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Abstract: Using the relationship between strain and thickness from the materials theory,
this paper presents further development of the atmospheric corrosion sensor based on strain
measurement (ACSSM). Fiber Bragg grating (FBG) sensors were used to measure strain in this study.
The active–dummy method was employed to compensate the effects of environmental temperature
drift, with the configuration and position of the active–dummy FBG sensors determined based on
simulations conducted using the finite element method (FEM). Hence, the reduction in thickness of
low-carbon steel test pieces could be isolated, ensuring accurate characterization of this parameter.
Results of practical galvanostatic electrolysis experiments conducted with the FBG sensors in the
proposed configuration demonstrated accurate measurement of the reduction in the thickness of a
test piece, suggesting that an ACSSM with active–dummy FBG sensors would be appropriate for
monitoring of atmospheric corrosion in steel structures.

Keywords: atmospheric corrosion sensor; strain measurement; FBG sensors; low-carbon steel

1. Introduction

Since corrosion is the main failure mode for steel structures, sensors that can predict their corrosion
rate are very important in structural health monitoring for evaluating safety levels [1]. The detection of
losses in weight and thickness [2,3] and electrochemical impedance spectroscopy [4,5] are techniques
that have been proposed for atmospheric corrosion monitoring. Although the former methods are
capable of measurement to a high degree of accuracy, they do not provide real time monitoring, and the
cost of chemicals required for removing the corrosion product is high. Similarly, while electrochemical
methods allow in situ corrosion monitoring, a precise measurement is difficult as the sensitivity of
these techniques to corrosion reactions affects their operation. Thus, a highly accurate in situ sensor
capable of monitoring atmospheric corrosion is needed. Based on this requirement, we developed the
atmospheric corrosion sensor based on strain measurement (ACSSM).

In previous ACSSM studies [6–8], the reduction of the thickness of a test piece due to corrosion
was evaluated using elastic strain by applying a bending moment to the test piece. The mechanical
principles of the changes to elastic strain due to reductions in thickness produced by corrosion were
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devised from theoretical formulas and studies of finite element method (FEM) simulations, using
galvanostatic electrolysis as a model for corrosion. Although the actual strain to be measured for
evaluation of the reduction of thickness is very small, for long monitoring periods, the strain gauge
is subject to large amounts of noise due to changes in the environmental temperature. Hence, we
fabricated an original strain measurement circuit with active–dummy circuits for the ACSSM [7,8],
which obtained results in good agreement with the mechanical principles devised. However, changes
in strain due to a reduction in thickness were very small, and there was a 12% difference between the
thicknesses estimated using strain and those obtained by measuring the actual dimensions and the
weight loss of the test piece.

In the last decade, many optical fiber techniques have been used such as distributed fiber
sensors [9,10], low coherent optical fiber interferometer [11,12], and long period grating sensors [13,14]
for strain measurements including fiber Bragg grating (FBG) sensors that were used in this research. FBG
has been used in many structural healthy monitoring applications, such as monitoring strain in a metal
bridge [15], strain in a concrete structure [16], the stretching of cables in a gymnasium structure [17],
the displacement of a landslide [18], detecting the welding joints in a structure [19], and monitoring
strain in material for aircraft [20]. Several FBG-based methods, such as FBG sensors embedded in metal
film coatings [21,22] and sensors with etched metal cladding for increased sensitivity [23,24], have
been proposed for corrosion monitoring in steel structures. Moreover, such sensors have exhibited
good sensitivity to the progression of corrosion, even when embedded in concrete [25–27]. Since strain
measurements using FBG sensors are accurate, of high resolution, and stable, we have modified our
ACSSM technique to include active–dummy FBG sensors. In the study, to accurately evaluate the
reduction in the thickness of the test piece, the configuration and install positions of the active and
dummy FBG sensors were determined through FEM analysis of the effect of temperature on the strain
measurement. In addition, we verified the accuracy of the active–dummy FGB sensors’ estimation
of reductions in thickness due to corrosion using laboratory experiments based on galvanostatic
electrolysis [28].

The operating principle of the ACSSM technique is the measurement of the reduction in thickness
of a test piece using the mechanical theory of deformation. An illustration of how this theory is applied
is shown in Figure 1. Here, a test piece with a thickness h is deformed elastically according to the radius
of curvature, ρ, and the center angle, dθ. The neutral plane (N-N) is unaltered by the deformation.
The shortened curvature in the compressed strain position (C-C) where the FBG sensor is installed is
equal to

(
ρ− h

2

)
dθ. The strain on the compressed surface can be expressed by [6,7]:

ε =

(
ρ− h

2

)
dθ− ρdθ

ρdθ
= −

h
2ρ

(1)

If the thickness of the test piece is decreased due to corrosion, the distance between the neutral
plane and the surface under the corroded area is decreased, as shown in Figure 1b. From (1), assuming
that ρ >> h, the change in strain can be expressed as

∆h = 2ρ·∆ε (2)

Hence, according to the above, for a constant value of ρ, the change in the strain of the concave
surface determines the change in the thickness of the test piece. To ensure that the test piece is subject
only to elastic deformation, the minimum value of ρ is calculated as follows [6]:

ρ =
Eh
2σ

(3)

where σ is the yield stress of the test piece, and E is its Young’s modulus.
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Figure 1. Illustration of (a) a non-corroded test piece, and (b) a corroded test piece highlighting the 
geometry of the normal and bending positions. 
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wavelength, which is caused by changes in strain, temperature, and other external influences. In 
unstrained conditions, the Bragg wavelength (λB) is given by [23,25]: 

λB = 2·n·Λ, (4) 

where n is the refractive index and Λ is the spacing between the gratings. When there is a force and 
temperature from the external environment, both the refractive index and the spacing between the 
gratings change, and the Bragg wavelength is shifted accordingly: 

λB = 2·n·ΔΛ + 2Δn·Λ, (5) 

where ΔΛ is the change in spacing between gratings and Δn is the change in the refractive index. The 
changes in the Bragg wavelength due to temperature and strain can be determined by using (5), 
where the first and second term represent the changes due to strain and temperature, respectively, in 
[29]: 
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where k is a gauge factor, αΛ is the thermal expansion coefficient, αn is the thermo-optic coefficient, 
and ΔT is the change in temperature. 

2. Materials and Methods  

2.1. Experimental Apparatus  

Figure 2 shows a diagram of the experimental apparatus, which comprises a base and cover 
made of polyvinyl chloride. The test piece was 95 mm in length, 45 mm in width, and 0.5 mm in 
thickness. A 1350 mm2 area (30 mm × 45 mm) of the test piece was exposed to facilitate the corrosion 
representative of the reaction occurring in the rest of the steel structure. The reduction in the 
thickness of this corroded area enabled verification of the detection principle. The FBGs were 
installed in the back side of the test piece in the apparatus. The low-carbon material used for the test 
piece has a Young’s modulus of 210 GPa and a yield stress of 240 MPa. Hence, the minimum value of 

Figure 1. Illustration of (a) a non-corroded test piece, and (b) a corroded test piece highlighting the
geometry of the normal and bending positions.

The operation of the FBG strain sensor is based on the measurement of the shift in the Bragg
wavelength, which is caused by changes in strain, temperature, and other external influences. In
unstrained conditions, the Bragg wavelength (λB) is given by [23,25]:

λB = 2·n·Λ (4)

where n is the refractive index and Λ is the spacing between the gratings. When there is a force and
temperature from the external environment, both the refractive index and the spacing between the
gratings change, and the Bragg wavelength is shifted accordingly:

λB = 2·n·∆Λ + 2∆n·Λ (5)

where ∆Λ is the change in spacing between gratings and ∆n is the change in the refractive index. The
changes in the Bragg wavelength due to temperature and strain can be determined by using (5), where
the first and second term represent the changes due to strain and temperature, respectively, in [29]:

∆λB = [kε+ (αΛ + αn)∆T]λB (6)

where k is a gauge factor, αΛ is the thermal expansion coefficient, αn is the thermo-optic coefficient, and
∆T is the change in temperature.

2. Materials and Methods

2.1. Experimental Apparatus

Figure 2 shows a diagram of the experimental apparatus, which comprises a base and cover made
of polyvinyl chloride. The test piece was 95 mm in length, 45 mm in width, and 0.5 mm in thickness. A
1350 mm2 area (30 mm × 45 mm) of the test piece was exposed to facilitate the corrosion representative
of the reaction occurring in the rest of the steel structure. The reduction in the thickness of this corroded
area enabled verification of the detection principle. The FBGs were installed in the back side of the test
piece in the apparatus. The low-carbon material used for the test piece has a Young’s modulus of 210
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GPa and a yield stress of 240 MPa. Hence, the minimum value of ρ can be determined to be ~218.75
mm, using (3). To prevent local plastic deformation, the value of ρ was designed to be 430 mm, ~2
times as large as the minimum.
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Figure 2. Diagram of the atmospheric corrosion sensor based on strain measurement (ACSSM)
apparatus, consisting of a base, the test piece, and a cover.

2.2. Measurement Using the Active–Dummy Method

The active–dummy method employed with the ACSSM requires the use of two FBG sensors (an
active sensor and a dummy sensor) with different functions. εA and εD, respectively, the outputs of the
active and dummy FBG sensors in µε can be expressed as follows:

εA =

(
∆λBA

kλBA

)
−

1
k
(αΛ + αn)∆T (7)

εD =

(
∆λBD

kλBD

)
−

1
k
(αΛ + αn)∆T (8)

where λBA and λBD are the initial wavelengths, and ∆λBA and ∆λBD are changes in the wavelength of
the active and dummy FBG sensors, respectively, in nm. Therefore, ∆εAD, the difference between the
strain in both sensors in µε, is expressed as follows:

∆εAD = εA − εD =

(
∆λBA

kλBA

)
−

(
∆λBD

kλBD

)
(9)

Inspection of (9) highlights that with the active–dummy method, the dependence of the output of
both sensors on ∆T has been removed. Hence, unlike the systems described in [30–33], no additional
temperature sensor is required to calculate strain. Moreover, with appropriate configuration, εA

characterizes both the strain due to the reduction in the test piece’s thickness and strain due to
environmental factors, while εD characterizes only the strain due to environmental factors. Hence,
using ∆εAD, the strain from reductions in thickness due to corrosion can be isolated, enabling more
accurate measurement.
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2.3. Configuration of FBG Sensors on the Test Piece

Two os3200 FBG sensors from Micron Optic with initial wavelengths of 1548 nm and k = 0.796
were used as active and dummy sensors in experiments to monitor the strain on the test piece. To
verify the operation of the active–dummy method, an additional os4200 FBG sensor from Micron Optic
with an initial wavelength λ of 1556 nm was used as a temperature sensor.

Figure 3 shows the configuration of the FBG sensors on the test piece. Sensors were placed on
the reverse of the corroded area of the test piece (Figure 3a) in the configuration shown in Figure 3b.
The active FBG sensor was placed parallel to the longitudinal axis, while the dummy FBG sensor was
placed parallel to the transverse direction of the test piece in the compressed curve apparatus. An
actual figure of the FBG sensors in the test piece is shown in Figure 3c.
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2.4. Compensation of Thermal Strain

We firstly conducted preliminary experiments to investigate the effect of environmental
temperature drift on the strain measured by the FBG sensors of the ACSSM. Strain and temperature
reflection spectra were measured with a commercial optical interrogation unit from Micron Optics
(optical sensing interrogator, model sm125) for 88 h with a data sampling interval of 1 min, controlled
by the ENLIGHT software package. As mentioned above, two os3200 FBG sensors from Micron Optics
were used as active and dummy strain sensors and an os4200 FBG sensor was used as a temperature
sensor. The data obtained from this test were used for further calibration in subsequent experiments.

2.5. Accelerated Corrosion Using Galvanostatic Electrolysis

We conducted galvanostatic electrolysis experiments to verify the accuracy of our technique
in identifying corrosion rates. An illustration of the set-up used in these experiments is shown in
Figure 4. We used a 1 mol/L hydrochloric acid solution for accelerated simulation of the effects
of environmental corrosion, and a stirrer to ensure a homogeneous liquid mixture. To reduce its
thickness, a current of 0.3 A was applied to the test piece, which acted as the working electrode,
through the potentiostat/galvanostat. The strain on the test piece was measured using an optical
sensing interrogator and personal computer setup sampling at an interval of 30 s. The thickness of
the test piece was measured before and after the experiment to verify the change in thickness (∆h)
estimated from the strain measurement. Finally, the working electrode and counter electrode were
constructed from the same material.
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Figure 4. Set-up of galvanostatic electrolysis experiments to reduce thickness of the test piece.

3. Result

3.1. Numerical Analysis

To isolate components of strain resulting from reduced test piece thickness due to corrosion from
components resulting from deviations to the experimental environment, accurate configuration of
the positions of the active and dummy FBG sensors is necessary. To determine these positions, we
analyzed the behavior of the low-carbon steel test pieces subject to various sources of strain with FEM,
using a commercial software (ANSYS Mechanical APDL 18.2 from ANSYS Inc., (Canonsburg, PA,
USA). Figure 5 shows the analytical geometry and boundary conditions applied to the test piece before
applying ρ of 430 mm to the test piece. The z displacement along the y-axis at the x = 0 node of the test
piece was fixed to 0 before/after applying ρ of 430 mm to the test piece. After applying ρ of 430 mm to
the test piece, the z coordinates of the test piece at each x coordinates were determined according to the
equation below:

z = −430 + 2.6315−
√

4302 − (x− 47.5)2 (10)
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Figure 5. Model of the test piece and boundary conditions used in simulation. The unit is in mm.

The geometry of the experimental apparatus indicates that the back side of the test piece experiences
a compressive strain, while the surface of the piece experiences a tensile strain (Figure 1). Figure 6
shows the analytical result with a thickness reduction of 0.2 mm. Red and yellow colors mean 581 µε
and 350 µε in axial direction. The dimension is 95 mm in length and 45 mm in width and the corroded
area is 1350 mm2 (30 mm × 45 mm). Figure 7 shows the side view of the xy plane of simulated strain
distribution on the back side of the test piece with and without a reduction to the thickness of the
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corroded area, with Figure 7a depicting the distribution in the axial direction, and Figure 7b depicting
the distribution in the transverse direction. Without a reduction in thickness (h = 0.5 mm), a uniform
strain (as indicated by the homogenous blue shading) of −579 µε was calculated in the axial direction
from an average of five points, a value which is similar to the one predicted by analytical methods
(−581 µε). In contrast, in the transverse direction, the strain was 0 µε, indicating that the moment
applied a longitudinal strain in the x direction of the test piece. Similarly, for the corroded area of
the test piece, when h = 0.1 mm and h = 0.27 mm, the magnitude of the strain in the axial direction
predicted using numerical and analytical models was the same. Based on these FEM simulations, a
decrease in the thickness of the corroded area of the test piece does not affect the strain distribution in
the transverse direction.
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The relationship between the longitudinal strain and the thickness of the test piece is shown
in Figure 8; Figure 8a shows the relationship between the absolute strain in the x direction and the
thickness of the test piece, while Figure 8b shows the relationship between the change in strain (∆ε) and
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change in thickness (∆h). We note a linear relationship between these two parameters, as suggested by
(2), and good correlation between the analytical results and the finite element simulation, indicating
that the operating principle of the atmospheric corrosion sensor is reasonable.
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A summary of the results of FEM simulations (conducted at a base temperature of 300 K and
an elevated temperature of 310 K) is given in Table 1. Here, we have included the strain in the axial
direction in the corroded area (εC) where the active FBG sensor was set up, and the strain in the axial
and transverse directions under the uncorroded area (εUC) where the dummy FBG was set up. ∆εC

was obtained from the strain after thickness reduction (εC
∆h − ε

C
∆h=0). When ∆T = 10 K, the strain

changed by 117 µε in both the axial and transverse directions, corresponding to a uniform thermal
expansion of 11.7 µε/K. The results indicate that the thermal strain in the corroded and uncorroded
areas is the same, in both the axial and transverse directions.

Table 1. Strains obtained from FEM simulation.

h [mm] ∆h [mm]

Strain (µε)

Corroded Area Uncorroded Area

Axial Direction Axial Direction Transverse Direction

εC
∆h at

300 K
εC at
300 K

εC
∆h at

310 K
∆εC at
310 K

∆εC
∆T=10 K

∆εUC at
300 K

∆εUC at
310 K

∆εUC
∆T=10 K

∆εUC at
300 K

∆εUC at
310 K

∆εUC
∆T=10 K

0.5 0 −584 0 −467 0 117 −584 −467 117 0 117 117

0.45 0.05 −525 59 −408 59 117

-

0.4 0.1 −466 118 −349 118 117

0.35 0.15 −408 176 −291 176 117

0.3 0.2 −350 234 −233 234 117

0.25 0.25 −292 292 −175 292 117

0.23 0.27 −268 316 −151 316 117

0.2 0.3 −233 351 −116 351 117

By using Equations (7)–(9), εA, εD, and ∆εAD can be written as follows:

εA = ∆εC
− ∆εC

∆T (11)

εD = ∆εUC
− ∆εUC

∆T (12)

∆εAD = εA − εD = ∆εC
− ∆εC

∆T −
(
∆εUC

− ∆εUC
∆T

)
(13)
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From FEM simulation in Table 1, ∆εC
∆T = ∆εUC

∆T = 117 µε for ∆T = 10 K. Thus,

∆εAD = ∆εC
− ∆εUC (14)

∆εC and ∆εC
∆T are the differential strains in the corroded area which correspond with the first and

second term in Equation (7), respectively. ∆εUC and ∆εUC
∆T are the difference strains in the uncorroded

area which correspond with the first and second term in Equation (8). ∆εAD is the purposed signal
which has relation with the thickness reduction of the test piece, as shown in Equation (2). We used
this parameter for the experimental parameter as describes in the Results and Discussion sections.

The side view of the xy plane of the magnified strain distribution in the axial direction of a test
piece with a thickness reduction of 0.27 mm is shown in Figure 9. We note a 350 µε difference between
the strain at the edge and the center of the corroded area. More importantly, the strain is not uniform
in the uncorroded area; a difference of approximately 12 µε can be observed. This non-uniform
strain affects accurate estimation of the reduction in the thickness of the test piece, since the changes
to be measured are very small. Hence, we set up the dummy FBG sensor in the y direction of the
uncorroded area, as the strain due to environmental factors is identical in both directions, explaining
the configuration of the active and dummy FBG sensors on the test piece shown in Figure 3.
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3.2. Thermal Strain Compensation

Figure 10 shows the results of the thermal strain measured by the FBG sensors of the ACSSM in the
preliminary experiments. In this figure, TTP is the temperature of the test piece in degrees centigrade,
εA is the strain from the active FBG sensor in µε, ε∆ is the strain from the dummy FBG sensor in µε, and
∆εAD is the difference in strain between εA and εD. Both sensors had similar responses to temperature
variations, producing a maximum change in strain of approximately 52 µε for a 2.8 ◦C temperature
variation, in the absence of changes to the thickness of the test piece. In contrast, for the same variation
in temperature, the maximum change in the value of ∆εAD was ~10 µε. This reduced sensitivity to
temperature makes this signal more suitable for strain measurement to determine the atmospheric
corrosion rate, which requires high resolution and long-term data monitoring in the field.
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3.3. Galvano-Static Electrolysis Experiment

Figure 11 shows the results of the galvanostatic electrolysis experiment, with the light blue line
representing the output of the active strain sensor (εA), the green line representing the output of the
dummy strain sensor (εD), and the red line representing the output of the temperature sensor (TTp). All
three sensors produced a similar output before the current was applied from the potensiostat/galvanostat.
In contrast, on the application of the current, a linear increase in the strain signal could be observed
during electrolysis using εA. εD and TTp exhibit a similar behavior. The strain signals remain fairly
static, with both sensors indicating that the electrolysis process does not result in extreme temperature
changes. The dark blue line in this figure is ∆εAD, which exhibits a similar trend to εA.
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for comparison.

4. Discussion

A figure of the test piece following the experiment is shown in Figure 12a, which depicts the
effects of electrolysis on the apparatus. To evaluate the accuracy of the active–dummy FBG sensors’
estimation of changes in thickness, we measured the actual thickness and weight of the test piece before
and after electrolysis. The labeled points in Figure 12b were measured using a micrometer, and the
thickness of the test piece was determined based on the average of these measurements. The average
values calculated before and after corrosion were 0.48 mm and 0.36 mm, respectively, corresponding to
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a change in thickness (∆hT) of 0.12 mm. To estimate change in thickness using the weight of the test
piece, we evaluated the equation below:

∆hW =
∆W
S d

(15)

where ∆W is the change in weight, S is the area of the corroded region (1350 mm2), and d is the density
of the test piece (0.0078 g·mm−3). The test piece was weighed at 16.0 g and 14.6 g before and after the
experiment, respectively. Hence, ∆W = 1.4 g, and from Equation (15), ∆hW = 0.132 mm. The final value
of ∆εAD obtained in the electrolysis experiment was 143 µε, indicating that ∆h = 0.12 mm, according
to (2). A comparison of these results is given in Table 2. A maximum difference in thickness of 6.8%
was noted, highlighting that the modifications have improved the performance of the ACSSM, which
produced a difference of 12% in previous experiments.
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Table 2. Comparison of thickness reduction measured by thickness and weight loss.

Based on Strain
Measurement (∆h)

Based on Actual
Thickness (∆hT)

Based on Weight Loss
(∆hW)

Thickness (µm) 123 120 132
Difference (%) - 2.5 6.8

5. Conclusions

In this study, we proposed an improvement to the ACSSM technique, replacing conventional
strain gauges with active–dummy FBG sensors. The orthogonal configuration of active–dummy
FBG sensors on the test piece was determined from FEM analysis of the thermal expansion and the
reduction in the thickness of the test piece. We observed that ∆ε, the difference between the outputs of
the active and the dummy FBG sensors, is less sensitive to changes to the experimental environment,
enabling the collection of more accurate and constant signals less affected by temperature drift during
prolonged measurement. Results of galvanostatic electrolysis experiments indicated an approximate
difference of 6.8% between thicknesses estimated using the strain measured with the active–dummy
FBG sensors and that estimated from weight loss, and 2.5% for actual thicknesses measured using a
digital micrometer. These small differences suggest that ∆ε can be used to determine the atmospheric
corrosion rate, which requires high resolution in the field. This quality, in addition to the ability to
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perform long-term data monitoring, makes the ACSSM with FBG sensors suitable for estimating the
atmospheric corrosion of steel structures. Monitoring a test piece with the ACSSM that is fabricated
from the same material as the steel structure and exposed to the same environment will contribute to
effective decision-making for the maintenance of the steel structure.
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