)x1, · · · ,− tan(λ)xn, cos(λ))

and therefore for any i (1 ≤ i ≤ n) we have

q ◦ �ΨP ◦ ϕ−1
P,i(u1, · · · , un) = (u1ui, · · · , ui−1ui, ui, ui+1ui, · · · , unui),

where q : Rn ×R → Rn is the canonical projection.

Since this expression is completely the same as that of the blow up by using the

standard coordinate system (Ui, ϕi) (1 ≤ i ≤ n) and the restriction q|XP
: XP →

q(Xp) is a C∞ diffeomorphism, we see that lemma 4.1 is proved for �ΨP |UP,i
and

p|Ui
. Thus, in order to finish the proof of lemma 4.1 it suffices to show that for any

i, j (1 ≤ i, j ≤ n) the equality

ϕ−1
i ◦ ϕP,i(π(x1, · · · , xn+1)) = ϕ−1

j ◦ ϕP,j(π(x1, · · · , xn+1))

holds for π(x1, · · · , xn+1) ∈ UP,i∩UP,j . This holds since we have already checked that

the patching relations for our {(UP,i, ϕP.i)}1≤i≤n are completely the same as for the

standard atlas of B. �

5 Proof of theorem 1.1

Since {Sn
un(s0)−Sn−2

un−2(s0)
, Sn−2

un−2(s0)
−Sn−3

un−3(s0)
, · · · , S0

u0(s0)−S−1
u−1(s0)

} gives a strat-

ification of Sn−{±un(s0)}, “if parts” of 1, 2 of theorem 1.1 follows from “only if parts”

of 1, 2 of theorem 1.1. Thus, we show only “only if parts” in the following.

[Proof of “only if part” of 1] By lemma 3.2, ped′r,P (s0) �= 0 in this case. Thus, the

map-germ pedr,P (s0) is non-singular. �

[Proof of “only if part” of 2] By a suitable rotation of Sn if necessary, we may as-

sume that P = (0, · · · , 0, 1) ∈ Rn+1. Then, since P ∈ Si
ui(s0)−Si−1

ui−1(s0)
, by a further-

more suitable rotation of Sn if necessary we may assume that un(s0) = (1, 0, · · · , 0),

un−1(s0) = (0, 1, 0, · · · , 0), · · · , ui+1(s0) = ( 0, · · · , 0� �� �
(n−i−1) elements

, 1, 0, · · · , 0� �� �
(i+1) elements

); and

uj(s0) (0 ≤ j ≤ i) have the following form

uj(s0) = ( 0, · · · , 0� �� �
(n−i) elements

, a(n−i)j , · · · , anj� �� �
(i+1) elements

),

where ani �= 0.

By lemma 2.3, we see that the following three hold for component function-germs

u0n, · · · , unn of the map-germ un = (u0n, · · · , unn) : (I, s0) → Sn.

1. For any j (0 ≤ j ≤ n− i− 1), the lowest degree of non-zero terms of ujn is j.

2. For any j (n− i ≤ j ≤ n− 1), the lowest degree of non-zero terms of ujn is more

than or equal to n− i.



8

3. The lowest degree of non-zero terms of unn is n− i.

Therefore, by lemma 4.1 we see that the following two hold for component function-

germs ψ1, · · · , ψn of the map-germ (q ◦ �ΨP ◦ ϕ−1
P,1) ◦ (ϕP,1 ◦ π ◦ un) : (I, s0) → Rn.

1. For any j (1 ≤ j ≤ n− i), the lowest degree of non-zero terms of ψj is n− i+j−1,

2. For any j (n− i+1 ≤ j ≤ n), the lowest degree of non-zero terms of ψj is 2n−2i.

Let E1 be the set of all C∞ function germs with one variable (R, 0) → R, m1 be

its subset consisting of all function-germs with zero constant terms. Then, mn−i
1 E1 is a

finitely generated E1-module. We put f(t) = tn−i and apply the Malgrange preparation

theorem (for instance, see [3], [6], [9]) to mn−i
1 E1 and f . Then we see that for any

function-germ g ∈ mn−i
1 E1 there exists a certain C∞ function-germ ψ such that

g(t) = ψ(tn−i, · · · , t2n−2i−1).

Thus, for our map-germ pedr,P : (I, s0) → (Sn, pedr,P (s0)) there exists a germ of C∞

diffeomorphism ht : (Sn, pedr,P (s0)) → (Rn, 0) such that

ht ◦ pedr,P (s) = ((s− s0)
n−i, · · · , (s− s0)

2n−2i−1� �� �
(n−i) elements

, 0, · · · , 0� �� �
i elements

).

�
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