
Development of Nonlinear Framework for Buffeting Analysis of 

Long-span Bridges in Time-domain by Volterra Series-based 

Wind Load Model 
 

Volterra級数空気力モデルによる長大橋の時刻歴ガスト応答解

析のための非線形フレームワークの構築 

 
 

KHAWAJA ALI 
 
 

 
 

A dissertation submitted in partial fulfilment of the requirements for the degree of 

Doctor of Philosophy in Civil Engineering 

 
 

 
 

 
 

Department of Civil Engineering 

YOKOHAMA NATIONAL UNIVERSITY, JAPAN 

 

September, 2020



YOKOHAMA NATIONAL UNIVERSITY 

 
 

Development of Nonlinear Framework for Buffeting Analysis of 

Long-span Bridges in Time-domain by Volterra Series-based 

Wind Load Model 
 
 
 
 
 

A dissertation submitted in partial fulfilment of the requirements for the degree of 

Doctor of Philosophy in Civil Engineering 
 

By 
 

KHAWAJA ALI 
 
 

Academic Supervisor Co-supervisor 

Prof. Hiroshi KATSUCHI Prof. Hitoshi YAMADA 

 
 

Yokohama, Japan 

September, 2020  



– ii – 
 

DEDICATION 
 
 
 

To my deceased father, who unfortunately didn’t live long enough in 
this world to see his son become a doctor 

 
 
 

Note: 
This thesis is proudly dedicated to my beloved late father, Mr. Khawaja Javed Iqbal, 

who passed away on June 3, 2020 during the time of thesis write-up. I could not travel 
back to Pakistan from Japan to see my father for the last time because all flights were 
closed owing to the Coronavirus pandemic. I was totally broken, lost my motivation to 
move ahead and thought of quitting the PhD research for a moment. In the time of grief 
and depression, my mother and wife encouraged me and pushed me to do complete my 
PhD studies because it was a burning desire of my father to see me graduating with a 
doctor degree in civil engineering. He was desperately waiting for my graduation. I 
believe that no one else would have been much happier than my father. Therefore, I truly 
owe this feat to him and my beloved mother. 

He was my support, inspiration and a role model to follow. To me, he is irreplaceable. 
Since childhood, he taught me to work hard and go beyond my limits to achieve what I 
yearn for. Whenever the things became burdensome for me, he was there to help me out 
to take my all burden and worries away from me. I honestly dedicate my all achievements 
to my parents who encouraged my ideas and developed me through thick and thin. They 
have always been so supportive to me in myriad of ways in which they have actively 
supported me in my determination to find my passion and realize my potential, and to 
make this contribution to our world. 
  



– iii – 
 

ABSTRACT 
 
With the quick development of construction material and computer technology, many super 

long-span bridges are currently being built all over the world. This trend of increasing the main 
span length of long-span bridges further increases their vibration periods, making them even more 
vulnerable to wind actions especially in typhoon prone regions owing to their high flexibility and 
low structural damping. After the failure of Tacoma Narrows bridge, the bridge engineers mainly 
focused on the wind-induced vibration of cable-supported bridges under strong winds. In this 
context, they developed several linear analytical frameworks to perform the buffeting analysis of 
line-like structures in frequency- and time-domain, primarily based on the assumption of two-
dimensional stationary flow, in which the aerodynamic forces are linearized at the mean displaced 
position of the bridge deck. However, it has been widely recognized, based on the measurements, 
that the real typhoon winds are highly non-stationary by nature, which causes the time-varying 
mean response phenomenon of the bridges. Moreover, there is a hefty discrepancy between the 
buffeting responses obtained from the conventional linear buffeting analysis models and the real 
phenomenon of bridge vibration, which calls into question the efficacy and fidelity of the existing 
linear buffeting analysis frameworks. Therefore, the guarantee of bridge safety under such 
extreme wind events requires accurate modelling of wind-induced effects on the bridge structures 
such that the non-stationary wind fields can be incorporated accurately, in particular for the super 
long-span bridges. 

The main goal of this dissertation is to develop a nonlinear buffeting analysis framework to 
better simulate the non-stationary wind-induced effects on long-span bridges by using the Volterra 
series-based wind load model. Three novel aerodynamic wind load models are developed in this 
study named Volterra FD, Hybrid Volterra FD, and Volterra ANN models. In the case of the 
Volterra FD model, the buffeting and self-excited forces on a bridge deck are first formulated in 
time-domain in terms of indicial functions (IFs) by using the Volterra series of second-order. Then, 
the first- and second-order Volterra kernels are identified through the experimental data of flutter 
derivatives and static force coefficients measured at zero angle of attack. Subsequently, the non-
stationary turbulent wind fields are generated around the bridge based on the evolutionary power 
spectral density (EPSD) of measured data of typhoon-induced wind speed. At last, the wind loads 
based on the Volterra FD model are calculated numerically while considering the effect of non-
stationary winds. 

Since the wind forces on a bridge deck are very sensitive to the angle of attack showing a 
nonlinear function of the angle of attack, even a small change in turbulence may cause a 
significant change in the effective angle of attack due to bridge motions and wind fluctuations. 
Therefore, the aerodynamic nonlinearities arising from varying angles of attack, large flow 
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separations at large angle of attack, non-stationary wind, and nonlinear fluid memory effects may 
not be neglected. Following it, the Volterra FD model is extended to the Hybrid Volterra FD model 
to incorporate the effect of varying angles of attack on the flutter derivatives and static force 
coefficients at low- and high-frequency ranges. First, the effective angle of attack is divided into 
low- (large scale) and high-frequency (small scale) components corresponding to the frequencies 
lower and higher than a cut-off frequency (e.g., the fundamental frequency of the first mode). 
Accordingly, the wind forces are also separated into low- and high-frequency components. The 
low-frequency component of the nonlinear wind forces is modelled by using the QS model in 
which the low-frequency component of effective angle of attack, and static force coefficients 
measured at the statically deformed position of the bridge deck are used. The high-frequency 
component of nonlinear aerodynamic forces are further divided into the nonlinear buffeting and 
self-excited forces, which are modelled by employing the Volterra FD model while considering 
the effects of angle-varying static force coefficients, amplitude-dependency of flutter derivatives, 
non-stationary winds, and nonlinear fluid memory in the wind load modeling. 

In the case of the Volterra ANN model, the first- and second-order Volterra kernels are 
identified by using the Artificial Neural Network (ANN) technique instead of using experimental 
data of FDs. For that, a Time-delayed Neural Network (TDNN) is designed for modeling the 
nonlinear aerodynamic forces on the bridge deck. The network is trained, tested, and validated 
based on the measured wind speed as input and measured bridge displacement as output to extract 
the synaptic weights of the neurons. These weights are then used to estimate the first- and second-
order Volterra kernels. 

Based on all three proposed aerodynamic models, the wind loads are calculated and applied 
to a real full-scale suspension bridge model to demonstrate the effectiveness of the proposed 
nonlinear framework. The dynamic analysis results show a good agreement in the simulation of 
typhoon-induced buffeting response of the bridge deck. Moreover, the simulation results of the 
proposed framework are also compared with the measurement response of the bridge as well as 
the buffeting responses obtained from the existing aerodynamic models to elucidate the efficiency 
of the proposed framework. The newly developed Volterra model can effectively investigate the 
change in bridge aerodynamics induced by time-varying transient and non-stationary winds. The 
work of this dissertation can by useful for the modification of current wind design guidelines for 
the flexible super long-span bridges subjected to typhoon-induced non-stationary winds. 



– v – 
 

ACKNOWLEDGEMENTS 
 
The author wishes to record his great indebtedness to Professor Hiroshi Katsuchi under 

whose supervision this work was carried out, for his interest and encouragement. The author 
would also like to say thanks to the co-supervisor, Professor Hitoshi Yamada, for his kind 
guidance and valuable comments throughout this research work. 

The author sincerely acknowledges the committee members, Professor Koichi Maekawa, 
Associate Prof. Dionysius M. Siringoringo, and Associate Prof. Hiroshi Tamura, for their 
constructive comments to make this work a valuable contribution to the field of bridge 
aerodynamics. 

The author would also like to thank his wife, Aleena Saleem, whose unending support 
towards him was matchless and valuable. Without her kind cooperation, this would not have been 
possible. She experienced a hard time owing to the author’s busy and tiring schedule from day to 
night while working in the structure laboratory, YNU. The author is very much thankful to her for 
sharing his worries, and for standing by him in his difficult time when the research work was not 
going in the right direction. 

 



– vi – 
 

TABLE OF CONTENTS 
 

ABSTRACT ................................................................................................................................ iii 
ACKNOWLEDGEMENTS ........................................................................................................ v 

LIST OF FIGURES ................................................................................................................. viii 
LIST OF TABLES .................................................................................................................... xii 
CHAPTER 1: INTRODUCTION ........................................................................................... 1 

1.1 Motivation of dissertation ............................................................................................. 1 

1.2 Scope and objectives of dissertation ............................................................................. 2 

1.3 Research methodology .................................................................................................. 4 

1.4 Contribution of the present work................................................................................... 4 

1.5 Organization of thesis.................................................................................................... 5 

CHAPTER 2: LITERATURE REVIEW ............................................................................... 7 

2.1 Introduction ................................................................................................................... 7 

2.2 Advances in buffeting analysis from past to present ..................................................... 8 

2.3 Existing aerodynamic wind load models ..................................................................... 11 

2.3.1 Steady model, S ................................................................................................... 12 

2.3.2 Linear steady model, LS ...................................................................................... 13 

2.3.3 Quasi-steady model, QS ...................................................................................... 13 

2.3.4 Linear quasi-steady model, LQS ......................................................................... 14 

2.3.5 Corrected quasi-steady model, CQS .................................................................... 14 

2.3.6 Linear unsteady model, LU ................................................................................. 15 

2.3.7 Mode-by-mode Model, MBM.............................................................................. 16 

2.3.8 Hybrid nonlinear model, HNL ............................................................................. 17 

2.4 Benefits of indicial response functions and Volterra series ........................................ 18 

CHAPTER 3: VOLTERRA SERIES-BASED WIND LOAD MODEL ............................ 21 

3.1 Introduction ................................................................................................................. 22 

3.2 Volterra series ............................................................................................................. 24 

3.3 Time-varying mean static wind load model ................................................................ 26 

3.4 Linear unsteady wind load model ............................................................................... 26 

3.4.1 Formulation of linear buffeting force .................................................................. 27 

3.4.2 Formulation of linear self-excited force .............................................................. 28 

3.5 Nonlinear unsteady wind load model (Scheme 1) ....................................................... 30 



– vii – 
 

3.5.1 Formulation of nonlinear and non-stationary buffeting forces ............................ 31 

3.5.2 Formulation of nonlinear and non-stationary self-excited forces ........................ 32 

3.5.3 Unified formulation ............................................................................................. 32 

3.6 Nonlinear unsteady wind load model (Scheme 2) ....................................................... 34 

CHAPTER 4: IDENTIFICATION OF VOLTERRA KERNELS .................................... 38 

4.1 Introduction ................................................................................................................. 38 

4.2 Experimental technique ............................................................................................... 40 

4.2.1 Relationship between IFs and FDs for identification of aerodynamic IFs .......... 44 

4.2.2 Relationship between IFs and FDs for identification of aeroelastic IFs .............. 50 

4.2.3 Optimization results of aerodynamic and aeroelastic IF coefficients .................. 53 

4.3 Artificial Neural Network technique ........................................................................... 62 

CHAPTER 5: SIMULATION OF NON-STATIONARY WIND FIELDS ....................... 69 

5.1 Introduction ................................................................................................................. 69 

5.2 Description of typhoon events ..................................................................................... 71 

5.2.1 Typhoon TY9807 ................................................................................................ 71 

5.2.2 Typhoon 2018TY20 ............................................................................................ 71 

5.3 Reverse arrangement test to check the stationarity of wind field ................................ 72 

5.4 Empirical mode decomposition ................................................................................... 74 

5.5 Evolutionary power spectral density analysis ............................................................. 77 

5.6 Generation of artificial longitudinal and vertical wind fluctuations ........................... 81 

5.7 Wind-bridge interaction .............................................................................................. 85 

CHAPTER 6: NUMERICAL EXAMPLE ........................................................................... 87 

6.1 Introduction ................................................................................................................. 87 

6.2 Description of bridge ................................................................................................... 89 

6.3 Finite element model ................................................................................................... 90 

6.4 Eigenvalue analysis of bridge ..................................................................................... 91 

6.5 Computation of wind loads ......................................................................................... 95 

6.6 Aerostatic analysis....................................................................................................... 99 

6.7 Buffeting analysis ...................................................................................................... 100 

CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS .................................... 122 

REFERENCES ........................................................................................................................ 126 

  



– viii – 
 

LIST OF FIGURES 
 

Figure 1-1 Outline of dissertation ................................................................................................ 3 

Figure 1-2 Layout of general calculation procedure for buffeting analysis ................................. 5 

Figure 2-1 Aerodynamic and aeroelastic relationship between wind and structural vibration .... 8 

Figure 2-2 The advances in buffeting analysis from past to present .......................................... 10 

Figure 2-3 Coupled wind-structure interaction system for semi-analytical models ................... 12 

Figure 3-1 The Volterra series model of an NLTI-SISO system ............................................... 25 

Figure 3-2 Motion of bridge deck and wind force components ................................................. 26 

Figure 3-3 Block diagram of the Volterra FD model ................................................................. 35 

Figure 3-4 Block diagram of the Hybrid Volterra FD model ..................................................... 35 

Figure 4-1 Cross-section of the Akashi-Kaikyo bridge deck ..................................................... 41 

Figure 4-2 Static force coefficients for the Akashi-Kaikyo bridge ............................................ 41 

Figure 4-3 Flutter derivatives of the Akashi-Kaikyo bridge deck .............................................. 42 

Figure 4-4 Flutter derivative 𝐴2*  at varying angles of attack for the Akashi-Kaikyo bridge deck
 ..................................................................................................................................................... 42 

Figure 4-5 Flutter derivative 𝐻4* at varying angles of attack for the Akashi-Kaikyo bridge deck
 ..................................................................................................................................................... 43 

Figure 4-6 Flutter derivative 𝐴4*  at varying angles of attack for the Akashi-Kaikyo bridge deck
 ..................................................................................................................................................... 43 

Figure 4-7 Comparison of unsteady aerodynamic force functions for airfoil section ................ 48 

Figure 4-8 The real and imaginary parts of Sears’ functions between aerodynamic wind loads (𝐷: 
drag, 𝐿: lift and 𝑀: moment) and fluctuating wind speeds (𝑢: longitudinal and 𝑤: vertical) and 
their optimization for aerodynamic IFs at zero angle of attack of Akashi-Kaikyo bridge deck . 50 

Figure 4-9 The real and imaginary parts of Theodorsen’s functions between aeroelastic wind 
loads (𝐷: drag, 𝐿: lift and 𝑀: moment) and deck motions (ℎ: vertical, 𝑝: lateral and 𝛼: torsional) 
and their optimizations for aeroelastic IFs at zero angle of attack of Akashi-Kaikyo bridge deck
 ..................................................................................................................................................... 55 

Figure 4-10 Comparison of first-order aeroelastic IFs of the Akashi-Kaikyo bridge deck and 
Wagner function of the airfoil at zero angle of attack ................................................................. 58 

Figure 4-11 Comparison of first-order aerodynamic IFs of the Akashi-Kaikyo bridge deck and 
Kussner function of airfoil at zero angle of attack ...................................................................... 59 

Figure 4-12 The effect of amplitude-dependency of FDs on the indicial response of first-order 
IFs of the Akashi-Kaikyo bridge deck at the varying angles of attack ....................................... 60 

Figure 4-13 Block-structured Wiener model of an NLTI-SISO system .................................... 61 

Figure 4-14 Second-order kernels of the Akashi-Kaikyo bridge from experimental data ......... 61 



– ix – 
 

Figure 4-15 The architecture of TDNN with multiple inputs and multiple outputs ................... 63 

Figure 4-16 Block diagram of the Volterra ANN model ........................................................... 67 

Figure 4-17 Training, validation, and testing results of TDNN compared with bridge vibration
 ..................................................................................................................................................... 67 

Figure 4-18 First-order kernels of Akashi-Kaikyo bridge via ANN .......................................... 68 

Figure 4-19 Second-order kernels of Akashi-Kaikyo bridge via ANN ...................................... 68 

Figure 5-1 Akashi-Kaikyo bridge monitoring system and locations of 7-anemometers on deck
 ..................................................................................................................................................... 71 

Figure 5-2 Stationarity test on 10 min recordings of TY9807 ................................................... 73 

Figure 5-3 Stationarity test of anemometer P3 on 10 min wind records of TY9807 ................. 73 

Figure 5-4 Stationarity test of anemometer P3 on 10 min wind records of 2018TY20 ............. 73 

Figure 5-5 Flowchart of empirical mode decomposition estimation process ............................. 75 

Figure 5-6 Wind speed time-history of typhoon TY9807 at the center of main span of bridge. 76 

Figure 5-7 10 min wind record of typhoon TY9807 between 14:13~14:23 ............................... 76 

Figure 5-8 Wind speed time-history of typhoon 2018TY20 at the center of main span of bridge
 ..................................................................................................................................................... 76 

Figure 5-9 10 min wind record of typhoon 2018TY20 between 23:17~23:27 ........................... 77 

Figure 5-10 Flowchart of evolutionary power spectrum density computational process ........... 78 

Figure 5-11 Time-varying turbulence intensity of non-stationary wind speed under typhoon 
TY9807 between 14:13~14:23 .................................................................................................... 79 

Figure 5-12 Time-varying integral length scale of non-stationary wind speed under typhoon 
TY9807 between 14:13~14:23 .................................................................................................... 79 

Figure 5-13 EPSD of longitudinal fluctuating wind speed of typhoon TY9807 between 
14:13~14:23 at the center of the main span of the Akashi-Kaikyo bridge .................................. 79 

Figure 5-14 Time-varying turbulence intensity of non-stationary wind speed under typhoon 
2018TY20 between 23:17~23:27 ................................................................................................ 80 

Figure 5-15 Time-varying integral length scale of non-stationary wind speed under typhoon 
2018TY20 between 23:17~23:27 ................................................................................................ 80 

Figure 5-16 EPSD of longitudinal fluctuating wind speed of typhoon 2018TY20 between 
23:17~23:27 at the center of main span of Akashi-Kaikyo bridge ............................................. 80 

Figure 5-17 Distribution of nodes on which wind forces are acting .......................................... 81 

Figure 5-18 Spatial coherence of measurement data of wind speed time-history under typhoon 
TY9807 spanwise between 14:13~14:23 .................................................................................... 83 

Figure 5-19 Flowchart of unconditional simulation technique for the generation of non-stationary 
wind field around the bridge site ................................................................................................. 83 



– x – 
 

Figure 5-20 Simulated wind speed of typhoon TY9807 at 32 m/s with time-varying 
characteristics at the center of main span of the Akashi-Kaikyo bridge ..................................... 84 

Figure 5-21 Simulated wind speed of typhoon 2018TY20 at 42 m/s with time-varying 
characteristics at the center of main span of Akashi-Kaikyo bridge ........................................... 84 

Figure 5-22 Assigned and simulated wind spectra for typhoon TY9807 at 32 m/s ................... 85 

Figure 5-23 Wind inputs on the Akashi-Kaikyo bridge under typhoon TY9807 at spanwise 
locations ...................................................................................................................................... 85 

Figure 5-24 Wind inputs on the Akashi-Kaikyo bridge deck under typhoon 2018TY20 at 
spanwise locations ....................................................................................................................... 86 

Figure 6-1 The location and mesmerizing view of the majesty Akashi-Kaikyo bridge in Japan90 

Figure 6-2 Finite element model of the Akashi-Kaikyo bridge and its deck cross-section ........ 90 

Figure 6-3 Finite element model of the Akashi-Kaikyo bridge deck along with the connected 
hangers and the main suspension cable ....................................................................................... 91 

Figure 6-4 Mode shapes and natural frequencies of the Akashi-Kaikyo bridge ........................ 94 

Figure 6-5 Power spectral density of low-frequency components of wind fluctuations at 32 m/s
 ..................................................................................................................................................... 96 

Figure 6-6 Low-frequency components of wind forces on the bridge deck computed by the 
Hybrid Volterra FD model under typhoon TY9807 .................................................................... 96 

Figure 6-7 High-frequency components of buffeting forces on the bridge deck computed by the 
Hybrid Volterra FD model under typhoon TY9807 .................................................................... 97 

Figure 6-8 Aerostatic response of the deck of Akashi-Kaikyo bridge under different values of 
mean wind speeds including typhoon TY9807 (32 m/s) and 2018TY20 (42 m/s) ..................... 98 

Figure 6-9 The effects of constant and time-varying mean wind speeds on the static response of 
the Akashi-Kaikyo bridge under typhoon TY9807 ..................................................................... 99 

Figure 6-10 Time histories of the three-dimensional calculated responses based on each model: 
(a) comparison of results obtained from S model and measurement response, (b) comparison of 
results obtained from LS model and measurement response, (c) comparison of results obtained 
from QS model and measurement response, (d) comparison of results obtained from LQS model 
and measurement response, (e) comparison of results obtained from CQS model and measurement 
response, (f) comparison of results obtained from LU model and measurement response, (g) 
comparison of results obtained from HNL model and measurement response, (h) comparison of 
results obtained from Volterra FD model and measurement response, (i) comparison of results 
obtained from Hybrid Volterra FD model and measurement response, and (j) comparison of 
results obtained from Volterra ANN model and measurement response .................................. 106 

Figure 6-11 PSD comparison of measured response and simulated buffeting response using LU 
model in frequency-domain under typhoon TY9807 ................................................................ 108 



– xi – 
 

Figure 6-12 PSD comparison of measured response and simulated buffeting response using 
hybrid nonlinear (HNL) model in frequency-domain under typhoon TY9807 ......................... 109 

Figure 6-13 PSD comparison of measured response and simulated buffeting response using 
Volterra FD model in frequency-domain under typhoon TY9807 ............................................ 110 

Figure 6-14 PSD comparison of measured response and simulated buffeting response using 
Hybrid Volterra FD model in frequency-domain under typhoon TY9807 ............................... 111 

Figure 6-15 PSD comparison of measured response and simulated buffeting response using 
Volterra ANN model in frequency-domain under typhoon TY9807 ........................................ 112 

Figure 6-16 RMS comparison of fluctuating part of buffeting responses based on various 
aerodynamic models under typhoon TY9807 ........................................................................... 113 

Figure 6-17 Error in RMS of buffeting response of the Akashi-Kaikyo bridge based on various 
aerodynamic models under typhoon TY9807 ........................................................................... 116 

Figure 6-18 Comparison between buffeting responses of the Akashi-Kaikyo bridge subjected to 
typhoon 2018TY20 obtained from LU, HNL, Volterra FD, and Volterra ANN models .......... 117 

Figure 6-19 PSD Comparison of buffeting responses of obtained from different models under 
2018TY20 (where S: symmetric, L: lateral, V: vertical, T: torsional, L-T: lateral-torsional) .. 118 

Figure 6-20 Buffeting response of the Akashi-Kaikyo bridge by nonlinear analysis based on the 
Hybrid Volterra FD model at 60 m/s ........................................................................................ 119 

Figure 6-21 Comparison between RMS buffeting responses of the Akashi-Kaikyo bridge 
obtained from LU, HNL, Volterra FD, Hybrid Volterra FD and Volterra ANN models at 60 m/s
 ................................................................................................................................................... 120 

  



– xii – 
 

LIST OF TABLES 
 

Table 4-1 Coefficient of determination, 𝑅2 , and normalized RMSE for aerodynamic and 
aeroelastic IF coefficients fitted to FDs at 0 angle of attack for the Akashi-Kaikyo bridge deck
 ..................................................................................................................................................... 56 

Table 6-1 Sectional properties of the Akashi-Kaikyo bridge ..................................................... 92 

Table 6-2 Material properties of the Akashi-Kaikyo bridge....................................................... 92 

 
 



– 1 – 
 

CHAPTER 1:  INTRODUCTION 
 
 

Wind-induced oscillations are one of the major threats to the safety, fatigue life, and comfort 
of the long-span bridges. Wind effects on such large and flexible civil infrastructures have 
received considerable attention after the failure of the Tacoma Narrows bridge in 1940. Preventing 
wind-induced vibrations on the slender structures with low damping such as suspension and cable-
stayed bridges is a challenging task for bridge engineers. Many such structures suffer from 
unexpected behaviors caused by wind-related phenomena, such as buffeting, flutter, vortex 
shedding, and cable vibrations. The wind velocities in the atmospheric boundary layer (ABL) can 
be characterized as synoptic (e.g., Monsoon winds) and non-synoptic (e.g., typhoons, 
thunderstorm downbursts, and tornadoes). While significant efforts have been made on the 
synoptic wind-induced effects on long-span bridges over the last many decades, the main goal of 
this dissertation is to develop an efficient framework for performing the nonlinear buffeting 
analysis of long-span bridges under the typhoon-induced non-stationary winds. The work of this 
dissertation can be useful for revising the current wind design guidelines for the super long-span 
bridges in the typhoon prone areas. 

 

1.1 Motivation of dissertation 
 
It is widely recognized that the long-span bridges existing along the coastline areas are prone 

to suffering from the extreme winds spawned by typhoons/hurricanes. Owing to climate change 
and global warming, the intensity of such extreme wind events is increasing yearly all over the 
world, causing severe damages to the civil infrastructures and costing an immense portion of the 
budget on their maintenance. For example, the Akashi-Kaikyo bridge, located at central-west of 
Japan, was struck by a typhoon, numbered as 2018TY20, in 2018 and the bridge experienced a 
large lateral vibration of around 8 m which called for the costly bridge maintenance. Recently, 
one of the biggest typhoons Hagibis, numbered as 2019TY19, and an earthquake hit East Japan 
simultaneously in October 2019, damaging the infrastructures especially slender bridges very 
badly and calling into question their safety and serviceability. Currently, most of the long-span 
bridges having main span length over 1000 m in the world are located in the coastline area to 
cross the straits and rivers and in the mountainous area to overpass the deep valleys. Therefore, 
they can be frequently attacked by the non-stationary winds. 

In the viewpoint of the plans for the construction of several super long-span bridges all over 
the world, it is important to investigate: 
1. how well the existing buffeting analysis theory applies to long-span bridges already 



– 2 – 
 

constructed in the typhoon prone regions, 
2. how to regenerate the real phenomenon of time-varying buffeting response of long-span 

bridges subjected to typhoon-induced non-stationary winds, 
3. how to consider the aerodynamic and aeroelastic nonlinearities existing in the wind-bridge 

interaction arising from the varying angle of attack, nonlinear fluid memory and the non-
proportional relationship between measured wind speed and bridge motion accurately and 

4. to what extent the existing aerodynamic wind load models are capable of simulating the real 
typhoon-induced vibration of the bridge. 
As a matter of fact, the design wind velocities with relatively large return periods are 

generally controlled by the extreme wind events of transient nature such as typhoons/tornados, 
which stresses the paramount importance of considering the non-stationary wind effects in the 
modeling of wind loads on bridges. However, the current design guidelines and existing analytical 
frameworks for long-span bridges are only limited to the constant-line/synoptic/stationary winds 
of the neutral ABL. Therefore, it is essential to develop an efficient framework for performing the 
nonlinear buffeting analysis to interrogate the non-stationary wind effects on long-span bridges, 
where the accurate modeling of the non-stationary winds (characteristics of wind inputs), the 
transient aerodynamics (from non-stationary wind inputs to load outputs), and aerodynamic 
nonlinearities (from wind-bridge interaction) are critically important. 

 

1.2 Scope and objectives of dissertation 
 
In this dissertation, an efficient nonlinear buffeting analysis framework to better understand 

the aerodynamic nonlinearity and non-stationary wind-induced effects on long-span bridges is 
developed, where the underlying mechanism of the change in bridge aerodynamics induced by 
time-varying winds is investigated during the development of a novel wind load model by using 
the concept of Volterra series. Based on the developed analysis framework, the typhoon-induced 
buffeting response of the long-span bridges can be simulated accurately including the effects of 
nonlinear fluid memory and aerodynamic nonlinearity. The main goal of this thesis is achieved 
through the accomplishment of a number of objectives which are herein listed: 
1. Development of a nonlinear wind load model in terms of indicial functions (IFs) by using 

Volterra series for the prediction of buffeting response of long-span bridges under non-
stationary winds because, generally, the conventional nonlinear wind load models cannot 
fully characterize the aerodynamic nonlinearity existing in the wind-bridge interaction 
system, thus a more advanced nonlinear aerodynamic wind load model is needed, 

2. Development of a numerical procedure for the identification of IFs by developing the 
relationship between the experimentally determined amplitude-dependent flutter derivatives 
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and IFs, and by mapping the nonlinear relationship between wind speed as input and 
measured bridge displacement as output through the synaptic weights of neurons via 
Artificial Neural Network (ANN). An ANN-based unsteady aerodynamic model served as a 
novel reduced-order wind load model for the bridge deck, 

3. Evaluation of the applicability of the existing aerodynamic load models when calculating 
the buffeting and self-excited forces generated under realistic bridge oscillations, and 
assessment of the aerodynamic response for each aerodynamic model, 

4. Investigation of the presence of aerodynamic and aeroelastic nonlinearities existing in wind-
bridge interaction by introducing higher-order Volterra kernels, 

5. Investigation of how non-stationary winds and aerodynamic nonlinearities affect the 
buffeting response of long-span bridges, 

6. Validation of quasi-steady assumption in the design of long-span bridges under the real 
typhoon-induced non-stationary winds, 

7. Development of an efficient and reliable approach for simulating the artificial non-stationary 
wind fields around the bridge based on the measurement data of typhoon winds, 

8. Comparison of the effects of non-synoptic and synoptic winds on the dynamic response of 
long-span bridges, 
The summary of the scope and objectives of this dissertation are systematically shown in 

Figure (1-1). 
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1.3 Research methodology 
 
In this dissertation, the time history data of typhoon wind speed is obtained from bridge 

monitoring authority. The wind speed raw data is decomposed in order to get time-varying mean 
wind speed based on the empirical mode decomposition (EMD) method. The remaining 
fluctuating wind speed is used to obtain the evolutionary power spectral density (EPSD) in the 
time-frequency-domain. Based on this EPSD, the non-stationary wind fields are generated around 
the bridge by extending the conventional spectral theory to accommodate the EPSD matrix at 
discrete nodes on the bridge deck with the help of the 2-dimensional uniform grid approach. After 
the detailed investigation of the existing aerodynamic load models, a novel and efficient nonlinear 
wind load model is developed in terms of IFs by using the Volterra series and QS theory. The 
static wind loads are computed by using time-varying mean wind speed instead of constant mean 
wind speed. In the case of buffeting and self-excited loads on the bridge deck, the aerodynamic 
and aeroelastic IFs are identified through the experimental and ANN techniques. First, static and 
buffeting loads are applied to the bridge deck in a three-dimensional (3D) manner. As a result, the 
bridge exhibits a 3D response which is utilized as a feedback system to evaluate the motion-
dependent self-excited forces on the bridge deck. These motion-dependent forces are applied 
separately on the bridge deck in order to compute the buffeting response of the bridge accurately. 
The layout of the proposed framework is illustrated in Figure (1-2). 

 

1.4 Contribution of the present work 
 
The overall ambition of this thesis is to contribute to the advancement of the buffeting 

analysis by providing insights into the extension of the conventional analytical wind model to a 
Volterra series-based nonlinear wind load model which could capture the aerodynamic 
nonlinearity and nonlinear fluid memory effects, and could also simulate the real phenomenon of 
time-varying mean response of the bridge under typhoon-induced non-stationary winds. In other 
words, in this research work, a nonlinear framework for the buffeting analysis of flexible bridges 
under the non-stationary winds is developed, validated, and applied to a real full-scale bridge. The 
original scientific results and contributions of this dissertation are briefly summarized below: 
1. Development of a novel nonlinear framework, consisting of 3D wind load models, for 

performing the buffeting analysis under typhoon-induced non-stationary winds, 
2. Development of a generalized framework for the identification of IFs from the experimental 

data of flutter derivatives (FDs), which could simulate the aerodynamic loads accurately, 
3. Development of a numerical procedure for the identification of IFs by using ANN approach, 
4. Development of a computational framework for the analysis of long-span bridges under non-
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stationary wind actions based on the finite element method, 
5. The study on the following effects on the buffeting response of long-span bridges: 

• Effects of aerodynamic and aeroelastic nonlinearities, 
• Effects of stationary and non-stationary winds, 
• Effects of linear and nonlinear fluid memory, 

6. Further development and validation of wind load models in time-domain for the computation 
of unsteady wind loads on the bridge deck, 

 
Figure 1-2 Layout of general calculation procedure for buffeting analysis 

 

1.5 Organization of thesis 
 
The amount of research work focusing on the regeneration of the real phenomenon of time-

varying buffeting response of the bridge under non-stationary winds is lower than its counterpart 
of constant mean buffeting response under stationary winds. Hitherto, the wind turbulence 
statistics represent large uncertainties in the prediction of buffeting response of long-span cable-
supported structures. To contribute to reduce the uncertainties, this thesis makes an effort to 
develop a nonlinear scheme to simulate the accurate buffeting response of the bridges closer to 
the real measurement data of bridge displacements induced by the typhoon winds. Apart from the 
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Chapter 1 which is the introduction, each chapter is devoted to one step towards the development 
of buffeting analysis framework while progressing ahead logically. A brief breakdown of the 
thesis is as follows: 
Chapter 2 – Literature review 

A review of the prominent literature in the study of buffeting is presented in this chapter. 
Also, the development of the understanding of the buffeting phenomenon is included and 
how this has allowed relevant theory to progress. In addition to that, a brief overview of the 
comparison of the existing aerodynamic load models is also given.  

Chapter 3 – Volterra series-based wind load model 
In this chapter, the buffeting and self-excited forces on the bridge deck are formulated in 
terms of indicial response functions by extending the conventional linear unsteady (LU) 
model to a Volterra-series based wind load model.  

Chapter 4 – Identification of Volterra kernels 
Volterra kernels are identified in this chapter by utilizing two approaches: the first approach 
is based on the experimentally determined flutter derivatives and the second approach is 
based on ANN. An understanding of these approaches will be beneficial for the advancement 
and discussion of the buffeting theory of bridges. 

Chapter 5 – Simulation of non-stationary wind fields 
This chapter concentrates on a simulation technique to generate the non-stationary wind 
fields around the bridge by incorporating the EPSD matrix into the conventional spectral 
theory based on the measured wind speed data of typhoon events, i.e., TY9807 and 
2018TY20 in Japan. 

Chapter 6 – Numerical example 
This chapter presents a numerical example of a real full-scale bridge on which the proposed 
framework is tested. The efficacy of the proposed wind load model is checked by comparing 
its simulation results with the measurement response of the bridge. Special attention is paid 
on any similarities/dissimilarities existing between the conventional aerodynamic models 
and the proposed wind load model. 

Chapter 7 – Conclusions and future directions 
The concluding chapter comprises a summary of the dissertation and concluding remarks 
regarding the efficiency of proposed Volterra series-based wind load model. Furthermore, 
the key points of the future research work, an extension of the present research work, are 
also included in this chapter. 
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CHAPTER 2:  LITERATURE REVIEW 
 
 
This chapter entails the literature review of previous research works related to the buffeting 

analysis of long-span bridges subjected to turbulent winds. Various aerodynamic load models are 
reviewed and compared in order to address the questions on their assumption, complexity, 
suitability, and applicability. The design of a structure usually entails the use of mathematical 
models to duplicate the full-scale structural behavior and natural events that may possibly happen 
during the structure’s lifetime. For long-span bridges, the wind-induced vibrations can be the 
governing criteria at the design stage. Thereby, the reliable mathematical models are 
indispensable to predict the vibrations of various structural components such as the deck, cables, 
and towers, in terms of their aerostatic, aeroelastic, and buffeting displacements. In this chapter, 
a brief literature review is first presented to throw the light on the ongoing advancements in the 
field of buffeting analysis from past to present. Then, the sources and forms of different 
aerodynamic load models are re-examined, which are usually used to analyse the response of 
long-span bridges subjected to the gusty winds. At last, the benefits of IFs and Volterra series in 
the modelling of aerodynamic wind loads on the bridge deck are discussed. 

 

2.1 Introduction 
 
Several civil engineering infrastructures such as long-span bridges, tall masts, and overhead 

power lines conform to a slender, elongated, and line-like form (Davenport 1962). Such structures 
are particularly vulnerable to wind loading. Thereby, the wind-induced oscillations commonly 
represent the leading criterion in the design of long-span bridges, which demands accurate 
modelling of the wind forces generated on the bridge deck due to the incoming wind flow. The 
interaction between wind flow and bridge deck can be interpreted as the trading of energy between 
them to provide the insight of damping effects on the structure. At low wind speed, the wind flow, 
and hence the wind force somehow acts as a damper to provide the positive aerodynamic damping 
for the structure. However, up to a certain high wind speed, which depends on the geometric shape 
of the deck and, the flow will feed energy significantly to the structure and quickly reduce the 
aerodynamic damping to zero or negative value to make the structure divergently oscillate. This 
is the critical condition of the flutter instability of the bridge deck, which would result in 
destructive failures of bridges as evidenced in the case of the Tacoma Narrows bridge in 1940. 

Therefore, in flutter prediction, only the self-excited force is necessary for the analysis 
because the focal point is the critical point of instability or critical wind speed. On the other hand, 
the buffeting analysis needs considering both kinds of forces, self-excited and buffeting, to 
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analyse the random vibration of the bridge deck in a wide range of wind speed before the critical 
flutter wind speed. In Figure (2-1), it can be seen that there exists an interaction between these 
two forces when the feedback from self-excited force modifies the buffeting force (or vice versa). 
However, this interaction seems to be insignificant, and hence can be ignored. More discussions 
and formal formulations of this interaction can be found in (Scanlan 1993). Under the linearized 
assumption for the action of the aerodynamic force on the bridge deck, which has been widely 
accepted so far in bridge analysis, the external force (𝐹𝑒𝑥𝑡) is considered as the superposition of 
the wind forces, neglecting any possible interaction between them. The dashed line in Figure (2-
1) depicts the linearized assumption of superposition law, indicating the self-excited force directly 
applying to structure i.e., 𝑀𝑢̈ + 𝐾𝑢 = 𝐹𝑠𝑡 + 𝐹𝑏 + 𝐹𝑠𝑒 , where 𝐹st  is the static force; 𝐹𝑏  is 
buffeting force vector; 𝐹𝑠𝑒  is self-excited force vector; 𝑀  and 𝐾  are the mass and stiffness 
matrices of the structural system, respectively, and 𝑢̈  and 𝑢  are the acceleration and 
displacement vectors, respectively. The mean wind speed is responsible for the static forces acting 
on the structural components. The most important force out of static forces is the drag force acting 
on the bridge deck, towers, and main cables. The static forces produce large stresses in all 
structural components and are one of the most important factors considered during the design of 
super long-span bridges. For this reason, it is chiefly important to attain the low drag forces on 
the bridge decks: a requirement that has led the development of streamlined box girders. 

 

 

 
Figure 2-1 Aerodynamic and aeroelastic relationship between wind and structural vibration 

 

2.2 Advances in buffeting analysis from past to present 
 
The wind tunnel test-based models for the slender structures have been used in different 

forms since the late 1930s, and the progress continued in this field; however, the issues regarding 
the flutter and buffeting in long-span bridges under turbulent wind are complex and require 
recourse to wind tunnel models. The bridge flutter is generally a separated-flow phenomenon in 
which a single torsional mode becomes unstable and drives the system towards the excessive 
oscillations, whereas the buffeting problem occurs during exposure to natural wind, which 
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generally has both a mean velocity and random, turbulent velocity components, the rms value of 
the latter occasionally ranging as high as 20% of the mean (Scanlan 1978). Thus, the natural wind 
may pose both the stability and the buffeting problems simultaneously in the prototype bridge. 

Since the 1960s, many methods for predicting buffeting response of long-span bridges have 
been proposed in both frequency- and time-domain. Several contributions, in the beginning, to 
the wind-bridge interaction problem are indicated by Davenport (1961; 1962a; 1962b; 1966). The 
developments in the analysis for the aerodynamic response of long-span bridges to turbulent 
winds also owe much to studies of the buffeting and flutter of aircraft (Scanlan 1951; Bisplinghoff 
et al. 1962). Forces acting on the bluff bodies like long-span bridge decks have been explicated 
by analytical and theoretical approaches, which are influenced by similar formulations as those 
of two-dimensional airfoil theory. The most conventional method is the admittance single mode 
method proposed by Davenport (1962), which is based on the quasi-steady assumption used for 
the formulation of aerodynamic forces on the line-like structures. Simiu and Scanlan (1996) 
further developed another single mode method while considering the effect of aeroelastic forces. 
In spite of their simplicity, these methods are unsuitable for the modern long-span bridges from 
the point of view of analysing the coupled buffeting responses.  

With the advancement in computational capacity, numerous efforts have been made to solve 
the buffeting problem in time-domain by several methods. The bridge engineers mainly focused 
on the time-domain analysis of buffeting response, particularly of low-frequency structures such 
as suspension bridges. Relative velocity by Miyata et al. (1995) and Rational Functions by 
Boonyapinyo et al. (1997) are typical among others. Jain et al. (1996) also proposed a multi-mode 
method in frequency-domain. These methods consider the effects of aerodynamic and structural 
couplings simultaneously. Jakobsen et al. (2001) also developed a time-domain method for 
calculation of dynamic response of line-like structures subjected to the buffeting forces by 
combining the simulated wind speed time history to a quasi-steady load model and a finite element 
algorithm. The major reason for this is that the alternative approach of a mode-by-mode method 
(frequency-domain analysis approach) demands linearity in the loading assumption as well as in 
structural behavior, which is a limitation in the design guidelines under serviceability limit state 
but not under ultimate limit state. 

In the time-domain computational procedure, nonlinear load effects can be included to 
provide a better understanding for the evaluation of the safety margin under extreme load events. 
Extensive comparisons between the frequency-domain and time-domain analyses based on the 
quasi-steady (QS) and linear unsteady (LU) models are conducted in (Petrini et al. 2007; Salvatori 
et al. 2007; Lazzari 2005). Diana et al. (2008) developed a novel concept of modelling the 
aerodynamic forces based on the hysteresis behavior of the aerodynamic force and moment 
coefficients with respect to the dynamic angle of attack for different reduced wind speeds. The 
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aim was to develop a rheological element that can easily capture the unsymmetrical nonlinear 
hysteresis. The model was based on many independent mechanical oscillators in a parallel 
configuration, whose coefficients are attained with the help of aerodynamic force transfer 
functions. 

In Wu and Kareem (2011), a non-parametric model was developed based on the Artificial 
Neural Network (ANN), an input-output black box modelling technique, in order to describe the 
hysteretic behavior. Although promising results are elucidated for the coupled gust-induced and 
motion-induced forces, the model was still not applied for the computation of the buffeting 
response of a real full-scale bridge structure. Nevertheless, the same idea of ANN was used by 
Wu and Kareem (2013) for approximating the aerodynamic hysteresis with respect to the angle 
of attack in the modified hybrid model. To further examine the aerodynamic nonlinearities, Wu 
and Kareem (2015) used the Volterra series and associated Volterra kernels to simulate the 
nonlinear dynamical system with the fading memory concept. Using Volterra series, the nonlinear 
dynamical system is modelled as an infinite sum of multidimensional convolution integrals of 
increasing order, which correlates to the unsteady aerodynamic forces on the bridge deck. The 
accuracy of the Volterra series-based aerodynamic model is highly dependent on the accurate 
identification of the Volterra kernels. Further comparison of the modelling techniques and relevant 
discussions can be seen in (Scanlan 1993; Chen and Kareem 2002; Wu and Kareem 2013). The 
layout of advances in buffeting analysis from past to present is shown in Figure (2-2). 

 

 

Figure 2-2 The advances in buffeting analysis from past to present 
 

1930s 1960s 1990s 2020s

+Wind tunnel
+Airfoil theory
+Potential flow 
theory
+Unsteady lift 
on a wing

Major Themes
+Flutter theory>deck
+Quasi-steady theory
+Admittance single 
mode method
+Aeroelastic model
+Spatial coherence

Major Themes
+Analytical methods
+Time-domain meth.
+ method
+RFA, IFs & impulse
+Single mode meth.
+Multi-mode method

Major Themes

Miyata et al. (1994); 
Jain et al. (1996); 
Katsuchi et al. (1998); 
Jakobsen et al. (2001); 
Chen et al. (2002) …

+Nonstationary 
winds & aero-
dynamic non-
linearity in FSI
+ANN/ML/DL
+Volterra series

Major Themes

Parkinson et al. (1961);
Davenport (1961,1962, 
1966); Bisplinghoff et 
al. (1962); Scanlan 
(1978, 1984) …

Theodersen
(1934); Wagner 
(1925); Jones 
(1940); Scanlan 
(1951) …  

Diana et al. 
(2013); Wu et al. 
(2015); Huang et 
al. (2016); Paula 
et al. (2019) …



– 11 – 
 

2.3 Existing aerodynamic wind load models 
 
The wind-bridge interaction is a 3D complex phenomenon. Nevertheless, most of the 

aerodynamic wind load models are developed for 2D bridge section models, which are then 
applied to a 3D bridge to simulate the actual response of the bridge structure. In this context, there 
is a famous saying of Professor Scanlan (1987) that “It is true to state that no mathematical model, 
even a fully three-dimensional one, can duplicate real bridge behavior completely”. Keeping it in 
mind, it is relevant to review some of the comparative analyses which have been performed in the 
field of semi-analytical aerodynamic modeling. The semi-analytical models formulate the 
aerodynamic forces using a set of mathematical equations, partially based on airfoil theory, and 
aerodynamic coefficient accounting for the wind-bridge interaction of a bridge deck. The 
significant discrepancies between the models instigate from the underlying physical assumptions 
used during the modelling phase. With these hypothetical assumptions, the semi-analytical 
models yield a simple formulation of the aerodynamic forces, which can neglect or account for 
certain factors such as aerodynamic nonlinearity, fading fluid memory, and aerodynamic 
coupling. A comprehensive review paper on various aerodynamic models can be found in 
(Kavrakov et al. 2017; Kavrakov et al. 2019), in which different categories of aerodynamic 
models are made based on their complexity and comparability. To shed some light on the impact 
of the underlying assumptions on the accuracy of aerodynamic modelling, some other studies 
regarding the comparison of different aerodynamic models have been done over the years 
(Scanlan 1978(I); 1978(II); Davenport 1962; Diana et al. 1993, Diana et al. 2010; Chen and 
Kareem 2001; Wu and Kareem 2013). Therein, it is shown that aerodynamic assumptions can 
significantly influence the structural response to wind actions. 

In this section, a brief review of some contemporary aerodynamic models is presented. The 
eight different existing semi-analytical models in the time-domain are investigated including 
steady (S), linear steady (LS), quasi-steady (QS), linearized quasi-steady (LQS), corrected quasi-
steady (CQS), mode-by-mode (MBM), linear unsteady (LU) and hybrid nonlinear (HNL) models. 
Conventionally, the wind-bridge interaction is treated as a 2D coupled problem of a bridge deck 
immersed in a fluid with a constant air density 𝜌 and a width 𝐵 as shown in Figure (2-3) in 
which 𝑈𝑟𝑒𝑙  denotes the relative wind velocity; 𝜙 is the dynamic angle of attack; 𝐿(t) is the lift 
force; 𝑀(𝑡)  is the pitching moment; 𝑢(𝑡)  is the longitudinal fluctuating wind, 𝑤(𝑡)  is the 
vertical fluctuating wind, and 𝑈̅ represents the mean wind speed which is assumed to be constant 
for the stationary process over a certain averaging time period. This assumption is common in 
most of the aerodynamic models for the design of structures (Davenport 1962; Simiu and Scanlan 
1996). However, in the case of typhoons and other extreme wind events, such an assumption is 
no more valid. The deck with width 𝐵 is assumed to be rigid and is supported by the vertical 
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spring with stiffness 𝑘ℎ  and rotational spring with stiffness 𝑘𝛼 , allowing the vertical and 
rotational displacements denoted by ℎ and 𝛼, respectively. Congruently, the bridge deck has the 
inertial mass of 𝑚ℎ and moment of inertia of 𝐼𝛼, while the structural damping of the system is 
included by the vertical and rotational damping coefficients denoted by 𝑐ℎ and 𝑐𝛼, respectively. 
The equation of motion (EOM) of the wind-bridge interaction is defined in Eq. (2.1). The 
subsequent subsections focus on the existing aerodynamic wind load models for the bridge deck. 
𝑚ℎℎ̈ + 𝑐ℎℎ̇ + 𝑘ℎℎ = 𝐿(𝑡) (2.1a) 
𝐼𝛼𝛼̈ + 𝑐𝛼𝛼̇ + 𝑘𝛼𝛼 = 𝑀(𝑡) (2.1b) 

 

Figure 2-3 Coupled wind-structure interaction system for semi-analytical models 
 

2.3.1 Steady model, S 
This model computes the aerodynamic forces generated on a 2D bridge deck such as: 

𝐿(𝑡) = 𝐹𝐿 cos(𝜙) − 𝐹𝐷 sin(𝜙) (2.2a) 

𝑀(𝑡) =
1

2
𝜌𝑈𝑟𝑒𝑙

2 𝐵2𝐶𝑀(𝛼𝑒𝑓𝑓) (2.2b) 

𝐹𝐷 =
1

2
𝜌𝑈𝑟𝑒𝑙

2 𝐵𝐶𝐷(𝛼𝑒𝑓𝑓) 
(2.3a) 

𝐹𝐿 = −
1

2
𝜌𝑈𝑟𝑒𝑙

2 𝐵𝐶𝐿(𝛼𝑒𝑓𝑓) 
(2.3b) 

𝑈𝑟𝑒𝑙 = √(𝑈 + 𝑢)2 + 𝑤2 (2.3c) 
𝛼𝑒𝑓𝑓 = 𝛼𝑠 + 𝜙 (2.3d) 

𝜙 = arctan (
𝑤

𝑈 + 𝑢
) 

(2.3e) 

where 𝛼𝑒𝑓𝑓 is the effective angle of attack; 𝜙 is the dynamic angle of attack induced by the 

bridge deck motions and wind fluctuations (herein the term “effective angle of attack” means that 
only the deck motions are responsible for generation of the angle of attack), and 𝛼𝑠 is the static 
angle of attack identified at an equilibrium position. 𝐶𝐷 , 𝐶𝐿  and 𝐶𝑀  denote the static force 
coefficients for the drag, lift, and pitching moment, respectively. These coefficients are obtained 
from the wind tunnel tests under steady flow conditions or computational fluid dynamics (CFD) 
simulations under the laminar flow conditions, and depend on the angle of attack, generally in a 
nonlinear manner. 

ℎ 𝛼 
𝑈̅ + 𝑢 

𝑤 
𝐵 

𝑀(𝑡) 

𝐿(𝑡) 𝑈𝑟𝑒𝑙  
𝜙 
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2.3.2 Linear steady model, LS 
The linear steady (LS) model is also valid for 2D problems, which is obtained by the 

linearizing Eq. (2.2) at the equilibrium position of the angle of attack and neglecting the higher-
order terms of the velocity such as: 

𝐿(𝑡) = −
1

2
𝜌𝑈2𝐵 [𝐶𝐿 + 2𝐶𝐿

𝑢

𝑈
+ (𝐶𝐿

′ + 𝐶𝐷)
𝑤

𝑈
] (2.4a) 

𝑀(𝑡) =
1

2
𝜌𝑈2𝐵2 [𝐶𝑀 + 2𝐶𝑀

𝑢

𝑈
+ 𝐶𝑀

′
𝑤

𝑈
] (2.4b) 

where 𝐶𝐿 = 𝐶𝐿(𝛼𝑠), 𝐶𝐷 = 𝐶𝐷(𝛼𝑠) and 𝐶𝑀 = 𝐶𝑀(𝛼𝑠) depend on 𝛼𝑠 , and 𝐶𝐿′ , 𝐶𝐷′  and 𝐶𝑀′  
are the first derivatives of 𝐶𝐿, 𝐶𝐷 and 𝐶𝑀, respectively. 

 
2.3.3 Quasi-steady model, QS 

The quasi-steady theory has a preponderant role in the aeroelastic and aerodynamic analysis 
frameworks, which explicates the aerodynamic load through a static nonlinear relationship 
between the incoming wind flow and wind-induced forces on a structure. It was first used to 
model the onset mechanism of galloping, where the unsteady aerodynamic forces exerted on a 
vibrating structure were modelled by using the steady-state coefficients (Parkinson and Brooks 
1961). This model is based on the assumption that in each time-step, the forces due to the wind-
bridge interaction are the same as in an equivalent steady-state at infinite time. Hence, the rise 
time of the wind forces is assumed to be instantaneous and the fluid memory effects are not taken 
into account. The major advantage of this model is to consider the nonlinearity. However, no fluid 
memory effects are taken in account in the QS theory. Consequently, the QS theory is only 
appropriate if the time required by the incoming wind flow to pass around the structure and to be 
convected far enough downstream is less than the time taken by the structure to react to the 
disturbances occurred in the surrounding flow. Henceforth, the QS theory is usually used for the 
low-frequency structures (or equivalently for the high reduced velocity). 

Based on the QS theory, the aerodynamic lift and torsional moment per unit span length of 
the bridge deck can be expressed in reference to (Kovacs et al. 1992; Miyata et al. 1995) such as: 
𝐿(𝑡) = 𝐹𝐿 cos(𝜙) − 𝐹𝐷 sin(𝜙) (2.5a) 

𝑀(𝑡) =
1

2
𝜌𝑈𝑟𝑒𝑙

2 𝐵2𝐶𝑀(𝛼𝑒𝑓𝑓) (2.5b) 

where 

𝐹𝐷 =
1

2
𝜌𝑈𝑟𝑒𝑙

2 𝐵𝐶𝐷(𝛼𝑒𝑓𝑓) (2.6a) 

𝐹𝐿 = −
1

2
𝜌𝑈𝑟𝑒𝑙

2 𝐵𝐶𝐿(𝛼𝑒𝑓𝑓) 
(2.6b) 
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𝑈𝑟𝑒𝑙 = √(𝑈̅ + 𝑢)2 + (𝑤 + ℎ̇ + 𝑚1𝐵𝛼̇)
2 

(2.6c) 

𝛼𝑒𝑓𝑓 = 𝛼𝑠 + 𝛼 + 𝜙 (2.6d) 

𝜙 = arctan (
𝑤 + ℎ̇ + 𝑚1𝐵𝛼̇

𝑈̅ + 𝑢
) 

(2.6e) 

where 𝑚1  coefficient stipulates the position of the aerodynamic center which tells about a 
resultant point, where all components of the self-excited forces act, arising due to the rotational 
DOF. In other words, it stipulates an equivalent point at which there is an equivalent vertical 
velocity due to the angular displacement as the self-excited forces depend on the vertical velocity 
of the bridge deck. This point is valid for an equivalent quasi-steady state, which is generally 
identified based on the flutter derivatives. 

 
2.3.4 Linear quasi-steady model, LQS 

Among all, the simplest model is the LQS model which is linear and does not incorporate 
the unsteadiness of the aerodynamic forces. This model is developed by linearizing the QS model 
at the static equilibrium position to compute the wind-induced aerodynamic/aeroelastic forces. 
Based on the LQS model, the lift, drag, and torsional coefficients are expressed as: 
𝐶𝐿(𝛼𝑒𝑓𝑓) ≅ 𝐶𝐿(𝛼𝑠) + (𝛼 + 𝜙)𝐶𝐿

′|𝛼𝑠 (2.7a) 
𝐶𝐷(𝛼𝑒𝑓𝑓) ≅ 𝐶𝐷(𝛼𝑠) + (𝛼 + 𝜙)𝐶𝐷

′ |𝛼𝑠 (2.7b) 
𝐶𝑀(𝛼𝑒𝑓𝑓) ≅ 𝐶𝑀(𝛼𝑠) + (𝛼 + 𝜙)𝐶𝑀

′ |𝛼𝑠 (2.7c) 
After the simplification, the lift force and pitching moment per unit span length of the bridge deck 
in the global bridge coordinates can be expressed as: 

𝐿(𝑡) = −
1

2
𝜌𝑈2𝐵 [𝐶𝐿 + 2𝐶𝐿

𝑢

𝑈
+ (𝐶𝐿

′ + 𝐶𝐷)
𝑤

𝑈
+ (𝐶𝐿

′ + 𝐶𝐷)
ℎ̇ + 𝑚1𝐵𝛼̇

𝑈
+ 𝐶𝐿

′𝛼] (2.8a) 

𝑀(𝑡) =
1

2
𝜌𝑈2𝐵2 [𝐶𝑀 + 2𝐶𝑀

𝑢

𝑈
+ 𝐶𝑀

′
𝑤

𝑈̅
+ 𝐶𝑀

′  
ℎ̇ + 𝑚1𝐵𝛼̇

𝑈
+ 𝐶𝑀

′ 𝛼] (2.8b) 

 
2.3.5 Corrected quasi-steady model, CQS 

A clear shortcoming of the QS model is that it cannot consider the unsteady fluid memory 
effects. In order to improve this model, a CQS model has been proposed where a modified 
coefficient is introduced by Diana et al. (1993) to account for the unsteady effects while retaining 
the effects of nonlinearity on the dynamic response. According to the CQS model, static wind 
force coefficients are modified as 𝐶𝑗(𝛼𝑒𝑓𝑓) = 𝐶𝑗(𝛼𝑠) + 𝐶𝑗

∗(𝛼𝑒𝑓𝑓) for 𝑗 ∈ {𝐷, 𝐿, 𝑀}, where 𝐶𝑗∗ 

denotes a corrected nonlinear static wind force coefficient evaluated as follows: 

𝐶𝐷
∗(𝛼𝑒𝑓𝑓) = ∫ 𝐾𝐷

∗(𝛼)𝐶𝐷
′ (𝛼)𝑑𝛼

𝛼𝑒

𝛼𝑠

 (2.9a) 
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𝐶𝐿
∗(𝛼𝑒𝑓𝑓) = ∫ 𝐾𝐿

∗(𝛼)𝐶𝐿
′(𝛼)𝑑𝛼

𝛼𝑒

𝛼𝑠

 (2.9b) 

𝐶𝑀
∗ (𝛼𝑒𝑓𝑓) = ∫ 𝐾𝑀

∗ (𝛼)𝐶𝑀
′ (𝛼)𝑑𝛼

𝛼𝑒

𝛼𝑠

 (2.9c) 

where 𝐾𝑗∗ denotes the frequency-dependent correction coefficient identified from dynamic tests. 
Alternatively, 𝐾𝑗∗ can be identified from the FDs at different angles of attack as follows: 

𝐾𝐷
∗ =

𝐾2𝑃3
∗

𝐶𝐷
′ ,         𝐾𝐿

∗ =
𝐾2𝐻3

∗

𝐶𝐿
′ ,        𝐾𝑀

∗ =
𝐾2𝐴3

∗

𝐶𝑀
′  (2.9d) 

 
2.3.6 Linear unsteady model, LU 

The linear unsteady (LU) model is based on the conventional convolution theory in which 
the output of a linear system is related to its output through an impulse response function. In the 
bridge aerodynamics, Davenport and Scanlan introduced an efficient way to treat unsteadiness by 
including the linear frequency-dependent coefficients (Davenport 1962; Scanlan 1978(I); Scanlan 
1978(II)). The self-excited forces are then defined as a linear function of the vibration and its 
frequency content, including the aerodynamic coupling terms between the modes. The buffeting 
forces are also upgraded by introducing the linear frequency-dependent coefficients between the 
wind fluctuations and forces, which are known as aerodynamic admittance functions as: 

𝐷𝑏 =
1

2
𝜌𝑈2𝐵 [2𝐶𝐷𝜒𝐷𝑢

𝑢

𝑈
+ (𝐶𝐷

′ − 𝐶𝐿)𝜒𝐷𝑤
𝑤

𝑈
] (2.10a) 

𝐿𝑏 = −
1

2
𝜌𝑈2𝐵 [2𝐶𝐿𝜒𝐿𝑢

𝑢

𝑈
+ (𝐶𝐿

′ + 𝐶𝐷)𝜒𝐿𝑤
𝑤

𝑈̅
] (2.10b) 

𝑀𝑏 =
1

2
𝜌𝑈2𝐵2 [2𝐶𝑀𝜒𝑀𝑢

𝑢

𝑈
+ 𝐶𝑀

′ 𝜒𝑀𝑤
𝑤

𝑈
] (2.10c) 

where 𝜒𝑗𝑢(𝐾) and 𝜒𝑗𝑤(𝐾) for 𝑗 ∈ {𝐷, 𝐿, 𝑀} are the aerodynamic admittance functions that 

are proposed to consider the unsteady effects of incoming wind fluctuations. This model neglects 
the aerodynamic nonlinearity; nevertheless, it takes the linear fluid memory effects into account. 
The buffeting and self-excited forces in frequency-domain are usually approximated using 
aerodynamic admittances and flutter derivatives, respectively, whereas the buffeting forces 
induced by the turbulent winds in time-domain are expressed as: 

𝐿𝑏(𝑡) = −
1

2
𝜌𝑈2𝐵 [𝐶𝐿 + 2𝐶𝐿∫ 𝜓̇𝐿𝑢(𝜏)

𝑡

0

𝑢(𝑡 − 𝜏)

𝑈
𝑑𝜏 + (𝐶𝐷 + 𝐶𝐿

′) {∫ 𝜓̇𝐿𝑤(𝜏)

𝑡

0

𝑤(𝑡 − 𝜏)

𝑈
𝑑𝜏 

+∫ 𝜙̇𝐿ℎ̇(𝜏)

𝑡

0

ℎ̇(𝑡 − 𝜏)

𝑈
𝑑𝜏 + ∫ 𝜙̇𝐿𝑝̇(𝜏)

𝑡

0

𝑝̇(𝑡 − 𝜏)

𝑈
𝑑𝜏 + ∫ 𝜙̇𝐿𝛼(𝜏)

𝑡

0

𝛼(𝑡 − 𝜏)𝑑𝜏}] 

(2.11a) 
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𝑀𝑏(𝑡) =
1

2
𝜌𝑈2𝐵2 [𝐶𝑀 + 2𝐶𝑀∫𝜓̇𝑀𝑢(𝜏)

𝑡

0

𝑢(𝑡 − 𝜏)

𝑈
𝑑𝜏 + 𝐶𝑀

′ {∫ 𝜓̇𝑀𝑤(𝜏)

𝑡

0

𝑤(𝑡 − 𝜏)

𝑈̅
𝑑𝜏 

+∫ 𝜙̇𝑀ℎ̇(𝜏)

𝑡

0

ℎ̇(𝑡 − 𝜏)

𝑈
𝑑𝜏 + ∫ 𝜙̇𝑀𝑝̇(𝜏)

𝑡

0

𝑝̇(𝑡 − 𝜏)

𝑈
𝑑𝜏 + ∫ 𝜙̇𝑀𝛼(𝜏)

𝑡

0

𝛼(𝑡 − 𝜏)𝑑𝜏}] 

(2.11b) 

𝐷𝑏(𝑡) =
1

2
𝜌𝑈2𝐵 [𝐶𝐷 + 2𝐶𝐷∫𝜓̇𝐷𝑢(𝜏)

𝑡

0

𝑢(𝑡 − 𝜏)

𝑈
𝑑𝜏 + (𝐶𝐷

′ − 𝐶𝐿) {∫ 𝜓̇𝐷𝑤(𝜏)

𝑡

0

𝑤(𝑡 − 𝜏)

𝑈̅
𝑑𝜏 

+∫ 𝜙̇𝐷ℎ̇(𝜏)

𝑡

0

ℎ̇(𝑡 − 𝜏)

𝑈
𝑑𝜏 + ∫ 𝜙̇𝐷𝑝̇(𝜏)

𝑡

0

𝑝̇(𝑡 − 𝜏)

𝑈
𝑑𝜏 + ∫ 𝜙̇𝐷𝛼(𝜏)

𝑡

0

𝛼(𝑡 − 𝜏)𝑑𝜏}] 

(2.11c) 

where 𝜓(𝑡) represents the aerodynamic unit-step response to buffeting forces (also known as 
aerodynamic indicial response function), and 𝜙(𝑡) represents the aeroelastic unit-step response 
to self-excited forces (also known as aeroelastic indicial response function), which are determined 
from the aerodynamic transfer functions and FDs, respectively. The formulation of the LU model 
will be discussed in detail in Chapter 3. 

 
2.3.7 Mode-by-mode Model, MBM 

The mode-by-mode model neglects the aerodynamic coupling between structural modes. It 
is conventionally used for the buffeting analysis in frequency-domain due to its simplicity. The 
simplification in the MBM model is to neglect the coupling between structural modes on the 
aerodynamic side. For a 3D system, the cross-terms between the vertical and torsional degrees of 
freedom (DOFs) in Eq. (2.11) are ignored; henceforth, the MBM model is developed as follows: 

𝐿𝑏(𝑡) = −
1

2
𝜌𝑈2𝐵 [𝐶𝐿 + 2𝐶𝐿∫ 𝜓̇𝐿𝑢(𝜏)

𝑡

0

𝑢(𝑡 − 𝜏)

𝑈
𝑑𝜏

+ (𝐶𝐷 + 𝐶𝐿
′) {∫ 𝜓̇𝐿𝑤(𝜏)

𝑡

0

𝑤(𝑡 − 𝜏)

𝑈
𝑑𝜏 +∫ 𝜙̇𝐿ℎ̇(𝜏)

𝑡

0

ℎ̇(𝑡 − 𝜏)

𝑈
𝑑𝜏}] 

(2.12a) 

𝑀𝑏(𝑡) =
1

2
𝜌𝑈2𝐵2 [𝐶𝑀 + 2𝐶𝑀∫𝜓̇𝑀𝑢(𝜏)

𝑡

0

𝑢(𝑡 − 𝜏)

𝑈
𝑑𝜏

+ 𝐶𝑀
′ {∫ 𝜓̇𝑀𝑤(𝜏)

𝑡

0

𝑤(𝑡 − 𝜏)

𝑈
𝑑𝜏 +∫ 𝜙̇𝑀𝛼(𝜏)

𝑡

0

𝛼(𝑡 − 𝜏)𝑑𝜏}] 

(2.12b) 
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𝐷𝑏(𝑡) =
1

2
𝜌𝑈2𝐵 [𝐶𝐷 + 2𝐶𝐷∫𝜓̇𝐷𝑢(𝜏)

𝑡

0

𝑢(𝑡 − 𝜏)

𝑈
𝑑𝜏

+ (𝐶𝐷
′ − 𝐶𝐿) {∫ 𝜓̇𝐷𝑤(𝜏)

𝑡

0

𝑤(𝑡 − 𝜏)

𝑈
𝑑𝜏 +∫ 𝜙̇𝐷𝑝̇(𝜏)

𝑡

0

𝑝̇(𝑡 − 𝜏)

𝑈
𝑑𝜏}] 

(2.12c) 

 
2.3.8 Hybrid nonlinear model, HNL 

Recently, numerous aerodynamic models have been established including the fluid memory 
effects, which are based on the aerodynamic hysteretic behavior (Diana et al. 2008; Diana et al. 
2010). The incentive of the hybrid nonlinear (HNL) model is to employ the benefits of LU and 
QS models for different range of reduced wind speeds. The bridge response and wind spectrum 
are separated into the low- and high-frequency components. The HNL model is introduced based 
on the idea that the effect of fluid memory is insignificant at low reduced frequency and the 
nonlinearity dominates the aerodynamic forces, while for high reduced frequencies, the effect of 
fluid memory is significant. The effective angle of attack is also split into a low- and high-
frequency components, denoted as 𝛼𝑒𝑓𝑓𝑙  and 𝛼𝑒𝑓𝑓ℎ , respectively. The low-frequency component 

of the force is modelled by using the QS model, resulting in a low-frequency effective angle of 
attack. On the other hand, a conventional convolution-based LU model is employed to compute 
the high-frequency component of the buffeting and self-excited forces on a bridge deck by 
linearizing the wind forces at low-frequency component of effective angle of attack (Chen and 
Kareem 2003). The total nonlinear aerodynamic force is then computed as follows: 

F = F(𝛼𝑒𝑓𝑓) ≅ F(𝛼𝑒𝑓𝑓
𝑙 ) +

𝑑F

𝑑𝛼
│
𝛼𝑒𝑓𝑓
𝑙 × 𝛼𝑒𝑓𝑓

ℎ  

= F𝑙 + Fse
ℎ + Fb

ℎ = F𝑄𝑆 + F𝐿𝑈 

(2.13) 

where F𝑄𝑆 is the nonlinear aerodynamic force due to the low-frequency components of wind 
speed fluctuations and bridge deck motions calculated by using Eq. (2.5) and F𝐿𝑈 is the force 
due to the high-frequency components of wind speed fluctuations and bridge motions computed 
by Eq. (2.11). The formulation of Diana et al. (2013) is employed in the following form: 

𝛼𝑒𝑓𝑓
𝑙 = 𝛼𝑠 + 𝛼𝑙 + arctan (

𝑤𝑙 + ℎ̇𝑙 +𝑚1𝐵𝛼̇
𝑙 + 𝑛1𝑤̇

𝑙

𝑈̅ + 𝑢𝑙 − 𝑝̇𝑙
) (2.14) 

where 𝑛1 is introduced to account for the phase lag between the wind fluctuations and the quasi-
steady aerodynamic force. The HNL model possesses the benefit of nonlinearity of QS model in 
the high reduced wind speed range, and since the unsteady characteristics are unique for the low 
reduced wind speed range, the LU model is used to capture the fluid memory effects. The cut-off 
frequency is selected based on the natural frequency of 1st mode of bridge (Wu and Kareem 2013). 
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2.4 Benefits of indicial response functions and Volterra series 
 
The buffeting response of long-span bridges subjected to turbulent winds is a complex 

interaction of aerodynamic loading and coupled structural motion (Scanlan 1990), which can be 
simulated through a sophisticated aerodynamic model in time-domain. The most appropriate way 
to model for buffeting force in time-domain is through indicial functions (IFs), which has been 
pointed out by Scanlan (1984; 1993) because IFs can model the changing of bridge aerodynamics 
under turbulent winds. There are two types of IFs: (1) IFs represent the development of forces 
due to a step-change in the bridge deck motion also known as Wagner-type indicial functions and 
(2) IFs represent the development of forces due to a sharp-edged gust of wind turbulence also 
known as Kussner-type indicial functions. In other words, the Wagner function gives the response 
to a unit angle of attack change and the Kussner function, conversely, provides the aerodynamic 
response to a unit sharp gust.  

Time-domain models also offer other advantages. For example, the combination of self-
excited and buffeting forces is straightforward, and the along-span wind coherence can be easily 
considered. Once the time-domain analysis is followed, the advantages of using IFs are as follows: 

• An accurate description of aerodynamic characteristics and the possibility of obtaining the 
unsteady wind loads on a structure undergoing arbitrary small motions, 

• A unified formulation of the aerodynamics of long-span bridges, 
• The expressions for IFs can be derived or approximated in various ways via analytical, 

computational fluid dynamics, or experimental methods, 

• The effect of wake (which quasi-steady theory does not consider) is considered in IFs which 
can significantly affect and alter the flutter conditions, 

• IFs have the nature of time-domain so that the formulation of aerodynamic forces will be 
straightforwardly expressed without any transformation technique, 

• Using IFs will eliminate the limitations due to the quasi-static model so that the well-known 
lag of buffeting forces behind the incident wind turbulence can be included, 

• The explicit expressions of aerodynamic forces by IFs in time-domain make it easy to 
directly solve the dynamic equation of motion of the three-dimensional model of a bridge, 

Some other useful notes on indicial functions are as follows:  

• For incompressible flows, the unsteady aeroelastic lift and twist moment are expressed in 
the frequency- and time-domain via the use of the Theodorsen’s and Wagner functions 
respectively; these functions play the roles of aeroelastic IFs, 

• For incompressible flows, the unsteady aerodynamic lift and twist moment are expressed in 
the frequency- and time-domain via the use of the Sears’ and Kussner functions respectively; 
these functions play the roles of aerodynamic IFs, 
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• Wagner determined the indicial response for a thin airfoil in an incompressible flow as a 
function that tends asymptotically to unity and starts at a value of 0.5 for 𝑠 = 0, explicating 
that half of the change in circulatory lift is obtained at the initial instant, 

• Kussner determined the indicial response for a thin airfoil in incompressible flow as a 
function that tends asymptotically to unity and starts at 0 for 𝑠 = 0, 

• IFs of a bridge deck must originally be obtained from the flutter derivatives in any event as 
suggested by Scanlan (1993), 

• Often a working hypothesis is suggested that IFs calculated from flutter derivatives for self-
excited forces do not differ much from IFs calculated from admittance functions for 
buffeting forces. Some discussions are also available on the point that IFs for buffeting and 
self-excited forces are the same based on the assumption that vertical gust wind component 
and vertical bridge response component yield the same aerodynamic loads on a bridge deck 
(e.g., Tubino 2005). However, this assumption is not valid in the case of a real bridge deck. 
Hence, IFs for self-excited forces are particularly different from those for buffeting forces, 

• Admittance functions, similar to flutter derivatives, are expressed as a function of the 
reduced frequency and can be measured in the wind tunnel. Otherwise, if wind tunnel test 
data is not available, a reference aerodynamic admittance function can be used, even if 
theoretically defined only for a thin-airfoil, i.e. the Sear’s function (χ(𝐾))  for the 
identification of aerodynamic IFs, 
To model the aerodynamic nonlinearities, the Volterra series serves as one of the best 

mathematical tools for the nonlinear dynamic systems. The following keynotes are interesting to 
state herein about the Volterra theory: 

• A rigorous mathematical framework and provides a quantitative description of the dynamics, 
• Provides the means of evaluation for the dynamic nonlinearity of a system, 
• Scalable to arbitrary nonlinear orders, 
• Non-Gaussian white noise input can be used, 
• Serves as a non-parametric model because it does not need any prior knowledge about the 

system and no assumption is required, 

• Robustness to noise and interference, 
• Easily extensible to accommodate multiple-inputs and multiple-outputs, 
• Volterra kernel size can be kept at tractable levels, 
• Ubiquitous and significant nonlinearities of the dynamic systems can be modelled accurately 

while linear approaches fail to capture nonlinearities and do not reach the required accuracy, 

• Contrary to the Taylor series which is only limited to the static nonlinear systems 
experiencing the steady flow problems, the Volterra series can model the dynamic nonlinear 
systems subjected to the unsteady flow such as: 
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𝑦(𝑡) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯ (2.15) 

If 𝑥  is replaced by ∫ℎ(𝜏)𝑥(𝑡 − 𝜏) 𝑑𝜏  in the Taylor series for a single-input single-output 
(SISO) system, Eq. (2.15) becomes, 

𝑦(𝑡) = 𝑎0 + 𝑎1∫ℎ(𝜏)𝑥(𝑡 − 𝜏) 𝑑𝜏 + 𝑎2∫∫ℎ(𝜏1)ℎ(𝜏2)𝑥(𝑡 − 𝜏1)𝑥(𝑡 − 𝜏2) 𝑑𝜏1𝑑𝜏2 +⋯ (2.16) 

in which ℎ denotes the impulse response function. Eq. (2.16) is a simplified form of the Volterra 
series of increasing order. An extensive discussion about the formulation of the Volterra series 
and its application to aerodynamic load modelling is presented in Chapter 3.
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CHAPTER 3:  VOLTERRA SERIES-BASED WIND LOAD MODEL 
 
 

This chapter focuses on the development of wind load models in time-domain based on the 
Volterra series including the buffeting and self-excited forces on a bluff body. More specifically, 
the transient nature of the typhoon wind and its effects on the aerodynamic response of the bridge 
are modelled while considering the effects of nonlinear fluid memory arising from the past history 
of incoming wind flow and deck motion at two different time-scales, and aerodynamic 
nonlinearities arising from the dependency of aerodynamic forces on the effective angle of attack 
and large flow separation at a high angle of attack. For that, two schemes based on the Volterra 
series are herein proposed for modeling the buffeting forces on a bridge deck: (1) Volterra FD 
model (2) Hybrid Volterra FD model.  

In the case of the scheme (1), a whole gamut of frequencies of wind speed fluctuation 
components (both longitudinal and vertical) and bridge deck motion components (lateral, vertical, 
and torsional) are used. With that, a conventional linear unsteady (LU) buffeting force model is 
extended to a nonlinear unsteady (NLU) buffeting force model by using the Volterra series to 
account for the nonlinear fluid memory effects as well as the aerodynamic nonlinearities existing 
in the non-proportional wind-bridge interaction. The aerodynamic nonlinearity in the scheme (1) 
is expressed in terms of higher-order IFs also called higher-order Volterra kernels interchangeably, 
which are identified at zero angle of attack of wind. The corresponding static force coefficients 
utilized in this scheme are measured at zero angle of attack. The effects of non-synoptic winds on 
the bridge aerodynamics are also incorporated in the Volterra FD model in terms of time-varying 
mean wind speed. Congruently, an LU-based self-excited force model in time-domain is extended 
to an NLU-based self-excited force model through the Volterra series by considering the higher-
order aeroelastic Volterra kernels. Finally, both the Volterra FD-based buffeting and self-excited 
force models are combined to develop a unified formulation of the Volterra series-based wind 
load model which can simulate the effects of nonlinear fluid memory effects, non-synoptic wind 
effects as well as the aerodynamic and aeroelastic nonlinearity effects on the bridge deck response 
concurrently.  

In the case of the scheme (2), the wind speed fluctuating components (both longitudinal and 
vertical), as well as the bridge motion components (lateral, vertical, and torsional), are separated 
into low- and high-frequency components based on a cut-off frequency. The low-frequency 
components of aerodynamic forces are modelled based on low-frequency components of wind 
speed fluctuations and bridge motions using QS model due to its high reduced velocity and ability 
to incorporate the nonlinearity arising from the angle-varying static force coefficients, whereas 
the high-frequency components of buffeting forces are modelled using the Volterra FD model in 
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which the Volterra kernels are identified from FDs determined at varying angles of attack of wind. 
The effects of non-synoptic winds on the bridge deck response are also incorporated in the low- 
and high-frequency components of buffeting forces in the scheme (2). The results highlighted the 
importance of extending the existing LU model to an NLU wind load model. Results also showed 
the modeling of effects of non-synoptic winds on the structural response as well as amplitude-
dependency of IFs. The presented wind load modeling schemes can provide a straightforward 
physical explanation on the underlying mechanism of changing the bridge aerodynamics due to 
the transient effects of time-varying wind speed. This study may facilitate the bridge engineers to 
design super long-span bridges accurately by considering the non-synoptic wind loads and, 
aerodynamic and aeroelastic nonlinearities existing in the wind-bridge interaction. 

 

3.1 Introduction 
 
Non-stationary wind events, like typhoons, impact violently on the civil infrastructures in 

ABL, that may cause a large number of fatalities and big economic losses. Compared with the 
vertical structures like high-rise buildings, the long-span bridges have a large propensity to be 
attacked by the non-stationary winds. It is observed that the thin-section bridges in coastline areas 
are prone to typhoons which possess strong non-stationary characteristics. Actually, it is probable 
that the design wind speeds in those areas are controlled by typhoons of transient nature, which 
highlights the paramount importance of non-stationary consideration in the modeling of wind 
loads on long-span bridges. Generally, the stationary winds are characterized by the constant mean 
wind speed, whereas the non-stationary winds elucidate the time-varying mean wind speed 
behavior that generates the transient response (Xu and Chen 2004). Therefore, a comprehensive 
understanding of non-synoptic wind effects on changing the bridge aerodynamics is essential to 
predict the buffeting response accurately. For that, the time-domain simulations are performed 
these days because time-domain approaches not only provide the benefit of combining different 
types of loads and can consider the nonlinearities but also provide the only way to reproduce the 
bridge response to typhoon winds with time-varying mean characteristics. 

Most of the current researches focusing on the non-stationary wind effects on the civil 
infrastructures fully depend on the conventionally determined aerodynamic coefficients from 
wind tunnel tests under the stationary wind conditions (Chen 2008; Chen 2015; Cao and Sarkar 
2015). In other words, the current wind design guidelines mainly emphasize on the stationary 
winds, whereas the actual phenomenon of typhoon winds show the non-stationary behavior, and 
hence the associated aerodynamic parameters are often disregarded, which calls into question the 
applicability of the conventional existing aerodynamic load models (Kwon and Kareem 2009; 
Chen 2015). Moreover, the lack of experimental studies in the past also raised questions on the 
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accuracy of modeling the time-varying transient effects of non-stationary winds on the buffeting 
response of the bridges, and it is therefore difficult to judge the contribution from the gust-induced 
aerodynamic effects to the dynamic response (Chay and Letchford 2002; Letchford and Chay 
2002; Cao et al. 2015). Moreover, the amalgamation of the motion-induced aeroelastic effects in 
the buffeting forces is very challenging owing to the limitations of the wind tunnel test facilities.  

To circumvent this limitation, Kwon and Kareem (2009) offered a novel theoretical scheme 
for wind load effects on infrastructures based on the gust front factor which is capable to 
effectively investigate the transient aerodynamics. The results obtained in their study aimed to 
develop the analysis framework based on gust front factor for transient wind load effects on 
infrastructures. Specifically, the efforts were made to investigate the effects of transient behavior 
on the aeroelastic and aerodynamic characteristics based on a long-span bridge under artificial 
downburst winds. For that, the semi-empirical linear model in time-domain was used to analyse 
the aerodynamic and aeroelastic forces on the long-span bridge under downburst events and its 
equivalent stationary winds. The presented approach highlights the fundamental mechanism of 
the change in bridge aerodynamics brought about by the time-varying effects and offered new 
insights to explore the non-stationary wind effects on the bridges. 

Besides the non-stationary wind effects on the bridge response, the wind-bridge interaction 
is a fade memory system and exhibits a nonlinear behavior aerodynamically. A main source of 
this nonlinearity existing in bridge aerodynamics is owing to the flow separation around the bridge 
deck because the wind flow around deck cannot accommodate the abrupt changes in the deck 
profile. Other reasons of the aerodynamic nonlinearities can be visualized in various point of 
views i.e., amplitude/frequency dependency of aeroelastic and aerodynamic forces, non-
proportional and nonlinear relationship between wind speed and bridge dynamic response and 
hysteretic nature of aerodynamic forces against angles of attack (Wu et al. 2013).  

Chen and Kareem (2001, 2003) presented a time-domain analysis framework for predicting 
the nonlinear response of long-span bridges under turbulent winds. The nonlinear unsteady forces 
are formulated on the basis of the static wind force coefficient, admittance functions, flutter 
derivatives, and their spatial correlations at different angles of attack. In their framework, the 
aerodynamic forces are separated into low- and high-frequency components at a suitable cut-off 
frequency based on the low- and high-frequency components of effective angle of attack. The 
low-frequency components of aerodynamic forces are modelled as a nonlinear function of the 
effective angle of attack using the QS model, whereas high-frequency component of aerodynamic 
forces is linearized at the low-frequency component of effective angle of attack and then modelled 
using conventional LU model. This combination of QS and LU models is famously known as 
hybrid nonlinear (HNL) wind load model. Further discussions regarding the aerodynamic 
modeling are presented in the subsequent sections. 
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3.2 Volterra series 
 
The mathematician Vito Volterra (Volterra 1959) used a series of convolution-like 

expressions to define the input-output relationship of nonlinear time-invariant (NLTI) systems. 
The Volterra theory is of great importance because many real systems with a fading memory can 
be analysed using this approach. Fading memory is physically a meaningful concept. Instinctively, 
a dynamical system has fading memory if two input signals, which are close in the recent past, 
but not essentially close in the remote past, yield outputs which are close. For the dynamic systems, 
fading memory is related to the concept of a unique steady-state. This implies that a wide range 
of nonlinear systems can be approximated by the Volterra series representation with some 
reasonable assumptions. According to the Volterra series, the output of a continuous SISO, 
nonlinear time-invariant (NLTI), causal and fading memory system is related to the input signal 
through the multidimensional infinite convolution integrals of increasing order such as: 

𝑦(𝑡) = ℎ0 + ∫ ℎ1(𝜏1)𝑢(𝑡 − 𝜏1)𝑑𝜏1

∞

−∞

+ ∫ ∫ ℎ2(𝜏1, 𝜏2)𝑢(𝑡 − 𝜏1)𝑢(𝑡 − 𝜏2)𝑑𝜏1𝑑𝜏2

∞

−∞

∞

−∞

+⋯ 

+ ∫ ∫ …

∞

−∞

∞

−∞

∫ ℎ𝑛(𝜏1, 𝜏2, … , 𝜏𝑛)𝑢(𝑡 − 𝜏1)𝑢(𝑡 − 𝜏2)… 𝑢(𝑡 − 𝜏𝑛)𝑑𝜏1𝑑𝜏2…𝑑𝜏𝑛

∞

−∞

 

(3.1) 

where 𝑦(𝑡) is the response of an 𝑛𝑡ℎ-order system, which depends on multiple copies of the 
input and is the sum of the first-, second-, …, 𝑛𝑡ℎ-order convolution-like expressions. The 
functions ℎ1, ℎ2, …, ℎ𝑛 are called the first-, second-, …, 𝑛𝑡ℎ-order Volterra kernels; 𝑢(𝑡 −
𝜏𝑖) is the lagged input to the system and ℎ0 is the zeroth-order Volterra kernel. The zeroth-order 
Volterra kernel shows the zero-input response of the dynamical system, whereas the first-order 
Volterra kernel signifies the linear response of the dynamical system to a single impulse input. 
The higher-order kernels are the system multidimensional impulse responses characterizing the 
temporal effects in the nonlinear dynamics, which measure the relative influence of a previous 
input on the current response. Figure (3-1) shows the Volterra series model of an NLTI-SISO 
system. Eq. (3.1) can also be written in a compact form such as: 

𝑦(𝑡) = ℎ0 +∑ ∫ … ∫ ℎ𝑛(𝜏1, 𝜏2, … , 𝜏𝑛) ×∏𝑢(𝑡 − 𝜏𝑖)𝑑𝜏𝑖𝑑𝜏2…𝑑𝜏𝑛

𝑛

𝑖=1

∞

−∞

∞

−∞

∞

𝑛=0

 (3.2) 

Eq. (3.2) is similar to the finite impulse response (FIR) filter model except for the only difference 
of an additional constant term ℎ0. It has been verified that the stability of dynamical systems 
represented by the Volterra series can be guaranteed if the Volterra kernels satisfy the following 
condition: 

∫ … ∫ |ℎ𝑛(𝜏1, 𝜏2, … , 𝜏𝑛)|∏𝑑𝜏𝑛

𝑛

𝑖=1

∞

−∞

∞

−∞

< ∞,𝑛 = 1,2, … (3.3) 

Note that the nth-order Volterra kernels are symmetric by nature with respect to any 
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permutation of the arguments (𝜏1, . . . , 𝜏𝑛) (Paula et al. 2019). From the system causality, it results 
that the kernel ℎ𝑛(𝜏1, . . . , 𝜏𝑛)  is zero if any 𝜏𝑖 <  0 , thereby leading the lower limits of the 
integrals in Eq. (3.2) to be equal to zero. The causality theory also implies that the system response 
does not depend on future input values, making it possible to replace the upper limit of the 
integrals by t. Moreover, for any practical model, the maximum kernel order P of system 
nonlinearity according to Boyd and Chua (1985), and the memory length T must be finite. 

𝑦(𝑡) = ℎ0 +∑∫… ∫ℎ𝑛(𝜏1, 𝜏2, … , 𝜏𝑛) ×∏𝑢(𝑡 − 𝜏𝑖)𝑑𝜏𝑖𝑑𝜏2…𝑑𝜏𝑛

𝑛

𝑖=1

t

0

t

0

P

𝑛=1

 (3.4) 

It is possible to compute the continuous-time convolution integral numerically, but it is more 
efficient to represent the system in discrete-time and replace the integrals with summations. The 
is true for Volterra series, which can be represented in discrete time as: 

𝑦[𝑡] = ℎ0 +∑(Δ𝑡)𝑛 ∑ ⋯ ∑ ℎ𝑛[𝜏1, … , 𝜏𝑛]𝑢[𝑡 − 𝜏1]⋯𝑢[𝑡 − 𝜏𝑛]

𝑇

𝜏𝑛=0

𝑇

𝜏1=0

𝑃

𝑛=1

 (3.5) 

where y[k] and u[k] are the inputs and outputs of the system. Notice that Eq. (3.5) can easily be 
derived by discretizing the convolution integral of Eq. (3.4), and hence called a convolution sum. 

 
 

Figure 3-1 The Volterra series model of an NLTI-SISO system 
 

As a matter of fact, the wind-bridge interaction system is a real example of an NLTI system 
involving the multi-input multi-output (MIMO) recording signals. Thus, it requires many input 
and output signals to make a complex Volterra series-based model involving the several direct 
and cross Volterra kernels. The procedures for determining these Volterra kernels will be discussed 
in Chapter 4 in detail. In general, a coupled problem of nonlinear wind-bridge interaction entails 
a 3D bridge model immersed in a non-stationary, unsteady and turbulent wind flow with a 
constant air density experiencing the wind loads of complex nature, which cause the three-
dimensional motion of the bridge structure as shown in Figure (3-2). Since the wind-bridge 
interaction is a complex phenomenon, the overall quality of the bridge design significantly 

ℎ0 

ℎ1(𝜏1) 

ℎ2(𝜏1, 𝜏2) 

ℎ𝑛(𝜏1, … , 𝜏𝑛) 

∑  
⋮ 

 

𝑢(𝑡) 
𝑦(𝑡) 
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depends on the accuracy of the wind load model. Because of the complex nature, the wind loads 
on the bridge deck in time-domain can be decomposed into three time-varying components i.e., 
static, buffeting, and self-excited components, which are presented in the subsequent sections. 

 

3.3 Time-varying mean static wind load model 
 
The time-varying mean static lift force 𝐿𝑠𝑡(𝑡) , drag force 𝐷𝑠𝑡(𝑡)  and pitching moment 

𝑀𝑠𝑡(𝑡) acting on the bridge deck with unit span length and width B is expressed as: 

𝐿𝑠𝑡(𝑡) =
1

2
𝜌𝑈𝑡𝑣̅̅ ̅̅ (𝑡)2𝐵𝐶𝐿(𝛼̅(𝑡)) 

𝐷𝑠𝑡(𝑡) =
1

2
𝜌𝑈𝑡𝑣̅̅ ̅̅ (𝑡)2𝐵𝐶𝐷(𝛼̅(𝑡)) 

𝑀𝑠𝑡(𝑡) =
1

2
𝜌𝑈𝑡𝑣̅̅ ̅̅ (𝑡)2𝐵2𝐶𝑀(𝛼̅(𝑡)) 

(3.6) 

where 𝛼̅(𝑡) and 𝑈𝑡𝑣̅̅ ̅̅ (𝑡) are the time-varying mean angle of attack and wind speed, respectively. 

 
Figure 3-2 Motion of bridge deck and wind force components 

 

3.4 Linear unsteady wind load model 
 
The buffeting forces on the bridge deck in time-domain are conventionally formulated based 

on the linear convolution theory in which the output of a linear time-invariant (LTI) system is 
expressed through a linear convolution of the input signal and IF. Based on this model, if a unit-
step gust or motion is introduced to the system, the resultant aerodynamic forces will have a rise 
time and attain their quasi-steady value asymptotically. That rise time is also called the fluid 
memory which accounts for the unsteadiness of the system. Moreover, this model also assumes 
that the variation of effective angle of attack is small enough that aerodynamic forces can be 
linearized at the statically deformed position and that the variation of FDs is negligible. The 
formulation of linear buffeting forces using the LU model is shown in the subsequent subsections. 
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3.4.1 Formulation of linear buffeting force 
Suppose that lift force is induced by a suddenly applied constant gust given by Eq. (3.7). 

𝐿𝑡(𝑡) =
1

2
𝜌𝑈(𝑡)2𝐵𝜓(𝑡)𝐶𝐿(𝛼(𝑡))  (3.7) 

where 𝐿𝑡 is total lift force including static lift force (but excluding self-excited lift force); 𝑈(𝑡) 
is time-varying wind speed equal to the sum of the mean value of 10 min wind speed time-history 
(𝑈̅) and longitudinal fluctuating wind speed (𝑢), and 𝜓(𝑡) is the aerodynamic IF which describes 
the unsteady aerodynamic forces on a bridge deck caused by a gust. Expansion of Eq. (3.7) yields 
Eq. (3.8), in which 𝑢𝑜 and 𝑤𝑜 are constant gusts; the first term indicates the static part of lift 
force and the second term is the buffeting part which is the point of interest here. If gust is of an 
arbitrary velocity distribution applied to the bridge deck then lift force becomes a convolution, 
involving the derivative of aerodynamic IF as described by Eq. (3.9), in which 𝐿𝑏(𝑡) is linear 

buffeting lift force, and 𝜓̇𝐿𝑢  and 𝜓̇𝐿𝑤  are the derivatives of first-order aerodynamic IFs 
representing the non-dimensional lift forces generated by the longitudinal and vertical fluctuating 
wind speeds i.e., 𝑢 and 𝑤 on the bridge deck, respectively. With the change of integral variables 
in Eq. (3.9) i.e., 𝜏 = 𝑡 − 𝜎 and integrating it by parts, Eq. (3.10) can be obtained. Applying the 
differentiation property of convolution, the arguments of integral variables can be interchanged 
as shown in Eq. (3.11). Similarly, the buffeting pitching moment and buffeting drag force can 
also be formulated as shown in Eqs. (3.12) and (3.13), respectively. Thus, a general expression 
for the linear buffeting forces can be formulated as shown in Eq. (3.14), in which 𝑄𝑏 denotes the 
buffeting force on the bridge deck; the parameters 𝜓𝑄𝑢, and 𝜓𝑄𝑤 are zero-order aerodynamic 

IFs elucidating the static response, and 𝜓̇𝑄𝑢  and 𝜓̇𝑄𝑤  are the derivatives of first-order 
aerodynamic IFs. These parameters are well-known Kussner functions in the airfoil theory, 
simulating the linear effects of the sudden action of 𝑢 and 𝑤 on the growth of buffeting force (𝑄𝑏) 
on the bridge deck. Note that Eq. (3.14) will be multiplied by the deck width B to find the moment. 

𝐿𝑡(𝑡) =
1

2
𝜌𝑈2𝐵𝐶𝐿 +

1

2
𝜌𝑈̅2𝐵 [2𝐶𝐿

𝑢𝑜

𝑈
𝜓(𝑡) + (𝐶𝐷 + 𝐶𝐿

′)
𝑤𝑜

𝑈
𝜓(𝑡) +

2𝑢𝑜

𝑈

𝑤𝑜

𝑈̅
(𝐶𝐷 + 𝐶𝐿

′)𝜓(𝑡)]  (3.8) 

𝐿𝑏(𝑡) =
1

2
𝜌𝑈2𝐵 [2𝐶𝐿 ( ∫ 𝜓̇𝐿𝑢(𝜎)

𝑡

−∞

𝑢(𝑡 − 𝜎)

𝑈
𝑑𝜎) + (𝐶𝐷 + 𝐶𝐿

′) ( ∫ 𝜓̇𝐿𝑤(𝜎)

𝑡

−∞

𝑤(𝑡 − 𝜎)

𝑈
𝑑𝜎)]  (3.9) 

𝐿𝑏(𝑡) =
1

2
𝜌𝑈2𝐵 [2𝐶𝐿 (𝜓𝐿𝑢(𝑡)

𝑢(0)

𝑈
+∫𝜓𝐿𝑢(𝑡 − 𝜏)

𝑡

0

𝑢̇(𝜏)

𝑈
𝑑𝜏)

+ (𝐶𝐷 + 𝐶𝐿
′)(𝜓𝐿𝑤(𝑡)

𝑤(0)

𝑈̅
+ ∫𝜓𝐿𝑤(𝑡 − 𝜏)

𝑡

0

𝑤̇(𝜏)

𝑈
𝑑𝜏)]  

(3.10) 
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𝐿𝑏(𝑡) =
1

2
𝜌𝑈2𝐵 [2𝐶𝐿 {𝜓𝐿𝑢(0)

𝑢(𝑡)

𝑈
+ ∫ 𝜓̇𝐿𝑢(𝜏)

𝑡

0

𝑢(𝑡 − 𝜏)

𝑈
𝑑𝜏}

+ (𝐶𝐷 + 𝐶𝐿
′) {𝜓𝐿𝑤(0)

𝑤(𝑡)

𝑈
+ ∫ 𝜓̇𝐿𝑤(𝜏)

𝑡

0

𝑤(𝑡 − 𝜏)

𝑈
𝑑𝜏}] 

(3.11) 

𝑀𝑏(𝑡) =
1

2
𝜌𝑈2𝐵2 [2𝐶𝑀 {𝜓𝑀𝑢(0)

𝑢(𝑡)

𝑈
+ ∫ 𝜓̇𝑀𝑢(𝜏)

𝑡

0

𝑢(𝑡 − 𝜏)

𝑈
𝑑𝜏}

+ 𝐶𝑀
′ {𝜓𝑀𝑤(0)

𝑤(𝑡)

𝑈
+ ∫ 𝜓̇𝑀𝑤(𝜏)

𝑡

0

𝑤(𝑡 − 𝜏)

𝑈
𝑑𝜏}] 

(3.12) 

𝐷𝑏(𝑡) =
1

2
𝜌𝑈2𝐵 [2𝐶𝐷 {𝜓𝐷𝑢(0)

𝑢(𝑡)

𝑈
+∫ 𝜓̇𝐷𝑢(𝜏)

𝑡

0

𝑢(𝑡 − 𝜏)

𝑈
𝑑𝜏}

+ (𝐶𝐷
′ − 𝐶𝐿) {𝜓𝐷𝑤(0)

𝑤(𝑡)

𝑈
+ ∫ 𝜓̇𝐷𝑤(𝜏)

𝑡

0

𝑤(𝑡 − 𝜏)

𝑈
𝑑𝜏}] 

(3.13) 

𝑄𝑏(𝑡) =
1

2
𝜌𝑈2𝐵 [2𝐶𝑄 {𝜓𝑄𝑢(0)

𝑢(𝑡)

𝑈
+ ∫ 𝜓̇𝑄𝑢(𝜏)

𝑡

0

𝑢(𝑡 − 𝜏)

𝑈
𝑑𝜏}

+ (𝐶𝑄
′ ) {𝜓𝑄𝑤(0)

𝑤(𝑡)

𝑈
+ ∫ 𝜓̇𝑄𝑤(𝜏)

𝑡

0

𝑤(𝑡 − 𝜏)

𝑈
𝑑𝜏}] 

(3.14) 

 
3.4.2 Formulation of linear self-excited force 

Let us consider an abrupt step-change in the angle of attack (an incremental change in 𝛼0), 
the lift force also undergoes an abrupt transient change expressed by: 

𝐿(𝑠) =
1

2
𝜌𝑈2𝐵𝐶𝐿

′𝛼0𝜙(𝑠) (3.15) 

where 𝑠 is non-dimensional time equal to 𝑈̅𝑡/𝐵, and 𝜙(𝑠) is aeroelastic IF. The Eq. (3.15) 
points out that the lift force, instead of self-generating immediately, undergoes a transient growth 
process, which makes it unsteady by nature. Under the small arbitrary motion of the bridge deck, 
the growth in lift force, due to the simultaneous occurrence of all three components of motion 
(𝑝, ℎ, 𝛼), can be expressed in terms of convolution integral assuming a linear superposition rule. 
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𝐿𝑠𝑒(𝑠) =
1

2
𝜌𝑈2𝐵𝐶𝐿

′ [ ∫𝜙𝐿𝑝′′(𝑠 − 𝜎)
𝑝′′(𝜎)

𝐵
𝑑𝜎

𝑠

−∞

+ ∫𝜙𝐿ℎ′′(𝑠 − 𝜎)
ℎ′′(𝜎)

𝐵
𝑑𝜎

𝑠

−∞

+ ∫𝜙𝐿𝛼′(𝑠 − 𝜎)𝛼′(𝜎)𝑑𝜎

𝑠

−∞

] 
(3.16) 

where 𝑝′′(𝜎)  and ℎ′′(𝜎)  are the second derivatives of lateral and vertical vibrations, 
respectively; 𝛼′(𝜎)  is the first derivative of torsional vibration, and 𝜙𝑄𝑠𝑒𝑧 (𝑄𝑠𝑒 =

𝐿𝑠𝑒 , 𝑀𝑠𝑒 , 𝐷𝑠𝑒;  𝑧 = 𝑝′′, ℎ′′, 𝛼′) is the aeroelastic IF representing the transient evolutionary feature 
of self-excited force (𝑄𝑠𝑒) due to the displacement (𝑧). The negative sign of the lower limit of 
integral shows the history of bridge deck motion. With the change of integral variables in Eq. 
(3.16) i.e., 𝜏 = 𝑠 − 𝜎 and 𝑑𝜎 = −𝑑𝜏, Eq. (3.17) is obtained. 

𝐿𝑠𝑒(𝑠) =
1

2
𝜌𝑈2𝐵𝐶𝐿

′ [∫𝜙𝐿𝑝′′(𝜏)
𝑝′′(𝑠 − 𝜏)

𝐵
𝑑𝜏

0

𝑠

+∫𝜙𝐿ℎ′′(𝜏)
ℎ′′(𝑠 − 𝜏)

𝐵
𝑑𝜏

0

𝑠

+∫𝜙𝐿𝛼′(𝜏)𝛼
′(𝑠 − 𝜏)𝑑𝜏

0

𝑠

] 

(3.17) 

Integrating Eq. (3.17) by parts and simplifying it gives, 

𝐿𝑠𝑒(𝑠) =
1

2
𝜌𝑈2𝐵𝐶𝐿

′ [𝜙𝐿𝑝′(0)
𝑝′(𝑠)

𝐵
+∫𝜙′

𝐿𝑝′
(𝜏)

𝑝′(𝑠 − 𝜏)

𝐵
𝑑𝜏

𝑠

0

+ 𝜙𝐿ℎ′(0)
ℎ′(𝑠)

𝐵

+ ∫𝜙′𝐿ℎ′(𝜏)
ℎ′(𝑠 − 𝜏)

𝐵
𝑑𝜏

𝑠

0

+ 𝜙𝐿𝛼(0)𝛼(𝑠) + ∫𝜙′𝐿𝛼(𝜏)𝛼(𝑠 − 𝜏)𝑑𝜏

𝑠

0

]  

(3.18) 

Taking the first derivative of s yields 𝑑𝑠 = 𝑈̅𝑑𝑡/𝐵. As a result of converting the 𝑝′, ℎ′ and 𝛼 
from s-domain into real time-domain, Eq. (3.18) yields Eq. (3.20). 

𝑝′

𝐵
=

𝑑𝑝

𝐵𝑑𝑠
=

𝑑𝑝

𝑈𝑑𝑡
=
𝑝̇

𝑈
 and ℎ′

𝐵
=
ℎ̇

𝑈
 (3.19) 

𝐿𝑠𝑒(𝑡) =
1

2
𝜌𝑈2𝐵𝐶𝐿

′ [𝜙𝐿𝑝̇(0)
𝑝̇(𝑡)

𝑈
+ ∫ 𝜙̇𝐿𝑝̇(𝜏)

𝑝̇(𝑡 − 𝜏)

𝑈
𝑑𝜏

𝑡

0

+ 𝜙𝐿ℎ̇(0)
ℎ̇(𝑡)

𝑈

+ ∫ 𝜙̇𝐿ℎ̇(𝜏)
ℎ̇(𝑡 − 𝜏)

𝑈̅
𝑑𝜏

𝑡

0

+ 𝜙𝐿𝛼(0)𝛼(𝑡) + ∫ 𝜙̇𝐿𝛼(𝜏)𝛼(𝑡 − 𝜏)𝑑𝜏

𝑡

0

]  

(3.20) 

Similarly, the linear self-excited pitching moment and drag force on the bridge deck can be 
formulated as shown in Eqs. (3.21) and (3.22). A generalized form of the linear self-excited forces 
is shown in Eq. (3.23), in which 𝑄𝑠𝑒 represents 𝐷𝑠𝑒, 𝐿𝑠𝑒 and 𝑀𝑠𝑒 forces acting on the bridge 

deck, and 𝑝̇ , ℎ̇  and 𝛼  are the derivative of lateral, derivative of vertical and torsional 
displacements with respect to 𝑡 . The parameters 𝜙𝑄𝑝̇ ,  𝜙𝑄ℎ̇ , and 𝜙𝑄𝛼  are the zero-order 
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aeroelastic IFs, whereas 𝜙̇𝑄𝑝̇, 𝜙̇𝑄ℎ̇ and 𝜙̇𝑄𝛼 are the derivatives of first-order aeroelastic IFs. 

According to the airfoil theory, these parameters are known as Wagner functions, simulating the 
linear effects of deck motions on the growth of self-excited force (𝑄𝑠𝑒). 

𝑀𝑠𝑒(𝑡) =
1

2
𝜌𝑈2𝐵2𝐶𝑀

′ [𝜙𝑀𝑝̇(0)
𝑝̇(𝑡)

𝑈
+ ∫ 𝜙̇𝑀𝑝̇(𝜏)

𝑝̇(𝑡 − 𝜏)

𝑈
𝑑𝜏

𝑡

0

+ 𝜙𝑀ℎ̇(0)
ℎ̇(𝑡)

𝑈

+ ∫ 𝜙̇𝑀ℎ̇(𝜏)
ℎ̇(𝑡 − 𝜏)

𝑈
𝑑𝜏

𝑡

0

+ 𝜙𝑀𝛼(0)𝛼(𝑡) + ∫ 𝜙̇𝑀𝛼(𝜏)𝛼(𝑡 − 𝜏)𝑑𝜏

𝑡

0

]  

(3.21) 

𝐷𝑠𝑒(𝑡) =
1

2
𝜌𝑈2𝐵𝐶𝐷

′ [𝜙𝐷𝑝̇(0)
𝑝̇(𝑡)

𝑈
+ ∫ 𝜙̇𝐷𝑝̇(𝜏)

𝑝̇(𝑡 − 𝜏)

𝑈
(𝑑𝜏)

𝑡

0

+ 𝜙𝐷ℎ̇(0)
ℎ̇(𝑡)

𝑈

+ ∫ 𝜙̇𝐷ℎ̇(𝜏)
ℎ̇(𝑡 − 𝜏)

𝑈
(𝑑𝜏)

𝑡

0

+ 𝜙𝐷𝛼(0)𝛼(𝑡) + ∫ 𝜙̇𝐷𝛼(𝜏)𝛼(𝑡 − 𝜏)(𝑑𝜏)

𝑡

0

]  

(3.22) 

𝑄𝑠𝑒(𝑡) =
1

2
𝜌𝑈̅2𝐵𝐶𝑄

′ [𝜙𝑄𝑝̇(0)
𝑝̇(𝑡)

𝑈
+ ∫ 𝜙̇𝑄𝑝̇(𝜏)

𝑝̇(𝑡 − 𝜏)

𝑈
𝑑𝜏

𝑡

0

+ 𝜙𝑄ℎ̇(0)
ℎ̇(𝑡)

𝑈

+ ∫ 𝜙̇𝑄ℎ̇(𝜏)
ℎ̇(𝑡 − 𝜏)

𝑈
𝑑𝜏

𝑡

0

+ 𝜙𝑄𝛼(0)𝛼(𝑡) + ∫ 𝜙̇𝑄𝛼(𝜏)𝛼(𝑡 − 𝜏)𝑑𝜏

𝑡

0

] 

(3.23) 

 

3.5 Nonlinear unsteady wind load model (Scheme 1) 
 
In order to improve the capability of the LU model, a Volterra series-based nonlinear model, 

called Volterra FD model, has been proposed to consider the aerodynamic nonlinearity and 
nonlinear fluid memory effects. In this model, the output of an NLTI system is described through 
the input signal and multidimensional infinite convolution integrals of Volterra kernels. The 
consideration of nonlinearity arising from the flow separation and nonlinear fluid memory effects 
expressed in two time-scales is carried out by introducing the higher-order terms called Volterra 
kernels. With this strategy, the formulations of buffeting and self-excited forces (Eqs. (3.14), 
(3.23)) can be extended to new formulations by adding higher-order Volterra kernels. To avoid 
the high computational effort, the Volterra series is curtailed up to second-order kernel based on 
the idea that wind-bridge interaction system is weakly nonlinear without any issue of convergence 
(Wu et al. 2013). The second-order kernels are reminiscent of nonlinear IFs; therefore, these both 
will be called interchangeably in the subsequent subsections. 
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3.5.1 Formulation of nonlinear and non-stationary buffeting forces 
The nonlinear aerodynamic buffeting forces exerting on a three-dimensional bridge 

immersed in the non-stationary turbulent winds can be simulated successfully using the NLU 
model based on the Volterra series written in Eq. (3.24). 

𝑄𝑏(𝑡) =
1

2
𝜌𝑈𝑡𝑣̅̅ ̅̅ (𝑡)2𝐵 [2𝐶𝑄 {𝜓𝑄𝑢(0)

𝑢(𝑡)

𝑈𝑡𝑣̅̅ ̅̅ (𝑡)
+ ∫ 𝜓̇𝑄𝑢(𝜏)

𝑡

0

𝑢(𝑡 − 𝜏)

𝑈𝑡𝑣̅̅ ̅̅ (𝑡)
𝑑𝜏 + ∫∫ 𝜓̇𝑄𝑢𝑢(𝜏1, 𝜏2)

𝑡

0

𝑡

0

 

×
𝑢(𝑡 − 𝜏1)𝑢(𝑡 − 𝜏2)

𝑈𝑡𝑣̅̅ ̅̅ 2
(𝑡)

𝑑𝜏1𝑑𝜏2} + (𝐶𝑄
′ ) {𝜓𝑄𝑤(0)

𝑤(𝑡)

𝑈𝑡𝑣̅̅ ̅̅ (𝑡)
+ ∫ 𝜓̇𝑄𝑤(𝜏)

𝑡

0

𝑤(𝑡 − 𝜏)

𝑈𝑡𝑣̅̅ ̅̅ (𝑡)
𝑑𝜏 

+∫∫𝜓̇𝑄𝑤𝑤(𝜏1, 𝜏2)

𝑡

0

𝑤(𝑡 − 𝜏1)𝑤(𝑡 − 𝜏2)

𝑈𝑡𝑣̅̅ ̅̅ 2
(𝑡)

𝑑𝜏1𝑑𝜏2

𝑡

0

+ 2∫∫ 𝜓̇𝑄𝑢𝑤(𝜏1, 𝜏2)

𝑡

0

𝑡

0

 

×
𝑢(𝑡 − 𝜏1)𝑤(𝑡 − 𝜏2)

𝑈𝑡𝑣̅̅ ̅̅ 2
(𝑡)

𝑑𝜏1𝑑𝜏2}] 

(3.24) 

𝑄𝑏[𝑛] =
1

2
𝜌𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2𝐵 [{(

 2𝐶𝑄𝜓𝑄𝑢[0]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
) 𝑢[𝑛] + (

𝐶𝑄
′𝜓𝑄𝑤[0]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
)𝑤[𝑛]} + {∑(

2𝐶𝑄𝜓̇𝑄𝑢[𝑘]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
)

𝑀

𝑘=0

 

× 𝑢[𝑛 − 𝑘] +∑(
 𝐶𝑄
′ 𝜓̇𝑄𝑤[𝑘]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
)

𝑀

𝑘=0

𝑤[𝑛 − 𝑘]} + {∑ ∑ (
2𝐶𝑄𝜓̇𝑄𝑢𝑢[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
)

𝑀

𝑘2=0

𝑀

𝑘1=0

 

× 𝑢[𝑛 − 𝑘1] 𝑢[𝑛 − 𝑘2] + ∑ ∑ (
 𝐶𝑄
′ 𝜓̇𝑄𝑤𝑤[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
)

𝑀

𝑘2=0

𝑀

𝑘1=0

𝑤[𝑛 − 𝑘1] 𝑤[𝑛 − 𝑘2] 

+2 ∑ ∑ (
𝐶𝑄
′  𝜓̇𝑄𝑢𝑤[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
)

𝑀

𝑘2=0

𝑀

𝑘1=0

𝑢[𝑛 − 𝑘1] 𝑤[𝑛 − 𝑘2]}] 

(3.25) 

where the parameters 𝜓̇𝑄𝑢𝑢 , 𝜓̇𝑄𝑤𝑤 , and 𝜓̇𝑄𝑢𝑤  are the nonlinear aerodynamic IFs (second-
order Volterra kernels) simulating the nonlinear behavior of buffeting forces (𝑄𝑏) due to the 
coupled effects of gust components on the bridge deck. Moreover, the parameters 𝜓̇𝑄𝑢𝑢, 𝜓̇𝑄𝑤𝑤 
and 𝜓̇𝑄𝑢𝑤 represent the direct and cross second-order kernels of Volterra series, respectively. 
The non-stationary wind effects are also considered in the formulation of nonlinear buffeting 
forces by introducing the time-varying mean wind speed. It is important to note here that first and 
second-order IFs used in the Volterra FD model (scheme 1) are assumed to be identified at zero 
angle of attack just the same as in the case of the LU model in order to compare the simulation 
results of LU and Volterra FD models. Similarly, the expressions for nonlinear buffeting drag 
force and pitching moment can be formulated by the Volterra series expansion. A general 
expression for the nonlinear typhoon-induced buffeting forces is shown in Eq. (3.25) in a discrete 
form. Particularly, Eq. (3.25) will be multiplied by B in order to find the pitching moment. 
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3.5.2 Formulation of nonlinear and non-stationary self-excited forces 
The nonlinear self-excited forces, similar to nonlinear buffeting forces, can be simulated 

with the help of second-order Volterra series consisting of 21 terms of second-order aeroelastic 
IFs in an integrated form as shown in Eq. (3.26). All kinds of possibilities of coupled terms are 
considered and combined into one unified form. This unified form has taken into account the 
direct as well as cross second-order Volterra kernels which could capture the nonlinear features 
of wind-bridge aeroelasticity. In Eq. (3.26), the second-order kernels (say 𝜙𝑄𝑖𝑗) will be the direct 

and cross kernels if 𝑖 = 𝑗  and 𝑖 ≠ 𝑗 , respectively, where 𝑖  and 𝑗  represent input signals. A 
general expression for the nonlinear self-excited forces is shown in Eq. (3.27) in a discrete form. 

𝑄𝑠𝑒(𝑡) =
1

2
𝜌𝑈𝑡𝑣̅̅ ̅̅ (𝑡)2𝐵𝐶𝐿

′ [{𝜙𝑄𝑝̇(0)
𝑝̇(𝑡)

𝑈𝑡𝑣̅̅ ̅̅ (𝑡)
+ 𝜙𝑄ℎ̇(0)

ℎ̇(𝑡)

𝑈𝑡𝑣̅̅ ̅̅ (𝑡)
+ 𝜙𝑄𝛼(0)𝛼(𝑡)} 

+{∫ 𝜙̇𝑄𝑝̇(𝜏)
𝑝̇(𝑡 − 𝜏)

𝑈𝑡𝑣̅̅ ̅̅ (𝑡)
𝑑𝜏

𝑡

0

+∫ 𝜙̇𝑄ℎ̇(𝜏)
ℎ̇(𝑡 − 𝜏)

𝑈𝑡𝑣̅̅ ̅̅ (𝑡)
𝑑𝜏

𝑡

0

+∫ 𝜙̇𝑄𝛼(𝜏)𝛼(𝑡 − 𝜏)𝑑𝜏

𝑡

0

} 

+{∫∫ 𝜙̇𝑄𝑝̇𝑝̇(𝜏1, 𝜏2)
𝑝̇(𝑡 − 𝜏1 )𝑝̇(𝑡 − 𝜏2 )

𝑈𝑡𝑣̅̅ ̅̅ 2
(𝑡)

𝑑𝜏1𝑑𝜏2

𝑡

0

𝑡

0

+∫∫𝜙̇𝑄ℎ̇ℎ̇(𝜏1, 𝜏2)

𝑡

0

𝑡

0

 

×
ℎ̇(𝑡 − 𝜏1 )ℎ̇(𝑡 − 𝜏2 )

𝑈𝑡𝑣̅̅ ̅̅ 2
(𝑡)

𝑑𝜏1𝑑𝜏2 +∫∫𝜙̇𝑄𝛼𝛼(𝜏1, 𝜏2)𝛼(𝑡 − 𝜏1)𝛼(𝑡 − 𝜏2)𝑑𝜏1𝑑𝜏2

𝑡

0

𝑡

0

 

+2∫∫ 𝜙̇𝑄𝑢𝛼(𝜏1, 𝜏2)
𝑢(𝑡 − 𝜏1 )𝛼(𝑡 − 𝜏2 )

𝑈𝑡𝑣̅̅ ̅̅ (𝑡)
𝑑𝜏1𝑑𝜏2

𝑡

0

𝑡

0

+ 2∫∫ 𝜙̇𝑄𝑢ℎ̇(𝜏1, 𝜏2)

𝑡

0

𝑡

0

 

×
𝑢(𝑡 − 𝜏1 )ℎ̇(𝑡 − 𝜏2 )

𝑈𝑡𝑣̅̅ ̅̅ 2
(𝑡)

𝑑𝜏1𝑑𝜏2 + 2∫∫ 𝜙̇𝑄𝑢𝑝̇(𝜏1, 𝜏2)
𝑢(𝑡 − 𝜏1 )𝑝̇(𝑡 − 𝜏2 )

𝑈𝑡𝑣̅̅ ̅̅ 2
(𝑡)

𝑑𝜏1𝑑𝜏2

𝑡

0

𝑡

0

 

+2∫∫ 𝜙̇𝑄𝑤𝛼(𝜏1, 𝜏2)
𝑤(𝑡 − 𝜏1 )𝛼(𝑡 − 𝜏2 )

𝑈𝑡𝑣̅̅ ̅̅ (𝑡)
𝑑𝜏1𝑑𝜏2

𝑡

0

𝑡

0

+ 2∫∫ 𝜙̇𝑄𝑤ℎ̇(𝜏1, 𝜏2)

𝑡

0

𝑡

0

 

×
𝑤(𝑡 − 𝜏1 )ℎ̇(𝑡 − 𝜏2 )

𝑈𝑡𝑣̅̅ ̅̅ 2
(𝑡)

𝑑𝜏1𝑑𝜏2 + 2∫∫ 𝜙̇𝑄𝑤𝑝̇(𝜏1, 𝜏2)
𝑤(𝑡 − 𝜏1 )𝑝̇(𝑡 − 𝜏2 )

𝑈𝑡𝑣̅̅ ̅̅ 2
(𝑡)

𝑑𝜏1𝑑𝜏2

𝑡

0

𝑡

0

 

+2∫∫ 𝜙̇𝑄𝛼ℎ̇(𝜏1, 𝜏2)
𝛼(𝑡 − 𝜏1)ℎ̇(𝑡 − 𝜏2)

𝑈𝑡𝑣̅̅ ̅̅ (𝑡)
𝑑𝜏1𝑑𝜏2

𝑡

0

𝑡

0

+ 2∫∫ 𝜙̇𝑄𝛼𝑝̇(𝜏1, 𝜏2)

𝑡

0

𝑡

0

 

×
𝛼(𝑡 − 𝜏1)𝑝̇(𝑡 − 𝜏2)

𝑈𝑡𝑣̅̅ ̅̅ (𝑡)
𝑑𝜏1𝑑𝜏2+2∫∫ 𝜙̇𝑄ℎ𝑝̇̇(𝜏1, 𝜏2)

ℎ̇(𝑡 − 𝜏1 )𝑝̇(𝑡 − 𝜏2 )

𝑈𝑡𝑣̅̅ ̅̅ 2
(𝑡)

𝑑𝜏1𝑑𝜏2

𝑡

0

𝑡

0

}] 

(3.26) 

 
3.5.3 Unified formulation 

Eq. (3.28) shows a general nonlinear formulation of non-stationary buffeting forces 
including the effects of self-excited forces on a bridge deck. This formulation consists of the linear 
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(first-order) and nonlinear (second-order) aerodynamic and aeroelastic kernels including the 
coupled effects between deck motions and turbulence on a bridge deck, in which all kinds of 
possibilities of coupled terms are considered and combined into one unified form. This unified 
form has also considered the second-order direct and cross kernels, which could capture the 
symmetric and asymmetric nonlinear features of bridge aerodynamics and aeroelasticity. For 
instance, 𝜙̇𝐿𝑝̇ , 𝜙̇𝐿ℎ̇  and 𝜙̇𝐿𝛼  denote the first-order aeroelastic kernels, and 𝜙̇𝐿𝑝̇𝑝̇ , 𝜙̇𝐿ℎ̇ℎ̇  and 

𝜙̇𝐿𝛼𝛼 represent the second-order direct aeroelastic kernels. The remaining nine parameters in Eq. 
(3.28) denote the second-order cross aeroelastic kernels, which simulate the aeroelastic 
nonlinearity existing in wind-bridge interaction and encode the important information about 
intermodulation between input signals. The incorporation of cross kernels in the Volterra model 
is essential to represent the internal nonlinear couplings of the system when simultaneous inputs 
are applied. By counting all permutations and combinations, it can be observed that a second-
order Volterra model consisting of five inputs has (5! + 2!)/5! 2! = 21 Volterra kernels and the 
total number of flops scale with 𝑀2 (where 𝑀 is the memory length). 

𝑄𝑠𝑒[𝑛] =
1

2
𝜌𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2𝐵𝐶𝑄

′ [{(
 𝜙𝑄𝑝̇[0]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
) 𝑝̇[𝑛] + (

𝜙𝑄ℎ̇[0]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
) ℎ̇[𝑛] + 𝜙𝑄𝛼[0]𝛼(𝑡)} 

+{∑(
𝜙̇𝑄𝑝̇[𝑘]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
)

𝑀

𝑘=0

𝑝̇[𝑛 − 𝑘] +∑(
 𝜙̇𝑄ℎ̇[𝑘]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
)

𝑀

𝑘=0

ℎ̇[𝑛 − 𝑘]+∑(𝜙̇𝑄𝛼[𝑘])

𝑀

𝑘=0

𝛼[𝑛 − 𝑘]} 

+{∑ ∑ (
𝜙̇𝑄𝑝̇𝑝̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
)

𝑀

𝑘2=0

𝑀

𝑘1=0

𝑝̇[𝑛 − 𝑘1] 𝑝̇[𝑛 − 𝑘2] + ∑ ∑ (
 𝜙̇𝑄ℎ̇ℎ̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
)

𝑀

𝑘2=0

𝑀

𝑘1=0

 

× ℎ̇[𝑛 − 𝑘1] ℎ̇[𝑛 − 𝑘2] + ∑ ∑(𝜙̇𝑄𝛼𝛼[𝑘1, 𝑘2])

𝑀

𝑘2=0

𝑀

𝑘1=0

𝛼[𝑛 − 𝑘1] 𝛼[𝑛 − 𝑘2] 

+2 ∑ ∑ (
 𝜙̇𝑄𝑢𝛼[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
)

𝑀

𝑘2=0

𝑀

𝑘1=0

𝑢[𝑛 − 𝑘1] 𝛼[𝑛 − 𝑘2] + 2 ∑ ∑ (
 𝜙̇𝑄𝑢𝑝̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
)

𝑀

𝑘2=0

𝑀

𝑘1=0

 

× 𝑢[𝑛 − 𝑘1] 𝑝̇[𝑛 − 𝑘2] + 2 ∑ ∑ (
 𝜙̇𝑄𝑢ℎ̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
)

𝑀

𝑘2=0

𝑀

𝑘1=0

𝑢[𝑛 − 𝑘1] ℎ̇[𝑛 − 𝑘2] 

+2 ∑ ∑ (
 𝜙̇𝑄𝑤𝛼[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
)

𝑀

𝑘2=0

𝑀

𝑘1=0

𝑤[𝑛 − 𝑘1] 𝛼[𝑛 − 𝑘2] + 2 ∑ ∑ (
 𝜙̇𝑄𝑤𝑝̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
)

𝑀

𝑘2=0

𝑀

𝑘1=0

 

× 𝑤[𝑛 − 𝑘1] 𝑝̇[𝑛 − 𝑘2] + 2 ∑ ∑ (
 𝜙̇𝑄𝑤ℎ̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
)

𝑀

𝑘2=0

𝑀

𝑘1=0

𝑤[𝑛 − 𝑘1] ℎ̇[𝑛 − 𝑘2] 

+2 ∑ ∑ (
 𝜙̇𝑄𝛼𝑝̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
)

𝑀

𝑘2=0

𝑀

𝑘1=0

𝛼[𝑛 − 𝑘1] 𝑝̇[𝑛 − 𝑘2] + 2 ∑ ∑ (
 𝜙̇𝑄𝛼ℎ̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
)

𝑀

𝑘2=0

𝑀

𝑘1=0

 

× 𝛼[𝑛 − 𝑘1] ℎ̇[𝑛 − 𝑘2] +2 ∑ ∑ (
 𝜙̇𝑄ℎ̇𝑝̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
)

𝑀

𝑘2=0

𝑀

𝑘1=0

ℎ̇[𝑛 − 𝑘1] 𝑝̇[𝑛 − 𝑘2]}] 

(3.27) 
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𝑄𝑏[𝑛] =
1

2
𝜌𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2𝐵 [{(

2𝐶𝑄𝜓𝑄𝑢[0]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
) 𝑢[𝑛] + (

𝐶𝑄
′𝜓𝑄𝑤[0]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
)𝑤[𝑛] + (𝐶𝑄

′𝜙𝑄𝛼[0])𝛼[𝑛] 

     + (
𝐶𝑄
′𝜙𝑄ℎ̇[0]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
) ℎ̇[𝑛] + (

𝐶𝑄
′𝜙𝑄𝑝̇[0]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
) 𝑝̇[𝑛]} + {∑((

2𝐶𝑄𝜓̇𝑄𝑢[𝑘]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
)

𝑀

𝑘=0

𝑢[𝑛 − 𝑘] 

     + (
𝐶𝑄
′ 𝜓̇𝑄𝑤[𝑘]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
)𝑤[𝑛 − 𝑘] + (𝐶𝑄

′ 𝜙̇𝑄𝛼[𝑘])𝛼[𝑛 − 𝑘] + (
𝐶𝑄
′ 𝜙̇𝑄ℎ̇[𝑘]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
) ℎ̇[𝑛 − 𝑘] 

     + (
𝐶𝑄
′ 𝜙̇𝑄𝑝̇[𝑘]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
) 𝑝̇[𝑛 − 𝑘])} + {∑ ∑ ((

 2𝐶𝑄𝜓̇𝑄𝑢𝑢[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
)

𝑀

𝑘2=0

𝑀

𝑘1=0

𝑢[𝑛 − 𝑘1]𝑢[𝑛 − 𝑘2] 

     + (
 𝐶𝑄
′ 𝜓̇𝑄𝑤𝑤[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
)𝑤[𝑛 − 𝑘1]𝑤[𝑛 − 𝑘2] + (𝐶𝑄

′ 𝜙̇𝑄𝛼𝛼[𝑘1, 𝑘2])𝛼[𝑛 − 𝑘1]𝛼[𝑛 − 𝑘2] 

     + (
 𝐶𝑄
′ 𝜙̇𝑄ℎ̇ℎ̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
) ℎ̇[𝑛 − 𝑘1]ℎ̇[𝑛 − 𝑘2] + (

 𝐶𝑄
′ 𝜙̇𝑄𝑝̇𝑝̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
) 𝑝̇[𝑛 − 𝑘1]𝑝̇[𝑛 − 𝑘2] 

     +2 (
 𝐶𝑄
′ 𝜓̇𝑄𝑢𝑤[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
)𝑢[𝑛 − 𝑘1]𝑤[𝑛 − 𝑘2] + 2 (

 𝐶𝑄
′ 𝜙̇𝑄𝑢𝛼[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
) 𝑢[𝑛 − 𝑘1]𝛼[𝑛 − 𝑘2] 

     +2 (
 𝐶𝑄
′ 𝜙̇𝑄𝑢ℎ̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
) 𝑢[𝑛 − 𝑘1]ℎ̇[𝑛 − 𝑘2] + 2 (

 𝐶𝑄
′ 𝜙̇𝑄𝑢𝑝̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
) 𝑢[𝑛 − 𝑘1]𝑝̇[𝑛 − 𝑘2] 

     +2 (
 𝐶𝑄
′ 𝜙̇𝑄𝑤𝛼[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
)𝑤[𝑛 − 𝑘1]𝛼[𝑛 − 𝑘2] + 2 (

 𝐶𝑄
′ 𝜙̇𝑄𝑤ℎ̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
)𝑤[𝑛 − 𝑘1]ℎ̇[𝑛 − 𝑘2] 

     +2 (
 𝐶𝑄
′ 𝜙̇𝑄𝑤𝑝̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
)𝑤[𝑛 − 𝑘1]𝑝̇[𝑛 − 𝑘2] + 2 (

 𝐶𝑄
′ 𝜙̇𝑄𝛼ℎ̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
) 𝛼[𝑛 − 𝑘1]ℎ̇[𝑛 − 𝑘2] 

     +2 (
 𝐶𝑄
′ 𝜙̇𝑄𝛼𝑝̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
)𝛼[𝑛 − 𝑘1]𝑝̇[𝑛 − 𝑘2] +2 (

 𝐶𝑄
′ 𝜙̇𝑄ℎ̇𝑝̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
) ℎ̇[𝑛 − 𝑘1]𝑝̇[𝑛 − 𝑘2])}] 

(3.28) 

The Eq. (3.28) can further be expressed in a condensed form for the sake of brevity such as shown 
in Eq. (3.29). 
𝑄𝐵𝐹 = 𝑄𝑉𝑜𝑙𝑡𝑒𝑟𝑟𝑎 𝐹𝐷(𝑡, 𝐶𝑄(𝛼𝑠), 𝐶𝑄

′ (𝛼𝑠 = 0), 𝑢, 𝑤, 𝑝̇, ℎ̇, 𝛼, 𝐼𝐹1(𝑡), 𝐼𝐹2(𝜏1, 𝜏2)) (3.29) 
where 𝐼𝐹1 and 𝐼𝐹2 indicate the first- and second-order Volterra kernels. The block diagram of 
the Volterra FD model is shown in Figure (3-3). 
 

3.6 Nonlinear unsteady wind load model (Scheme 2) 
 

For the bridge sections with aerodynamic forces that highly sensitive to the angle of attack, the 
aerodynamic nonlinearities not only arise due to nonlinear fluid memory effects that have already 
been incorporated in the Volterra FD model, but also partly due to the dependency of aerodynamic 
forces on the varying angles of attack. Following it, the nonlinear buffeting forces on the bridge 
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deck in scheme 2 can be modelled as a nonlinear function of the varying angles of attack with 
properly defined static force coefficients which also depend on the varying angles of attack. With 
that, the effective angle of attack is further divided into low-frequency (large-scale) and high-
frequency (small-scale) components corresponding to the frequencies lower and higher than a 
cut-off frequency i.e., the lowest natural frequency of the bridge structure such as: 
𝛼𝑒𝑓𝑓 = 𝛼𝑒𝑓𝑓

𝑙𝑜𝑤(𝑡) + 𝛼𝑒𝑓𝑓
ℎ𝑖𝑔ℎ

(𝑡) (3.30) 
 

 

Figure 3-3 Block diagram of the Volterra FD model 
 

 

Figure 3-4 Block diagram of the Hybrid Volterra FD model 
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where 𝛼𝑒𝑓𝑓𝑙𝑜𝑤(𝑡) and 𝛼𝑒𝑓𝑓
ℎ𝑖𝑔ℎ(𝑡) show the low-frequency (including static angle of attack, 𝛼𝑠) and 

high-frequency components of the effective angle of attack, respectively. Congruently, the 
nonlinear buffeting forces are also demarcated into corresponding low-frequency and high-
frequency components. The low-frequency component of the nonlinear buffeting forces is 
modelled as a nonlinear function of the low-frequency component of the effective angle of attack 
by using the QS model presented in Chapter 2 as a 2D model. Here, the QS model is extended to 
a 3D model including drag force effects. Conversely, the high-frequency component of the 
nonlinear buffeting forces is modelled by using the Volterra FD model presented as a scheme 1 
approach with the modification in the aerodynamic parameters. Instead of identifying IFs at zero 
angle of attack and identifying static force coefficients at the statically deformed position of the 
bridge deck (which have been assumed in the case of Volterra FD model), the Hybrid Volterra 
FD model considers the identification of IFs at varying angles of attack as well as the 
identification of static force coefficients at the low-frequency component of effective angle of 
attack. The concept of nonlinear IFs offers a general framework to simulate nonlinear 
aerodynamics. With that strategy, the nonlinear aerodynamic forces on a bridge deck can be 
generalized as: 
𝑄𝐵𝐹 = 𝑄𝐵𝐹(𝑡, 𝛼𝑒𝑓𝑓 , 𝑢, 𝑤, 𝑝̇, ℎ̇, 𝛼, 𝐼𝐹1, 𝐼𝐹2) = 𝑄𝑄𝑆(𝑡, 𝛼𝑒𝑓𝑓

𝑙𝑜𝑤, 𝑢𝑙𝑜𝑤 , 𝑤𝑙𝑜𝑤 , ℎ̇𝑙𝑜𝑤 , 𝑝̇𝑙𝑜𝑤 , 𝛼̇𝑙𝑜𝑤) 

+𝑄𝑉𝑜𝑙𝑡𝑒𝑟𝑟𝑎 𝐹𝐷(𝑡, 𝛼𝑒𝑓𝑓
𝑙𝑜𝑤 , 𝐶𝑄(𝛼𝑒𝑓𝑓

𝑙𝑜𝑤), 𝐶𝑄
′ (𝛼𝑠

= 0), 𝐼𝐹1(𝜃𝑣𝑎𝑟𝑦𝑖𝑛𝑔, 𝑡), 𝐼𝐹2(𝜃𝑣𝑎𝑟𝑦𝑖𝑛𝑔 , 𝜏1, 𝜏2), 𝑢
ℎ𝑖𝑔ℎ , 𝑤ℎ𝑖𝑔ℎ , ℎ̇ℎ𝑖𝑔ℎ , 𝑝̇ℎ𝑖𝑔ℎ , 𝛼ℎ𝑖𝑔ℎ) 

(3.31) 

where superscripts low and high mean the low-frequency and high-frequency components. The 
low-frequency component of aerodynamic forces can be expressed using the QS model due to 
high value of the reduced velocity as the following nonlinear form (including static components): 
𝐿𝑙𝑜𝑤(𝑡) = 𝐹𝐿

𝑙𝑜𝑤 cos(𝜙𝑙𝑜𝑤) − 𝐹𝐷
𝑙𝑜𝑤 sin(𝜙𝑙𝑜𝑤) − 𝐿𝑠𝑡(𝑡) 

𝐷𝑙𝑜𝑤(𝑡) = 𝐹𝐿
𝑙𝑜𝑤 sin(𝜙𝑙𝑜𝑤) + 𝐹𝐷

𝑙𝑜𝑤 cos(𝜙𝑙𝑜𝑤)−𝐷𝑠𝑡(𝑡) 

𝑀𝑙𝑜𝑤(𝑡) = 𝐹𝑀
𝑙𝑜𝑤−𝑀𝑠𝑡(𝑡) 

(3.32) 

where 

𝐹𝐿
𝑙𝑜𝑤 = −

1

2
𝜌𝑈𝑟𝑒𝑙

2 𝐵𝐶𝐿(𝛼𝑒𝑓𝑓
𝑙𝑜𝑤); 𝐹𝐷

𝑙𝑜𝑤 =
1

2
𝜌𝑈𝑟𝑒𝑙

2 𝐵𝐶𝐷(𝛼𝑒𝑓𝑓
𝑙𝑜𝑤); 𝐹𝑀

𝑙𝑜𝑤 =
1

2
𝜌𝑈𝑟𝑒𝑙

2 𝐵2𝐶𝑀(𝛼𝑒𝑓𝑓
𝑙𝑜𝑤) 

𝑈𝑟𝑒𝑙
2 = (𝑈𝑡𝑣̅̅ ̅̅ + 𝑢𝑙𝑜𝑤 − 𝑝̇𝑙𝑜𝑤)2 + (𝑤𝑙𝑜𝑤 + ℎ̇𝑙𝑜𝑤 +𝑚1𝐵𝛼̇

𝑙𝑜𝑤)
2
 

𝛼𝑒𝑓𝑓
𝑙𝑜𝑤 = 𝛼𝑠 + 𝜙𝑙𝑜𝑤; 𝜙𝑙𝑜𝑤 = arctan (

𝑤𝑙𝑜𝑤 + ℎ̇𝑙𝑜𝑤 +𝑚1𝐵𝛼̇
𝑙𝑜𝑤

𝑈𝑡𝑣̅̅ ̅̅ + 𝑢𝑙𝑜𝑤 − 𝑝̇𝑙𝑜𝑤
) 

(3.33) 

The high-frequency components of aerodynamic forces can be expressed by using Eq. (3.28) of 
Volterra FD model by replacing the parameters 𝐶𝑄(𝛼𝑠), 𝐶𝑄′ (𝛼𝑠 = 0), 𝑢, 𝑤, 𝑝̇, ℎ̇, 𝛼, 𝐼𝐹1(𝑡), 
𝐼𝐹2(𝜏1, 𝜏2) in Eq. (3.28) with 𝐶𝑄(𝛼𝑒𝑓𝑓𝑙𝑜𝑤), 𝐶𝑄′ (𝛼𝑠 = 0), 𝐼𝐹1(𝜃𝑣𝑎𝑟𝑦𝑖𝑛𝑔, 𝑡), 𝐼𝐹2(𝜃𝑣𝑎𝑟𝑦𝑖𝑛𝑔, 𝜏1, 𝜏2), 

𝑢ℎ𝑖𝑔ℎ, 𝑤ℎ𝑖𝑔ℎ, ℎ̇ℎ𝑖𝑔ℎ, 𝑝̇ℎ𝑖𝑔ℎ, 𝛼ℎ𝑖𝑔ℎ, respectively. The block diagram of the Hybrid Volterra FD 
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model is shown in Figure (3-4). The practical application of Volterra FD and Hybrid Volterra FD 
models to a real full-scale bridge will be presented in Chapter 5. 
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CHAPTER 4:  IDENTIFICATION OF VOLTERRA KERNELS 
 
 

This chapter discusses the methods for the identification of Volterra kernels adopted in this 
dissertation. Two methods herein are employed based on the experimental and simulation 
approaches. The experimental approach entails the experimental data of flutter derivatives (FDs), 
obtained from the wind tunnel test at varying angles of attack, to build the relationships between 
IFs and FDs, whereas the simulation approach is adopted based on a nonparametric modeling 
technique called Artificial Neural Network (ANN) which uses the set of inputs and outputs to 
develop the nonlinear relationship with the help of associated synaptic weights. The IFs are 
expressed mathematically as an exponential function whose unknown parameters are determined 
by fitting the experimental data of FDs in a nonlinear least square manner. The FDs of a cross-
section of the Akashi-Kaikyo bridge is taken from previous researchers at various angles of attack. 
The time-varying effects of non-synoptic winds are also considered in the exponential formulation 
of IFs. In the case of the experimental method, the first-order kernels are identified from the FDs 
for different angles of attack which, whereas the second-order kernels are identified by using the 
nonlinear system identification technique. For that, a Wiener model-based filter is designed by 
using the measurement data of wind speed and displacement of the bridge deck to envisage the 
type and level of nonlinearity existing in wind-bridge interaction. Conversely, in the case of the 
simulation method, a Time-delay Neural Network (TDNN) is adopted to develop a second-order 
aerodynamic model for wind loads, which is then compared with the Volterra series-based wind 
load model (presented in Chapter 3) and corresponding terms are equated to extract the first- and 
second-order Volterra kernels in terms of unknown parameters of the TDNN. For that, the 
measurement data of wind speed and bridge displacement are used to train the TDNN consisting 
of an input layer, hidden layer and output layer. The results highlighted the importance of using 
TDNN over the experimental method in terms of reduced-order modeling because the second-
order kernels can be identified by TDNN with tremendously reduced computational effort. These 
methods may also help the designer to design long-span bridges accurately by considering the 
nonlinearity and non-stationary wind effects on the buffeting response of the bridge deck. 
 

4.1 Introduction 
 
Volterra series provides a suitable mathematical explanation of nonlinear dynamical systems 

through multidimensional convolution integrals, each related with a kernel function. These 
higher-order kernels can be idealized as extensions of the linear impulse response to 
multidimensions. Classical identification of Volterra kernels involves the exciting system with a 
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series of steps or impulses of various orders. Its application to weakly nonlinear aerodynamic and 
aeroelastic systems is well established (Silva 1997; Raveh 2000; Raveh 2001). The synthesis of 
Volterra kernels can be a computational resource-intensive procedure, especially when it comes 
to higher-order kernels and representation of stronger nonlinearities. Also, the proper 
identification of the cross-coupled terms, existing when multiple DOFs of a nonlinear dynamical 
system are excited simultaneously, represents another problem regarding the application of 
Volterra based reduced-order modeling (ROMs) (Silva 2005). 

Generally, the Volterra kernels are identified by either experiment or numerical simulation. 
However, the accurate identification of IFs is critical and a tricky task when applying to a 
nonlinear system for the generation of an efficient, robust, and nonlinear model. As a matter of 
fact, IFs can be identified in both time- and frequency-domains. In the former, IFs are found by 
imposing an instantaneous change to a system state variable (angle of attack of wind flow), 
whereas, in the latter, IFs are derived from the FDs at varying angles of attack. According to the 
airfoil theory, the evolutionary growth of the aerodynamic forces in time-domain is described by 
the convolution integral of time-dependent functions representing the response of an airfoil 
section to the step-change of an aerodynamic input. The time-dependent function herein refers to 
a step-function excitation which means the excitation that grows abruptly from the initial state to 
a state with a certain stable value. Farsani et al. (2014) evaluated the aerodynamic response of a 
bridge deck due to a step-change and calculated the FDs from sinusoidal oscillations.  

Some discussions are also available on the point that IFs for buffeting and self-excited forces 
are the same based on the assumption that vertical gust wind component and vertical bridge 
response component yield the same aerodynamic loads on a bridge deck (e.g., Tubino, 2005). 
However, this assumption is not valid in the case of a real bridge deck. Hence, IFs for self-excited 
forces are particularly different from those for buffeting forces. Several authors have also pointed 
out that only one IF is not enough to describe the self-excited forces on the bluff bodies (e.g., 
Øiseth et al. 2011). Costa et al. (2007) used different IFs to simulate the self-excited and buffeting 
forces in time-domain for a 2D sectional model of the bridge while ignoring the drag-like IFs for 
a three-dimensional (3D) bridge problem. A critical step in indicial modelling is the identification 
of IF coefficients. This is usually done via the minimization of an error function, in order to fit 
FDs. A nonlinear least-square method is proposed by Scanlan et al. (1974). A scheme, based on 
the Levenberg–Marquardt method, is also adopted by Caracoglia and Jones (2003a, 2003b), and 
applied to different bridge deck cross-sections, considering the Scanlan’s formulation of self-
excited forces. Costa and Borri (2006) also estimated sets of IF coefficients for rectangular cross-
sections by time-domain simulations and compared with the experimental data. 

In recent years, some researchers (Wu and Kareem 2013; Paula et al. 2019; Lin and Ng 2018) 
have presented some other useful techniques for the identification of higher-order kernels based 
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on the correlation analysis and scheme and neural network. Paula et. al. (2018) proposed a method 
for the assessment of Volterra kernels based on artificial neural networks. The relation between 
the Volterra kernels and the internal parameters of a TDNN is studied and explored for the 
application of reduced-order modeling of nonlinear aerodynamic loads. In this dissertation, both 
the experimental and simulation methods are adopted to extract the first- and second-order 
Volterra kernels which are presented in the subsequent sections. 

 

4.2 Experimental technique 
 
In this method, the aerodynamic and aeroelastic IFs are identified by using the experimental 

data of FDs of the bridge deck considering the amplitude-dependency of FDs on the angle of 
attack. The main idea is to transform the frequency-dependent FDs measured in frequency-
domain into the equivalent frequency-independent IFs identified in time-domain. The following 
exponential function is used to express the aerodynamic and aeroelastic IFs mathematically: 

𝐼𝐹(𝑡, 𝑈𝑡𝑣̅̅ ̅̅ (𝜏)) = 𝑎0 −∑𝑎𝑗 exp (−𝑏𝑗
𝑈𝑡𝑣̅̅ ̅̅ (𝜏)

𝐵
𝑡)

𝑁

𝑗=1

 (4.1) 

where 𝑎0, 𝑎𝑗 and 𝑏𝑗 are the frequency-free IF coefficients to be evaluated such that 𝑏𝑗 ≥ 0; 

and 𝑁 is the functional groups of exponential form that can be seen as a cascade filter, modelling 
the unsteady bridge aerodynamics. For a streamlined body immersed in two-dimensional flow, 
𝑁 equal to 2 is usually appropriate, whereas 𝑁 ≥ 3 is normally suitable for a bluff body like 
bridge deck (Caracoglia and Jones 2003b; Jones 1939). 𝑎0 is taken as 1.0 to normalize IF as it 
represents the static state of the system. Moreover, IFs coefficients depend on the angle of attack 
of wind i.e., IF shows the significant overshooting behavior at a large angle of attack. The 
representation of IF shown in Eq. (4.1) was first used by Wagner (1925) for a thin airfoil, and 
Theodorsen (1935) utilized it for a flat plate. Later, Jones (1940) adopted it to present the excellent 
approximations to Wagner and Kussner functions for formulating the aeroelastic and 
aerodynamic IFs for a thin airfoil immersed in a two-dimensional flow as shown in Eqs. (4.2) and 
(4.3), respectively: 
𝜙𝑊𝑎𝑔𝑛𝑒𝑟(𝑠) = 1 − 0.165 exp(−0.0455𝑠) − 0.355 exp(−0.3𝑠) 

𝜓𝐾𝑢𝑠𝑠𝑛𝑒𝑟(𝑠) = 1 − 0.236 exp(−0.058𝑠) − 0.513 exp(−0.364𝑠) − 0.171exp (−2.42𝑠) 

(4.2) 
(4.3) 

where s denotes the non-dimensional time equal to 𝑈̅𝑡/𝐵. However, Jones proposed the same 
functions for each component of gust-induced and motion-induced vibrations, which is not true 
in the case of a bluff body. Therefore, IF should be different for each component of the gust, 
motion, and their coupling for a real bridge deck. Using the experimental approach, the 
aerodynamic and aeroelastic IFs are identified directly by fitting the FDs in a nonlinear least-
square manner as described in (Caracoglia and Jones 2003b; Costa and Borri 2006). For that, the 
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wind static force coefficients and experimental data of FDs are taken from (Katsuchi et al. 1998; 
Xu, 2014) for the Akashi-Kaikyo bridge deck section shown in Figure (4-1). The static force 
coefficients at the varying angles of incidence for this section are also shown in Figure (4-2). A 
full set of 18 FDs (𝐻𝑖∗, 𝑃𝑖∗, 𝐴𝑖∗, where 𝑖 = 1,… ,6) at varying angles of attack from -4o to +3o is 
used for three-dimensional modelling of wind loads based on aerodynamic and aeroelastic IFs, 
which not only depends on time but also the bridge motion as suggested by Wu and Kareem 
(2013). Figure (4-3) shows the experimental results of 18 FDs at zero angle of attack. For the sake 
of illustration, only variations of 𝐴2∗ , 𝐴4∗  and 𝐻4∗  are considered in the nonlinear buffeting 
analysis framework as shown in Figures (4-4)−(4-6). Experimental data indicates that 𝐴2∗ , 𝐴4∗  
and 𝐻4∗ are highly sensitive to the angle of attack for this section. 

 
 

Figure 4-1 Cross-section of the Akashi-Kaikyo bridge deck 

 
Figure 4-2 Static force coefficients for the Akashi-Kaikyo bridge 
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Figure 4-3 Flutter derivatives of the Akashi-Kaikyo bridge deck 
 

 
 
Figure 4-4 Flutter derivative 𝐴2∗  at varying angles of attack for the Akashi-Kaikyo bridge deck 
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Figure 4-5 Flutter derivative 𝐻4∗ at varying angles of attack for the Akashi-Kaikyo bridge deck 
 

 
 
Figure 4-6 Flutter derivative 𝐴4∗  at varying angles of attack for the Akashi-Kaikyo bridge deck 
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𝜓𝑀𝑤 (𝐴1∗  , 𝐴4∗  ), 𝜙𝐿ℎ̇ (𝐻1∗ , 𝐻4∗ ) , 𝜙𝑀ℎ̇ (𝐴1∗  , 𝐴4∗  ) , 𝜙𝐷ℎ̇ (𝑃5∗ , 𝑃6∗ ) , 𝜙𝐿𝛼 (𝐻2∗ , 𝐻3∗ ) , 𝜙𝑀𝛼 (𝐴2∗  , 𝐴3∗  ) , 
𝜙𝐷𝛼 (𝑃2∗ , 𝑃3∗ ) , 𝜙𝐿𝑝̇ (𝐻5∗ , 𝐻6∗ ) , 𝜙𝑀𝑝̇ (𝐴5∗  , 𝐴6∗  ), 𝜙𝐷𝑝̇ (𝑃1∗ , 𝑃4∗ ). The subsequent subsections will 

discuss the formulation of these relationships for the identification of aerodynamic and aeroelastic 
IFs through the experiment. 

 
4.2.1 Relationship between IFs and FDs for identification of aerodynamic IFs 

For the identification of aerodynamic IFs, the relationship between IFs and FDs of the bridge 
deck are formulated with the help of (1) buffeting force model in frequency-domain (2) self-
excited force model proposed by Scanlan (1990; 1993) and (3) Fourier transformation of linear 
unsteady buffeting load model derived in chapter 3. 
(1) Frequency-dependent buffeting force model 

For turbulence intensities of wind in ABL, and for turbulence components with frequencies 
that are of interest in practice, it may be assumed that the squares and products of velocity 
fluctuations 𝑢 and 𝑤 are negligible with respect to the square of mean velocity 𝑈̅. Following 
it, the expression for lift force in frequency-domain can be written as:  

𝐿𝑏 =
1

2
𝜌𝑈2𝐵 [2𝐶𝐿

𝑢

𝑈
 + (𝐶𝐷 + 𝐶𝐿

′)
𝑤

𝑈
] (4.4) 

Owing to the frequency-dependence of buffeting forces at high-reduced frequency, Eq. (4.4) is 
only valid up to the first approximation of forces. The insufficiency can be observed through the 
frequency-domain approach by estimating the attendant response due to a sinusoidally acting 
vertical or horizontal component of the fluctuating wind speed. By putting the transfer function 
separately to both components, the Fourier transform of the buffeting force is expressed as: 

𝐿𝑏 =
1

2
𝜌𝑈2𝐵 (2𝐶𝐿𝜒𝐿𝑢

𝑢

𝑈
+ (𝐶𝐷 + 𝐶𝐿

′)𝜒𝐿𝑤
𝑤

𝑈
) (4.5) 

Similarly, buffeting drag force and pitching moment can be formulated such as: 

𝐷𝑏 =
1

2
𝜌𝑈2𝐵 (2𝐶𝐷𝜒𝐷𝑢

𝑢

𝑈
+ (𝐶𝐷

′ − 𝐶𝐿)𝜒𝐷𝑤
𝑤

𝑈
) (4.6) 

𝑀𝑏 =
1

2
𝜌𝑈2𝐵2 (2𝐶𝑀𝜒𝑀𝑢

𝑢

𝑈
+ (𝐶𝑀

′ )𝜒𝑀𝑤
𝑤

𝑈
) (4.7) 

where 𝜒𝐿𝑢 , 𝜒𝐿𝑤 , 𝜒𝐷𝑢 , 𝜒𝐷𝑤 , 𝜒𝑀𝑢  and 𝑋𝑀𝑤  are the aerodynamic force transfer functions 
between fluctuating wind speeds and buffeting forces. These are functions of frequency, which 
depend on the deck configuration. The absolute magnitudes of these functions are also known as 
the aerodynamic admittance functions which express the transfer functions between the turbulent 
wind components and aerodynamic forces. In the quasi-steady formulation, the admittance 
functions take the value of unity. Writing Eqs. (4.5), (4.6) and (4.7) into a matrix form: 
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{

𝐿𝑏
𝐷𝑏
𝑀𝑏

} =
1

2
𝜌𝑈2𝐵 [

2𝐶𝐿𝜒𝐿𝑢 (𝐶𝐷 + 𝐶𝐿
′)𝜒𝐿𝑤

2𝐶𝐷𝜒𝐷𝑢 (𝐶𝐷
′ − 𝐶𝐿)𝜒𝐷𝑤

2𝐶𝑀𝜒𝑀𝑢𝐵 𝐶𝑀
′ 𝜒𝑀𝑤𝐵

]{

𝑢

𝑈
𝑤

𝑈

} (4.8) 

(2) Scanlan’s self-excited force model 
The self-excited forces result from the oscillation between fluid and deck oscillation. 

Scanlan (1990; 1993) proposed a model for self-excited forces such as: 

𝐿𝑠𝑒(𝐾) =
1

2
𝜌𝑈2𝐵 [𝐾𝐻1

∗
ℎ̇

𝑈
+ 𝐾𝐻2

∗
𝐵𝛼̇

𝑈
+ 𝐾2𝐻3

∗𝛼 + 𝐾2𝐻4
∗
ℎ

𝐵
+ 𝐾𝐻5

∗
𝑝̇

𝑈
+ 𝐾2𝐻6

∗
𝑝

𝐵
] (4.9) 

𝐷𝑠𝑒(𝐾) =
1

2
𝜌𝑈2𝐵 [𝐾𝑃1

∗
𝑝̇

𝑈
+ 𝐾𝑃2

∗
𝐵𝛼̇

𝑈
+ 𝐾2𝑃3

∗𝛼 + 𝐾2𝑃4
∗
𝑝

𝐵
+ 𝐾𝑃5

∗
ℎ̇

𝑈
+ 𝐾2𝑃6

∗
ℎ

𝐵
] (4.10) 

𝑀𝑠𝑒(𝐾) =
1

2
𝜌𝑈2𝐵2 [𝐾𝐴1

∗
ℎ̇

𝑈
+ 𝐾𝐴2

∗
𝐵𝛼̇

𝑈
+ 𝐾2𝐴3

∗𝛼 + 𝐾2𝐴4
∗
ℎ

𝐵
+ 𝐾𝐴5

∗
𝑝̇

𝑈
+ 𝐾2𝐴6

∗
𝑝

𝐵
] (4.11) 

where 𝐾 is defined as the reduced frequency of oscillations equal to 𝜔𝐵/𝑈̅  (which is further 
equal to 2𝜋/𝑈𝑟𝑒𝑑). Ignoring terms related to 𝛼 and 𝛼̇ in Eqs. (4.9), (4.10) and (4.11) because 
there are only two components of the velocity of wind in Eq. (4.8) i.e., horizontal, and vertical, 
and there is not a rotational wind velocity component. Therefore, the terms related to 𝛼 and 𝛼̇ 
in Eqs. (4.9), (4.10) and (4.11) can be ignored. For instance, the self-excited lift force without 
terms related to 𝛼 and 𝛼̇ is shown in Eq. (4.12). For the sake of Fourier transformation, putting 

ℎ = ℎ̇/𝑖𝜔  and 𝑝 = 𝑝̇/𝑖𝜔  in Eq. (4.12) yields Eq. (4.13), which after further simplification 
becomes Eq. (4.14) such as: 

𝐿𝑠𝑒(𝐾) =
1

2
𝜌𝑈2𝐵 [𝐾𝐻1

∗
ℎ̇

𝑈
+ 𝐾2𝐻4

∗
ℎ

𝐵
+ 𝐾𝐻5

∗
𝑝̇

𝑈
+ 𝐾2𝐻6

∗
𝑝

𝐵
] (4.12) 

𝐿𝑠𝑒(𝐾) =
1

2
𝜌𝑈2𝐵 [𝐾𝐻1

∗
ℎ̇

𝑈
− 𝑖𝐾𝐻4

∗
ℎ̇

𝑈
+ 𝐾𝐻5

∗
𝑝̇

𝑈
− 𝑖𝐾𝐻6

∗
𝑝̇

𝑈̅
] (4.13) 

𝐿𝑠𝑒(𝐾) =
1

2
𝜌𝑈2𝐵 [ 𝐾(𝐻5

∗ − 𝑖𝐻6
∗)
𝑝̇

𝑈
+ 𝐾(𝐻1

∗ − 𝑖𝐻4
∗)
ℎ̇

𝑈
] (4.14) 

Similarly, self-excited drag force and pitching moment in frequency-domain can also be 
formulated such as: 

𝐷𝑠𝑒(𝐾) =
1

2
𝜌𝑈2𝐵 [ 𝐾(𝑃1

∗ − 𝑖𝑃4
∗)
𝑝̇

𝑈
+ 𝐾(𝑃5

∗ − 𝑖𝑃6
∗)
ℎ̇

𝑈
] (4.15) 

𝑀𝑠𝑒(𝐾) =
1

2
𝜌𝑈2𝐵2 [ 𝐾(𝐴5

∗ − 𝑖𝐴6
∗)
𝑝̇

𝑈
+ 𝐾(𝐴1

∗ − 𝑖𝐴4
∗)
ℎ̇

𝑈
] (4.16) 

Writing Eqs. (4.14), (4.15) and (4.16) into a matrix form: 

{

𝐿𝑏(𝐾)

𝐷𝑏(𝐾)

𝑀𝑏(𝐾)
} =

1

2
𝜌𝑈2𝐵 [

𝐾(𝐻5
∗ − 𝑖𝐻6

∗) 𝐾(𝐻1
∗ − 𝑖𝐻4

∗)

𝐾(𝑃1
∗ − 𝑖𝑃4

∗) 𝐾(𝑃5
∗ − 𝑖𝑃6

∗)

 𝐾(𝐴5
∗ − 𝑖𝐴6

∗)𝐵 𝐾(𝐴1
∗ − 𝑖𝐴4

∗)𝐵

]

{
 

 
𝑝̇

𝑈
ℎ̇

𝑈}
 

 

 (4.17) 
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(3) Fourier transformation of the linear unsteady buffeting load model 
Referring to Chapter 3 and taking the Fourier transform of Eqs. (3.11), (3.12) and (3.13) 

yields: 

𝐿𝑏(𝐾) =
1

2
𝜌𝑈2𝐵 [2𝐶𝐿 {𝜓𝐿𝑢(0) + 𝜓̅̇𝐿𝑢}

𝑢(𝐾)

𝑈
+ (𝐶𝐷 + 𝐶𝐿

′) {𝜓𝐿𝑤(0) + 𝜓̅̇𝐿𝑤}
𝑤(𝐾)

𝑈
] (4.18) 

𝐷𝑏(𝐾) =
1

2
𝜌𝑈2𝐵 [2𝐶𝐷 {𝜓𝐷𝑢(0) + 𝜓̅̇𝐷𝑢}

𝑢(𝐾)

𝑈
+ (𝐶𝐷

′ − 𝐶𝐿) {𝜓𝐷𝑤(0) + 𝜓̅̇𝐷𝑤}
𝑤(𝐾)

𝑈
] (4.19) 

𝑀𝑏(𝐾) =
1

2
𝜌𝑈̅2𝐵2 [2𝐶𝑀 {𝜓𝑀𝑢(0) + 𝜓̅̇𝑀𝑢}

𝑢(𝐾)

𝑈
+ 𝐶𝑀

′ {𝜓𝑀𝑤(0) + 𝜓̅̇𝑀𝑤}
𝑤(𝐾)

𝑈
] (4.20) 

Writing Eqs. (4.18), (4.19) and (4.20) into a matrix form such as: 

{

𝐿𝑏(𝐾)

𝐷𝑏(𝐾)

𝑀𝑏(𝐾)
} =

1

2
𝜌𝑈2𝐵

[
 
 
 
 2𝐶𝐿 {𝜓𝐿𝑢(0) + 𝜓̅̇𝐿𝑢} (𝐶𝐷 + 𝐶𝐿

′) {𝜓𝐿𝑤(0) + 𝜓̅̇𝐿𝑤}

2𝐶𝐷 {𝜓𝐷𝑢(0) + 𝜓̅̇𝐷𝑢} (𝐶𝐷
′ − 𝐶𝐿) {𝜓𝐷𝑤(0) + 𝜓̅̇𝐷𝑤}

 2𝐶𝑀 {𝜓𝑀𝑢(0) + 𝜓̅̇𝑀𝑢} 𝐵 𝐶𝑀
′ {𝜓𝑀𝑤(0) + 𝜓̅̇𝑀𝑤} 𝐵 ]

 
 
 
 

{

𝑢(𝐾)

𝑈
𝑤(𝐾)

𝑈

} (4.21) 

By comparing the corresponding elements of Eqs. (4.8), (4.17) and (4.21), the relationship 
functions can be obtained such as: 
Element (1,1) 
2𝐶𝐿χ𝐿𝑢 = 𝐾(𝐻5

∗ − 𝑖𝐻6
∗) = 2𝐶𝐿 {𝜓𝐿𝑢(0) + 𝜓̅̇𝐿𝑢} (4.22a) 

∴ 𝜒𝐿𝑢 = 𝜓𝐿𝑢(0) + 𝜓̅̇𝐿𝑢 =
𝐾

2𝐶𝐿
(𝐻5

∗ − 𝑖𝐻6
∗) (4.22b) 

Element (1,2) 
(𝐶𝐷 + 𝐶𝐿

′)χ𝐿𝑤 = 𝐾(𝐻1
∗ − 𝑖𝐻4

∗) = (𝐶𝐷 + 𝐶𝐿
′) {𝜓𝐿𝑤(0) + 𝜓̅̇𝐿𝑤} (4.23a) 

∴ 𝜒𝐿𝑤 = 𝜓𝐿𝑤(0) + 𝜓̅̇𝐿𝑤 =
𝐾

(𝐶𝐷 + 𝐶𝐿
′)
(𝐻1

∗ − 𝑖𝐻4
∗) (4.23b) 

Element (2,1) 
2𝐶𝐷𝜒𝐷𝑢 = 𝐾(𝑃1

∗ − 𝑖𝑃4
∗) = 2𝐶𝐷 {𝜓𝐷𝑢(0) + 𝜓̅̇𝐷𝑢} (4.24a) 

∴ 𝜒𝐷𝑢 = 𝜓𝐷𝑢(0) + 𝜓̅̇𝐷𝑢 =
𝐾

2𝐶𝐷
(𝑃1

∗ − 𝑖𝑃4
∗) (4.24b) 

Element (2,2) 
(𝐶𝐷

′ − 𝐶𝐿)𝜒𝐷𝑤 = 𝐾(𝑃5
∗ − 𝑖𝑃6

∗) = (𝐶𝐷
′ − 𝐶𝐿) {𝜓𝐷𝑤(0) + 𝜓̅̇𝐷𝑤} (4.25a) 

∴ 𝜒𝐷𝑤 = 𝜓𝐷𝑤(0) + 𝜓̅̇𝐷𝑤 =
𝐾

(𝐶𝐷
′ − 𝐶𝐿)

(𝑃5
∗ − 𝑖𝑃6

∗) (4.25b) 

Element (3,1) 
2𝐶𝑀𝜒𝑀𝑢𝐵 = 𝐵𝐾(𝐴5

∗ − 𝑖𝐴6
∗) = 2𝐶𝑀 {𝜓𝑀𝑢(0) + 𝜓̅̇𝑀𝑢} 𝐵 (4.26a) 

∴ 𝜒𝑀𝑢 = 𝜓𝑀𝑢(0) + 𝜓̅̇𝑀𝑢 =
𝐾

2𝐶𝑀
(𝐴5

∗ − 𝑖𝐴6
∗) (4.26b) 
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Element (3,2) 
𝐶𝑀
′ 𝜒𝑀𝑤𝐵 = 𝐵𝐾(𝐴1

∗ − 𝑖𝐴4
∗) = 𝐶𝑀

′ {𝜓𝑀𝑤(0) + 𝜓̅̇𝑀𝑤} 𝐵 (4.27a) 

∴ 𝜒𝑀𝑤 = 𝜓𝑀𝑤(0) + 𝜓̅̇𝑀𝑤 =
𝐾

𝐶𝑀
′ (𝐴1

∗ − 𝑖𝐴4
∗) (4.27b) 

in which 𝜓̅̇ denotes the Fourier transformation of the first derivative of aerodynamic IF. This 
can be calculated by taking the first derivative of Eq. (4.1), followed by the Fourier 

transformation, which upon further simplification yields the generalized form of 𝜓̅̇ such as: 

𝜓̇(𝑠) = ∑𝑎𝑗𝑏𝑗 exp(−𝑏𝑗𝑠)

𝑁

𝑗=1

 (4.28a) 

𝐹𝑇 (𝜓̇(𝑠)) = ∫ 𝑎1𝑏1𝑒
−𝑏1𝑠𝑒−𝑖𝐾𝑠𝑑𝑠

∞

−∞ 

 (4.28b) 

𝜓̅̇ = ∑(
𝑎𝑗𝑏𝑗

2

𝑏𝑗
2 + 𝐾2

− 𝑖𝐾
𝑎𝑗𝑏𝑗

𝑏𝑗
2 + 𝐾2

)

𝑁

𝑗=1

 (4.28c) 

Thus, the expression for 𝜓(0) + 𝜓̅̇ can be shown explicitly as follows:  

𝜓(0) + 𝜓̅̇ = 1 −∑𝑎𝑗

𝑁

𝑗=1

+∑(
𝑎𝑗𝑏𝑗

2

𝑏𝑗
2 + 𝐾2

− 𝑖𝐾
𝑎𝑗𝑏𝑗

𝑏𝑗
2 + 𝐾2

)

𝑁

𝑗=1

 (4.29) 

in which 𝜓(0) + 𝜓̇(𝑠) is a complex number and its real part is equivalent to the real part of 
Sears’ functions, denoted by 𝑆(𝐾), as shown in Eq. (4.30). In the theory of airfoil, Sears’ function 
is the lift admittance function i.e., the frequency-based transfer function which relates the vertical 
fluctuations owing to turbulent winds to the lift force and pitching moment experienced by the 
bridge. Usually, Sears’ function is determined by combining the Bessel functions of first kind and 
Theodorsen’s complex circulation function. Following it, the relationships are established 
between aerodynamic IFs and Sears’ functions using FDs by means of Fourier-integral 
superposition of the linear results for simple harmonic motion as pointed out by Garrick (Garrick, 
1938) such as: 
𝑆(𝐾) ≡ 𝜒(𝐾) = 𝐶(𝐾)[𝐽0(𝐾) − 𝑖𝐽1(𝐾)] + 𝑖𝐽1(𝐾) (4.30a) 

= 𝐹𝑆(𝐾) + 𝑖𝐺𝑆(𝐾) = 𝑖𝐾∫ 𝜓(𝑠)𝑒−𝑖𝐾𝑠𝑑𝑠
∞

0

 (4.30b) 

where 𝐽0(𝐾) and 𝐽1(𝐾) represent the Bessel functions of first kind with 𝜈 equal to 0 and 1; 
𝐹𝑆(𝐾) and 𝐺𝑆(𝐾) indicate the real and imaginary parts of 𝑆(𝐾), respectively, and 𝐶(𝐾) is the 
Theodorsen’s circulatory complex function consisting of a real part denoted by 𝐹𝑇ℎ(𝐾) and a 
complex part denoted by 𝐺𝑇ℎ(𝐾). In the case of a thin airfoil, 𝐶(𝐾) is usually determined from 

the Hankel functions of second kind (𝐻𝜈
(2) where 𝜈=0,1) such as: 

𝐶(𝐾) = 𝐹𝑇ℎ(𝐾) + 𝑖𝐺𝑇ℎ(𝐾) =
𝐻1
(2)(𝐾)

𝐻1
(2)(𝐾) + 𝑖𝐻0

(2)(𝐾)
 (4.30c) 

Since the mechanism of generation of the aeroelastic forces due to bridge motion is different 
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from the generation of the buffeting forces due to wind turbulence, these forces can be 
characterized in terms of different functions, i.e., the Wagner function and Kussner function in 
the time-domain, and the Theodorsen’s function and Sears’ function in the frequency-domain. As 
a matter of fact, Wagner and Kussner functions in the time-domain are the counterparts of the 
Theodorsen’s and Sears’ functions in the frequency-domain, respectively and the Fourier 
synthesis is helpful to show the strong duality between frequency- and time-domain functions. 
Figure (4-7) shows the comparison of Theodorsen’s and Sears’ functions in frequency-domain, 
and the comparison of the Wagner and Kussner functions in time-domain, respectively. As a 
function of 1/K, as shown in Figure (4-7a), the imaginary part of Theodorsen’s function dies out 
for 1/K tending to infinity (low-frequency regime), while the real part of Theodorsen’s function 
starts at 0.5 and approaches unity, i.e., the quasi-stationary behavior. On the other hand, the 
imaginary part of Sears’ function shows sinusoidal behavior and disappears for infinity value of 
1/K, whereas the real part of Sears’ function starts at 0 and approaches unity asymptotically as a 
function of 1/K. In Figure (4-7b), the Wagner and Kussner functions start at 0.5 and 1.0, 
respectively, both of which asymptotically approach unity as a function of 𝑠. The subsequent 
subsections will present the development of the relationships between IFs and FDs for the 
identification of aerodynamic and aeroelastic IFs. 

 

  
(a) Real and imaginary parts of Theodorsen’s 

and Sears’ functions in frequency-domain 
(b) Wagner and Kussner functions in time-

domain 

Figure 4-7 Comparison of unsteady aerodynamic force functions for airfoil section 
 

By separating the real and imaginary parts from Eq. (4.29): 

𝐹𝑆(𝐾) = 1 −∑𝑎𝑗

𝑁

𝑗=1

+∑(
𝑎𝑗𝑏𝑗

2

𝑏𝑗
2 + 𝐾2

)

𝑁

𝑗=1

 (4.31a) 

𝐺𝑆(𝐾) = −∑(
𝑎𝑗𝑏𝑗𝐾

𝑏𝑗
2 + 𝐾2

)

𝑁

𝑗=1

 (4.31b) 

The problem of finding the indicial function coefficients ( 𝑎𝑗  and 𝑏𝑗 ) requires the 
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simultaneous solutions of Eqs. (4.31a) and (4.31b) such that the extrema of relationships between 
IFs and FDs yield a minimum squared-error function. Eq. (4.32) shows the extremum of the 
relationship derived from the Eq. (4.22b) by using the principle of the sum of squares of residuals. 
A Levenberg-Marquart optimization algorithm is used to optimize these extrema in a nonlinear 
least square manner to find the aerodynamic IF coefficients. This algorithm computes the least 
absolute residuals such that the IF coefficients fit the 𝐹𝑆(𝐾) and 𝐺𝑆(𝐾) simultaneously. Figure 
(4-8) presents the verification results from the application of the optimization technique described, 
for each of six aerodynamic IFs to be sought. They are visualized, after optimization, by means 
of the corresponding real and imaginary parts of Sears’ functions as shown in Figure (4-8). 
Similarly, the extrema of relationships between IFs and FDs for other terms shown in Eq. (4.23) 
to Eq. (4.27) can also be written as: 

min∑𝐸𝐿𝑢
2 (𝑎𝑗 , 𝑏𝑗)

𝑚

𝑙=1

= min∑[(
𝐹𝑆𝐿𝑢
𝐾𝑙

−
𝐻5
∗

2𝐶𝐿
)

2

+ (
−𝐺𝑆𝐿𝑢
𝐾𝑙

−
𝐻6
∗

2𝐶𝐿
)

2

]

𝑚

𝑙=1

 (4.32) 

min∑𝐸𝐿𝑤
2 (𝑎𝑗 , 𝑏𝑗)

𝑚

𝑙=1

= min∑[(
𝐹𝑆𝐿𝑤
𝐾𝑙

−
𝐻1
∗

(𝐶𝐷 + 𝐶𝐿
′)
)

2

+ (
−𝐺𝑆𝐿𝑤
𝐾𝑙

−
𝐻4
∗

(𝐶𝐷 + 𝐶𝐿
′)
)

2

]

𝑚

𝑙=1

 (4.33) 

min∑𝐸𝐷𝑢
2 (𝑎𝑗 , 𝑏𝑗)

𝑚

𝑙=1

= min∑[(
𝐹𝑆𝐷𝑢
𝐾𝑙

−
𝑃1
∗

2𝐶𝐷
)

2

+ (
−𝐺𝑆𝐷𝑢
𝐾𝑙

−
𝑃4
∗

2𝐶𝐷
)

2

]

𝑚

𝑙=1

 (4.34) 

min∑𝐸𝐷𝑤
2 (𝑎𝑗 , 𝑏𝑗)

𝑚

𝑙=1

= min∑[(
𝐹𝑆𝐷𝑤
𝐾𝑙

−
𝑃5
∗

(𝐶𝐷
′ − 𝐶𝐿)

)

2

+ (
−𝐺𝑆𝐷𝑤
𝐾𝑙

−
𝑃6
∗

(𝐶𝐷
′ − 𝐶𝐿)

)

2

]

𝑚

𝑙=1

 (4.35) 

min∑𝐸𝑀𝑢
2 (𝑎𝑗 , 𝑏𝑗)

𝑚

𝑙=1

= min∑[(
𝐹𝑆𝑀𝑢
𝐾𝑙

−
𝐴5
∗

2𝐶𝑀
)

2

+ (
−𝐺𝑆𝑀𝑢
𝐾𝑙

−
𝐴6
∗

2𝐶𝑀
)

2

]

𝑚

𝑙=1

 (4.36) 

min∑𝐸𝑀𝑤
2 (𝑎𝑗 , 𝑏𝑗)

𝑚

𝑙=1

= min∑[(
𝐹𝑆𝑀𝑤
𝐾𝑙

−
𝐴1
∗

𝐶𝑀
′ )

2

+ (
−𝐺𝑆𝑀𝑤
𝐾𝑙

−
𝐴4
∗

𝐶𝑀
′ )

2

]

𝑚

𝑙=1

 (4.37) 

 

  

(a) Transfer function between 𝐷 and 𝑢 (b) Transfer function between 𝐷 and 𝑤 
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(c) Transfer function between 𝐿 and 𝑢 (d) Transfer function between 𝐿 and 𝑤 

  

(e) Transfer function between 𝑀 and 𝑢 (f) Transfer function between 𝑀 and 𝑤 
 

Figure 4-8 The real and imaginary parts of Sears’ functions between aerodynamic wind loads 
(𝐷: drag, 𝐿: lift and 𝑀: moment) and fluctuating wind speeds (𝑢: longitudinal and 𝑤: vertical) 
and their optimization for aerodynamic IFs at zero angle of attack of Akashi-Kaikyo bridge deck 

 
4.2.2 Relationship between IFs and FDs for identification of aeroelastic IFs 

For the identification of aeroelastic IFs, the relationship between aeroelastic IFs and FDs of 
the bridge deck are formulated by comparing (1) Fourier transformation of linear self-excited load 
model derived in Chapter 3 and (2) self-excited force model proposed by Scanlan (1990; 1993). 
(1) Fourier transformation of the linear unsteady self-excited load model 

Referring to Chapter 3 and taking the Fourier transform of Eq. (3.18) yields the self-excited 
lift force in frequency-domain such as: 

𝐿𝑠𝑒(𝐾) =
1

2
𝜌𝑈2𝐵𝐶𝐿

′ [(𝜙𝐿𝑝′(0) + 𝐹𝑇 (𝜙′
𝐿𝑝′
))
𝑝′(𝐾)

𝐵
+ (𝜙𝐿ℎ′(0) + 𝐹𝑇(𝜙′

𝐿ℎ′
))
ℎ′(𝐾)

𝐵

+ (𝜙𝐿𝛼(0) + 𝐹𝑇(𝜙′
𝐿𝛼
)) 𝛼(𝐾)] 

(4.38) 
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where 𝐹𝑇  denotes the Fourier transformation. By replacing 𝑝′(𝐾)  and ℎ′(𝐾)  by 𝑖𝐾𝑝(𝐾) 
and 𝑖𝐾ℎ(𝐾), respectively yields the following expressions: 

𝐿𝑠𝑒(𝐾) =
1

2
𝜌𝑈2𝐵 [𝐶𝐿

′ (𝜙𝐿𝑝′(0) + 𝐹𝑇 (𝜙′
𝐿𝑝′
))
𝑖𝐾𝑝(𝐾)

𝐵
+ 𝐶𝐿

′ (𝜙𝐿ℎ′(0) + 𝐹𝑇(𝜙′
𝐿ℎ′
)) 

×
𝑖𝐾ℎ(𝐾))

𝐵
+ 𝐶𝐿

′ (𝜙𝐿𝛼(0) + 𝐹𝑇(𝜙′
𝐿𝛼
)) 𝛼(𝐾)] 

(4.39) 

Similarly, self-excited drag force and pitching moment can also be determined as follows: 

𝐷𝑠𝑒(𝐾) =
1

2
𝜌𝑈2𝐵 [𝐶𝐷

′ (𝜙𝐷𝑝′(0) + 𝐹𝑇 (𝜙′
𝐷𝑝′

))
𝑖𝐾𝑝(𝐾)

𝐵
+ 𝐶𝐷

′ (𝜙𝐷ℎ′(0) + 𝐹𝑇(𝜙′
𝐷ℎ′

)) 

×
𝑖𝐾ℎ(𝐾))

𝐵
+ 𝐶𝐷

′ (𝜙𝐷𝛼(0) + 𝐹𝑇(𝜙′
𝐷𝛼
)) 𝛼(𝐾)] 

(4.40) 

𝑀𝑠𝑒(𝐾) =
1

2
𝜌𝑈2𝐵2 [𝐶𝑀

′ (𝜙𝑀𝑝′(0) + 𝐹𝑇 (𝜙′
𝑀𝑝′

))
𝑖𝐾𝑝(𝐾)

𝐵
 

+𝐶𝑀
′ (𝜙𝑀ℎ′(0) + 𝐹𝑇(𝜙′

𝑀ℎ′
))
𝑖𝐾ℎ(𝐾)

𝐵
+ 𝐶𝑀

′ (𝜙𝑀𝛼(0) + 𝐹𝑇(𝜙′
𝑀𝛼
)) 𝛼(𝐾)] 

(4.41) 

Writing Eqs. (4.39), (4.40) and (4.41) into a matrix form: 

{

𝐿𝑠𝑒(𝐾)
𝐷𝑠𝑒(𝐾)
𝑀𝑠𝑒(𝐾)

} =
1

2
𝜌𝑈̅2𝐵 × 

[
 
 
 
 
 𝐶𝐿

′ (𝜙𝐿𝑝′(0) + 𝐹𝑇 (𝜙
′
𝐿𝑝′
)) 𝑖𝐾 𝐶𝐿

′ (𝜙𝐿ℎ′(0) + 𝐹𝑇(𝜙′
𝐿ℎ′)) 𝑖𝐾 𝐶𝐿

′ (𝜙𝐿𝛼(0) + 𝐹𝑇(𝜙′
𝐿𝛼))

𝐶𝐷
′ (𝜙𝐷𝑝′(0) + 𝐹𝑇 (𝜙

′
𝐷𝑝′
)) 𝑖𝐾 𝐶𝐷

′ (𝜙𝐷ℎ′(0) + 𝐹𝑇(𝜙
′
𝐷ℎ′)) 𝑖𝐾 𝐶𝐷

′ (𝜙𝐷𝛼(0) + 𝐹𝑇(𝜙
′
𝐷𝛼))

𝐵𝐶𝑀
′ (𝜙𝑀𝑝′(0) + 𝐹𝑇 (𝜙′

𝑀𝑝′
)) 𝑖𝐾 𝐵𝐶𝑀

′ (𝜙𝑀ℎ′(0) + 𝐹𝑇(𝜙′
𝑀ℎ′)) 𝑖𝐾 𝐵𝐶𝑀

′ (𝜙𝑀𝛼(0) + 𝐹𝑇(𝜙′
𝑀𝛼))]

 
 
 
 
 

{
 
 

 
 
𝑝

𝐵
ℎ

𝐵
𝛼}
 
 

 
 

 

(4.42) 

(2) Scanlan’s self-excited force model 

By replacing ℎ̇, 𝑝̇ and 𝛼̇ by 𝑖𝜔ℎ, 𝑖𝜔𝑝 and 𝑖𝜔𝛼, respectively in Eqs. (4.9), (4.10) and 
(4.11) yields the following expressions: 

𝐿𝑠𝑒(𝐾) =
1

2
𝜌𝑈2𝐵 [𝐾2(𝑖𝐻1

∗ +𝐻4
∗)
ℎ

𝐵
+ 𝐾2(𝑖𝐻2

∗ + 𝐻3
∗)𝛼 + 𝐾2(𝑖𝐻5

∗ + 𝐻6
∗)
𝑝

𝐵
] (4.43) 

𝐷𝑠𝑒(𝐾) =
1

2
𝜌𝑈2𝐵 [𝐾2(𝑖𝑃1

∗ + 𝑃4
∗)
𝑝

𝐵
+ 𝐾2(𝑖𝑃2

∗ + 𝑃3
∗)𝛼 + 𝐾2(𝑖𝑃5

∗ + 𝑃6
∗)
ℎ

𝐵
] (4.44) 

𝑀𝑠𝑒(𝐾) =
1

2
𝜌𝑈2𝐵2 [𝐾2(𝑖𝐴1

∗ + 𝐴4
∗)
ℎ

𝐵
+ 𝐾2(𝑖𝐴2

∗ + 𝐴3
∗)𝛼 + 𝐾2(𝑖𝐴5

∗ + 𝐴6
∗)
𝑝

𝐵
] (4.45) 

Writing Eqs. (4.43), (4.44) and (4.45) into a matrix form: 

{

𝐿𝑠𝑒(𝐾)
𝐷𝑠𝑒(𝐾)

𝑀𝑠𝑒(𝐾)
} =

1

2
𝜌𝑈2𝐵 [

𝐾2(𝑖𝐻5
∗ +𝐻6

∗) 𝐾2(𝑖𝐻1
∗ + 𝐻4

∗) 𝐾2(𝑖𝐻2
∗ + 𝐻3

∗)

𝐾2(𝑖𝑃1
∗ + 𝑃4

∗) 𝐾2(𝑖𝑃5
∗ + 𝑃6

∗) 𝐾2(𝑖𝑃2
∗ + 𝑃3

∗)

𝐵𝐾2(𝑖𝐴5
∗ + 𝐴6

∗) 𝐵𝐾2(𝑖𝐴1
∗ + 𝐴4

∗) 𝐵𝐾2(𝑖𝐴2
∗ + 𝐴3

∗)

]

{
 
 

 
 
𝑝

𝐵
ℎ

𝐵
𝛼}
 
 

 
 

 (4.46) 

By comparing the corresponding terms of Eqs. (4.42) and (4.46), the relationships between 
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FDs and aeroelastic IFs can be obtained such as: 
Element (1,1) 

𝐾(𝐻5
∗ − 𝑖𝐻6

∗) = 𝐶𝐿
′ (𝜙𝐿𝑝′(0) + 𝐹𝑇 (𝜙′

𝐿𝑝′
)) (4.47) 

Element (1,2) 
𝐾(𝐻1

∗ − 𝑖𝐻4
∗) = 𝐶𝐿

′ (𝜙𝐿ℎ′(0) + 𝐹𝑇(𝜙′
𝐿ℎ′
))  (4.48) 

Element (1,3) 
𝐾(𝐻2

∗ − 𝑖𝐻3
∗) = 𝐶𝐿

′ (𝜙𝐿𝛼(0) + 𝐹𝑇(𝜙′
𝐿𝛼
)) (4.49) 

Element (2,1) 

𝐾(𝑖𝑃1
∗ − 𝑃4

∗) = 𝐶𝐷
′ (𝜙𝐷𝑝′(0) + 𝐹𝑇 (𝜙′

𝐷𝑝′
)) (4.50) 

Element (2,2) 
𝐾(𝑃5

∗ − 𝑖𝑃6
∗) = 𝐶𝐷

′ (𝜙𝐷ℎ′(0) + 𝐹𝑇(𝜙′
𝐷ℎ′

)) (4.51) 
Element (2,3) 
𝐾(𝑃2

∗ − 𝑖𝑃3
∗) = 𝐶𝐷

′ (𝜙𝐷𝛼(0) + 𝐹𝑇(𝜙′
𝐷𝛼
)) (4.52) 

Element (3,1) 

𝐾(𝐴5
∗ − 𝑖𝐴6

∗) = 𝐶𝑀
′ (𝜙𝑀𝑝′(0) + 𝐹𝑇 (𝜙′

𝑀𝑝′
)) (4.53) 

Element (3,2) 
𝐾(𝐴1

∗ − 𝑖𝐴4
∗) = 𝐶𝑀

′ (𝜙𝑀ℎ′(0) + 𝐹𝑇(𝜙′
𝑀ℎ′

)) (4.54) 
Element (3,2) 
𝐾(𝐴2

∗ − 𝑖𝐴3
∗) = 𝐶𝑀

′ (𝜙𝑀𝛼(0) + 𝐹𝑇(𝜙′
𝑀𝛼
)) (4.55) 

in which 𝐹𝑇(𝜙′) denotes the Fourier transformation of the first derivative of aeroelastic IF. This 
can be calculated by taking the first derivative of Eq. (4.1), followed by the Fourier 
transformation, which upon further simplification yields the generalized form of 𝐹𝑇(𝜙′). Similar 
to the case of aerodynamic IF, the expression for 𝜙(0) + 𝐹𝑇(𝜙′) can be shown explicitly in 
terms of indicial response function coefficients such as: 

𝜙(0) + 𝐹𝑇(𝜙′) = 1 −∑𝑎𝑗

𝑁

𝑗=1

+∑(
𝑎𝑗𝑏𝑗

2

𝑏𝑗
2 + 𝐾2

− 𝑖𝐾
𝑎𝑗𝑏𝑗

𝑏𝑗
2 + 𝐾2

)

𝑁

𝑗=1

 (4.56a) 

𝐹𝑇ℎ(𝐾) = 1 −∑𝑎𝑗

𝑁

𝑗=1

+∑(
𝑎𝑗𝑏𝑗

2

𝑏𝑗
2 + 𝐾2

)

𝑁

𝑗=1

 (4.56b) 

𝐺𝑇ℎ(𝐾) = −∑(
𝑎𝑗𝑏𝑗𝐾

𝑏𝑗
2 + 𝐾2

)

𝑁

𝑗=1

 (4.56c) 

Eq. (4.57) shows the extremum of the relationships between IFs and FDs derived from the 
Eq. (4.48) by using the principle of the sum of squares of residuals. Similarly, the expressions for 
the extremums of other sets of aeroelastic IFs are developed as shown in Eqs. (4.57)−(4.65). In 
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order to find the aeroelastic IF coefficients, the extremums of relationship functions are optimized 
by Levenberg-Marquart optimization algorithm such that they yield a minimum squared-error 
function and aeroelastic IF coefficients fit the 𝐹𝑇ℎ(𝐾) and 𝐺𝑇ℎ(𝐾) simultaneously. Figure (4-
9) presents the verification results from the application of the optimization technique described, 
for each of the nine aeroelastic IFs to be sought. They are visualized, after optimization, by means 
of the corresponding real and imaginary parts of the Theodorsen’s functions. 

min∑𝐸𝐿ℎ′
2 (𝑎𝑗 , 𝑏𝑗)

𝑚

𝑙=1

= min∑[(
𝐹𝑇ℎ𝐿ℎ′

𝐾𝑙
−
𝐻1
∗

𝐶𝐿
′)

2

+ (
−𝐺𝑇ℎ𝐿ℎ′

𝐾𝑙
−
𝐻4
∗

𝐶𝐿
′)

2

]

𝑚

𝑙=1

 (4.57) 

min∑𝐸𝑀ℎ′
2 (𝑎𝑗 , 𝑏𝑗)

𝑚

𝑙=1

= min∑[(
𝐹𝑇ℎ𝑀ℎ′

𝐾𝑙
−
𝐴1
∗

𝐶𝑀
′ )

2

+ (
−𝐺𝑇ℎ𝑀ℎ′

𝐾𝑙
−
𝐴4
∗

𝐶𝑀
′ )

2

]

𝑚

𝑙=1

 (4.58) 

min∑𝐸𝐷ℎ′
2 (𝑎𝑗 , 𝑏𝑗)

𝑚

𝑙=1

= min∑[(
𝐹𝑇ℎ𝐷ℎ′

𝐾𝑙
−
𝑃5
∗

𝐶𝐷
′ )

2

+ (
−𝐺𝑇ℎ𝐷ℎ′

𝐾𝑙
−
𝑃6
∗

𝐶𝐷
′ )

2

]

𝑚

𝑙=1

 (4.59) 

min∑𝐸𝐿𝛼
2 (𝑎𝑗 , 𝑏𝑗)

𝑚

𝑙=1

= min∑[(
𝐹𝑇ℎ𝐿𝛼
𝐾𝑙

−
𝐻2
∗

𝐶𝐿
′)

2

+ (
−𝐺𝑇ℎ𝐿𝛼
𝐾𝑙

−
𝐻3
∗

𝐶𝐿
′)

2

]

𝑚

𝑙=1

 (4.60) 

min∑𝐸𝑀𝛼
2 (𝑎𝑗 , 𝑏𝑗)

𝑚

𝑙=1

= min∑[(
𝐹𝑇ℎ𝑀𝛼
𝐾𝑙

−
𝐴2
∗

𝐶𝑀
′ )

2

+ (
−𝐺𝑇ℎ𝑀𝛼
𝐾𝑙

−
𝐴3
∗

𝐶𝑀
′ )

2

]

𝑚

𝑙=1

 (4.61) 

min∑𝐸𝐷𝛼
2 (𝑎𝑗 , 𝑏𝑗)

𝑚

𝑙=1

= min∑[(
𝐹𝑇ℎ𝐷𝛼
𝐾𝑙

−
𝑃2
∗

𝐶𝐷
′ )

2

+ (
−𝐺𝑇ℎ𝐷𝛼
𝐾𝑙

−
𝑃3
∗

𝐶𝐷
′ )

2

]

𝑚

𝑙=1

 (4.62) 

min∑𝐸𝐿𝑝′
2 (𝑎𝑗 , 𝑏𝑗)

𝑚

𝑙=1

= min∑[(
𝐹𝑇ℎ𝐿𝑝′

𝐾𝑙
−
𝐻5
∗

𝐶𝐿
′)

2

+ (
−𝐺𝑇ℎ𝐿𝑝′

𝐾𝑙
−
𝐻6
∗

𝐶𝐿
′)

2

]

𝑚

𝑙=1

 (4.63) 

min∑𝐸𝑀𝑝′
2 (𝑎𝑗 , 𝑏𝑗)

𝑚

𝑙=1

= min∑[(
𝐹𝑇ℎ𝑀𝑝′

𝐾𝑙
−
𝐴5
∗

𝐶𝑀
′ )

2

+ (
−𝐺𝑇ℎ𝑀𝑝′

𝐾𝑙
−
𝐴6
∗

𝐶𝑀
′ )

2

]

𝑚

𝑙=1

 (4.64) 

min∑𝐸𝐷𝑝′
2 (𝑎𝑗 , 𝑏𝑗)

𝑚

𝑙=1

= min∑[(
𝐹𝑇ℎ𝐷𝑝′

𝐾𝑙
−
𝑃1
∗

𝐶𝐷
′ )

2

+ (
−𝐺𝑇ℎ𝐷𝑝′

𝐾𝑙
−
𝑃4
∗

𝐶𝐷
′ )

2

]

𝑚

𝑙=1

 (4.65) 

 
4.2.3 Optimization results of aerodynamic and aeroelastic IF coefficients 

The optimization results of unknown coefficients ( 𝑎𝑗  and 𝑏𝑗 ) of aerodynamic and 

aeroelastic IFs are listed in Table 4-1. The coefficients of determination denoted by 𝑅2 , in 
addition to the root-mean square error (RMSE) normalized by the maximum value, are also 
computed for each component of motion-induced vibration as given in Table 4-1. The curve 
representing 𝑃5∗  and 𝑃6∗  in Figure (4-9a) show the experimental data with apparently good 
accuracy of rational function approximation i.e., 𝑅2  of 0.745 and 0.992 for 𝑃5∗  and 𝑃6∗ 
derivatives, respectively. These derivatives are responsible for generating 𝜙𝐷ℎ′ which shows the 
transient nature (short rise time) as compared to the one proposed by Jones approximation to 
Wagner function as shown in Figure (4-10a). On the other hand, the fitting curves of 𝑃2∗ and 𝑃3∗ 
derivatives shown in Figure (4-9b) exhibit relatively better results for 𝑃2∗  than 𝑃3∗ , which 



– 54 – 
 

indicates that it is difficult to approximate 𝑃2∗  than 𝑃3∗  derivatives simultaneously in the 
frequency range covered by the experimental data. Moreover, the IFs coefficients extracted from 
𝑃2
∗ than 𝑃3∗ derivatives, which are responsible for 𝜙𝐷𝛼, indicates that low value of 𝑏𝑗 and high 

value 𝑎𝑗 result in an IF with a long rise time, such that a very long time series of IF is required 

before attaining the steady-state solution. 
 

  

(a) Transfer function between 𝐷 and ℎ′ (b) Transfer function between 𝐷 and 𝛼 

  

(c) Transfer function between 𝐷 and 𝑝′ (d) Transfer function between 𝐿 and ℎ′ 

  

(e) Transfer function between 𝐿 and 𝛼 (f) Transfer function between 𝐿 and 𝑝′ 
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(g) Transfer function between 𝑀 and ℎ′ (h) Transfer function between 𝑀 and 𝛼 

 

(e) Transfer function between 𝑀 and 𝑝′ 
 

Figure 4-9 The real and imaginary parts of Theodorsen’s functions between aeroelastic wind 
loads (𝐷: drag, 𝐿: lift and 𝑀: moment) and deck motions (ℎ: vertical, 𝑝: lateral and 𝛼: torsional) 
and their optimizations for aeroelastic IFs at zero angle of attack of Akashi-Kaikyo bridge deck 

 
Similarly, the identification analysis of aerodynamic IFs shows that 𝑁=3 is necessary to 

characterize the behavior of the Akashi-Kaikyo bridge aerodynamically since no convergence to 
a stable solution is obtained with 𝑁 < 3 . The fitting curves of 𝐹𝑆  and 𝐺𝑆  for almost all 
aerodynamic IFs tend to approach quasi-stationary behavior (the feature of a streamlined body) 
when 1/K increases. These results seem to be adequate and reliable as the optimized 𝐹𝑆 and 𝐺𝑆 
are in good correspondence with the experimental data of FDs. The results of aerodynamic IF 
coefficients are also tabulated in Table 4-1 along with the coefficient of determination (𝑅2) and 
RMSE normalized by the maximum value. Figure (4-11) shows the comparison of aerodynamic 
IFs of the Akashi-Kaikyo bridge and Kussner function of an airfoil. For the drag-related function, 
the analysis shows that 𝜓𝐷𝑤, 𝜓𝐿𝑤 and 𝜓𝑀𝑤 illustrate the overshooting features in a short time 
period as compared to Kussner function. This discrepancy is owing to the fact that the Akashi-  
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Table 4-1 Coefficient of determination, 𝑅2, and normalized RMSE for aerodynamic and 
aeroelastic IF coefficients fitted to FDs at 0 angle of attack for the Akashi-Kaikyo bridge deck 

𝐼𝐹 FD 𝑅2 𝑅𝑀𝑆𝐸 𝑎1 𝑏1 𝑎2 𝑏2 𝑎3 𝑏3 

𝜓𝐷𝑢 
𝑃1
∗ 0.968 0.057 

0.12 0.55 -2.00 0.53 2.75 0.505 
𝑃4
∗ 0.855 0.300 

𝜓𝐷𝑤 
𝑃5
∗ 0.390 1.000 

1.158 2.863 -3.92 0.70 0.883 8.32 
𝑃6
∗ 0.998 0.252 

𝜓𝐿𝑢 
𝐻5
∗ - 0.295 

-7.282 0.642 -8.767 0.663 16.79 0.625 
𝐻6
∗ - 0.391 

𝜓𝐿𝑤 
𝐻1
∗ 0.995 0.060 

0.860 1.00 -0.60 0.10 -0.15 1.40 
𝐻4
∗ 0.979 0.116 

𝜓𝑀𝑢 
𝐴5
∗  - 0.306 

-7.315 0.698 -8.793 0.688 16.856 0.663 
𝐴6
∗  - 0.444 

𝜓𝑀𝑤 
𝐴1
∗  0.994 0.052 

-0.85 1.00 0.25 1.25 0.65 0.05 
𝐴4
∗  0.983 0.093 

𝜙𝐷ℎ′ 
𝑃5
∗ 0.745 0.049 

-3.386 0.6528 1.473 6.026 0.00 0.00 
𝑃6
∗ 0.992 0.050 

𝜙𝐷𝛼 
𝑃2
∗ 0.340 1.000 

7.00 13.00 10.00 0.80 -12.50 0.08 
𝑃3
∗ 0.909 0.115 

𝜙𝐷𝑝′ 
𝑃1
∗ 0.805 0.366 

16.20 1.25 -35.00 0.57 20.00 0.04 
𝑃4
∗ 0.952 0.359 

𝜙𝐿ℎ′  
𝐻1
∗ 0.904 0.050 

-0.70 1.20 -0.82 1.40 1.70 2.20 
𝐻4
∗ 0.963 0.024 

𝜙𝐿𝛼 
𝐻2
∗ 0.809 0.143 

-24.0 19.13 0.90 3.10 0.00 0.00 
𝐻3
∗ 0.992 0.157 

𝜙𝐿𝑝′ 
𝐻5
∗ - 0.190 

-5.749 0.373 -5.758 0.379 12.481 0.347 
𝐻6
∗ - 0.012 

𝜙𝑀ℎ′ 
𝐴1
∗  0.933 0.017 

-0.30 4.00 0.20 0.15 0.00 0.00 
𝐴4
∗  0.992 0.003 

𝜙𝑀𝛼 
𝐴2
∗  0.464 0.160 

-5.00 3.00 14.50 8.80 1.90 0.60 
𝐴3
∗  0.990 0.139 

𝜙𝑀𝑝′ 
𝐴5
∗  - 0.017 

-5.734 0.349 -5.792 0.351 12.506 0.323 
𝐴6
∗  - 0.009 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 
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(e) 
 

Figure 4-10 Comparison of first-order aeroelastic IFs of the Akashi-Kaikyo bridge deck and 
Wagner function of the airfoil at zero angle of attack 

 
Kaikyo bridge deck behaves like a strongly bluff body in the case of buffeting force produced by 
the vertical fluctuation wind speed. On the other hand, the aerodynamic IFs (𝜓𝐷𝑢, 𝜓𝐿𝑢 and 
𝜓𝑀𝑢) exhibit the same behavior and/or evolving trend as of Kussner function, which indicates 
that the effect of longitudinal fluctuating wind speed component ( 𝑢 ) in producing the 
overshooting phenomenon is relatively low as compared to the 𝑤 in the case of example bridge. 
The comparison shown in Figure (4-11) also indicates that Kussner function starts from zero and 
approaches unity as 𝑠 tends to be infinity, whereas aerodynamic IFs start from different unique 
values; however, each of them approaches unity asymptotically showing the stationary and 
steady-state behavior of a linear time-variant (LTI) system. Since the FDs are functions of the 
varying angles of attack, IFs might be different for a different set of FDs at different angles of 
attack. For instance, 𝐴2∗  is very sensitive to the variation in the angle of attack, thereby the IFs 
related to 𝐴2∗  derivative i.e., 𝜙𝑀𝛼 shows different behavior at a different angle of incidence as 
shown in Figure (4-12). 
 

  

(a) (b) 
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(c) (d) 

  

(e) (f) 
 

Figure 4-11 Comparison of first-order aerodynamic IFs of the Akashi-Kaikyo bridge deck and 
Kussner function of airfoil at zero angle of attack 

 
Based on Eq. (3.28), the total response of the NLTI-MIMO system to multidimensional 

inputs can be obtained if the Volterra kernels up to second-order are known. However, it is not 
easy to identify the second-order Volterra kernels directly. These second-order kernels can be 
estimated by idealizing the NLTI-MIMO system as an equivalent block-oriented Wiener model 
as shown in Figure (4-13) in which ℎ(∙) denotes a stable linear dynamical block; 𝑔(∙) denotes 
a static nonlinear block (memoryless function), and 𝑧(𝑡) is the intermediate state of the system. 
Then, the second-order kernels can be identified from the parameter estimation of each block 
using a suitable output static nonlinearity estimator i.e., polynomial function. Following it, a 
nonlinear system identification technique is employed based on the Wiener model to investigate 
the relationship between wind speed and bridge response. A second-order polynomial is used 
since it represents the nonlinear input-output relationship with high accuracy. Thus, the second-
order Volterra kernels are computed based on the premise that the order p Volterra kernel of a 
Wiener system is proportional to the product of p copies of the first-order kernel of its linear 
element multiplied by the coefficient of a polynomial function raised to power p such as: 
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(a) 𝜓𝑀𝑤(𝑠) (b) 𝜙𝑀𝛼(𝑠) 

  

(c) 𝜓𝐿𝑤(𝑠) (d) 𝜓𝐷𝑤(𝑠) 
 

Figure 4-12 The effect of amplitude-dependency of FDs on the indicial response of first-order 
IFs of the Akashi-Kaikyo bridge deck at varying angles of attack 

 
𝐼𝐹𝑄𝑥1𝑥2(𝜏1, 𝜏2) = 𝑐2 (𝐼𝐹𝑄𝑥1(𝜏1) × 𝐼𝐹𝑄𝑥2(𝜏2)) (4.66) 

where 𝑐2 denotes the coefficient of polynomial term raised to power 2; 𝑥1 and 𝑥2 represent 
the two copies of inputs (fluctuating component of wind speed and/or bridge deck motion), and 
𝑄 denotes the output (drag, lift, and pitching moment). The diagonals of each of the second-order 
kernels (𝐼𝐹𝑄𝑥1𝑥2) will be proportional to the first-order IF of the linear subsystem. In addition to 

that, the effect of 𝑈𝑡𝑣̅̅ ̅̅  in the oncoming wind flow on first-and second-order kernels is also taken 
into account by extending 𝐼𝐹(𝑡) to 𝐼𝐹(𝑡, 𝑈𝑡𝑣̅̅ ̅̅ (𝜏)), where 𝜏 is a time scale representing the 
change in wind-bridge interaction system under non-stationary winds, whereas t shows a time 
scale in the convection of flow wake describing the fading effects of fluid memory (Hao and Wu 
2011). The examples of two second-order kernels (𝜓𝑀𝑤𝑤 and 𝜙𝑀𝛼𝛼) are shown in Figure (4-
14). These bi-dimensional kernels simulate the effects of aerodynamic and aeroelastic 
nonlinearities on the buffeting response of the bridge. 
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Figure 4-13 Block-structured Wiener model of an NLTI-SISO system 

 

(a) Aerodynamic 

 

 
(b) Aeroelastic 

 
Figure 4-14 Second-order kernels of the Akashi-Kaikyo bridge from experimental data 
 

 
 
 
 

z(t) y(t) 
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4.3 Artificial Neural Network technique 
 
Artificial Neural Network (ANN) is a nonlinear function approximation tool that can be used 

to model complex relationships between the input and output of a system. ANNs can be classified 
based on the type of network architecture, type of connectivity between neurons and the number 
of layers in the network. The relationship between Volterra models and feedforward multilayer 
neural networks has been previously studied in a rudimentary manner, and various methods have 
been proposed for the estimation of Volterra kernels. Wray and Green (1994) introduced a method 
to calculate Volterra kernels through ANN by training a time-delay feedforward network. This 
method proposes a generalized expression in terms of the internal parameters of the network 
equivalent to a Volterra series to identify the higher-order Volterra kernels. Recently, Paula et al. 
(2019) applied the ANN technique to aerodynamic systems and identified the direct and cross 
Volterra kernels up to third-order. In this research, a feedforward type Time-delay Neural Network 
(TDNN) is adopted to derive the equations for the nonlinear dynamic system of wind-bridge 
interaction by treating it as a MIMO system. The architecture of the network is shown in Figure 
(4-15). The network consists of an input layer comprising 𝑞 + ∑ 𝑀𝑖

𝑞
𝑖=1  units of input (where 𝑞 

is the number of inputs and 𝑀 is time-delay per input), a hidden layer with 𝑁 neurons, and an 
output layer containing   output units. The input units are assembled into groups corresponding 
to each input, 𝑟𝑖 (for 𝑖 = 1,2,…,𝑞). Each group contains 𝑀𝑖+1 time-delayed samples of 𝑖th-
input. The lines connecting the 𝑖th-input unit and 𝑗th-neuron carries a synaptic weight denoted 
by 𝓌𝑖𝑗(𝑘) where the index 𝑘 represents the incremental time-delay of inputs. The value of 𝑘 

starts from zero in each group and goes up to 𝑀𝑖. The connecting links between 𝑗th-neuron and 
 th-output are weighted by amounts 𝑐𝑗𝑓. Such a TDNN applies to a system with 𝑞 inputs and 

  outputs. The weighted sum over time-delayed input units is expressed as: 

𝑥𝑗[𝑛] =∑∑∑𝓌𝑖𝑗[𝑘]𝑟𝑖[𝑛 − 𝑘]

𝑀𝑖

𝑘=0

𝑁

𝑗=1

𝑞

𝑖=1

 (4.67) 

where 𝑥𝑗 is the weighted sum in all degrees of freedom representing the convolution of the input 
signal (𝑟𝑖) with a finite impulse response (𝓌𝑖𝑗 ) for a tapped-delay network, and 𝑀𝑖  is the 

measure of memory length of inputs. The basic function of a neuron is to process the weighted 
sum with a nonlinear activation function (𝜑(∙)). A bias (𝑏𝑗) is also attached with each neuron to 

calibrate synaptic weights associated with each neuron. A typical sigmoidal activation function 
given by a hyperbolic tangent function is used. The Taylor series expansion of the activation 
function around the bias yields an equivalent polynomial expression such as: 

𝜑𝑗(𝑥𝑗 + 𝑏1𝑗) =∑∑
tanh(𝑑)(𝑏1𝑗)

𝑑!

∞

𝑑=0

𝑥𝑗
𝑑

𝑁

𝑗=1

 (4.68) 
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where tanh(𝑑) shows the 𝑑th derivative of tanh and 𝑏1𝑗 is the bias on each neuron in the hidden 
layer. Expansion of Eq. (4.68) yields Eq. (4.69) such as: 

𝜑𝑗(𝑥𝑗 + 𝑏1𝑗) =∑(
tanh(0)(𝑏1𝑗)

0!
𝑥𝑗
0 +

tanh(1)(𝑏1𝑗)

1!
𝑥𝑗
1 +

tanh(2)(𝑏1𝑗)

2!
𝑥𝑗
2

𝑁

𝑗=1

+
tanh(3)(𝑏1𝑗)

3!
𝑥𝑗
3 +⋯) 

(4.69) 

where tanh(0), tanh(1), tanh(2) and tanh(3) are the zeroth, first, second and third derivative of 
the tangent hyperbolic function. Eq. (4.69) can be re-written as: 
 

 
Figure 4-15 The architecture of TDNN with multiple inputs and multiple outputs 

 

𝜑𝑗(𝑥𝑗 + 𝑏1𝑗) =∑(𝑎0𝑗𝑥𝑗
0 + 𝑎1𝑗𝑥𝑗

1 + 𝑎2𝑗𝑥𝑗
2 + 𝑎3𝑗𝑥𝑗

3 +⋯)

𝑁

𝑗=1

 (4.70) 

where 𝑎0𝑗, 𝑎1𝑗, 𝑎2𝑗 and 𝑎3𝑗  are the coefficients of polynomial expansion. The calculation of 

these coefficients requires the determination of the derivatives of tangent hyperbolic functions 
which can be obtained analytically. By putting the values of 𝑥𝑗  and 𝑎𝑝𝑗  in Eq. (4.70), the 

activation function can be determined analytically. As wind-bridge interaction is considered to be 
a weakly nonlinear dynamic system, an equation of activation function can be truncated up to 
second-order without any issue of convergency (Wu et al. 2013) such as shown in Eq. (4.71). In 
addition to that, output neurons have linear activation functions, as it is usual for function fitting 
problems (Paula et al. 2019). A bias of 𝑏2𝑓 is also attached to each output unit in the output layer 

accounting for the adjustment of output along with the weighted sum of the inputs to the neuron. 
Thus, the expression for outputs, denoted by 𝑄𝑓, can be formulated by linear combination of 
nonlinear activation function and synaptic weights (𝑐𝑗𝑓) linking the 𝑗th-neuron with  th-output 

𝑢[𝑛], 𝑢[𝑛 − 1],… , 𝑢[𝑛 − 𝑀𝑢]

 [ ]

𝑤[𝑛],𝑤[𝑛 − 1],… , 𝑤[𝑛 − 𝑀𝑤]

𝛼[𝑛], 𝛼[𝑛 − 1],… , 𝛼[𝑛 −𝑀𝛼]

ℎ̇[𝑛], ℎ̇[𝑛 − 1],… , ℎ̇[𝑛 −𝑀ℎ̇]

𝑝̇[𝑛], 𝑝̇[𝑛 − 1],… , 𝑝̇[𝑛 −𝑀𝑝̇]

 [ ]

 [ ]

𝑁 neurons
𝑎𝑐𝑡𝑖  𝑡𝑎𝑛𝑠𝑖𝑔 𝑎𝑐𝑡𝑖  𝑝𝑢𝑟𝑒 𝑖𝑛

Input Layer Hidden Layer Output Layer

𝑏12

𝑏22

𝑏32

…

𝑗

𝑏11

𝑏21

𝑏𝑁1

 outputs

Inputs Outputs

General expression
𝑟𝑖 𝑛 , 𝑟𝑖 𝑛 − 1 ,… , 𝑟𝑖 [𝑛 −𝑀𝑖]

bias
Weight

Weight of neuron

Neuron 
1

Neuron 
2
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along with the biases associated with each output as written in Eq. (4.72). Insertion of Eq. (4.71) 
into Eq. (4.72) yields the generalized formulation of non-stationary buffeting forces considering 
the aerodynamic and aeroelastic nonlinearities up to second-order as shown in Eq. (4.73). 

𝜑𝑗(𝑥𝑗 + 𝑏1𝑗) =∑𝑎0𝑗

𝑁

𝑗=1

+∑𝑎1𝑗

𝑁

𝑗=1

(∑∑𝓌𝑖𝑗[𝑘]𝑟𝑖[𝑛 − 𝑘]

𝑀𝑖

𝑘=0

𝑞

𝑖=1

)

+∑𝑎2𝑗

𝑁

𝑗=1

(∑∑𝓌𝑖𝑗[𝑘]𝑟𝑖[𝑛 − 𝑘]

𝑀𝑖

𝑘=0

𝑞

𝑖=1

)

2

 

(4.71) 

𝑄𝑓[𝑛] =
1

2
𝜌𝑈𝑡 ̅̅ ̅̅ [𝑛]

2𝐵 [∑𝑐𝑗𝑓

𝑁

𝑗=1

. 𝜑𝑗(𝑥𝑗 + 𝑏1𝑗) + 𝑏2𝑓] (4.72) 

𝑄𝑓[𝑛] =
1

2
𝜌𝑈𝑡 ̅̅ ̅̅ [𝑛]

2𝐵 [𝑏2𝑓 +∑𝑐𝑗𝑓𝑎0𝑗

𝑁

𝑗=1

+∑(∑(∑𝑐𝑗𝑓𝑎1𝑗

𝑁

𝑗=1

𝓌𝑖𝑗[𝑘]) 𝑟𝑖[𝑛 − 𝑘]

𝑀𝑖

𝑘=0

)

𝑞

𝑖=1

 

+∑ ∑ (∑ ∑ (∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝑖1𝑗
[𝑘1]𝓌𝑖2𝑗[𝑘2])

𝑀𝑖2

𝑘2=0

𝑟𝑖1[𝑛 − 𝑘1]𝑟𝑖2[𝑛 − 𝑘2]

𝑀𝑖1

𝑘1=0

) 

𝑞

𝑖2=1

𝑞

𝑖1=1

] 

(4.73) 

In this research, a second-order coupled nonlinear system with five inputs [𝑢, 𝑤, 𝛼, ℎ̇, 𝑝̇] 
and three outputs [M, L, D] is idealized to elucidate the salient features of kernel identification 
through TDNN. Following it, Eq. (4.73) can be extended to a nonlinear and non-stationary 
aerodynamic wind load model by incorporating the five inputs and three outputs as shown in Eq. 
(4.74), where the terms in parenthesis denote the first-and second-order Volterra kernels (direct 
and cross). This formulation also considers the aeroelastic effects and the effects of coupling of 
deck motions and turbulent wind components. Figure (4-16) shows the block diagram of Eq. 
(4.74), which is named as the Volterra ANN model in this dissertation. It is important to note here 
that Eq. (4.74) is reminiscent and equivalent to Eq. (3.28); therefore, the corresponding terms 
shown by the curly brackets in both equations are equated, and first- and second-order IFs are 
expressed in terms of neural network parameters as shown in Eqs. (4.75a)−(4.75u) . Note that,  
• Eq. (4.75a) shows the zeroth-order kernel of Volterra model;  
• Eqs. (4.75b)−(4.75f) represent the first-order kernels of Volterra model;  
• Eqs. (4.75g)−(4.75k) represent the direct second-order kernels of Volterra model; 
• Eqs. (4.75l)−(4.75u) represent the cross second-order kernels of Volterra model; 

To estimate these parameters, a feedforward TDNN with M = 100 time-delays per input and 
N = 10 neurons is trained with the Bayesian regularization algorithm, and the regularization 
scheme is performed within the Levenberg Marquardt optimization algorithm. It constrains the 
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magnitudes of network parameters to yield a smoother response, to prevent the overfitting, and to 
enhance the generalization properties. The stopping criterion considers the convergence of mean-
squared error (MSE) between the predicted and numerically simulated outputs. 

𝑄𝑓[𝑛] =
1

2
𝜌𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2𝐵 [𝑏2𝑓 +∑𝑐𝑗𝑓𝑎0𝑗

𝑁

𝑗=1

+ {∑((∑𝑐𝑗𝑓𝑎1𝑗

𝑁

𝑗=1

𝓌𝑢𝑗[𝑘])

𝑀

𝑘=0

𝑢[𝑛 − 𝑘] + (∑𝑐𝑗𝑓𝑎1𝑗

𝑁

𝑗=1

𝓌𝑤𝑗[𝑘])𝑤[𝑛 − 𝑘] 

 +(∑𝑐𝑗𝑓𝑎1𝑗

𝑁

𝑗=1

𝓌𝛼𝑗[𝑘])𝛼[𝑛 − 𝑘] + (∑𝑐𝑗𝑓𝑎1𝑗

𝑁

𝑗=1

𝓌ℎ̇𝑗[𝑘]) ℎ̇[𝑛 − 𝑘] + (∑𝑐𝑗𝑓𝑎1𝑗

𝑁

𝑗=1

𝓌𝑝̇𝑗[𝑘]) 𝑝̇[𝑛 − 𝑘])} 

 +{∑ ∑ ((∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝑢𝑗[𝑘1]𝓌𝑢𝑗[𝑘2])𝑢[𝑛 − 𝑘1]𝑢[𝑛 − 𝑘2]

𝑀

𝑘2=0

𝑀

𝑘1=0

+ (∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝑤𝑗[𝑘1]𝓌w𝑗[𝑘2])𝑤[𝑛 − 𝑘1] 

 × 𝑤[𝑛 − 𝑘2] + (∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝛼𝑗[𝑘1]𝓌𝛼𝑗[𝑘2])𝛼[𝑛 − 𝑘1] 𝛼[𝑛 − 𝑘2] + (∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌ℎ̇𝑗[𝑘1]𝓌ℎ̇𝑗[𝑘2]) ℎ̇[𝑛 − 𝑘1] 

 × ℎ̇[𝑛 − 𝑘2] + (∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝑝̇𝑗[𝑘1]𝓌𝑝̇𝑗[𝑘2]) 𝑝̇[𝑛 − 𝑘1]𝑝̇[𝑛 − 𝑘2] + 2(∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝑢𝑗[𝑘1]𝓌𝑤𝑗[𝑘2])𝑢[𝑛 − 𝑘1] 

 × 𝑤[𝑛 − 𝑘2] + 2(∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝑢𝑗[𝑘1]𝓌𝛼𝑗[𝑘2])𝑢[𝑛 − 𝑘1]𝛼[𝑛 − 𝑘2] + 2(∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝑢𝑗[𝑘1]𝓌ℎ̇𝑗[𝑘2])𝑢[𝑛 − 𝑘1] 

 × ℎ̇[𝑛 − 𝑘2] + 2(∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝑢𝑗[𝑘1]𝓌𝑝̇𝑗[𝑘2])𝑢[𝑛 − 𝑘1]𝑝̇[𝑛 − 𝑘2] + 2(∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝑤𝑗[𝑘1]𝓌𝛼𝑗[𝑘2])𝑤[𝑛 − 𝑘1] 

 × 𝛼[𝑛 − 𝑘2] + 2(∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝑤𝑗[𝑘1]𝓌ℎ̇𝑗[𝑘2])𝑤[𝑛 − 𝑘1]ℎ̇[𝑛 − 𝑘2] + 2(∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝑤𝑗[𝑘1]𝓌𝑝̇𝑗[𝑘2])𝑤[𝑛 − 𝑘1] 

 × 𝑝̇[𝑛 − 𝑘2] + 2(∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝛼𝑗[𝑘1]𝓌ℎ̇𝑗[𝑘2])𝛼[𝑛 − 𝑘1]ℎ̇[𝑛 − 𝑘2] + 2(∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝛼𝑗[𝑘1]𝓌𝑝̇𝑗[𝑘2])𝛼[𝑛 − 𝑘1] 

 × 𝑝̇[𝑛 − 𝑘2] + 2(∑𝑐𝑗𝑙𝑎1𝑗

𝑁

𝑗=1

𝓌ℎ̇𝑗[𝑘1]𝓌𝑝̇𝑗[𝑘2]) ℎ̇[𝑛 − 𝑘1]𝑝̇[𝑛 − 𝑘2])}] 

(4.74) 

 

2𝐶𝑄𝜓𝑄𝑢[0]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
+
𝐶𝑄
′𝜓𝑄𝑤[0]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
+ 𝐶𝑄

′𝜙𝑄𝛼[0] +
𝐶𝑄
′𝜙𝑄ℎ̇[0]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
+
𝐶𝑄
′𝜙𝑄𝑝̇[0]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
= 𝑏2𝑓 +∑𝑐𝑗𝑓𝑎0𝑗

𝑁

𝑗=1

 (4.75a) 

𝐶𝑄
′ 𝜓̇𝑄𝑢[𝑘]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
= ∑𝑐𝑗𝑓𝑎1𝑗

𝑁

𝑗=1

𝓌𝑢𝑗[𝑘] (4.75b) 

𝐶𝑄
′ 𝜓̇𝑄𝑤[𝑘]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
=∑𝑐𝑗𝑓𝑎1𝑗

𝑁

𝑗=1

𝓌𝑤𝑗[𝑘] (4.75c) 

𝐶𝑄
′ 𝜙̇𝑄𝛼[𝑘] = ∑𝑐𝑗𝑓𝑎1𝑗

𝑁

𝑗=1

𝓌𝛼𝑗[𝑘] (4.75d) 

𝐶𝑄
′ 𝜙̇𝑄ℎ̇[𝑘]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
=∑𝑐𝑗𝑓𝑎1𝑗

𝑁

𝑗=1

𝓌ℎ̇𝑗[𝑘] (4.75e) 

𝐶𝑄
′ 𝜙̇𝑄𝑝̇[𝑘]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
=∑𝑐𝑗𝑓𝑎1𝑗

𝑁

𝑗=1

𝓌𝑝̇𝑗[𝑘] (4.75f) 
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 2𝐶𝑄𝜓̇𝑄𝑢𝑢[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
=∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝑢𝑗[𝑘1]𝓌𝑢𝑗[𝑘2] (4.75g) 

 𝐶𝑄
′ 𝜓̇𝑄𝑤𝑤[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
=∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝑤𝑗[𝑘1]𝓌𝑤𝑗[𝑘2] (4.75h) 

𝐶𝑄
′ 𝜙̇𝑄𝛼𝛼[𝑘1, 𝑘2] =∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝛼𝑗[𝑘1]𝓌𝛼𝑗[𝑘2] (4.75i) 

 𝐶𝑄
′ 𝜙̇𝑄ℎ̇ℎ̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
=∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌ℎ̇𝑗[𝑘1]𝓌ℎ̇𝑗[𝑘2] (4.75j) 

 𝐶𝑄
′ 𝜙̇𝑄𝑝̇𝑝̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
=∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝑝̇𝑗[𝑘1]𝓌𝑝̇𝑗[𝑘2] (4.75k) 

 𝐶𝑄
′ 𝜓̇𝑄𝑢𝑤[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
=∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝑢𝑗[𝑘1]𝓌𝑤𝑗[𝑘2] (4.75l) 

 𝐶𝑄
′ 𝜙̇𝑄𝑢𝛼[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
= ∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝑢𝑗[𝑘1]𝓌𝛼𝑗[𝑘2] (4.75m) 

 𝐶𝑄
′ 𝜙̇𝑄𝑢ℎ̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
=∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝑢𝑗[𝑘1]𝓌ℎ̇𝑗[𝑘2] (4.75n) 

 𝐶𝑄
′ 𝜙̇𝑄𝑢𝑝̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
=∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝑢𝑗[𝑘1]𝓌𝑝̇𝑗[𝑘2] (4.75o) 

 𝐶𝑄
′ 𝜙̇𝑄𝑤𝛼[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
= ∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝑤𝑗[𝑘1]𝓌𝛼𝑗[𝑘2] (4.75p) 

 𝐶𝑄
′ 𝜙̇𝑄𝑤ℎ̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
=∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝑤𝑗[𝑘1]𝓌ℎ̇𝑗[𝑘2] (4.75q) 

 𝐶𝑄
′ 𝜙̇𝑄𝑤𝑝̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
=∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝑤𝑗[𝑘1]𝓌𝑝̇𝑗[𝑘2] (4.75r) 

 𝐶𝑄
′ 𝜙̇𝑄𝛼ℎ̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
= ∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝛼𝑗[𝑘1]𝓌ℎ̇𝑗[𝑘2] (4.75s) 

 𝐶𝑄
′ 𝜙̇𝑄𝛼𝑝̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]
=∑𝑐𝑗𝑓𝑎2𝑗

𝑁

𝑗=1

𝓌𝛼𝑗[𝑘1]𝓌𝑝̇𝑗[𝑘2] (4.75t) 

 𝐶𝑄
′ 𝜙̇𝑄ℎ̇𝑝̇[𝑘1, 𝑘2]

𝑈𝑡𝑣̅̅ ̅̅ [𝑛]2
=∑𝑐𝑗𝑙𝑎1𝑗

𝑁

𝑗=1

𝓌ℎ̇𝑗[𝑘1]𝓌𝑝̇𝑗[𝑘2] (4.75u) 

Figure (4-17) depicts the comparison between the real bridge vibration and predicted signals 
after completion of the TDNN training, generalization testing, and validation. The training and 
testing results demonstrate that the neural network provides a good match to the real vibration of 
the bridge deck under typhoon-induced non-stationary winds. The validation results highlight the 
network performance in predicting the signals different from those used for training. Such results 
ensure that the TDNN satisfactorily represents the MIMO system. 
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Figure 4-16 Block diagram of the Volterra ANN model 

 

 
Figure 4-17 Training, validation, and testing results of TDNN compared with bridge vibration 
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(a) Aerodynamic (b) Aeroelastic 

 
Figure 4-18 First-order kernels of Akashi-Kaikyo bridge via ANN 

  
 

(a) Aerodynamic (b) Aeroelastic 
 

Figure 4-19 Second-order kernels of Akashi-Kaikyo bridge via ANN 
 
The next step is to extract the Volterra kernels from the TDNN internal parameters. Eqs. 

(4.75a)−(4.75u) are utilized to determine aerodynamic and aeroelastic IFs up to second-order 
through the neural network approach. Figure (4-18) shows the first-order direct kernels related to 
each input signal in which the asymmetry of the system can be observed from the differences 

between kernels. Figure (4-19) presents two second-order Volterra kernels (𝜙̇𝑀𝑤𝑤 and 𝜙̇𝑀𝛼𝛼) as 
an example. The identified second-order direct and cross kernels also indicate the asymmetry of 
the system. Once the Volterra kernels are identified, they can be used as a reduced order model 
(ROM) to predict the system dynamics. 

 
 

 ̇  ̇ 
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CHAPTER 5:  SIMULATION OF NON-STATIONARY WIND 
FIELDS 

 
 

This chapter focuses on the simulation of artificial non-stationary wind fields around the 
bridge site. The conventional buffeting analysis is performed based on the assumption of 
stationary and gaussian winds. However, typhoon-induced winds are highly non-synoptic and 
need to be modelled and analysed as a non-stationary process. In this chapter, the non-stationary 
wind field is simulated based on the typhoon data of wind speed time history by extending the 
conventional power spectral density (PSD) method to the evolutionary power spectral density 
(EPSD) approach. Two typhoon events herein are considered in order to study the transient effects 
of non-synoptic winds on the buffeting response of the bridge. First, the measured data of 
typhoon-induced wind speed time-history is divided into wind records of each 10 min time-history. 
Then, the stationarity test is performed by using the mean of wind records based on the reverse 
arrangement (RA) test to separate the non-stationary and stationary wind records. The time-
varying mean wind speed is extracted from each wind record based on the empirical mode 
decomposition (EMD) method. Subsequently, the EPSD is evaluated for a 10 min wind record 
involving the maximum wind speed at the center of the main span of the bridge. Owing to the 
lack of measured data of wind speed time-history at each node of the bridge deck, the measured 
EPSD at the center node of the main span is assumed to be uniform along the bridge length. At 
last, based on this assumption, the non-stationary longitudinal fluctuating wind speed is simulated 
by using an unconditional simulation technique which utilizes the EPSD instead of conventional 
PSD in the simulation algorithm. The effect of coherence between wind fluctuations along the 
bridge length is also taken into account in the wind simulation. The results of this simulation can 
be used to compute the non-stationary wind loads on the bridge deck, which can produce the time-
varying buffeting response. Simulation results also showed that the conventional PSD theory 
cannot deal with the non-stationary features existing in the real typhoon-induced non-synoptic 
winds; therefore, an extension of the spectral theory to the evolutionary power spectral theory is 
indispensable to predict the buffeting response of long-span bridges accurately. 

 

5.1 Introduction 
 
Air movement generated by the atmospheric pressure difference at various areas of the earth 

produces the global wind circulations. Air movement usually includes different temporal and 
spatial scales which may enlarge tremendously and form the cyclones. Tropical cyclones are 
intense cyclonic storms, usually occur over the tropical oceans, especially in late summer and 
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early autumn. These cyclones are named differently in different parts of the world i.e., hurricane 
in the Caribbean, cyclones in off the northwest coast of Australia, and typhoons in the South China 
Sea. In general, a fully mature typhoon has a three-dimensional vortex structure, with a horizontal 
dimension for several hundred kilometers and a vertical dimension of the order of ten kilometers. 
The central part of a typhoon is known as the eye which comprises relatively cloudless and 
quiescent air and the extreme winds occur just outside the eye wall, showing different wind 
characteristics as compared to monsoons and gales. 

It is widely recognized that the long-span bridges built in the typhoon prone regions are 
inevitably vulnerable to typhoon-induced non-synoptic winds. These structures must be designed 
to resist such typhoon winds during their service lives. In the current design practice, the 
assumption of stationary wind flow is often made in the wind simulation for performing the 
buffeting analysis of bridges. The assumption of stationary processes may not be valid for extreme 
wind events such as typhoons, downbursts, and tornados because of their vortex or convective 
origins. Therefore, the response analysis of bridges under such extreme winds is a challenging 
issue and needs advanced research, which requires the accurate measurement of typhoon-induced 
winds in ABL. However, in many cases, there are only limited field measurement data available 
at a bridge site and the precise estimation of typhoon wind characteristics at the bridge site cannot 
be performed. To circumvent this limitation, many researchers (Chow 1970; Vickery and Twisdale 
1995; Meng et al. 1995) investigated the modelling of typhoon wind fields based on different 
simulation techniques i.e., the Monte Carlo simulation method, along with the typhoon wind field 
model and statistical distributions of wind data to predict the design wind speeds for bridges. 

Generally, the non-stationary winds are characterized by time-varying spectra instead of 
constant mean spectra. Numerous methods have been developed to explain time-varying spectra, 
such as evolutionary spectra (Priestley 1965), short-time Fourier transform (Zhan et al. 2006), 
and empirical mode decomposition-based spectra (Haung et al. 2016). Among all these 
approaches, the evolutionary power spectral density (EPSD) function explicates the evolution of 
the frequency content in the frequency- and time-domain and known as an extension of the power 
spectra density to the non-stationary process. Specifically, it facilitates the simulation of non-
stationary processes by the spectral representation method (SRM) and the analysis of structural 
response under the non-stationary wind. In that context, Xu and Chen (2004) characterized 
typhoon wind as a time-varying mean wind speed plus stationary fluctuating component. Hu et 
al. (2011) further characterized typhoon wind as the time-varying mean wind speed plus non-
stationary fluctuating component featured by EPSD. Peng et al. (2018) examined the effect of 
time-varying coherence on the alongwind tall building response by EPSD-based time-varying 
coherence function. The research presented that time-varying coherence function may cause a 
larger response as compared to the corresponding time-invariant coherence function. 
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5.2 Description of typhoon events 
 
In this research, two typhoons are considered including (1) TY9807 and (2) 2018TY20. The 

data of these typhoons were measured by the anemometers installed at the main span of the 
Akashi-Kaikyo bridge. The descriptions of both typhoons are given in the subsequent subsections. 

 
5.2.1 Typhoon TY9807 

On September 24, 1998, a typhoon, known as TY9807, hit Akashi-Kaikyo bridge, west-
central Japan between 11:53~16:31. The wind speed time history data of typhoon is recorded 
continuously for more than 4 hours by a set of few anemometers positioned along the bridge 
length just above the deck level as a part of the investigation done by Honshu-Shikoku Bridge 
Authority (2001). The mean and maximum wind speeds recorded by anemometers at the center 
of the main span were 32 m/s and 40 m/s for a 10 min duration, respectively, both of which were 
recorded at a height of 108 m above sea level. All anemometers were attached to the light poles 
of the bridge at a height of 8 m from bridge girder to avoid the disturbance of the incoming wind 
flow due to the bridge deck. Figure (5-1) shows the configuration of sensors on the Akashi-Kaikyo 
bridge. The sampling frequency was 20 Hz. As wind data was recorded only at a few locations, it 
is not enough to simulate the buffeting response of the bridge accurately. Therefore, wind speed 
time-history recorded at the center of the main span of the bridge is used in this research for the 
simulation of artificial non-stationary wind fields of TY9807 for the entire bridge. 

 

 

 
Figure 5-1 Akashi-Kaikyo bridge monitoring system and locations of 7-anemometers on deck 

 
5.2.2 Typhoon 2018TY20 

In 2018, another big typhoon, known as 2018TY20, hit Akashi-Kaikyo bridge that started at 
2:21 p.m. on August 23rd and ended at 7:33 a.m. on August 24th. The maximum wind speed 
recorded by anemometer at the center of the main span was 51 m/s for a 10 min duration with a 
sampling frequency of 20 Hz. Owing to the limited number of anemometers installed along the 

P3 P2 P1 P5 P6 P7 

P4 
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bridge deck, the wind speed time history data recorded at the center of main is used to simulate 
the non-stationary wind speed time history of 2018TY20 for the entire bridge. 

 

5.3 Reverse arrangement test to check the stationarity of wind field 
 
To bifurcate the wind records into stationary and non-stationary categories, the stationarity 

test is conducted on each 10 min wind record by employing a reverse arrangement (RA) test as 
proposed by Bendat and Piersol (2010). The RA test involves calculating the number of times, 
beginning with the first data point 𝑥1 in the digitized input signal 𝑥𝑖, that each subsequent point 
(𝑥2, 𝑥3, …,𝑥𝑁) is less than 𝑥1. Each such inequality count is called as a reverse arrangement. In 
other words, this test provides an evaluation of randomness and is useful to elucidate the 
underlying trends in wind data. The wind record is considered as stationary in the desired level of 
significance if the number of runs falls within the acceptance range, otherwise, it is treated as non-
stationary. A general definition of reversals is as follows: 

ℎ𝑖𝑗 = {
1, if 𝑥𝑖 > 𝑥𝑗
0, otherwise

 (5.1a) 

Then, 

Reversal = ∑ 𝐴𝑖

𝑁−1

𝑖=1

 (5.1b) 

where 

𝐴𝑖 = ∑ ℎ𝑖𝑗

𝑁

𝑗=𝑖+1

 (5.1c) 

If the sequence of 𝑁 observations is independent observations of the same random variable, then 
the number of reversals is also a random variable, with mean 𝜇𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙 and variance 𝜎𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙 
values as follows: 

𝜇𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙 =
𝑁(𝑁 − 1)

4
 (5.2a) 

𝜎𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙 =
𝑁(2𝑁 + 5)(𝑁 − 1)

72
 (5.2b) 

The RA test results of 5 anemometers installed at the main span of the bridge are presented 
in Figure (5-2) for typhoon TY9807, which shows that the wind records between 12:43~15:41 
failed to be within the 5% of bound limits, whereas the wind records in the beginning and at the 
end show a stationary behavior. The stationarity test results of anemometer P3 is also shown in 
Figure (5-3), which indicates that the reversals for the measurement data of 10 min wind records 
in the time range of 11:53~12:43 are equal to lower bound value i.e., zero explicating that the 
wind records are strongly stationary in this time range, whereas the wind records between 
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12:43~15:41 failed to be within the 5% of bound limits elucidating that the wind records are 
strongly non-stationary in this time range after which the wind records again exhibit the stationary 
behavior. Similarly, the stationarity test is performed on typhoon 2018TY20 by dividing the full 
data of wind speed time history into 10 min wind records. The mean of each 10 min wind record 
is calculated, and the RA test is performed accordingly. Figure (5-4) shows the RA test results of 
anemometer P3 for typhoon 2018TY20, which indicates that the wind exhibits non-stationary 
behavior between 17:07~5:07, whereas it shows the stationary nature in the beginning and at the 
end of typhoon 2018TY20. 

 

 
Figure 5-2 Stationarity test on 10 min recordings of TY9807 

 

 
Figure 5-3 Stationarity test of anemometer P3 on 10 min wind records of TY9807 

 

 
Figure 5-4 Stationarity test of anemometer P3 on 10 min wind records of 2018TY20 
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5.4 Empirical mode decomposition 
 
It is a normal practice to decompose the wind speed time history into its mean and fluctuating 

components by considering a certain averaging time interval for performing the buffeting analysis. 
The constant mean wind speed is simply calculated through the arithmetic to mean for a 10 min 
duration, whereas the time-varying mean wind speed is evaluated by applying an empirical mode 
decomposition (EMD) method developed by Huang et al. (1998). The EMD mainly extracts the 
time-varying mean wind speed from the recorded wind speed data. According to the EMD method, 
the filtered lowest-frequency wind component signifies the time-varying mean, and the 
summation of the remaining filtered wind components denotes the fluctuating component (Haung 
et al. 2016; Xu and Chen 2004). Alternatively, using the EMD, any complicated time history can 
be decomposed into a finite number of intrinsic mode functions (IMF) using the sifting process. 
This decomposition is valid to the nonlinear and non-stationary processes. To perform the sifting 
process, the following steps are usually utilized (Huang et al. 1998; Rilling et al. 2003): 
1. Find local maxima and minima for a non-stationary wind speed time history 𝑈(𝑡)  to 

construct the upper and lower envelopes denoted by 𝑠+(𝑡)  and 𝑠−(𝑡) , respectively by 
using a cubic spline line. 

2. The mean of the two envelopes is then calculated for 𝑖𝑡ℎ iteration denoted by 𝑚𝑘,𝑖(𝑡), 
        𝑚𝑘,𝑖(𝑡) =

1

2
[𝑠+(𝑡) + 𝑠−(𝑡)]  (5.3) 

3. The difference between the original time history and the mean value is called the first IMF, 
denoted by 𝑐1(𝑡), if it satisfies the two conditions: (i) within the data range, the number of 
extrema and the number of zero-crossings are equal or differ by one only; (ii) at any point, 
the mean value of the envelope represented by the local maxima and the envelope 
represented by the local minima is zero. 

4. The resulting IMF denotes a simple oscillatory mode as a counterpart to the simple harmonic 
function, but it is quite general and adopts a Hilbert transform. The difference between 𝑈(𝑡) 
and 𝑐1(𝑡) is treated as a new time history and subjected to the same sifting process, giving 
the second IMF, 𝑐2(𝑡). The EMD procedure continues until the residual becomes less than 
a predetermined value of consequence, or the residual becomes a monotonic function. In 
general, the time-varying mean can be expressed as the sum of the last a few IMFs plus the 
final residual. The original time history 𝑈(𝑡), containing the sinusoidal waves with different 
amplitudes and frequency values, is finally expressed as the sum of the IMFs plus the final 
residual: 

        𝑈(𝑡) =∑𝑐𝑗(𝑡) + 𝑟(𝑡)𝑁

𝑁

𝑗=1

 (5.4) 
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where 𝑁 is the number of IMF components and 𝑟(𝑡)𝑁 is the final residual which is defined as 
the time-varying mean wind speed 𝑈𝑡𝑣̅̅ ̅̅ (𝑡) with frequency contents less than 1/600 Hz. The 
flowchart of EMD is shown in Figure (5-5). 

Based on that, the wind speed time history of typhoon TY9807 is divided into 10 min wind 
records between 11:53~16:31. The maximum wind speed was observed during 14:13~14:23 at 
the center of main span of the bridge. Figure (5-6) shows the full wind speed time history of 
typhoon TY9807 along with the constant and time-varying means based on the averaging time of 
10 min. Typhoon TY9807 reached its peak wind speed at 14:23 after which it dropped transiently. 
Figure (5-7) also highlights missing data around 14:53 due to the malfunction of the structural 
health monitoring (SHM) system. The wind record between 14:13~14:23 is also shown in Figure 
(5-7), indicating the constant mean of 32 m/s and time-varying mean in the range of 30.5 m/s to 
36 m/s. Congruently, the time-varying mean wind speed is extracted from the original non-
stationary wind speed time-history of typhoon 2018TY20 by using the EMD method. Figure (5-
8) shows the wind speed time history of 2018TY20 as well as the constant and time-varying 
means measured based on the averaging time of 10 min, which elucidates that the constant mean 
remains the same, whereas time-varying mean changes continuously during an interval of 10 min 
wind. The maximum wind speed of typhoon 2018TY20 was recorded to be 51 m/s between 
23:17~23:27 on August 23rd as shown in Figure (5-9). 
 

 
 

Figure 5-5 Flowchart of empirical mode decomposition estimation process 
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Figure 5-6 Wind speed time-history of typhoon TY9807 at the center of main span of bridge 

 

 
Figure 5-7 10 min wind record of typhoon TY9807 between 14:13~14:23 

 

Figure 5-8 Wind speed time-history of typhoon 2018TY20 at the center of main span of bridge 
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Figure 5-9 10 min wind record of typhoon 2018TY20 between 23:17~23:27 
 

5.5 Evolutionary power spectral density analysis 
 
After the decomposition and characterization of the wind records, the remaining fluctuating 

wind speed may still have time-varying characteristics of wind turbulence. Therefore, 𝑢(𝑡) is 
represented by a zero-mean oscillatory process that admits the representation (Priestly 1965; 
Priestly and Tong 1973). 

𝑢(𝑡) = ∫ 𝐴(𝜔, 𝑡)𝑒𝑖𝜔𝑡𝑑𝑍(𝜔)

+∞

0

 (5.5) 

where 𝑍(𝜔) is a zero-mean gaussian orthogonal increment process having the properties as: 

𝐸[𝑑𝑍(𝜔)𝑑𝑍(𝜔′)∗] = {
0                    for  𝜔 ≠ 𝜔′
𝑆0(𝜔)𝑑𝜔      for  𝜔 = 𝜔′

 (5.6) 

where the superscript “*” denotes the complex conjugate and 𝑆0(𝜔)𝑑𝜔 is the variance of the 
increment process. The auto evolutionary power spectral density (EPSD) of fluctuating wind 
component 𝑢(𝑡) is computed in time-frequency-domain at the time instant 𝑡 by following the 
procedure presented in (Hu et al. 2013; Priestley 1965) such as: 
𝑆𝑢𝑢(𝜔, 𝑡) = |𝐴(𝜔, 𝑡)|2𝑆0(𝜔) (5.7) 

where 𝐴(𝜔, 𝑡) is a slowly varying function with time; 𝑆0(𝜔) is the one-sided auto power 
spectrum, and 𝑆𝑢𝑢(𝜔, 𝑡) is the one-sided auto evolutionary power spectrum. First, the essence 
of Priestley’s EPSD method is to perform a generalized linear transformation on the interesting 
data at a specific frequency by means of a filter function 𝑔ℎ(𝜏). Then, the other weight-function 
𝑊𝑇′(𝑡) is used to smooth the estimated values for neighboring values of 𝑡 in order to decrease 
the estimation error. Clearly, this method is restricted to the uncertainty principle and the selection 
of filter and weighting functions will have an influence on the estimated results. To compute the 
auto EPSD from the measurement data of typhoon-induced wind speed, the filter and weight 
functions are calculated by using the following expressions: 
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𝑔ℎ(𝜏) = {
1/(2√ℎ𝜋)    |𝜏| ≤ ℎ

0                     |𝜏| > ℎ
 (5.8) 

𝑊𝑇′(𝑡) = {1/𝑇′, |𝑡| ≤
𝑇′

2
0, otherwise

 (5.9) 

where the window lengths are chosen as ℎ = 2.3s and 𝑇′ = 46s. The step-by-step procedure of 
the algorithm used for the computation of auto measured EPSD is shown in Figure (5-10). 
 

 

Figure 5-10 Flowchart of evolutionary power spectrum density computational process 
 

After computation of the measured auto EPSD, the non-stationary wind characteristics such 
as time-varying variance 𝜎𝑢2(𝑡) and time-varying turbulence intensity 𝐼𝑢(𝑡) are evaluated using 
the following expressions: 

𝜎𝑢
2(𝑡) = ∫ 𝑆𝑢𝑢(𝜔, 𝑡)𝑑𝜔

+∞

0

  (5.10) 

𝐼𝑢(𝑡) =
√𝜎𝑢

2(𝑡)

𝑈𝑡𝑣̅̅ ̅̅ (𝑡)
 (5.11) 

In order to simulate the non-stationary longitudinal fluctuating wind speed, the time-varying 
integral length scale 𝐿𝑢(𝑡) is required, which is computed by using the measured auto EPSD. 
For that, the von-Karman longitudinal spectrum is extended to the evolutionary von-Karman 
longitudinal spectrum involving 𝑈𝑡𝑣̅̅ ̅̅ (𝑡) , 𝜎𝑢2(𝑡)  and 𝐿𝑢(𝑡). By inserting the measured auto 
EPSD, 𝑈𝑡𝑣̅̅ ̅̅ (𝑡) and 𝜎𝑢2(𝑡) into the evolutionary von-Karman spectrum formula for longitudinal 
direction, 𝐿𝑢(𝑡) can be obtained by solving an implicit equation as shown in Eq. (5.12). 

Original data, 𝑈(𝑡)

After EMD, 𝑢(𝑡)

Choose filter function, 𝑔ℎ(𝜏) & 
window function, 𝑊𝑇′(𝑡)

Choose parameters ℎ & 𝑇′

 = 𝑐𝑜𝑛 (𝑔ℎ , 𝐹𝑇(𝑢 𝑡 ))

𝑆𝑢𝑢 = 𝑐𝑜𝑛 (𝑊𝑇′ , 𝑎𝑏𝑠( ))

Measured EPSD
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𝑆𝑢𝑢(𝜔, 𝑡)

𝜎𝑢
2(𝑡)

=
1

2𝜋

4𝐿𝑢(𝑡)

𝑈𝑡𝑣̅̅ ̅̅ (𝑡)

[1 + 70.8 (
𝜔𝐿𝑢(𝑡)

2𝜋𝑈𝑡𝑣̅̅ ̅̅ (𝑡)
)
2

]

5
6

  (5.12) 

  

Figure 5-11 Time-varying turbulence 
intensity of non-stationary wind speed under 

typhoon TY9807 between 14:13~14:23 

Figure 5-12 Time-varying integral length 
scale of non-stationary wind speed under 
typhoon TY9807 between 14:13~14:23 

  

(a) Measured (b) Estimated 

Figure 5-13 EPSD of longitudinal fluctuating wind speed of typhoon TY9807 between 
14:13~14:23 at the center of the main span of the Akashi-Kaikyo bridge 

 
Figures (5-11) and (5-12) show the time-varying turbulence intensity and time-varying 

longitudinal integral length scale, respectively for typhoon TY9807 between 14:13~14:23. The 
maximum turbulence intensity and longitudinal integral length scale are found to be around 0.18 
and 400 m, respectively for 10 min time interval. Subsequently, the time-varying turbulence 
intensity, time-varying mean wind speed, and time-varying integral length scale are used to find 
the estimated EPSD by using von-Karman expression shown in Eq. (5.12). This estimated EPSD 
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is compared with the measured EPSD and good correspondence between both EPSDs is observed 
as shown in Figure (5-13(a) and (b)), where only spectral contents between 0 to 10 Hz are shown. 
It is observed that the maximum spectral values appear in between 300 to 400 seconds and the 
overall variation trends are consistent. This variation can also be observed in between 300 to 400 
seconds in Figures (5-11) and (5-12), where turbulence intensity and integral length scale are 
maximum and minimum, respectively.  

Similarly, the time-varying turbulence intensity and time-varying longitudinal integral 
length scales are computed for typhoon 2018TY20 by using time-varying mean wind speed and 
results are plotted in Figures (5-14) and (5-15). The estimated EPSD of 2018TY20 is also 
compared with the measured EPSD as shown in Figure (5-16), highlighting the regeneration of 
spectral density features of wind fluctuation in frequency- and time-domain. 

  

Figure 5-14 Time-varying turbulence 
intensity of non-stationary wind speed under 

typhoon 2018TY20 between 23:17~23:27 

Figure 5-15 Time-varying integral length 
scale of non-stationary wind speed under 
typhoon 2018TY20 between 23:17~23:27 

  

(a) Measured (b) Estimated 

Figure 5-16 EPSD of longitudinal fluctuating wind speed of typhoon 2018TY20 between 
23:17~23:27 at the center of main span of Akashi-Kaikyo bridge 
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5.6 Generation of artificial longitudinal and vertical wind fluctuations 
 
The artificial non-stationary wind field is simulated based on the assumption that the 

estimated EPSD remains uniform along the length of the bridge deck. The wind history is 
generated through an unconditional simulation technique by extending the SRM to accommodate 
the EPSD matrix of non-stationary processes. For that, the main and side spans of the Akashi-
Kaikyo bridge are divided into segments of equal lengths at the deck level such that the center of 
each segment receives a 10 min record of typhoon-induced wind speed time history as shown in 
Figure (5-17). Likewise, the towers and cables are also divided into segments for the generation 
of a wind field using wind speed profile constructed by the Power law. 

 

 
 

Figure 5-17 Distribution of nodes on which wind forces are acting 
 
The vertical fluctuating wind speed on the bridge deck is simulated as an ergodic, Gaussian, 

and stationary process by using the vertical power spectrum proposed by von-Karman as shown 
in Eq. (5.9). In the case of tower and cables, both longitudinal and vertical wind components are 
generated as stationary processes as it is assumed that towers and cables only receive drag forces 
of stationary nature. 

𝑆𝑤𝑤(𝜔)

𝜎𝑤
2

=
1

2𝜋

4𝐿𝑤
𝑈

[1 + 755 (
𝜔𝐿𝑤
2𝜋𝑈

)
2

]

[1 + 283 (
𝜔𝐿𝑤
2𝜋𝑈

)
2

]

11
6

  (5.13) 

where 𝑆𝑤𝑤(𝜔) is the power spectrum density of vertical fluctuating wind component and 𝐿𝑤 
is the vertical integral length scale. Generally, the coherence function of multivariate non-
stationary process shows time-varying characteristics. Nevertheless, due to the lack of 
measurement data of multivariate non-stationary excitations and suitable time-varying coherence 
models, the time-invariant coherence model, which is suitable for the stationary process, has been 
widely adopted to model the multivariate non-stationary wind generation and compute the 
attendant structural response (Davenport 1961; Peng et al. 2017). For instance, Chen and 
Letchford (2004) used the time-invariant Davenport coherence function to model non-stationary 
downbursts and computed the non-stationary response of a cantilevered structure. Chen (2008) 
developed an analytical framework for estimating the alongwind response of a tall building to 

1 5 11 6 17 21 16 

C
L 
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non-stationary winds based on Davenport coherence model. Similarly, Kwon and Kareem (2009) 
proposed a concept of the gust-front factor based on the Davenport coherence function to estimate 
the equivalent static wind loads on the structures to gust-front winds. Also, Solari (2016) utilized 
the Davenport time-invariant coherence model to develop the thunderstorm-based response 
spectrum method. Following it, the coherence function used in the stationary wind model is herein 
adopted for the non-stationary wind model with the assumption that coherence is the only function 
of frequency and does not vary with time according to the Priestley’s EPSD theory (Priestley 
1965). Based on the coherence function, cross EPSD is determined as: 

𝑆𝑝𝑝,𝑥1𝑥2(𝜔, 𝑡) = √𝑆𝑝𝑝,𝑥1(𝜔, 𝑡)𝑆𝑝𝑝,𝑥2(𝜔, 𝑡) 𝛾𝑝𝑝,𝑥1𝑥2(𝜔) (5.14) 

where symbol 𝑝 denotes either 𝑢 or 𝑤; 𝑆𝑝𝑝,𝑥1(𝜔, 𝑡) and 𝑆𝑝𝑝,𝑥2(𝜔, 𝑡) are the auto EPSDs of 
wind speed fluctuations at two discrete nodes 𝑥1 and 𝑥2, respectively; 𝑆𝑝𝑝,𝑥1𝑥2(𝜔, 𝑡) is the 
cross EPSD of wind speed fluctuations between 𝑥1  and 𝑥2 , and 𝛾𝑝𝑝,𝑥1𝑥2(𝜔)  denotes the 

coherence function between 𝑥1 and 𝑥2, which is determined by using Devenport’s exponential 
formulation such as: 

𝛾𝑝𝑝,𝑥1𝑥2(𝜔) = exp (−𝑘
ωΔ𝑥

2𝜋𝑈
) (5.15) 

where Δ𝑥  denotes the distance between two nodes under consideration; 𝑘  is the decay 
coefficient (taken as 8) and 𝑈̅  is the constant mean wind speed for 10 min time interval. 
Moreover, the cross-spectrum of 𝑢 and 𝑤 (𝑆𝑢𝑤,𝑥1𝑥2) is ignored in this study due to its minor 

effects on bridge response. Figure (5-18) shows the coherence function of wind speed time history 
data of five different anemometers, installed on the main span of the bridge, analysed under 
typhoon TY9807. It is observed that coherence of fluctuating wind speed between two points 
decreases as frequency increases. It is also noted that the coherence function starts from unity at 
zero frequency for all cases which shows that the wind speed time histories at all nodes correspond 
and correlate to one another completely. Finally, the artificial non-stationary fluctuating winds 
are generated by the following expression: 

 𝑠𝑖𝑚(𝑡) = ∑∑√2Δ𝜔𝑅𝑖(𝜔𝑘 , 𝑡)𝑐𝑜𝑠(𝜔𝑘𝑡 + 𝜓𝑘𝑖)

𝑁

𝑘=1

𝑀

𝑖=1

 (5.16) 

where  𝑠𝑖𝑚(𝑡) is the wind speed time history simulation containing 𝑀 component processes 
whose 𝑖th component admits the spectral representation; 𝜔𝑘 is the uniformly spaced sequence 
of circular frequencies with the step Δ𝜔  which can be calculated as 𝜔𝑘 = 𝑘Δ𝜔  for 𝑘 =
0,1,… , 𝑁; Δ𝜔 is the ratio of the cut-off frequency to the prescribed number of segments 𝑁; 
𝜓𝑘𝑖 is the random phase angle distributed uniformly over the range from 0 to 2𝜋; 𝑅𝑖(𝜔𝑘, 𝑡) is 
the 𝑖th column of the matrix 𝑅(𝜔𝑘 , 𝑡) obtained by the Cholesky decomposition of the EPSD 
matrix (consisting of auto and cross EPSD components) satisfying the Cholesky decomposition 
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transpose criteria. The flowchart of the simulation of non-stationary wind fields is presented in 
Figure (5-19). The artificial turbulent wind speed time histories of TY9807 and 2018TY20 at the 
center node of the main span of the Akashi-Kaikyo bridge are also shown in Figures (5-17) and 
(5-18), respectively. 

 
 

Figure 5-18 Spatial coherence of measurement data of wind speed time-history under typhoon 
TY9807 spanwise between 14:13~14:23 

 

 

Figure 5-19 Flowchart of unconditional simulation technique for the generation of non-
stationary wind field around the bridge site 

 

Assume Measured EPSD is 
constant along bridge length

Find coherence function, 𝛾𝑝𝑝

Form the full EPSD matrix, 
[   ] including all deck nodes

Decompose [   ] through 
Cholesky decomposition

Generate the time-history of 
fluctuating wind speed,  𝑠𝑖𝑚
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Figure 5-20 Simulated wind speed of typhoon TY9807 at 32 m/s with time-varying 
characteristics at the center of main span of the Akashi-Kaikyo bridge 

 
Figure 5-21 Simulated wind speed of typhoon 2018TY20 at 42 m/s with time-varying 

characteristics at the center of main span of Akashi-Kaikyo bridge 
 
In order to check the accuracy of wind field simulation, the target power spectral densities 

of longitudinal and vertical fluctuating wind components given by von-Karman are compared 
with the simulation results, which indicates that the time-domain simulation corresponds very 
well with the target spectra as shown in Figure (5-22). 
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(a) Longitudinal fluctuating wind speed (b) Vertical fluctuating wind speed 

Figure 5-22 Assigned and simulated wind spectra for typhoon TY9807 at 32 m/s 

 
 

Figure 5-23 Wind inputs on the Akashi-Kaikyo bridge under typhoon TY9807 at spanwise 
locations 

 

5.7 Wind-bridge interaction 
 
After the simulation of non-stationary wind fields around the bridge site, the wind inputs are 

idealized to be applied on the span-wise locations of the bridge deck simultaneously such that 
each node receives a 10 min wind speed time history. The schematic diagram of the Akashi-
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Kaikyo bridge and its corresponding wind speed time histories along the bridge deck during these 
two typhoon events are shown in Figures (5-23) and (5-24). It is shown that both events have 
time-varying characteristics, i.e., the wind speed increases and then decreases within a short time 
duration. As a result, the bridge starts vibrating about the time-varying mean while retaining its 
short-term fluid memory in the wake of flow separation owing to its bluff body. 

 
 

Figure 5-24 Wind inputs on the Akashi-Kaikyo bridge deck under typhoon 2018TY20 at 
spanwise locations 
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CHAPTER 6:  NUMERICAL EXAMPLE 
 
 

This chapter presents a numerical example of a real full-scale bridge on which the proposed 
framework is tested and validated. For that, the wind loads on the bridge deck are calculated in 
three-dimensional fashion using an FD-based Volterra model, named herein as Volterra FD model, 
a coalition of QS and Volterra FD models, named herein as Hybrid Volterra FD model, and an 
ANN-based Volterra model, named herein as Volterra ANN model, under typhoon events TY9807 
and 2018TY20. The buffeting analyses are performed based on the Volterra FD, Hybrid Volterra 
FD, and Volterra ANN models as well as the existing aerodynamic models i.e., linear unsteady 
(LU) and hybrid nonlinear (HNL) models under typhoon wind speeds. For that, a finite element 
model (FEM) of the example bridge is first developed. Then, the aerostatic analysis is performed 
in order to examine the effects of the constant and time-varying mean wind speeds on the 
aerostatic response of the bridge. Subsequently, the eigenvalue analysis is performed to 
investigate the modal characteristics i.e., eigenmodes and natural frequencies of the bridge. At 
last, the time history dynamic analyses are performed based on the Volterra FD, Hybrid Volterra 
FD, and Volterra ANN models, and results are compared with the measurement data of the bridge 
displacement. Additionally, the buffeting analyses are also performed based on different existing 
aerodynamic load models, presented in Chapter 2, and comparison is made between the proposed 
and existing aerodynamic load models in terms of root-mean square (RMS) of fluctuating part of 
the buffeting response and relative errors in RMS. 

The results of buffeting analyses are used to check the efficacy and applicability of the 
proposed framework to predict the buffeting response of long-span bridges subjected to non-
synoptic winds accurately. It is also observed that all three non-stationary and nonlinear Volterra 
models produce the buffeting responses around the time-varying mean wind response, whereas 
the existing aerodynamic models estimate the buffeting response around the constant mean wind 
response. Simulation results also show that the conventional LU and HNL models, based on the 
assumptions of stationary and linear fluid memory effects, cannot regenerate the real phenomenon 
of buffeting response of the bridges under typhoon winds; therefore, in this dissertation, the 
Volterra series-based buffeting analysis framework is suggested because of its efficiency and 
ability to consider the effects of the nonlinear fluid memory and aerodynamic nonlinearity. 

 

6.1 Introduction 
 
The accurate estimation of the dynamic response of nonlinear structures is of paramount 

importance for the safe design of long-span bridges under typhoon winds. The wind-bridge 



– 88 – 
 

interaction under turbulent wind is a complex phenomenon and is demonstrated by several 
methods. In the past, traditional frequency-domain approaches were used to find the wind-induced 
response of bridges (Katsuchi et al. 1998; Katsuchi et al. 1999). These frequency-domain 
approaches are generally limited to the linear structures excited by stationary winds. To avoid this 
restriction, several researchers proposed the time-domain methods for the buffeting analysis of 
bridges (e.g., Chen and Kareem 2001; Chen and Kareem 2011; Ding and Lee 2000; Costa et al. 
2007). For instance, Chen and Kareem (2001) presented the time-domain analysis framework for 
predicting the nonlinear response of long-span bridges under turbulent winds by separating the 
effective angle of attack into low- and high-frequency components. They modelled the low-
frequency component of aerodynamic forces by the QS model, whereas the high-frequency 
component of aerodynamic forces is modeled by the LU model using impulse response functions. 
The time-domain methods not only provide the benefit of combining different types of loads and 
can consider the nonlinearities but also provide the only way to reproduce the transient nature of 
the bridge. That is the reason why the temporal simulations are increasingly performed. Besides 
this, in the last few decades, the numerical approaches based on computation fluid dynamics 
(CFD) have also received significant attention (Ge and Xiang 2008). 

In the case of bridge decks, the wind-bridge interaction is usually simulated by wind tunnel 
tests or semi-analytical models based on the theory of aeroelasticity, accompanied by wind tunnel 
tests (Scanlan 1978(I); Scanlan 1978(II); Davenport 1962; Diana et al. 1993; Chen and Kareem 
2002). The semi-analytical aerodynamic models are on the basis of the analytical solutions from 
the flat-plate aerodynamics. These analytical models simulate the complex unsteady behavior of 
bluff bodies subjected to high winds by modifying the aerodynamic coefficients obtained from 
the wind tunnel experiments. Two main assumptions, under which semi-analytical approaches are 
based, are the quasi-steady and linear unsteady. In the case of former assumption, the fluid 
memory is ignored, and aerodynamic nonlinearity is considered. In the latter assumption, the 
unsteady aerodynamic forces are separated into static, self-excited, and buffeting forces while 
considering the fluid memory effects to reveal the complex nature of bluff body aerodynamics in 
a linear manner. Wu and Kareem (2013) carried out a detailed analysis of the fundamental 
assumptions for the long-span bridge deck section. They determined that the fluid memory is one 
of the major factors affecting the aerodynamic response significantly. 

Nevertheless, they did not stipulate whether it was the fluid memory effect of the buffeting 
or that of the self-excited forces that influenced the total response. Kavrakov et al. (2017) 
examined various formulations of buffeting and self-excited forces in time-domain by comparing 
the dynamic response of a multi-span cable-stayed bridge during the critical erection condition. 
They studied the aerodynamic models from a perspective of model complexity and compared the 
effect of the aerodynamic parameters utilized in the aerodynamic models, such as aerodynamic 
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damping and stiffness, aerodynamic nonlinearity, fluid memory, and aerodynamic coupling on the 
bridge response. 

Besides the fluid memory effects, the aerodynamic nonlinearity has also a considerable 
impact on the buffeting response of the bridge, especially at high wind speed. Currently, only a 
few studies are available to model the aerodynamic and aeroelastic nonlinearities existing in wind-
bridge interaction in addition to non-stationary effects. One of such studies includes a hybrid 
nonlinear model developed by Diana et al. (2008) which is based on the hysteretic nature of wind 
force on the bridge. Recently, Wu and Kareem (2013) also proposed a nonlinear scheme to model 
aerodynamic nonlinearity through the Volterra series of higher-order. However, this nonlinear 
model has not been verified on a real full-scale bridge model subjected to real typhoon winds, 
which calls into question its efficiency and applicability in the simulation of real bridge response. 

In this research, the wind loads are modelled based on Volterra series under non-stationary 
winds by considering the higher-order fluid memory effects arising from wind-bridge interaction 
and aerodynamic nonlinearity effects due to the varying angle of incidence, amplitude-
dependency of static wind force coefficients, flutter derivatives, and aerodynamic admittance 
functions, and non-proportional relationship between wind speed and bridge motion. The 
buffeting analysis results obtained from the proposed Volterra model are compared with the 
measurement response of the bridge. The eight different existing semi-analytical models in the 
time-domain, including steady (S), linear steady (LS), quasi-steady (QS), linearized quasi-steady 
(LQS), corrected quasi-steady (CQS), linear unsteady (LU) and hybrid nonlinear (HNL) models, 
are also compared with the measurement response in order to check the efficiency of existing 
aerodynamic models. The simulation results exhibit that the proposed Volterra FD, Hybrid 
Volterra FD, and Volterra ANN models can regenerate the real phenomenon of buffeting response 
of a long-span bridge around the time-varying response under non-stationary winds. 

 

6.2 Description of bridge 
 
The Akashi-Kaikyo bridge is one of the world’s longest suspension bridges in west-central 

Japan having a main span of 1991 m and two side spans of 960 m each. The height and width of 
its stiffening truss girder are 14 m and 35.5 m, respectively, linking the city of Kobe with Iwaya 
on Awaji Island. It crosses the Akashi-Strait (Akashi-Kaikyo in Japanese) as a part of the Honshu-
Shikoku Highway. It was completed in 1998. The height of the main towers is 282.8 m above the 
sea level and 297.3 m up to the top of the cables. The bridge can expand due to the thermal effects 
up to 2 m over a day. The bridge was designed to withstand extreme winds up to 80 m/s, 
earthquakes up to a magnitude of 8.5, and torrent sea currents. The mesmerizing view of the 
majesty Akashi-Kaikyo bridge is shown in Figure (6-1). 
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Figure 6-1 The location and mesmerizing view of the majesty Akashi-Kaikyo bridge in Japan 
 

 

Figure 6-2 Finite element model of the Akashi-Kaikyo bridge and its deck cross-section 
 

6.3 Finite element model 
 
A 3D finite element model of Akashi-Kaikyo bridge is developed by using the commercial 

FE package ABAQUS (2014) in reference to the modelling technique used by Boonyapiyo et. al 
(1999). The FE model of the bridge along with its cross-section of truss deck is shown in Figure 
(6-2). The main stiffening girder and towers are simulated by spatial Timoshenko beam elements 
with six degrees of freedom (DOFs) at each node. The main cables, hangers and stay cables are 
simulated by 3D linear elastic truss elements with three DOF at each node. To ensure the 3D effect, 
the connection of shear center-to-hanger is assumed to be rigid link with very high stiffness. All 
masses are lumped to the gravity nodes of stiff deck including the polar moment of inertia and on 
main cable-hanger connection nodes. Since the mass center and the shear center of most girders 
do not coincide, they are also connected by a rigid link as shown in Figure (6-3). Both ends of the 
girder are coupled with the towers in a way that allows one end to move in the longitudinal 
direction. It is important to achieve the correct static state of a suspension bridge before modal 
and dynamic analysis for accurate results. The material properties and all characteristics of the 

Akashi-Kaikyo bridge 

35.5 m

14
 m
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elements are determined according to the related design codes and the effect of geometric 
nonlinearity is also included in static analysis for the initial balanced state of the bridge by 
checking the NLGEOM option in ABAQUS. The deck and towers are coupled in 3DOF. The 
bottom of both towers and back cables are fixed at bases while ignoring the soil-structure 
interaction. The sectional and material properties of the Akashi-Kaikyo bridge are shown in Table 
6-1 and Table 6-2, respectively. 
 

6.4 Eigenvalue analysis of bridge 
 
The eigenvalue analysis of the Akashi-Kaikyo bridge is performed to investigate its modal 

characteristics i.e., natural frequencies and mode shapes. First fifty eigenmodes are extracted in 
the frequency range from 0.040 Hz (1st mode) to 0.40 Hz (50th mode). According to this analysis, 
the first lateral symmetric mode occurs at 0.04 Hz, followed by a symmetric vertical mode at 
0.0645 Hz. In addition to that, the first symmetric torsional mode occurs at 0.147 Hz. The 
fundamental eigenvalues and frequencies of the bridge are similar to those identified by the 
previous researchers (Boonyapiyo et. al 1999; Miyata et al. 2017). Figure (6-4) illustrates the 
significant eigenmodes of the bridge along with its natural frequencies, eigenvalues, and nature 
of the model. The eigenvalue analysis results elucidate that the first mode of Akashi-Kaikyo 
bridge is dominated in the lateral direction which contributes maximum in the lateral buffeting 
response, whereas the contribution of the second mode is maximum in the vertical buffeting 
response. 

 

 

 

 
 
 

Figure 6-3 Finite element model of the Akashi-Kaikyo bridge deck along with the connected 
hangers and the main suspension cable 
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Table 6-1 Sectional properties of the Akashi-Kaikyo bridge 

Item Central and side spans 

Stiffening truss 

Cross-section 
(General) 

Max. plate thick 38mm 

Class HT780 

Cross-section 
of deck at the 
center of 
main span 

Area 0.412m2 

I11 20.188m4 

I22 129.81m4 

J 18.407m4 

Main cable 

Composition 
𝜙5.23mm×127wire×290strand 
2 cables (36830 wires/cable)  

Sectional area 7882cm2 

Diameter 1001.78mm 

Max. tension force 64961tf 

Allow. stress 82kgf/mm2 (837MPa) 

Hanger 

Max. sectional area 0.0115m2 

Max. diameter 121mm 

Max. tension force 1055.4tf 

Tower 

Height of tower (H) T.P. + 297m (approx.) 

Sectional dimension (L×W) 14.8m – 10m×6.6m 

Thickness & class of plate Base 50mm Top 40mm SM570 

Cross-section 
of tower at the 
height of H/2 

Area 3.224m2 

I11 17.04m4 

I22 47.5m4 

J 23.64m4 

Note: I11 and I22 are the moment of inertias about lateral and vertical directions of the bridge, 
whereas J is the polar moment of inertia of the bridge 
 

Table 6-2 Material properties of the Akashi-Kaikyo bridge 

Structural member Modelled as Elastic properties 

Cable Truss E=203GPa 
Hanger Truss E=140GPa 
Deck (girder) Beam E=210GPa, G=807GPa, 𝜈=0.3 
Tower Beam E=210GPa, G=807GPa, 𝜈=0.3 
shear center -to-mass center Rigid link E, G=∞ 
shear center-to-hanger Rigid link E, G=∞ 
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Figure 6-4 Mode shapes and natural frequencies of the Akashi-Kaikyo bridge 
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6.5 Computation of wind loads 
 
Wind loads are computed in three parts i.e., time-varying static, buffeting, and self-excited 

forces. To compute the time-varying mean static forces, Eq. (3.6) is used considering the static 
wind force coefficients which depend on the effective angle of attack i.e., 𝐶𝑄(𝛼𝑒𝑓𝑓) , where 

𝑄 𝐷, 𝐿,𝑀. The angle-varying static force coefficients utilized for the computation of time-varying 
static forces on the bridge deck are shown in Figure (4-2). The buffeting forces on the bridge deck 
are computed by employing various aerodynamic wind load models. Each model behaves 
differently based on the involved assumptions and limitations. For instance, the wind loads in the 
case of the Hybrid Volterra FD model are computed in the low- and high-frequency ranges 
separately. The demarcation between low- and high-frequency ranges is decided based on the cut-
off frequency (which is the first mode natural frequency of the bridge for this case). For the low-
frequency range, the QS model is adopted due to the high reduced velocity and its ability to take 
into account the static nonlinearity and self-excited force effects. The parameters used in the QS 
model for the low-frequency range are the low-frequency component of the effective angle of 
attack (𝛼𝑒𝑓𝑓𝑙𝑜𝑤 ), low-frequency components of wind speed fluctuations (both 𝑢𝑙𝑜𝑤  and 𝑤𝑙𝑜𝑤 ), 

low-frequency components of the bridge vibration components (𝑝̇𝑙𝑜𝑤, ℎ̇𝑙𝑜𝑤 and 𝛼̇𝑙𝑜𝑤), and low-
frequency components of effective angle-varying static forces coefficients (i.e., 𝐶𝑄(𝛼𝑒𝑓𝑓𝑙𝑜𝑤), where 

𝑄 𝐿, 𝐷,𝑀). Figure (6-5) illustrates the PSDs of low-frequency components of wind fluctuations 
demarcated at the cut-off frequency (0.04 Hz) in which the high-frequency components are 
removed by the Equiripple Lowpass filter. 

Conversely, for the high-frequency range, a second-order Volterra FD model is employed to 
compute the buffeting and self-excited loads on the bridge deck numerically considering the high-

frequency components of wind speed fluctuations (both 𝑢ℎ𝑖𝑔ℎ  and 𝑤ℎ𝑖𝑔ℎ ), high-frequency 
components of the bridge vibration components ( 𝑝̇ℎ𝑖𝑔ℎ , ℎ̇ℎ𝑖𝑔ℎ  and 𝛼ℎ𝑖𝑔ℎ ), low-frequency 
components of effective angle-varying static forces coefficients, and amplitude-dependent IFs 
identified from FDs at varying angles of attack. Using these parameters, three-dimensional time-
varying static forces and nonlinear buffering forces are first computed, acting on each node of the 
bridge deck by considering the 10 min records of wind speed time history. In the case of main 
cables and towers, only drag forces are calculated based on the quasi-steady model by using the 
static drag force coefficients of 0.7 and 1.8 for the main cables and towers, respectively. To 
compute the nonlinear self-excited forces on the bridge deck, three components of the bridge 

response (𝑝̇, ℎ̇ and 𝛼) are extracted from ABAQUS as a result of the preliminary modal analysis 
performed under time-varying static and nonlinear buffeting forces only. Like a feedback system, 
the effects of nonlinear self-excited forces on the bridge response are considered by applying them 
to the bridge deck directly. Thus, there is a total of nine force components at the high-frequency 
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range and three force components at low-frequency range acting upon each node of the bridge 
deck in the case of the proposed Hybrid Volterra FD model. The aerodynamic forces generated at 
low- and high-frequency ranges for the typhoon TY9807 by Hybrid Volterra FD model are shown 
in Figure (6-6) and Figure (6-7), respectively. 

 

 
 
Figure 6-5 Power spectral density of low-frequency components of wind fluctuations at 32 m/s 

 
Figure 6-6 Low-frequency components of wind forces on the bridge deck computed by the 

Hybrid Volterra FD model under typhoon TY9807 
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Figure 6-7 High-frequency components of buffeting forces on the bridge deck computed by the 

Hybrid Volterra FD model under typhoon TY9807 
 
In the case of the Volterra FD model, the wind fluctuation and bridge motion components 

for the whole gamut of frequencies (from low to high) are considered to calculate the buffeting 
and self-excited forces on the bridge deck. The static force coefficients determined at a statically 
deformed position of the bridge deck (i.e., 𝐶𝑄(𝛼𝑠)) and IFs identified at zero angle of attack are 

used in this model. On the other hand, the Volterra ANN model does not require static force 
coefficients or FDs to estimate IFs. In fact, the Volterra ANN model computes all components of 
wind loads based on the synaptic weights of activated neurons which captures the nonlinear 
aerodynamic features of the nonlinear input-output relationship existing in wind-bridge 
interaction. It is important to note here that the non-stationary wind effects are considered in the 
wind load calculations by all three proposed models using 𝑈𝑡𝑣̅̅ ̅̅ (𝑡) and EPSD. 

After the calculation of wind loads, each load component is applied to the bridge model as 
a nodal load as shown in Figure (6-3), and dynamic modal analysis is performed in time-domain. 
It is noted that the geometric nonlinearities in the structural characteristics are already 
incorporated in the modeling. For linear structures, modal analysis method can be utilized to take 
advantage from the reduction in computational cost afforded by limiting the number of 
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eigenmodes. The spatial correlation in buffeting forces at different nodes of the bridge is assumed 
to be the same as the corresponding wind fluctuations (Chen and Kareem 2001). To perform the 
buffeting analysis in time-domain, following parameters are used: (1) a critical damping fraction 
of 0.003 for all eigenmodes (2) the analysis is performed in two steps (i) transient step which is 
simulated for 60 sec time period considering the constant mean static wind forces on the bridge 
deck to simulate the initial condition of vibration for the bridge (ii) modal step which is simulated 
for 600 seconds time period considering the static and buffeting components of wind forces 
(including self-excited forces) having a time increment size of 0.05 sec (3) the attendant buffeting 
response of the bridge deck is obtained from 60th sec to 660th sec. This approach was also 
practiced by (Boonyapinyo et al. 1999). 

 
Figure 6-8 Aerostatic response of the deck of Akashi-Kaikyo bridge under different values of 

mean wind speeds including typhoon TY9807 (32 m/s) and 2018TY20 (42 m/s) 
 



– 99 – 
 

6.6 Aerostatic analysis 
 
The nonlinear aerostatic analysis is performed based on the simple static wind model to 

investigate the effects due to the transient features of typhoon events on the aerostatic behavior 
of the bridge. The comparison of the mean values of bridge deck lateral, vertical, and torsional 
displacements at various mean wind speeds including the typhoon events TY9807 (32 m/s) and 
2018TY20 (42 m/s) along the spanwise locations are plotted in Figure (6-8). The maximum 
displacement occurs at the center of the main span of the bridge deck. Moreover, the displacement 
increases proportionally with the square of wind velocity according to the Euler’s beam theory. 

 

 
(a) Lateral displacement 

 
(b) Vertical displacement 

 

(c) Torsional displacement 
 

Figure 6-9 The effects of constant and time-varying mean wind speeds on the static response of 
the Akashi-Kaikyo bridge under typhoon TY9807 
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Figure (6-9) shows a comparison between the effects of constant mean and time-varying 
mean wind speeds on the three-dimensional aerostatic response at the center node of main span 
of the bridge under typhoon TY9807. The time-varying mean wind speed causes the time-varying 
response of the bridge deck. The time-varying mean lateral displacement varies from 4.65 m to 
5.54 m, whereas the constant mean lateral displacement is computed to be 4.88 m for 10 min time 
interval as shown in Figure (6.9a). The time-varying mean vertical displacement also shows 
similar behavior and varies about the corresponding time-invariant response obtained from the 
stationary constant mean wind speed as shown in Figure (6-9b). In the case of torsional 
displacement, both constant and time-varying mean responses show anti-clockwise angular 
motion, and it is interesting to note that the constant and time-varying means become equal at a 
time instant of 382 second as shown in Figure (6-5c). Similarly, the effects of constant and time-
varying mean wind speeds on the three-dimensional aerostatic responses of the bridge deck are 
compared and investigated under typhoon 2018TY20, which elucidated that the time-varying 
mean wind speed can certainly cause a high aerostatic response of the bridge deck as compared 
to the constant mean wind speed. This highlights the paramount importance of adopting time-
varying mean wind speed rather than the constant mean wind speed in the design of long-span 
bridges. 

 

6.7 Buffeting analysis 
 
The aerodynamic response of the Akashi-Kaikyo bridge deck under gusty wind conditions 

is interrogated using various aerodynamic wind load models. Since each wind load model has a 
unique way of formulating the aerodynamic forces; therefore, the time histories of responses 
computed by all models are to be compared with the measurement data of bridge displacement. 
Moreover, buffeting analysis results based on the proposed Volterra FD, Hybrid Volterra FD, and 
Volterra ANN models are also compared with the measurement response to check the efficacy of 
the proposed Volterra models. Figure (6-10) shows a comparison of time histories of the 
calculated aerodynamic response (vertical, lateral, and torsional displacements) based on each 
aerodynamic model including proposed Volterra models under typhoon TY9807 (mean wind 
speed of 32 m/s). The measurement data was recorded by GPS installed at the center of main span 
of the Akashi-Kaikyo bridge for the full duration of typhoon TY9807, in 1998, as a part of the 
investigation done by Honshu-Shikoku Bridge Authority (2001). Based on the aerodynamic 
response computed by each aerodynamic model, the following conclusions can be drawn: 
1. the S model, being a 2D model, does not simulate the lateral response of the bridge. This 

shows the importance of accurate modeling the drag forces on the structure. Moreover, the 
S model yields a larger torsional displacement as compared to measurement data due to its 
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limitations for ignoring the effects of fluid memory and self-excited motion of the bridge 
deck as shown in Figure (6-10a), 

2. the aerodynamic response based on LS model is higher than that based on S model, which 
indicates that the inclusion of static nonlinearity in terms of angle-varying static force 
coefficients (which are nonlinear functions of effective angle of attack) in S model reduces 
the aerodynamic response especially in the case of torsional degree of freedom (DOF) for 
the example bridge, 

3. the three-dimensional aerodynamic response of the bridge based on the S model is close to 
the two-dimensional QS model. However, the QS model yields better simulation results than 
the S model, especially in the case of torsional displacement, which indicates that the 
efficiency of QS model to capture the effects of static nonlinearity is only improved in 
torsional DOF by including the self-excited motion of bridge deck. Conversely, no 
significant difference is observed between S and QS models in the case of lateral and vertical 
responses, which shows that the capability of 2D QS model is insufficient in vertical and 
lateral DOFs for the example bridge as shown in Fig (6-10a,c), 

4. the aerodynamic response based on QS model is smaller than that based on the LQS model 
due to the linearization of QS model at the static angle of attack. This concludes that the 
linearization of static force coefficients at a statically deformed position of the bridge deck 
increases the aerodynamic response for this example bridge. In other words, the static 
nonlinearity included in the QS model decreases the aerodynamic response as compared to 
the LQS model in this case for the example bridge. Besides this, the comparison of the 
responses based on the QS and LQS models reveals that the static nonlinearity (without fluid 
memory effects) has significant effects on the torsional response, whereas its effect on the 
vertical response is minor. The differences between the QS and LQS models are due to the 
nonlinearity in the QS model arising from the dependency of static force coefficients on the 
effective angle of attack as shown in Figure (6-10c,d), 

5. the aerodynamic response based on the CQS model is larger and smaller for the torsional 
and vertical responses, respectively as compared to that obtained from the QS model which 
indicates that the CQS model could not improve the torsional response even after 
considering the fluid memory effects at a fixed reduced frequency; however, it only improves 
the vertical response to some extent. The jaggedness in the CQS model results is due to 
relatively abrupt changes in the modified coefficient 𝑘1 as shown in Figure (6-10e), 

6. the torsional response based on the LU model is significantly lower than that based on 2D 
models i.e., QS model, and closer to the measured torsional response, which indicates that 
the inclusion of fluid memory effects arising from the history of motion due to wind flow 
substantially improves the prediction of torsional response of the bridge. As the LU model 
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is a 3D model, it also predicts the lateral response of the bridge utilizing the first-order IFs 
which exhibit transient characteristics of wind effects on the structure. Moreover, the 
efficiency of the LU model over 2D aerodynamic models is superior in the case of torsional 
response, which highlights that the effects of fluid memory are more significant on the 
torsional DOF than vertical DOF as shown in Figure (6-10f), 

7. the vertical and torsional responses based on the LU model are larger than those based on 
the HNL model, which indicates that the inclusion of aerodynamic nonlinearity in the HNL 
model decreases the vertical and torsional displacements at 32 m/s for this example bridge. 
Moreover, introducing unsteady aerodynamic damping and stiffness in the QS model, which 
the HNL model uses to calculate wind forces for low-frequency range, reduces the response. 
This effect is more prominent in the torsional DOF. On the other hand, the lateral response 
obtained from the HNL model is larger than that obtained from the LU model. The increase 
in lateral response based on HNL may also be attributed due to the influence of choosing an 
appropriate cut-off frequency which is taken as the first fundamental frequency of the bridge 
model in this case. Although the HNL model yields better results than the LU model, yet it 
does not regenerate the time-varying behavior of the buffeting response owing to the 
assumptions of the stationary flow conditions as shown in Figure (6-10g), 

8. the aerodynamic responses based on the Volterra FD, Hybrid Volterra FD and Volterra ANN 
models are close to the measurement response, which indicates that these models are suitable 
for capturing the higher-order aerodynamic nonlinearity and fluid memory effects arising 
from the amplitude-dependency of FDs, varying-angle static force coefficients, and history 
of bridge motion due to wind interaction on 2D time-scale in this case for the example bridge 
as shown in Figure (6-10h,i, j), 

9. the aerodynamic response (both vertical and torsional) based on the Volterra FD model is 
closer to the measurement displacements as compared to the LU model; however, the results 
of the Volterra FD model are poorer than those of HNL model for all three-dimensional 
responses as shown in Figure (6-10h). This may be due to the fact that the Volterra FD model 
utilizes IFs identified at zero angle of attack while ignoring the amplitude-dependency of 
FDs and static force coefficients. However, the Volterra FD model incorporates the non-
stationary wind effects on the buffeting response of the bridge, which are quite visible in the 
case of lateral response as shown in Figure (6-10h), 

10. the simulation results of the buffeting response obtained from the Hybrid Volterra FD model 
are closer to the measurement data of bridge displacement as compared to the results 
obtained from the Volterra FD model. There are several reasons behind it, for instance, 
Hybrid Volterra FD model combines the QS model and the Volterra FD model while utilizing 
their best features. In other words, the Hybrid Volterra FD model segregates the effective 
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angle of attack into low- and high-frequency components. Correspondingly, aerodynamic 
forces are also separated based on the frequency components. For the low-frequency range, 
aerodynamic forces are modelled by the QS model just like HNL model, whereas the Volterra 
FD model is adopted for modeling the nonlinear aerodynamic forces for the high-frequency 
range while considering the amplitude-dependency of FDs, higher-order fluid memory 
effects and non-stationary wind effects simultaneously, 

11. similar to the Hybrid Volterra FD model, the Volterra ANN also simulates the time-varying 
behavior of lateral response of the bridge under non-stationary winds. This model shows 
quite an improvement in the simulation of buffeting response, especially in the case of 
vertical and lateral responses. In other words, the Volterra ANN model yields the best 
simulation results of vertical and lateral responses among all aerodynamic models due to the 
capability of ANN to develop the nonlinear relationships between inputs and outputs through 
the associated synaptic weights carried by the activated neurons. However, a difference is 
observed between the measured and simulated torsional responses in the first 200 seconds 
where the amplitude of the simulated torsional response is smaller than the measured 
torsional response. Moreover, this model also considers the effects of nonlinear fluid 
memory and self-excited motion on the bridge deck accurately, 

12. the aerodynamic response based on the Hybrid Volterra FD model is also close to that based 
on the Volterra ANN model, which highlights that both models consider the aerodynamic 
nonlinearity and nonlinear fluid memory effects accurately. Moreover, the inclusion of first- 
and second-order direct- and cross-terms of Volterra kernels at varying angles of attack in 
Hybrid Volterra FD and Volterra ANN models improves the simulation results, 

13. the Hybrid Volterra FD and Volterra ANN models are capable to capture aerodynamic 
nonlinearities and fluid memory effects for all frequency ranges, whereas the HNL model 
captures nonlinearities for low-frequency range by using QS model and linear fluid memory 
effects for the high-frequency range by using LU model. Thereby, the torsional response 
based on the HNL model is higher than that based on Volterra models, 

14. based on the comparative results, the contribution of the fluid memory effects to the 
aerodynamic response is significantly higher than that of aerodynamic nonlinearity effects 
for this example bridge. This comparison further indicates that the inclusion of fluid memory 
effects has a significant impact on the torsional response specifically since there are large 
differences between the torsional responses obtained from the 2D aerodynamic models i.e., 
S, QS, LQS models, and obtained from the Volterra FD, Hybrid Volterra FD, and Volterra 
ANN models. It can also be witnessed from the larger relative difference between torsional 
response calculated by 2D models and 3D proposed Volterra models as compared to the 
relative difference between the vertical response, 
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(h) 

  

  

 

 
(i) 

  

 
 

 

 
(j) 

 
Figure 6-10 Time histories of the three-dimensional calculated responses based on each model: 
(a) comparison of results obtained from S model and measurement response, (b) comparison of 
results obtained from LS model and measurement response, (c) comparison of results obtained 
from QS model and measurement response, (d) comparison of results obtained from LQS model 
and measurement response, (e) comparison of results obtained from CQS model and measurement 
response, (f) comparison of results obtained from LU model and measurement response, (g) 
comparison of results obtained from HNL model and measurement response, (h) comparison of 
results obtained from Volterra FD model and measurement response, (i) comparison of results 
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obtained from Hybrid Volterra FD model and measurement response, and (j) comparison of 
results obtained from Volterra ANN model and measurement response 
 

It is always lucrative to show the time history of random signals into frequency-domain in 
order to envisage the exciting frequency contents and associated amplitude of power spectral 
density (PSD) function. Following it, PSD of each component of buffeting response is plotted in 
the frequency-domain through Fourier transformation by using fft in-built function in MATLAB 
(2017) for 3D aerodynamic models including the LU, HNL, Volterra FD, Hybrid Volterra FD, and 
Volterra ANN models as shown in Figures (6-11)−(6-15). It is clear from the frequency-domain 
analysis results that the LU and HNL models do not fit the measured lateral response spectrum 
(𝑆𝑝( )) in the low-frequency range because of the assumption of stationary wind. Conversely, 

Volterra FD, Hybrid Volterra FD, and Volterra ANN models fit the measured lateral response in 
the low-frequency range. However, Volterra FD and Volterra ANN models show some deviations 
in the high-frequency range which is not so important for long-span bridges. Moreover, the 
Volterra FD, Hybrid Volterra FD, and Volterra ANN models are capable to capture the peaks of 
the measured response spectra. From this comparison, it can be concluded that Hybrid Volterra 
FD provides the best simulation results for lateral response spectra, whereas Volterra ANN yields 
the best results for torsional and vertical response spectra as shown in Figures (6-14) and (6-15). 

Based on Figure (6-10), it is obvious that these models can be divided into two groups (1) 
the models which cannot take into account the fluid memory effects including the S, LS, QS and 
LQS models and (2) the models which account for the fluid memory effects including the LU, 
HNL, Volterra FD, Hybrid Volterra FD, and Volterra ANN models. The ability of the CQS to 
reasonably account for the fluid memory effects is not assured so far. It is observed that the models 
with the fluid memory yield the magnitude of buffeting response lesser than the models without 
fluid memory effects, which indicates that fluid memory effects reduce the response of the bridge 
deck. This is also consistent with the root-mean square (RMS) values of the simulation results for 
vertical and torsional responses as shown in Figure (6-16). Based on this comparison, it is 
observed that the LU model, among those models which include fluid memory effects, yields the 
largest RMSs of the vertical and torsional responses, whereas the models which do not include 
the fluid memory effects yield almost similar RMSs of the lateral and vertical responses of the 
bridge deck under typhoon TY9807 as shown in Figure (6-16). However, some variations in 
RMSs are also observed in the case of 2D models for the torsional response due to the effect of 
angle-varying static force coefficients i.e., S, QS, and CQS models. The effects of aerodynamic 
nonlinearity and fluid memory on the buffeting response are also investigated by comparing the 
responses obtained from the LU, HNL, and Volterra models. A hefty difference is observed in the 
vertical, lateral, and torsional responses obtained from all 3D wind load models. 
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(a) PSD of lateral response 

 

(b) PSD of vertical response 

 

(c) PSD of torsional response 
 

Figure 6-11 PSD comparison of measured response and simulated buffeting response using LU 
model in frequency-domain under typhoon TY9807 
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(a) PSD of lateral response 

 
(b) PSD of vertical response 

 
(c) PSD of torsional response 

 
Figure 6-12 PSD comparison of measured response and simulated buffeting response using 

hybrid nonlinear (HNL) model in frequency-domain under typhoon TY9807 
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(a) PSD of lateral response 

 
(b) PSD of vertical response 

 
(c) PSD of torsional response 

 
Figure 6-13 PSD comparison of measured response and simulated buffeting response using 

Volterra FD model in frequency-domain under typhoon TY9807 
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(a) PSD of lateral response 

 
(b) PSD of vertical response 

 
(c) PSD of torsional response 

 
Figure 6-14 PSD comparison of measured response and simulated buffeting response using 

Hybrid Volterra FD model in frequency-domain under typhoon TY9807 
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(a) PSD of lateral response 

 
(b) PSD of vertical response 

 
(c) PSD of torsional response 

 
Figure 6-15 PSD comparison of measured response and simulated buffeting response using 

Volterra ANN model in frequency-domain under typhoon TY9807 
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(a) RMS of vertical response 

 

(b) RMS of lateral response 
 

 
(c) RMS of torsional response 

 
Figure 6-16 RMS comparison of fluctuating part of buffeting responses based on various 

aerodynamic models under typhoon TY9807 
 
Comparing the LU and HNL models in the context of nonlinearity arising from the 

dependency of aerodynamic forces on the effective angle of attack, it is clear from Figure (6-16) 
that the RMSs of vertical and torsional responses obtained from the HNL model are lower than 
those obtained from the LU model. This indicates that the inclusion of nonlinearity reduces the 
RMS of vertical and torsional responses. However, different behavior is observed in the case of 
lateral response in which the HNL model shows a higher RMS than the LU model. 

On the other hand, the Volterra FD model results are in between LU and HNL models 
because of the reason that Volterra FD model does not divide the wind speed fluctuations and 
bridge motions into low- and high-frequency ranges, instead, this model utilizes the wind speed 
fluctuations and bridge motion for the entire range of frequency while considering the static force 
coefficients identified at a statically deformed position of the deck as shown in Figure (6-16). The 
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improvement of the Volterra FD model is mainly due to the incorporation of nonlinear fluid 
memory effects in terms of second-order Volterra kernels in the LU model while keeping all other 
parameters same as in LU model. 

With the further modification of the Volterra FD model to Hybrid Volterra FD model by 
incorporation of aerodynamic nonlinearity partly due to the nonlinear function of aerodynamic 
forces with varying angles of attack, the simulation results of buffeting response are significantly 
improved. This explicates that the inclusion of aerodynamic and aeroelastic nonlinearities in low-
frequency range by the QS model, the nonlinear fluid memory effects in terms of second-order 
Volterra kernels identified at varying angles of attack in high-frequency range by the Volterra FD 
model and non-stationary wind effects improves the numerical simulation of buffeting response 
of long-span bridges under typhoon winds. This is also clear from the RMS comparison of 
fluctuating part of the buffeting response in all three-dimensions for the example bridge as shown 
in Figure (6-16). In short, it is reasonable to state herein that the Hybrid Volterra FD model 
considers the aerodynamic nonlinearity and nonlinear fluid memory effects precisely for super 
long-span cable-supported bridges subjected to the non-stationary winds. 

The RMSs of the vertical and torsional displacements from LU and HNL models are higher 
as compared to the Volterra ANN model for the example bridge as shown in Figure (6-16). 
Comparing Volterra ANN model with Volterra FD and Hybrid Volterra FD models, it is obvious 
from the RMS comparison that Volterra ANN model yields RMSs of lateral and torsional 
responses closest to RMSs of measured lateral and torsional responses, which shows the 
superiority of Volterra ANN model over Volterra FD and Hybrid Volterra FD models because 
Volterra ANN intuitively captures the aerodynamic nonlinearity in terms of higher-order neural 
memory from the non-proportional relationship of wind speed (input) and bridge deck motion 
(output) while considering the effects of non-stationary winds on the bridge response. 

In order to check the efficiency of the proposed Volterra models with respect to the 
measurement response and existing aerodynamic models, the relative error in root-mean square 
(RMS) with respect to measurement response is evaluated such as: 

Error =
RM exact − RM sim

RM exact
× 100 (6.1) 

where RM exact is the RMS of the measured response and RM sim is the RMs of the simulated 
response obtained from each aerodynamic model. Figure (6-17) shows the comparison of relative 
error in RMSs in simulated buffeting response based on each aerodynamic model including the 
proposed Volterra FD, Hybrid Volterra FD, and Volterra ANN models with respect to the 
measurement response of the Akashi-Kaikyo bridge under typhoon TY9807. The maximum 
relative errors are observed in the simulation results obtained from LS and LQS models in the 
case of torsional and vertical responses, respectively, whereas the S, QS, and CQS models show 
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almost the same but the maximum relative errors in RMS of the torsional response of the bridge. 
On the other hand, Hybrid Volterra FD and Volterra ANN models show the least relative errors 
in RMSs of aerodynamic responses and exhibit the best simulation results for prediction of 
buffeting response of the bridge subjected to typhoon-induced non-stationary winds. In fact, 
Volterra ANN shows even better simulation results than Hybrid Volterra FD in the case of lateral 
and vertical responses. This is because the ANN approach builds up the mapping of nonlinear 
relationships between the incoming wind flow and bridge displacement through the synaptic 
weights of the activated neurons in a nonlinear fashion. However, in the case of torsional 
response, the Hybrid Volterra FD model shows better simulation results than Volterra ANN 
model due to fact that Hybrid Volterra FD model considers the Volterra kernels identified from 
experimental data of FDs measured at varying angles of attack, which has more impact on the 
torsional DOF than vertical DOF. These results confirm the suitability and superiority of the 
proposed Volterra FD model to the LU model, and proposed Hybrid Volterra FD model to the 
HNL model. Moreover, these results also show a very preponderant role of first- and second-
order IFs at varying angles of attack in the nonlinear buffeting analysis of long-span bridges. 

Apart from Volterra models, the HNL model is the second most suitable method to predict 
the buffeting response accurately for the example bridge as shown in Figure (6-17). For the sake 
of further investigation on the efficacy of the proposed Volterra models, the LU and HNL models 
are treated herein as representative/reference aerodynamic models because LU and HNL models 
are widely used in the field of bridge aerodynamic/aeroelasticity. A comparison is drawn for a 10 
min time period of vibration history between the simulation results obtained from the LU and 
HNL models and the simulation results obtained from the Volterra FD, Hybrid Volterra FD, and 
Volterra ANN models under typhoon 2018TY20. The bridge exhibits a coupled 3D random 
vibration phenomenon about a time-varying mean displacement of the bridge deck based on 
Volterra models as shown in Figure (6-18). The bridge also shows a larger aerodynamic response 
under typhoon 2018TY20 (𝑈̅=42 m/s) as compared to typhoon TY9807 (𝑈̅=32 m/s), which is as 
expected. Owing to the lack of measurement data of bridge response under typhoon 2018TY20, 
the comparison of the time history of buffeting responses obtained from Volterra FD, Hybrid 
Volterra FD, and Volterra ANN models is investigated with respect to HNL and LU models in 
order to envisage their practicality and suitability. In the case of lateral displacement, the LU 
model produces the linear and stationary wind-induced buffeting response about a constant mean 
response, whereas Volterra FD, Hybrid Volterra FD, and Volterra ANN models exhibit buffeting 
response about the time-varying mean response of the bridge under non-stationary winds as 
shown in Figure (6-18). In the case of vertical response, the LU, HNL, and Volterra FD models 
simulate the almost same vertical response, whereas the Hybrid Volterra FD and Volterra ANN 
models show different vertical responses. In the case of lateral response, all models except the 
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Volterra ANN model generate in-phase buffeting responses having different magnitudes. More 
specifically, the LU, HNL, and Volterra FD models generate nearly the same in-phase buffeting 
response (all three-dimensional components) of the bridge except the fact that the Volterra FD 
model gives rise to a slightly higher response than that based on LU and HNL models as shown 
in Figure (6-18). Regarding the torsional response, the Volterra ANN model yields a higher 
torsional buffeting response as compared to other aerodynamic models at 42 m/s for this example 
bridge. However, this trend may vary depending on the turbulence intensity and mean wind speed. 

 
(a) Error in RMS of vertical response 

 
(b) Error in RMS of lateral response 

 

(c) Error in RMS of torsional response 
 
Figure 6-17 Error in RMS of buffeting response of the Akashi-Kaikyo bridge based on various 

aerodynamic models under typhoon TY9807 
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(a) Vertical response 

 

(b) Lateral response 

 

(c) Torsional response 
 

Figure 6-18 Comparison between buffeting responses of the Akashi-Kaikyo bridge subjected to 
typhoon 2018TY20 obtained from LU, HNL, Volterra FD, and Volterra ANN models 
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Figure 6-19 PSD Comparison of buffeting responses of obtained from different models under 

2018TY20 (where S: symmetric, L: lateral, V: vertical, T: torsional, L-T: lateral-torsional) 
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To further investigate the simulation results obtained from different aerodynamic models 
under typhoon 2018TY20, PSDs of the fluctuating components of simulated lateral, vertical, and 
torsional displacements of the bridge are investigated in the frequency-domain as shown in Figure 
(6-19). The peaks of PSDs of lateral responses obtained from the Volterra models match well with 
PSD of LU and HNL models as shown in Figure (6-19); however, a difference is observed 
between simulated PSDs obtained from the Hybrid Volterra model and the LU model in the low-
frequency range due to the impact of time-varying characteristics of wind speed on the simulated 
response. Similarly, the PSDs of the vertical and torsional responses obtained from the Hybrid 
Volterra model show large magnitude in the low-frequency range, explicating the effects of non-
stationary winds on the buffeting response of the bridge. Besides this, the frequency contents of 
the eigenmodes of the Akashi-Kaikyo bridge are also captured from the PSD plots of the simulated 
buffeting responses in all three-dimensions as shown in Figure (6-19) in which S denotes 
symmetric; L denotes lateral; T represents torsion, and V is vertical. 

 

 

 

Figure 6-20 Buffeting response of the Akashi-Kaikyo bridge by nonlinear analysis based on the 
Hybrid Volterra FD model at 60 m/s 
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Figure 6-21 Comparison between RMS buffeting responses of the Akashi-Kaikyo bridge 
obtained from LU, HNL, Volterra FD, Hybrid Volterra FD and Volterra ANN models at 60 m/s 
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To examine the appropriateness of the proposed Volterra models at high wind speed, say 60 
m/s, the nonlinear buffeting analyses are performed based on each aerodynamic model including 
LU, HNL, Volterra FD, Hybrid Volterra FD, and Volterra ANN models. Figure (6-20) shows the 
three-dimensional time-histories of buffeting response at the center node of the Akashi-Kaikyo 
bridge obtained from the Hybrid Volterra FD model at 60 m/s. The transient effects of nonlinear 
IFs identified at varying angles of attack can be visualized in the case of lateral response in 
between 100 to 200 seconds where the response experiences an abrupt step-change. This is 
possibly due to the flow separation in lateral DOF at high wind speed, which exerts significant 
pressure on the bridge bluff deck. Figure (6-21) compares the RMS of buffeting response of the 
bridge deck along the bridge length at 60 m/s calculated by LU, HNL, Volterra FD, Hybrid 
Volterra FD, and Volterra ANN models. It is noted that for this specific example the analysis based 
on the Hybrid Volterra FD model yields higher response as compared to other models, which 
shows that buffeting response is very sensitive to the changes in the wind angle of attack. However, 
the results of this example bridge regarding the effects of nonlinear aerodynamics may not simply 
be extended to other bridge structures that may require preliminary examination based on their 
aerodynamic and structural characteristics. 
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CHAPTER 7:  CONCLUSIONS AND FUTURE DIRECTIONS 
 
 

The safety of the long-span bridges against wind loads is of primary concern during the 
design process. Long-span bridges must be designed against non-stationary winds while 
considering all kinds of structural and aerodynamic nonlinearities existing in the wind-bridge 
interaction. This interaction can result in the wind loads that cause violent motion of the girder 
such as flutter and buffeting. Currently, the wind tunnel test is considered to be the most effective 
means of determining the aerodynamic characteristics of the newly proposed bridge sections 
during the design process. However, the extent of data available from these tests is insufficient 
for real typhoon-induced non-stationary winds to comprehensibly explicate the complex flow 
mechanisms involved and these tests prove to be very expensive and time-consuming, in addition 
the controlling of structural properties like damping, etc. is not easy. Apart from this, the nonlinear 
bridge aerodynamics may become increasingly crucial issue when the aerodynamic 
characteristics of a modern bridge deck exhibit significant vulnerability with respect to the 
effective angle of attack and with the increase in the bridge main span length. These issues may 
not be addressed by utilizing the existing aerodynamic load models due to so many assumptions 
involved. This dissertation presents the development of an efficient framework for performing the 
nonlinear buffeting analysis in time-domain based on the Volterra series to investigate the non-
stationary wind effects on long-span bridges. The conclusions from this thesis and possible further 
directions for future work are presented in the following sections. 

 
Concluding remarks 

 

• It has been shown that an additional time scale in the formulation of indicial response 
function is introduced to simulate the changes in bridge aerodynamics resulting from the 
fluid memory effects as well as the non-stationary wind effects. The present research 
explicates the physical meaning on the underlying mechanism of the changing bridge 
aerodynamics owing to transient effects of typhoon-induced non-stationary winds.  

• The buffeting analyses of an example bridge subjected to the typhoon winds are presented 
based on the proposed Volterra FD, Hybrid Volterra FD, and Volterra ANN models as well 
as based on the existing aerodynamic wind load models. The proposed nonlinear Volterra 
FD, Hybrid Volterra FD and Volterra ANN models can simulate the real phenomenon of 
typhoon-induced buffeting response of long-span bridges around the time-varying mean 
wind response, whereas the existing aerodynamic wind load models show the significant 
errors in the simulation of buffeting response of the bridge around the constant mean wind 
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response. 

• The time-history analysis results show that the non-stationary wind forces modify the 
aerodynamics of wind-bridge interaction system and increase the mean wind response of 
long-span bridges; therefore, it is important to consider the time-varying mean wind speed 
induced by typhoon winds instead of straight-line constant mean wind speed in the 
simulation of wind-induced buffeting response; otherwise, the wind design of the long-span 
bridges may be on the unsafe side. 

• The traditional approach of spectral representation is not capable to explicate the time-
varying characteristics of real typhoon-induced non-stationary winds owing to its limitation 
of being a frequency-domain approach, rather an evolutionary power spectral density 
(EPSD) method, being a frequency- and time-domain approach, is utilized herein to generate 
the artificial non-stationary wind fluctuations along the bridge deck, which also conforms 
the measurement data of wind speed. 

• The inclusion of drag forces in the LU, HNL, Volterra FD, Hybrid Volterra FD, and Volterra 
ANN models modifies the lateral buffeting response of the bridge deck significantly, 
whereas the 2D aerodynamic models do not incorporate the drag forces and show almost 
similar but very minute lateral buffeting response of the bridge. 

• The QS model considers the static nonlinear effects but fails to include nonlinear fluid 
memory effects; the corrected QS model takes into account the nonlinearity effects with 
linear fluid memory effects at a fixed reduced frequency; the linearized QS model considers 
the linear aerodynamic effects without the fluid memory effects; the LU model considers 
linear aerodynamic effects with linear fluid memory effects; hybrid model includes the 
nonlinearity effects only at low-frequency range with linear fluid memory effects at high-
frequency range; the Volterra FD model considers aerodynamic nonlinearity effects in terms 
of higher-order Volterra kernels with nonlinear fluid memory effects; the Hybrid Volterra FD 
model takes into account the nonlinearity arising from the instantaneous angle of attack at 
low-frequency range as well as the nonlinear fluid memory and aerodynamic nonlinearity 
effects at the high-frequency range, and the Volterra ANN also considers the aerodynamic 
nonlinearity and nonlinear fluid memory effects for a whole range of frequencies in terms of 
higher-order Volterra kernels whose values are obtained based on the synaptic weights of the 
activated neurons. 

• Although the HNL model is partly able to reproduce the nonlinear behavior of bridge 
response while considering the effect of linear fluid memory in the high-frequency range, 
this model cannot be considered as fully nonlinear nor fully unsteady. On the contrary, the 
Volterra FD, Hybrid Volterra FD and Volterra ANN models fully characterize the bridge 
aerodynamic and aeroelastic behaviors under non-stationary winds while considering 
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aerodynamic and aeroelastic nonlinearities as well as the nonlinear fluid memory or unsteady 
effects on the buffeting response of the bridge. 

• As compared to the Volterra FD model, the Hybrid Volterra FD and Volterra ANN models 
yield more accurate buffeting analysis results of the example bridge because the Hybrid 
Volterra FD model considers the aerodynamic nonlinearity effects both in low- and high-
frequency ranges mainly arising from the instantaneous angle of attack of wind and 
amplitude-dependency of FDs, respectively. In the case of the Volterra ANN model, the ANN 
technique builds the mapping of the nonlinear relationship between incoming flow as inputs 
and bridge response as outputs through the associated synaptic weights carried by activated 
neurons, which simulate the buffeting response with relatively high accuracy. 

• The effects of non-stationary winds on the buffeting response of the bridge are more 
pronounced than the aerodynamic nonlinearities. 

• At high wind speed, i.e., 60 m/s, the Hybrid Volterra FD model produces the slightly larger 
RMS of the buffeting response as compared to the LU, HNL, Volterra FD and Volterra ANN 
models due to the influence of the changes in the mean angles of attack at high wind speed. 
This characteristic is successfully be modelled by using the Hybrid Volterra FD model. 
However, the difference in RMS results obtained from the Hybrid Volterra FD and Volterra 
ANN models is not so large because these both models consider the effects of aerodynamic 
nonlinearity, nonlinear fluid memory, and non-stationary winds on the buffeting response of 
the bridge accurately for this example bridge. However, the results of this example bridge 
may not simply be extended to other bridge structures which may require preliminary 
interrogation based on their aerodynamic and structural characteristics thoroughly. 
 

Future directions 
 
Through the present study, the current status of the analytical methods in the field of bridge 

aerodynamics was grasped. Extensions of the present study can be made in many ways. In this 
research work, the effects of non-stationary winds and aerodynamic nonlinearity along with the 
self-excited force effects on the buffeting response of the bridge have been clarified in the case of 
a three-dimensional FE model. Based on these observations and experience in implementing the 
developed aerodynamic wind load model in this dissertation, the following directions of future 
research are suggested: 

• To perform the flutter analysis for each aerodynamic wind load model including Volterra FD, 
Hybrid Volterra FD, and Volterra ANN models in order to elucidate the suitability of each 
aerodynamic model for checking the flutter critical wind speeds of the long-span bridges. 

• To pursue the analysis of full span bridge under buffeting loads with due attention to fluid-
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structure interaction using CFD applications. 

• To investigate the effects of time-varying coherence function on the buffeting response of 
the long-span bridges. 

• To try some other techniques for the identification of Volterra kernels and compare them 
with the present techniques used in this dissertation for accurate outcomes. 

• To conduct the buffeting analysis of bridge in time-domain in the wake of a hill considering 
the non-uniformity and non-stationarity of wind characteristics, i.e., time-varying mean wind 
speed, evolutionary power spectral density and time-varying coherence of wake flow at the 
bridge location. 

• To extend the proposed Volterra FD, Hybrid Volterra FD, and Volterra ANN models in order 
to simulate the effects of some other extreme wind events such as tornadoes, microbursts, 
and downbursts. In this case, a new framework is required to generate the tornado-induced 
wind speed while considering the time-varying coherence functions and EPSD to explicate 
the mechanism of tornado-structure interaction. 

• Current wind design guidelines in Japan suggest the 10 min averaging time to find the mean 
wind speed for the calculation of bridge response based on linear, stationary, and steady-
state model. However, the real phenomenon of typhoon-induced buffeting response may 
entail a different averaging time. Therefore, there is a need to optimize the best combination 
of averaging time and aerodynamic parameters for long-span bridges under real typhoon 
winds. 
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