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ABSTRACT 

Compaction is an important phenomenon that is related to the construction of soil 

structures. Regarding the concept of compaction, the compaction mechanisms and compacted 

soil behaviors shall be investigated through the mechanics of unsaturated soil which volume 

change and strength are varied by degree of saturation at a current packing density. Variations 

of compaction water content and compaction effort in the compaction control cause the 

difference of compacted soil behavior due to the variation of dry density and degree of 

saturation along the compaction curve. Especially, at a given dry density, the variation of degree 

of saturation are observed regarding the typical convex-upward compaction curve. By these 

reasons, the behaviors of compacted soils are also different through the compaction curve for 

each compaction effort, even at the same dry density. Since the behavior of compacted soil is 

influenced by mechanism of compaction from the beginning, therefore the heterogeneity of 

substance soil in the real condition of geotechnical work, which is able to trigger the strain 

localization failure may affect the behavior of compacted soil from compaction. Consequently, 

interpretation of compacted soil behavior shall be considered from its origin as the compaction 

process to its failure considering the heterogeneity of soil at the initial state. 

From the literature reviews, the behavior of soil during compaction and the strength of the 
compacted soil at the given prescribed initial states under long term shearing, heavy rainfall 

and fully undrained cyclic shearing have been study by many researchers in the framework of 

unsaturated soil both in experiments and simulations by constitutive models. However, the 

progressive life of the compacted soil with the variations of initial compaction control 

parameter from its origin through its failure has not been widely study yet. Moreover, some 

researchers utilized the Finite Element Method as the tool to imitate the real condition of 

compaction mechanism while at the same time the heterogeneity of soil at the initial state of 

compaction has not been considered yet. 

In this study, the critical state constitutive model for unsaturated compacted soil was 

proposed and validated. It is fabricated by incorporates: Bishop's effective stress; soil water 

characteristic curve considering the effect of hydraulic hysteresis and packing density; and state 

boundary surface that moves in volumetric direction due to variation in the degree of saturation. 

Subloading surface concept has also been applied to the model to consider the effect of packing 

density on the stress-strain characteristics. By the proposed model, a series of simulation 

starting from the beginning of compaction process through its failure was produced. The effect 

of compaction water content and compaction effort on the characteristic behavior of unsaturated 

compacted soil were investigated. Then, the responses of unsaturated compacted soil against 
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long term shearing, heavy rainfall and fully undrained cyclic shearing which rely on its 

characteristic after compaction were also interpreted. Regarding the simulation results, the 

proposed model is capable to generate the typical convex-upward compaction curves with 

maximum dry density at the optimum water content with the variation of the compaction control 

parameter. It is also able to predict the tendency of shear strength, volumetric behavior of 

compacted soil against considered loads through the compaction curve. 

In addition, the proposed model was utilized for the soil-water-air three-phases seepage-

deformation coupled FEM for the unsaturated porous media. By this tool, we could extend the 

capability of the model to investigate the compaction process from its origin considering the 

heterogeneity of substance soil which certainly find in the real condition of geotechnical work. 

In this study, the numerical investigations of 1-D static compaction mechanisms considering 

the effect of heterogeneities of dry density and degree of saturation at the initial state in 

unsaturated porous media were performed by the in-house coupled FEM program for 

unsaturated soil. The simulation results show that the material heterogeneities at the initial state 

including dry density and degree of saturation affect the average dry density at any considering 

stage of compaction excluding in the saturated state and it could be alleviated by the appropriate 

compaction control parameter specification. 

All in all, from the simulation results, we recommend that soil compacted at the optimum 

water content is suitable for the soil structures that confront with heavy rainfall and subjected 

to static monotonic shearing for strength and serviceability purposes. In case of the optimum 

water content could not be reached, the soil shall be compacted on the wet side of optimum to 

prevent the highly collapse compression due to soaking. In addition, aiming to achieve the 

optimum water content is also the rational way to increase the liquefaction resistance of the 

unsaturated compacted soil. Regarding the real condition of geotechnical works, using the 

appropriate compaction control parameter specification including high compaction effort or 

compaction water content on the wet side or at the optimum, the effect of heterogeneity after 

compaction to the localized failure of compacted soil when subjected to loadings could be 

alleviated. Importantly, engineer can specify the behavior of soil structure from compaction 

through a numerical method incorporating the proposed constitutive model for compaction. 
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CHAPTER 1   

INTRODUCTION 

1.1 RESEARCH BACKGROUND 

Compaction is an important phenomenon that is related to the construction of soil 

structures, including dams, levees, dikes, and barriers. Recently, a number of soil structures 

failed due to the severe rainstorms, e.g., failure of Sanyo Expressway embankment due to 

Typhoon No.14 (Nabi) in Japan (2005), and earthquakes, e.g., Dateshita landslide due to 

Sanriku Minami earthquake in Japan (2003). Low collapse resistance of compacted soil due to 

the inappropriate specification of compaction control parameter is one of the reasons of the 

failures. Therefore, trying to understand the compacted soil behaviors is necessary for the 

design and construction of the soil structures. 

Regarding the typical convex-upward compaction curve, the characteristics of the soils 

compacted on the dry side of optimum and the wet side of optimum are different. This is 

because the variations of compaction water content and compaction effort affect the particle 

reorientation degrees. They cause the variations of dry density and degree of saturation of the 

compacted soils through the compaction curve (Marwick, 1945; Lambe, 1958; Seed & Chan, 

1959; Lambe & Whitman, 1969 and Koga, 1991), especially the variation of degree of 

saturation at a given dry density. As the kernel concept of soil compaction is to repel the void 

air for increasing the dry density without changing the water content, therefore the compaction 

mechanisms and the compacted soil behaviors shall be investigated through the mechanics of 

unsaturated soils. In the unsaturated soil framework, volume change and strength of unsaturated 

soil are provided through the bonds between particles maintained by capillary tension owning 

to the variations of degree of saturation at a current packing density (Fredlund, 2006). 

Therefore, the behaviors of compacted soils such as the shear strength before soaking (Seed & 

Monismith, 1954; Leonard, 1955; Bell, 1956; Yoder & Witezak, 1975; Essigman, 1976 and 

Koga, 1991), the shear strength after soaking (Wilson, 1952 and Tatsuoka & Shibuya, 2014), 

the volumetric change due to soaking (Holtz & Gibbs, 1956; Yoder & Witezak, 1975; Alonso 

et al., 1987; Alonso et al., 2013 and Tatsuoka & Shibuya, 2014) and the liquefaction resistance 

(Zhang et al., 2016 and Komolvilas & Kikumoto, 2017) are also different through the 

compaction curve for each compaction effort, even at the same dry density. Consequently, we 
can see from the studies of many researchers that the behaviors of compacted soils are 

dominantly influenced by compaction mechanism from the beginning. Moreover, the 

heterogeneity of substance soil at the beginning in the real condition of geotechnical work, 
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which is caused by either naturally occurring (e.g., typical soil deposit and seasoning ground 

water level) or man-made (e.g., variation of soil preparation for the fill work and effect of 

compaction quality), could trigger the strain localization failure under the loadings (Song, et 

al., 2017). That means the heterogeneity at the initial state of soil may affect the behavior of 

compacted soil from compaction. Consequently, interpretation of compacted soil behaviors 

shall be considered from the origin as the compaction process and heterogeneity of soil to the 

strengths and the failures against the considered loadings. 

From the literature reviews, the soil mechanism during compaction has been studied by 

many researchers through both experiments and numerical simulations in order to develop the 

constitutive models for the compaction of unsaturated soils (Tarantino & De Col, 2008; 

Kikumoto et al., 2010 and Alonso et al., 2013). In addition, the strengths and the failures of 

compacted soils under the various loadings, including the long term shearing (Sivakumar & 

Wheeler, 2000; Gallipoli et al., 2003a; Gallipoli et al., 2003b; Sun et al., 2007b; Marinho et al., 

2013 and  Zhou & Sheng, 2015), the hydraulic collapse due to the heavy rainfall (Wheeler & 

Sivakumar, 2000; Gallipoli et al., 2003a; Gallipoli et al., 2003b and Sun et al., 2007b and Zhou 

& Sheng, 2015) and the liquefaction due to the fully undrained cyclic shearing (Zhang et al., 

2016 and Komolvilas & Kikumoto, 2017), have also been studied through the combination of 

experiments and simulations. However, the progressive life of the compacted soil with the 

variations of initial compaction control parameter from its origin through its failure has not 

been widely studied yet. This is because the long duration of conducting the experiment in the 

unsaturated state and the complexity of the unsaturated constitutive model. 

Moreover, some researchers have utilized the Finite Element Method or FEM as a tool to 

imitate the real condition of soil. For the compaction mechanism, using coupled FEM for 

unsaturated soil, one-dimensional (1-D) static compaction mechanisms (Kawai, et al., 2012 and 

Kawai, et al., 2014) and the distributions of dry density and degree of saturation after 

compaction (Kawai, et al., 2016) were numerically investigated. However, the heterogeneity of 

soil at the initial state of compaction has not been considered yet. In another way, using coupled 

FEM for unsaturated soil, many researchers have found that the material heterogeneities, such 

as density and degree of saturation, play the important role in triggering strain localization in 

unsaturated porous media (Song, et al., 2012; Borja & Song, 2014; Song, 2014; Song, et al., 

2017 and Likos, et al., 2019). However, their main purpose is to interpret the inception of strain 

localization in unsaturated soils only. 

In this study, the critical state constitutive model for unsaturated compacted soil is 

proposed and validated. It is fabricated by incorporating: Bishop's effective stress; soil water 

characteristic curve considering the effects of hydraulic hysteresis and packing density; and 
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state boundary surface that moves in volumetric direction due to variation in the degree of 

saturation. Subloading surface concept has also been applied to the model to consider the effect 

of packing density on the stress-strain characteristics. By the proposed model, series of 

simulations starting from the beginning of compaction process through the failures of 

compacted soils are produced. The effects of compaction water content and compaction effort 

on the characteristic behavior of unsaturated compacted soil are investigated. Then, the 

responses of unsaturated compacted soils against long term shearing, heavy rainfall and fully 

undrained cyclic shearing which rely on its characteristic after compaction are also interpreted.  

In addition, in this study, the proposed model is utilized for the soil-water-air three-phases 

seepage-deformation coupled FEM for the unsaturated porous media. By this tool, we could 

extend the capability of the model to investigate the effect of heterogeneity of substance soil in 

compaction which certainly find in the real condition of geotechnical work. In this study, the 

numerical investigations of 1-D static compaction mechanisms considering the effect of 

heterogeneities of dry density and degree of saturation at the initial state in unsaturated porous 

media is performed by the in-house coupled FEM program for unsaturated soil.  

Finally, with the proposed constitutive model for unsaturated soil and soil-water-air three-

phases seepage-deformation coupled FEM for the unsaturated porous media, we aim to predict 

the behavior of soil structure from compaction considering the heterogeneity of the initial state 

of soil for imitating the real condition of soils. Afterwards, we would like to recommend the 

optimum compaction control parameter specifications through the compaction curve for the 

soil structures under the service and the catastrophic (e.g., heavy rainfall and liquefaction) 

situations and the heterogeneity alleviation after compaction. The quality control of soil 

preparation for compaction test is also recommended.  

1.2 RESEARCH OBJECTIVES.  

The main objective of this research is to predict the behavior of soil structure from 

compaction through a numerical method incorporating the proposed constitutive model for 

compaction. 

Sub-objectives are indicated below in order to response the main research objective. 

1) To propose the coupled hydro-mechanical constitutive model for the unsaturated 

compacted soils and the simulation algorithm through the lifetime of compacted soil. 

2)  To predict the compaction mechanism and characteristic behaviors of compacted 

soil through the lifetime of compacted soil by the proposed constitutive model. 

a. To study the effects of compaction water content and compaction effort on the 

characteristic behaviors of compacted soils. 
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b. To study the characteristic behavior of unsaturated compacted soils under i) 

fully drained monotonic static loading, ii) hydraulic collapse and iii) fully 

undrained cyclic static loading. 

3) To propose a soil-water-air three-phases seepage-deformation coupled FEM 

incorporated the proposed constitutive model for compaction. 

4) To predict the behaviors of soil structure from compaction by incorporating the 

heterogeneity of substance soil for imitating the real condition of geotechnical work 

using the proposed coupled FEM. 

5) To recommend the optimal specification of compaction control parameter for each 

construction purpose of the soil structure, including static shearing, cyclic shearing 

and heavy rainfall resistances, and for heterogeneity alleviation.  

The main objective could be achieved by the accomplishment of the sub-objectives as 

summarized in the framework of dissertation (Section 1.3). 

1.3 FRAMEWORK OF THE DISSERTATION 

The synopsis of the research work in each chapter is summarized here in order to illustrate 
the framework of this study. 

Chapter 1 Introduction 

This chapter describes the background, objectives and framework of this research. 

Chapter 2 An elastoplastic constitutive model for unsaturated soils 

In this chapter, concept of the proposed elastoplastic constitutive model for unsaturated 

soil (Kikumoto et al. (2010) and Komolvilas & Kikumoto (2017)) used in this study is 

thoroughly explained. In addition, the constitutive relationship for each considering testing 

condition, including adjusting water content, compaction, monotonic shearing, fully undrained 

cyclic loading and hydraulic collapse, which is the combination between the rate form of 

elastoplastic stress-strain relationship of unsaturated soil and the drainage conditions are also 

presented. 

Chapter 3 Parameter calibration and model validation of constitutive model for unsaturated 

soils 

In this chapter, the series of experimental tests conducted by Koike (2010) on the 5:5 

mixed Toyoura sand and Fujinomori clay by weight which is related to the compaction, 

shearing and soaking processes are briefly described. The calibrated constitutive model 

parameters and soil water characteristic curve parameters of the considered soil are used in the 

model validation through the experiments that was conducted by Koike (2010). The ability of 
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the constitutive model for unsaturated soils on the prediction of the compaction, the shearing 

and the soaking process of unsaturated compacted soils are presented. 

Chapter 4 Interpretation of compacted soil behaviors through the constitutive model for 

unsaturated soils 

In this chapter, recent studies of many researchers about the characteristics of compacted 

soil at the origin, the strength and the failure of compacted soils under the various loadings, 

including the long term shearing, the hydraulic collapse due to the heavy rainfall, the shear 

strength after soaking and the liquefaction due to the fully undrained cyclic shearing are 

summarized. Then, by the proposed model, the compaction mechanisms and the compacted soil 

behaviors under the considered various loads are investigated and discussed under the proposed 

simulation algorithm through its lifetime of compacted soil. The ability of the proposed model 

for the predicting the progressive life of compacted soil is illustrated. The characteristic of 

compacted soil behaviors along the compaction curve are also interpreted and recommended as 

the optimal specification of compaction control parameter for the considering loading case in 

the continuum mechanics. 

Chapter 5 Finite element analysis for unsaturated soils 

In this chapter, general steps of Galerkin’s FEM are briefly described. Follow the general 

steps of FEM, we generate the in-house FEM programs by the assumption of 2-D plain strain 

condition starting from the simple algorithm of saturated soil through the complicated algorithm 

of unsaturated soil (passive air pressure). By this assumption, the applications of the program 

are limited for the loading conditions, oedometer compression and biaxial shearing, and 

drainage conditions, fully drained and exhausted air – undrained water. Then, the in-house FEM 

programs are validated through the exact solution or the proposed constitutive model in order 

to ensure their algorithm and accuracy for predicting the behavior of saturated and unsaturated 

soils. 

Chapter 6 Effect of heterogeneity in 1-D static compaction 

In this chapter, recent studies of many researchers about the investigations of the 

compaction mechanism and heterogeneity effect at the initial state of unsaturated soil by 

coupled FEM algorithms for unsaturated soil are summarized. Then, in the scope of this study, 

the numerical investigations considering the heterogeneity effects of unsaturated soil at the 

initial state, including dry density and degree of saturation, on 1-D static compaction 

mechanism are performed using 2-D soil-water-air three-phases seepage-deformation coupled 

FEM (passive pore air pressure) as proposed in Chapter 5. The effects of heterogeneity at the 

initial state, including the arrangement of initial element dry density and the variation of initial 
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element dry density, on the characteristic behavior of compacted soil are investigated. 

Moreover, the effects of compaction water content and compaction effort along the compaction 

curve on the variation of heterogeneity during compaction are also illustrated. Finally, the 

optimum specification of compaction control parameter for the considering soil structure 

construction purpose and heterogeneity alleviation are recommended. The implementation to 

the quality control of soil preparation for compaction test in the laboratory are also explained. 

Chapter 7 Concluding remarks and future research 

In this chapter, overall activities, result and discussing of the study are summarized. Lastly, 

we would like to point out the gained benefits from the study and the improvement of the current 

study for the future research. 



   

CHAPTER 2   

ELASTOPLASTIC CONSTITUTIVE MODEL FOR UNSATURATED SOILS 

Since the compaction shall be discussed through the mechanics of unsaturated soil, the 

concept of coupled hydro-mechanical elastoplastic constitutive model for unsaturated soils 

(Kikumoto et al., 2010 and Komolvilas and Kikumoto, 2017) is proposed in this study. In 

addition to the model’s capability for the prediction of unsaturated soil behaviors, the extension 

concept of soil water characteristic curve by incorporating the effects of density and hysteresis 

(Section 2.2), is also proper to predict the unique mechanism of compaction, e.g., the effect of 

density on the post compaction suction (Tarantino and Tombolato, 2005 and Tarantino and De 

col, 2008) and the imitation of the realistic behavior of compaction by compaction and 

unloading process.  

 In the big picture (Figure 2-1), the proposed coupled hydro-mechanical elastoplastic 

constitutive model for unsaturated soils is fabricated by incorporating: Bishop's effective stress; 

soil water characteristic curve considering the effects of hydraulic hysteresis and packing 

density; and state boundary surface that moves in volumetric direction due to variation in the 

degree of saturation. Subloading surface concept has also been applied to the model to consider 

the effect of packing density on the stress-strain characteristics. The proposed model assumes 

associated flow rule and employs a conventional nonlinear elastic relationship with a swelling 

index k and Poisson’s ratio ne in the same way as modified Cam-clay. 

 

Figure 2-1 Basic concept of constitutive model for unsaturated soils. 
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2.1 EFFECTIVE STRESS 

In unsaturated soils, the porous media filled with two fluid phases (water and air), the 

single effective stress !!! is defined as: 

 
!!! = ! − $%"&'# + %")'$*+	 (2-1) 

where ! denotes the Cauchy’s total stress tensor; %"& and %")	are the scaling effects of pore air 

pressure '# and pore water pressure '$, respectively, on the overall behavior (Khalili et al., 

2005). 

The Bishop’s effective stress tensor !′′ (Bishop, 1959) which the scaling effects of water 

and air phases are represented by effective stress parameter . (lying in the width range of 0 for 

fully–dried and 1 for fully–saturated) and 1 − ., respectively, is given as: 

 !!! = ! − {(1 − .)'# + .'$}+ = (! − '#+)4556557
%89:

+ . ('# − '$)4556557
&

+		
(2-2) 

where ; represents suction ('' − '(); !)*+ is net stress tensor; and !!! reduces to Terzaghi’s 

effective stress !!(= ! − '$+) at the saturated state. 

Regarding the experimental results using volume change and shear strength processes, 

measured effective stress parameter . evidences a trend that follows the variation of degree of 

saturation <, as shown in Figure 2-2 (Bishop and Donald, 1961; Bishop et al., 1960; Jennings 

and Burland, 1962). Consequently, a uniqueness of the relationship between . and <, which 

was suggested by Schrefler (1984) as shown in Equation (2-3) is incorporated to the Bishop’s 

effective stress in this study for the sake of simplicity. 

 . = <, 	 (2-3) 

 

Figure 2-2 The relations of effective stress parameter and degree of saturation for various soil 
type (Jennings and Burland, 1962)  
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Substitute Equation (2-3) into Equation (2-2), Bishop’s effective stress can be written as: 

 !!! = ! − (1 − <,)'#+ − <,'$+ = (! − '#+)4556557
%89:

+ <, ('# − '$)4556557
&

+		 (2-4) 

By the incorporation, the interpretations of effective stress for critical state line or CSL 

highlight a uniqueness of CSLs regardless of the degree of saturation as reported by Nuth and 

Laloui (2008). They observed the uniqueness of CSL by the reinterpretation of the experiment 

data conducting by Sivakumar (1993) and Geiser et al. (2006) using the invariants of Bishop’s 

effective stress =′′ >=
-./??

0
@  and A B= C0

1
‖E‖ = C0

1
FG −

-./

0
+FH  with . = <, . This 

encourages simplification of parameter determination, assuming that critical state stress ratio 

I for saturated parameters are sufficient to describe both saturated and unsaturated critical state 

behaviors. 

In conclusion, the Bishop’s effective stress is selected as a single effective stress for the 

proposed model of unsaturated soil in this study due to the following reasons;  

• Averaging the stresses over a representative elementary volume containing all 
constituents: air, water and solid grains.  

• Simple transition from the unsaturated state to the fully saturated state by the function 
of effective stress parameter that lies in the range of 0 to 1. 

• The simplification of parameter determination due to a uniqueness of CSLs 
regardless of the degree of saturation. 

2.2 SOIL WATER CHARACTERISTIC CURVE (SWCC) 

In this study, a rational soil water characteristic curve or SWCC, which is extended from 

a classical SWCC (van Genuchten, 1980) to incorporate the effects of density and hysteresis, 

is applied into the proposed model for predicting the hydraulic behavior of unsaturated soils.  

First, the effective degree of saturation <* is defined for the possible <, ranging from 0 to 

1 as: 

 
<* =

<, − <23)
<2#4 − <23)

	 (2-5) 

where <2#4 and <23) are the maximum and minimum degrees of saturation, respectively. In 

this study, using the classical SWCC model which was proposed by van Genuchten (1980), <* 

in the single-value function of suction can be written as: 

 <* = <*(;) = {1 + (J;))}52	 (2-6) 

where J, n, and K(= 1 −
6

)
) are the material parameters. 
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Figure 2-3 Effect of density on SWCCs : the experimental data during (a) the compression 

test under constant suction (Sun et al. 2007b) and (b) the compaction test (Tarantino and 

Tombolato, 2005) 

Regarding the experimental results which were conducted by many researchers, they 

indicated that the specific volume affects the locations of main SWCCs where the denser soils 

tend to retain higher <, as illustrated in Figure 2-3(a) for the constant suction case during fully 

drained compression test (Sun et al., 2007b) and Figure 2-3(b) for the suction reduction during 

compaction (Tarantino and Tombolato, 2005 and Tarantino and De col, 2008). Therefore, the 

classical SWCC model is extended using a modified suction ;∗, where the effect of density is 

scaled by the volume of voids as shown by: 

 

;∗ = ; B
L − 1
L,*8 − 1

H
99

	 (2-7) 

where L is the specific volume, L,*8 is a reference specific volume at which ;∗ is equal to the 

matric suction ;, and M* is a parameter controlling the effect of specific volume. Thus, using 

;∗, Equation (2-6) is rewritten as: 

 <* = <*(;∗) = {1 + (J;∗))}52	 (2-8) 

Combining the Equations (2-5) and (2-8), the general equation for SWCCs which is the 

value of degree of saturation as the function of modified suction can be written as: 

 <, = <23) + (<2#4 − <23)){1 + (J;∗))}52	 (2-9) 

Regarding the experimental results and interpretation of many researchers (e.g., Sun et al., 

2007a; Tsiampousi et al., 2013 and Lu and Khorshidi, 2015), they have indicated the trace 

Experimental data 

(a) (b) 
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hysteric paths of SWCCs according to drying and wetting cycles. Therefore, using Equation 

(2-9), the main drying and wetting curves are defined, which gives the maximum and minimum 

bounding values of the degree of saturation, <.d and <.w, respectively, as: 

 
<,< = <23) + (<2#4 − <23)){1 + (J<;∗))}52; 		O = P ∨ R	 (2-10) 

where P and R denote the main drying and wetting curves, respectively. The main drying and 

wetting curves are schematically illustrated in Figure 2-4. A unified set of parameters is applied 

for S and K, while J=  and J$  are the parameters for the main drying and wetting curves, 

respectively. Regarding the typical SWCCs as observed in the experiments a value of J= 	is 

defined as the smaller value than J$	which results in <,=(;∗) ≥ <,$(;∗) .  

In order to indicate the current state of degree of saturation in the boundary of main 

SWCCs, Figure 2-4, a ratio U> of internal division ranging from 0 (<, = <,$) to 1 (<, = <,=) can 

be defined as a state parameter by:  

 
U> =

<, − <,$

<,
= − <,

$	 (2-11) 

Therefore, the current state of degree of saturation in the function of modified suction in the 

boundary of main SWCCs can be written as: 

 

Figure 2-4 Main wetting and drying curves, and definition of state parameter Ih for the 
hysteresis effect. 

 
 

<, = U><,= + (1 − U>)<,$	 (2-12) 

The time derivative of degree of saturation in the function of Uℎ, ; and L  S.̇(Uℎ, ;, L) is 

given as follows: 

 
<,̇ =

Y<,
YU>

U>̇ +
Y<,
Y;

;̇ +
Y<,
YL

L̇	 (2-13) 
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In Equation (2-13), the time derivatives of suction ;̇ and specific volume L̇ are directly 

evaluated by the stress-strain relationship of the unsaturated model. While the time derivative 

of U> is depend on the current state of SWCCs. U> monotonically increases to 1 (decreasing <. 

or drying) tills the current state approaches the main drying curve, and it monotonically 

decreases to 0 (increasing <. or wetting) tills the current state approaches the main wetting 

curve. Thus, an evolution law for U> needs to satisfy the following requirements. 

 

U>̇ Z
> 0
< 0
= 0	

		
Rℎ_S
Rℎ_S
_`;_

		
<,̇ < 0	aSP	0 ≤ U> < 1
<,̇ > 0	aSP	0 < U> ≤ 1

	
	 (2-14) 

A simple, third–order evolution law which satisfies this requirement is employed herein: 

 
U>̇ =

PU>
P<,

<,̇ 		Rℎ_c_		
PU>
P<,

= d
−M>(1 − U>)

0

−M>U>
0 		Rℎ_S

Rℎ_S
		
<,̇ ≤ 0
<,̇ > 0

	 (2-15) 

where M> is the material constant controlling the rate of evolution of U>.  

Finally, substitution (2-15) into Equations (2-13), the time derivative of degree of 

saturation S.̇ is rewritten by: 

 

<,̇ =

?@r

?&
;̇ +

?@r

?A
L̇

1 −
?@r

?Bh

=Bg

d@r

	 (2-16) 

In the simulation, from Equation (2-10) and Equation (2-12), the gradients of <, with the 

control parameter Uℎ, ; and L in Equation (2-13) are written by Equations (2-17), (2-18) and 

(2-19), respectively, using the chain rule as: 

 Y<,
YU>

= <,= − <,$	 (2-17) 

 
Y<,
Y;

=
Y<,
Y;∗

Y;∗

Y;
= B

Y<r
Y<,

=

P<,=

P;∗
+
Y<r
Y<,

$

P<,$

P;∗
H
Y;∗

Y;
	 (2-18) 

 
Y<,
YL

=
Y<,
Y;∗

Y;∗

YL
= B

Y<r
Y<,

=

P<,=

P;∗
+
Y<r
Y<,

$

P<,$

P;∗
H
Y;∗

YL
	 (2-19) 

where  

 
Y<r
Y<,

=

P<,=

P;∗
= U>(<2#4 − <23))(−K)h1 + iJ=;∗j

)
k
5256

J=
)
S;∗)56	 (2-20) 

 Y<r
Y<,

$

P<,$

P;∗
= (1 − U>)(<2#4 − <23))(−K){1 + (J$;∗))}5256J$

)S;∗)56	 (2-21) 
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Y;∗

Y;
= B

L − 1
L,*8 − 1

H
99

	 (2-22) 

 Y;∗

YL
=

;M*
(L − 1)

	
Y;∗

Y;
	 (2-23) 

2.3 STRESS–STRAIN RELATIONSHIP OF ELASTOPLASTIC UNSATURATED 
SOIL 

In this study, the proposed elastoplastic stress–strain relationship for unsaturated soils is 

thoroughly described. Considering the small strain level, an additive decomposition of the total 

strain rate tensor is assumed in this study as written by: 

 
l̇ = l*̇ + lḊ		 (2-24) 

where l*̇ and lḊ are elastic and plastic strain rate tensors, respectively. 

2.3.1 Elasticity 

 In critical state theory, the elastic volumetric behavior is assumed as the linear relationship 

in L − ln =" plane. For a very small increment of effective mean stress, using the Taylor’s 

expression, the variation of specific volume in elastic region PL* can be written as: 

 
PL* = −p

P=!!

=!!
		 (2-25) 

where κ is the slope of the swelling line in L − ln =" plane. Regarding the relation between 

specific volume and volumetric strain, from Equation (2-25), a nonlinear elastic bulk modulus 

q is given by: 

 
q =

LE
p
=!!		 (2-26) 

Assuming Poisson’s ratio r* is constant, the shear modulus s is given by 

 
s =

3q(1 − 2r*)

2(1 + r*)
		 (2-27) 

Thus, the isotropic elastic stress-strain relationship can be written by 

 
!!!̇ = vq+⊗ + + 2s xy −

1
3
+⊗ +z{

455555555565555555557
Fe

: l*̇ 		 (2-28) 

where !!!̇  is the rate of Bishop’s effective stress tensor and ~e is the elastic stiffness tensor. 

2.3.2 State boundary surface 

In the critical state theory, for the saturated normal consolidated (NC) soil, the isotropic 

normal consolidation line or NCL which is caused by the isotropic compression and the critical 
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state line or CSL which is caused by the shearing to the critical state (no change in imposed 

stresses or volume of the soil) are assumed as the linear relationship in L − ln =′ plane with the 

compression index � as the slope. The equations of NCL and CSL can be written by Equation 

(2-29) and Equation (2-30), respectively: 

 
L = Ä − �`S	(

=!

Å#
)	 (2-29) 

 
L = Ç − �`S	(

=!

Å#
)	 (2-30) 

where =! >=
-.%?

0
@ and É′ >=

H

D!
@ are the mean effective stress and the effective stress ratio given 

by Cauchy’s effective stress tensor !!(= ! − '(+) at the saturated state, respectively. At the 

saturated state under atmospheric pressure (=! = Å#) in Figure 2-5, Ä and Ç are the reference 

specific volumes on the NCL at isotropic stress (É! = 0) and on the CSL at critical state (É! =

I), respectively. 

The loosest specific volume surface along and on the NCL and CSL which is known as 

the State Boundary Surface or SBS is uniquely defined and linearized in the `S=′ − Ñ(É′)– L 

plane (Figure 2-5). When the current state of soil is a point below the SBS, then soil behavior 

is elastic. While, soil states on the SBS indicate yielding, and it is impossible for the states 

equivalent to points above the SBS. The reference specific volume (=! = Å#) on SBS could be 

linearly interpolated between Ä (É! = 0	on NCL) and Ç (É! = I on CSL). Then, the specific 

volume on SBS at any É!	for saturated soil L&I&
&#+	can be written by: 

 
L ≤ L&I&

&#+ = 	Ü − � `S
=′
=#
− (Ü − Ç)Ñ(É′)		 (2-31) 

where Ñ(É′) is a monotonic increasing function of É′ that satisfies 0 at the isotropic stress state 

(É! = 0) and 1 at the critical state (É! = á). The simplest form of Ñ(É′) is a linear function 
J?

K
, 

which was employed in the original Cam clay model (Roscoe et al. 1958). In this study, we use 

a nonlinear function based on modified Cam-clay (Roscoe & Burland, 1968) as written by: 

 

Ñ(É′) =
`S v1 + >

J!

K
@
1

{

`S 2
		

(2-32) 

Capturing the behavior of unsaturated soils, in addition to defining the SBS using the 

Bishop’s effective stress !!! as explained in Section 2.1, assuming the movement of specific 

volume of unsaturated NC soils in the volumetric direction by the variation of degree saturation 

is basically applied for the constitutive model of unsaturated soil. This assumption relies on the 

experimental evidences that (i) the current loosest state of specific volume of unsaturated soils 
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tend to retain larger volume than the saturated soil at the same stress (Jennings and Burland, 

1962), (ii) the critical state specific volume of unsaturated soils tend to be larger than the 

saturated soil (Sivakumar 1993), (iii) the variation of degree of saturation (wetting) affects the 

volumetric response of unsaturated soil (Jennings and Burland, 1962; Sun et al., 2007c and 

Tadepalli and Fredlund, 1991) and (iv) the collapsed sample follows the stress-strain path of 

the initially saturated sample in compression once it wet (Jennings and Burland, 1962 and Sun 

et al, 2007c). For this assumption, we assume that the specific volume of unsaturated NC soils 

increases by Y(Sr) with decreasing the degree of saturation in the volumetric directions and 

also in the reverse direction.  

Therefore, using à(<.) , the specific volume on the state boundary surface LLML  of 

unsaturated soils is defined as: 

 
L ≤ L&I& = Ü − � `S

=′′
=#
− (Ü − Ç)Ñ(É!!)

4555555556555555557
Aâäâ
â&:

+ à(<,)		 (2-33) 

where η!!  is the Bishop’s effective stress ratio and Y(Sr) is a non–negative simplest linear 

function of the degree of saturation <., which monotonically decreases to 0 as <. approaches 1 

(fully saturated state) which is introduced as: 

 à = å(1 − <,)	 (2-34) 

where å is a material parameter representing the volumetric distance between the SBSs of 

fully–dried and fully–saturated states in the L  direction. Using this function, in the fully 

saturated state (<. = 1), Equation (2-33) for unsaturated state can simply transit to Equation 

(2-31) for the saturated stated.  

 

Figure 2-5 State boundary surface for unsaturated soils: loosest specific volume defined by 
p", q and Sr. 
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In the next section, the yield function f for unsaturated soil is given considering this 

movement of the proposed state boundary surface. 

2.3.3 Yield function, plastic potential, and flow rule. 

Since the soil states on the SBS and below the SBS indicate the pure plastic and elastic 

behaviors, respectively. The difference ç between the specific volume on the SBS and the 

current specific volume under the current mean effective stress p'', deviator stress q, and degree 

of saturation <, (Figure 2-5) is applied as a measure of density (Kikumoto et al. 2010). A non-

negative ç can be written by: 

 
ç = L&I& − L(≥ 0)	 (2-35) 

Below the SBS, although the classical critical state models predict purely elastic behavior 

while at the same time the actual soils exhibit elastoplastic irreversible deformation. Thus, a 

subloading (bounding) surface (Hashiguchi and Ueno 1977; Dafalias and Popov 1975) is used 

to describe a smooth transition from elastic to plastic behavior. The normal yield (bounding) 

surface, éè is defined by: 

 
éè = L − L&I&(≤ 0)	 (2-36) 

where the parameter, Ω, given by equation (2-35) is used as a state variable to scale the distance 

from the current state to the normal yield (bounding) surface. From Equations (2-35) and (2-36), 

the yield function for unsaturated soils is derived: 

 
é = L − L&I& + ç ≡ 0	 (2-37) 

where the function é is identically equal to zero from Equation (2-35). 

The variables (L, =!!, É!!, <, , ç)  at the initial state and the current state are hereafter 

denoted by (LE, =E
!!, ÉE

!!, <,E, çE)  and (L, =!!, É!!, <, , ç) , respectively. The variation in the 

specific volume from the initial to the current state, ΔL(= L − LE), can be decomposed into the 

elastic and plastic variations in the specific volume, ΔL* and ΔLD when ìAE
D (= 0): 

 
îL(= L − LE) = B−p `S

=′′
=E
!!H4556557

NA9

+ i−LEìA
Dj45657

NAï

	 (2-38) 

where ìA
D(= tróO) denotes plastic volumetric strain. From Equation (2-33) and (2-35), the 

initial specific volume LE on the left hand side in Equation (2-38) can be written as: 

 
LE = Ü − � `S

=E
!!

=#
− (Ü − Ç)Ñ(ÉE

!!) + àE − çE	 (2-39) 

Substituting Equations (2-33), (2-38) and (2-39) into the Equation (2-37), the yield 

function for unsaturated soil can be rewritten as: 
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éi=!!, É!!, ìA

D, à, ç	j = (� − p) `S
=′′
=E
!! + (Ü − Ç){Ñ(É

!!) − Ñ(ÉE
!!)}

455555555555565555555555557
P(%)

																	

− $LEìA
D + (à −àE) − (ç − çE)*455555555565555555557

STUò
ï
,W,XY

	
(2-40) 

Unsaturated soils are assumed to obey associated flow (normality condition) so that the 

plastic potential, ô, is given by the same function, é, in the stress space. Then the direction of 

the plastic strain rate, lḊ, is given by 
?8

?%??
.: 

 
lḊ = 〈õ̇〉

Yé
Y!!!

	 (2-41) 

As the soil does not exhibit any dilation at the critical state (É = á), following condition 

is obtained: 

 Yé(=′′, A)

Y=′′
ù
JZK

= 0	 (2-42) 

From Equations (2-32) and (2-40), Equation (2-42) reduces to: 

 
Ü − Ç = `S 2 (� − p)	 (2-43) 

and the yield function (and plastic potential function) is as follows. 

 

éi=!!, É!!, ìA
D, à, ç	j(= ô) = (� − p) `S

=′′ v1 + >
J??

K
@
1

{

=E
! 	v1 + >

Jû
??

K
@
1

{
45555555655555557

P(%)

																																			

− $LEìA
D + (à −àE) − (ç − çE)*455555555565555555557

STUò
ï
,W,XY

≡ 0	

(2-44) 

Here, ü(G) is the yield stress function and †iì[
D, à, çj is the isotropic hardening function. 

Note that the function f identically equals zero regardless of plastic deformation volumetric 

strain. The function f satisfies the necessary condition that the yield function is a non–positive, 

convex function of stress !!! and hardening parameters ì[
D, à, and ç. 

2.3.4 Loading / unloading conditions 

 In any loading path, the Kuhn–Tucker conditions (Kuhn and Tucker, 1951) as shown in 

Equation (2-45) must be satisfied. 

 
é ≤ 0;	õ̇ ≥ 0;	õ̇é = 0	 (2-45) 

As the yield function applied in the proposed model (Equation (2-44)) is identically equal 

to zero, the loading conditions can be simplified to: 
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õ̇ ≥ 0	 (2-46) 

where Λ̇ = 0 corresponds to elastic behavior (neutral; unloading) and plastic deformation is 

exhibited for Λ̇ > 0 (loading). 

2.3.5 Consistency condition and hardening laws 

 When soil exhibits elastoplastic deformation, the consistency condition that the time 

derivative of the yield function éi!!!, ì[
\, à, çj is zero needs to be satisfied. 

 
é̇ =

Yé
Y!!!

:!!!̇ +
Yé

Yìv
p ìv

ṗ +
Yé
Yà

à̇ +
Yé
Yç

ç̇ = 0	 (2-47) 

Hardening rule for the plastic volumetric strain, ìA
D, is given as follows. 

 Yé

Yìv
p ìv

ṗ = −LE〈õ̇〉¢c
Yé
Y!!!

	 (2-48) 

Hardening and softening also occur due to the decrease and increase in the degree of 

saturation, respectively, from Equation (2-34). 

 Yé
Yà

à̇ = å<,̇ 	 (2-49) 

As ç is the parameter scaling the volumetric distance from the current state to the normal 

yield (bounding) surface, it must decrease with the development of plastic deformation and 

converge to 0. So, in case a soil exhibits plastic deformation (loading), a simple law enabling 

such evolution of ç is given as: 

 Yé
Yç

ç̇ = −£ç|ç|LE•lḊ•					iõ̇ > 0j	 (2-50) 

where £ is a parameter controlling the rate of the evolution of ç.  

In case the soil exhibits purely elastic deformation (unloading or neutral), the consistency 

condition (Equation (2-47)) still needs to be satisfied because the yield function, é, is identically 

equal to zero (equation (2-37)). Consequently, the evolution law of ç during unloading or 

neutral conditions is obtained: 

 
ç̇ = −

Yé
Y!!!

: !!!̇ − å<,̇ 						iõ̇ = 0j	 (2-51) 

2.3.6 Elastoplastic tensor 

 From Equations (2-24), (2-28) and (2-41) the stress rate tensor is given as: 

 
!!!̇ = ~e: (l̇ − lṗ) = ~e: xl̇ − 〈õ̇〉

Yé
Y!!!

z	 (2-52) 
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Substituting Equation	(2-52) and  the evolution laws of	the hardening parameters given by 

Equations (2-48), (2-49) and (2-50) in to the consistency condition given by Equation (2-47), 

the magnitude of the plastic strain rate, 〈Λ̇〉 is given as: 

 

〈õ̇〉 = 〈

?8

?%??
: ~e: l̇ + å<,̇

LE¢c
?8

?%??
+ £ç|ç|LE F

?8

?%??
F4555555556555555557

_ï

+
?8

?%??
: ~e:

?8

?%??

〉	 (2-53) 

where ID  is the plastic modulus. Finally, the rate form of the elastoplastic stress–strain 

relationship is given. 

 

!!!̇ = ~*: l̇ − 〈

?8

?%??
: ~e: l̇ + å<,̇

ID +
?8

?%??
: ~e:

?8

?%??

〉~*:
Yé
Y!!!

	 (2-54) 

When the rate of the plastic multiplier Λ̇ is positive, the rate form of the elastoplastic 

stress–strain relationship Equation (2-54) can be converted to Equation (2-55) as: 

 

!!!̇ = ¶~e −
~e:

?8

?%??
⊗

?8

?%??
: ~e

ID +
?8

?%??
: ~e:

?8

?%??

ß
4555555556555555557

Fep

:l̇ − ¶
~e:

?8

?%??
å

ID +
?8

?%??
: ~e:

?8

?%??

ß
455555565555557

FSr

<ṙ	 (2-55) 

In addition, the rate form of elastoplastic Bishop’s effective stress – strain relationship for 

unsaturated soil Equation (2-55) which is generated by the yield function is utilized for 

conducting the elementary analysis under the specified drainage condition for each testing 

conditions in Appendix A. 



   

CHAPTER 3   

PARAMETER CALIBRATION AND MODEL VALIDATION OF 

CONSTITUTIVE MODEL FOR UNSATURATED SOILS 

In this study, simulating the mechanics of unsaturated soils in regard to the compaction, 

shearing and soaking processes, first, the proposed constitutive model is validated through the 

series of experimental results conducted by Koike (2010) using the calibrated constitutive 

model parameters for unsaturated soil and soil water characteristic curve parameter of the 5:5 

mixed Toyoura sand and Fujinomori clay by weight. The series of experiments consist of the 

mechanisms of soil compaction, the volumetric change of compacted soil due to soaking and 

the monotonic shearing of unsoaked and soaked compacted soil as briefly explained in Section 

3.1. In addition, the capabilities of the proposed constitutive model for predicting the soaking 

behavior (Komolvilas, 2017) and the liquefaction behavior (Komolvilas & Kikumoto, 2017) of 

unsaturated soil were previously described. Therefore, the model’s applications for predicting 

the behaviors the compaction, the monotonic shearing, the hydraulic collapse and the 

liquefaction of unsaturated soils could be applied in this study. 

3.1 SERIES OF EXPERIMENTAL TESTS 

In order to simulate the mechanics of unsaturated soils in regard to the compaction, the 

shearing and the soaking processes, three experimental series were conducted for the parameter 

calibration and model validation. The experimental procedures are briefly explained in this 

section. Mixed Toyoura sand and Fujinomori clay with the ratio of 5:5 by weight was used as 

the specimens through the series of experiments. The specific gravity Gs was 2.673. 

Consistency characteristic of the soil including liquid limit LL, plastic limit PL and plasticity 

index Ip were 24.13 %, 15.18 % and 8.95, respectively. 

3.1.1 One-dimensional static compaction test 

The compaction mechanisms of unsaturated soils were investigated through 1-D static 

compression test under exhausted-air and undrained-water condition. The standard oedometer 

testing apparatus was used with the water-impermeable plastic sheets to apply exhausted-air, 

undrained-water condition. The air-dried specimens were first prepared, and distilled water was 

added to achieve the prescribed water contents. For each specimen, it was compacted to the 

vertical compaction stress s! from the series of 9.8, 19.6, 39.2, 78.5, 157.0, 314.0, 628.0 and 

1256.0 kPa, respectively. Figure 3-4 shows the compression behavior during compaction to the 

compaction stress 1256.0 kPa of the 3 prescribed water contents. For clear illustration, only 
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compaction curves of the applied vertical compaction stress 19.6, 157.0, 314.0, 628.0 and 

1256.0 kPa are presented in Figure 3-5. Figure 3-5 illustrates that compaction curves only on 

the dry side could be conducted in the experiments. The compaction curve on the wet side could 

not be achieved, since the undrained-water condition of the specimens could not be maintained 

during the compaction. If they could be maintained, the specimens shall be compressed up to 

the limit of the saturated line as shown by line AA' and BB' in Figure 3-5. Take the shading 

area as shown in Figure 3-5, for instance of range of expected testing results on the wet side for 

the compaction stress 1256 kPa. 

3.1.2 One-dimensional compression soaking test 

The compression and soaking mechanisms of the unsaturated soil were investigated 

through the series of 1-D compression soaking test (Figure 3-3). The standard consolidation 

testing machine which normally uses for the fully saturated soils was applied in the experiment 

without the suction control. The air-dried specimens and the slurry specimens were prepared in 

the experiments to study the behaviors of unsaturated soils and fully saturated soils, respectively. 

The air-dried specimens were set under the initial vertical net stress 1.2 kPa with the average 

initial specific volume "#  2.323 in the consolidation testing machine. Each specimen was 
compressed in the fully drained condition to the vertical net stress from the series of 10.7, 20.5, 

40.1, 79.4, 157.9, 314.9, 628.9 and 1256.9 kPa, respectively. Then, at the vertical net stress 1.2, 

20.5, 157.9 and 1256.9 kPa, the specimens were soaked to fully saturated condition. Regarding 

the soil saturation with water, Carbon Dioxide (CO2) was injected from the lower part of the 

specimen during the soaking process. Finally, the soaked specimens were compressed under 

the fully drained condition to vertical net stress 1256.9 kPa. While, the slurry specimens with 

average initial specific volume "# 2.18 were compressed under fully drained condition from 
the initial vertical total stress 0.8 kPa to 1256.9 kPa (Figure 3-1). The experimental results 

(Figure 3-1and Figure 3-3) are used in the parameter calibration (Section 3.2). 

For the parameter calibration, 1-D compression soaking test of air-dried specimens were 

imitated by the simulation in the framework of unsaturated soils. Since the suction was not 

controlled in the experiments the following assumptions were defined in the simulation. The 

minimum degree of saturation ($%&') was assumed to be 10%. For air-dried state, initial degree 
of saturation was defined to be 11% in the simulation. In the main wetting path of SWCC (() = 
0), initial suction *+ 10.68 kPa was calculated by Equation (2-10). Assuming that air pressure 
,- 98 kPa (at atmospheric pressure), initial water pressure ,.+ 87.32 kPa at vertical net stress 
1.2 kPa. 
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3.1.3 Triaxial soaking compression test 

The soaking mechanism under anisotropic stress condition of unsaturated soil was 

investigated through the series of mean stress constant (p-constant) compression soaking test. 

The triaxial testing machine for unsaturated soil was used. Mechanism of testing machine was 

particularly set to perform the compression soaking test without suction control. For the 

unsaturated condition, both air and water were allowed to drain by the porous stone embedded 

with the pedestal at the bottom of the specimen. The volume change of unsaturated specimen 

was measured by the double cell method. Two set of unsaturated specimens, dense soil (Md) 

and loose soil (Ml), were prepared. Both of their initial states are summarized in Table 3-1. 

While, the series of experiments under fully drained condition are listed as shown in Table 3-2. 

The definitions of the experiment are indicated as follows; UnsatC denotes the monotonic 

shearing of unsaturated soil in compression, S denotes soaking for the fully saturated state, SatC 

denotes monotonic shearing of saturated soil in compression and R denotes the amplitude of 

principle stress ratio. Start with the initial state of unsaturated soil specimens (Table 3-1), three 

mechanisms were conducted using the triaxial testing machine for unsaturated soil as follows. 

3.1.3.1 Monotonic shearing of unsaturated soil (UnsatC) 

The monotonic p-constant shearing was applied to the specimens till they were approached 
the critical state of soil by the strain control under fully drained condition. The experimental 

results of monotonic shearing behavior of specimens Md-UnsatC and Ml-UnsatC are shown in 

Figure 3-6 and Figure 3-7, respectively. 

3.1.3.2 Monotonic shearing of saturated soil after soaking (S-SatC) 

The specimens were soaked under p-constant to saturated condition by allowing water 

flow and facilitate the saturation by applying CO2 from the bottom part to the upper part of the 

specimen. Then, the monotonic p-constant shearing was applied to the saturated specimens until 

approaching the critical state of soil by strain control under fully drained condition. The 

experimental results of monotonic shearing behavior of specimens Md-S-SatC and Ml-S-SatC 

are shown in Figure 3-2. 

3.1.3.3 The compression soaking test of unsaturated soil under anisotropic condition. 
(UnsatC-Ri-S) 

The monotonic p-constant shearing was applied to the specimens by stress control under 

fully drained condition to the prescribed deviatoric stress q. The specimens were soaked with 

the same method as stated in Section 3.1.3.2 afterwards. The experimental results of monotonic 
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shearing behavior of specimens Md-UnsatC-Ri-S and Ml-UnsatC-Ri-S are shown in Figure 3-6 

and Figure 3-7, respectively. 

For parameter calibration and model validation, the experimental results of monotonic 

shearing of saturated soil after soaking (S-SatC) is used in the parameter calibration section 

(Section 3.2). While monotonic shearing of unsaturated soil (UnsatC) and compression soaking 

test of unsaturated soil under anisotropic condition (UnsatC-Ri-S) are used to validate the 

model described mechanism of monotonic shearing of unsaturated soil (Section 3.3.2). In the 

simulation of unsaturated soil, using main wetting path Equation (2-10), the calculated initial 

suctions of Md and Ml were 2.54 kPa and 0.77 kPa respectively. Assuming that ,- is 98 kPa 
(at atmospheric pressure),	,. is 95.46 kPa for Md and 97.23 kPa for Ml. 

Table 3-1 Initial state of unsaturated soil specimens for triaxial compression soaking test series. 

Material Symbol Void ratio, e 
Water content, 
wn [%] 

Degree of 
saturation, Sr [%] 

Mean net stress, 
pnet [kPa] 

Dense Md 0.693 20.44 78.85 49.0 

Loose Ml 1.010 21.12 55.86 49.0 

Table 3-2 Details of triaxial compression soaking test series under fully drained condition. 

Material Experiment name 
Details of experiments 

Stage Test Control path 

Dense 

Md-UnsatC A Shearing strain 

Md-S-SatC 
A Soaking stress 
B Shearing strain 

Md-UnsatC-R3S 
A Shearing stress (Dq = 58.8 kPa) 
B Soaking stress 

Md-UnsatC-R6S 
A Shearing stress (Dq = 91.9 kPa) 
B Soaking stress  

Loose 

Ml-UnsatC A Shearing strain 

Ml-S-SatC 
A Soaking stress 
B Shearing strain 

Ml-UnsatC-R2S 
A Shearing stress (Dq = 36.8 kPa) 
B Soaking stress 

Ml-UnsatC-R3S 
A Shearing stress (Dq = 58.8 kPa) 
B Soaking stress 

3.2 PARAMETER CALIBRATION 

A set of constitutive model parameters for unsaturated soil and soil water characteristic 

curve of 5:5 mixed Toyoura sand and Fujinomori clay by weight (Table 3-3 and Table 3-4) 

were finally calibrated through the three experimental series conducted by Koike (2010) . 
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The set of parameters for soil water characteristic curve (SWCC) which extended from the 

classical SWCC described by van Genuchten (1980) consists of Smax, Smin, ad, aw, n, m, xe and 

xh. It could be calibrated with the water characteristic curve experiment. The set of parameters 

for constitutive model for unsaturated soil could be calibrated with 2 main saturation conditions 

through the experiments. The first group of the parameter is l, k, M, ne, N and 0 which could 
be obtained from the elementary test of compression and shear in the context of fully - saturated 

condition. The experimental results of the 1-D consolidation test of slurry sample and triaxial 

p-constant shearing test after soaking could be predicted well by the simulations obtained from 

the defined set of parameters as illustrated in Figure 3-1 and Figure 3-2, respectively. The 

second group of the parameter is 1	that could be obtained from soaking test of the dried soil 
related to the context of unsaturated condition (Figure 3-3). Since it controls the movement 

proportion of state boundary surface of soil varying with degree of saturation, so we could 

determine 1	 by the different of the specific volume of soil in the dried state or unsaturated state 
at the minimum degree of saturation and fully - saturated state. At last, however, the set of 

parameters in this study was finalized by fitting the simulation to a series of 1-D compression 

soaking test (Figure 3-3). 

Table 3-3 Constitutive model parameters of 5:5 mixed Toyoura sand and Fujinomori clay by 
weight. 
λ 0.12 Compression index 
κ 0.01 Swelling index 
M 1.30 Critical state stress ratio 
"2 0.25 Poisson’s ratio 
N 1.78 Reference " at saturated state under p" = 98.0 and q = 0.0 kPa 
w 100 Effect of density 
1 0.35 Volumetric distance between SBSs for fully dried and fully saturated states 

Table 3-4  Parameters for soil water characteristic curve. 
Smax 1.00 

Parameters for main 
wetting and drying curves 
(van Genuchten’s equation) 

Maximum degree of saturation  
Smin 0.10 Minimum degree of saturation 
αd 0.01 Parameter for main drying curve (1/kPa) 
αw 0.60 Parameter for main wetting curve (1/kPa) 
n 2.00 Parameters for the shape of main curves 
m 0.50 
xh 100 Parameter for hysteresis 
xe 5.00 Parameter for effect of void ratio 
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Figure 3-1 Parameter calibration of 1-D compression test of the slurry specimen. 

 
Figure 3-2 Parameter calibration of monotonic shearing of the saturated specimens due to 

soaking (S-SatC). 

 
Figure 3-3 Parameter calibration of 1-D compression and compression soaking tests of the 

air-dried specimens. 



Chapter 3 26 

3.3 MODEL VALIDATION THROUGH THE EXPERIMENT INVESTIGATION 

OF UNSATURATED SOIL MECHANISM 

In order to simulate the mechanisms of unsaturated soils, including soil compaction, the 

volumetric change of compacted soil due to soaking and shearing of compacted soil, the 

proposed constitutive modeling of unsaturated soil was validated through the experiment 

investigations explained in Section 3.1 using the calibrated constitutive model parameters for 

unsaturated soil and soil water characteristic curve (Table 3-3 and Table 3-4) of 5:5 mixed 

Toyoura sand and Fujinomori clay by weight (Section 3.2). The applications of the proposed 

constitutive model in regard to the soaking and the liquefaction behaviors of unsaturated soils 

could be implemented in this study since they have been validated by Komolvilas (2017) and 

Komolvilas & Kikumoto (2017), respectively. 

In the following simulations, the initial state of soil specimens, including the water content 

wn, void ratio e and specific gravity of soil Gs, were observed from the experimental results. 

Thus, in the simulation, initial suction *+ of each specimen was calculated by Equation 2-10 in 
the assumption of Ih = 0 for wetting path. 

3.3.1 Mechanism of static compaction 

The experimental results of 1-D static compaction test (Section 3.1.1) were used to validate 

the proposed model for describing the mechanism of the static compaction.  

Compression behaviors and compaction curves obtained from the experiments and 

simulations are compared in Figure 3-4 and Figure 3-5, respectively. We can see from Figure 

3-4 that the proposed model could imitate the compression behaviors which soils having lower 

water content and degree of saturation exhibited the higher stiffness and the smaller change of 

void ratio in compression. In addition, the proposed model could generate convex-upward 

compaction curves with maximum dry densities and optimum water content as shown in   

Figure 3-5. The shape of the curves on the dry side of the optimum water contents observed in 

the experiments could be predicted well by the proposed model.  

3.3.2 Mechanism of monotonic shearing of unsaturated soil  

The experimental results of uncontrolled suction triaxial compression test (Section 3.1.3) 

are used to validate the proposed model for describing the mechanism of monotonic shearing 

of compacted soil before and after soaking. The shearing behavior obtained from the 

experiments and simulations are compared in Figure 3-2 for the compacted soil after soaking 

and Figure 3-6 and Figure 3-7 for the compacted soils before soaking. From the experimental 

results, the dense soil (Md) exhibited strain softening with volumetric dilation. While the loose 

soil (Ml) exhibited strain hardening with volumetric contraction. We can see that the proposed 
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model could predict well the shearing behavior of unsaturated soil including the effect of 

density. 

 
Figure 3-4 Model validation of compression behavior compaction stress 1256.0 kPa in the 
relationship of vertical compaction stress vs. (a) void ratio and (b) degree of saturation. 

 
Figure 3-5 Model validation of compaction curve simulation for different compaction stress 

s! 19.6, 157.0, 314.0, 628.0 and 1256.0 kPa  

 
Figure 3-6 Model validation of monotonic shearing on dense mixed unsaturated soil (Md) 
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Figure 3-7 Model validation of monotonic shearing on loose mixed unsaturated soil (Ml) 

3.3.3 Volumetric change of compacted soil due to wetting 

Beside the validation results relating with the soaking process as shown in Figure 3-2, 

Figure 3-3, Figure 3-6 and Figure 3-7, Komolvilas (2017) was validated the proposed model 

and discussed the applicability of the proposed model described the hydraulic collapse behavior 

of unsaturated soils under isotropic and anisotropic conditions. The model was validated 

through a series of soaking tests on Pearl clay under isotropic and anisotropic condition (Sun et 

al., 2007). Consequently, we can conclude that soaking induced collapse phenomena of 

unsaturated soils under isotropic and anisotropic conditions are suitable described by the 

proposed model. 

3.3.4 Liquefaction in unsaturated soils under fully undrained cyclic shearing 

To confirm the capability of model for the fully undrained cyclic shearing simulation, the 

proposed model has been validated by Komolvilas & Kikumoto (2017) through the 

experimental results of cyclic triaxial tests on saturated and unsaturated soil under fully 

undrained condition at the constant pressure of Tsukidate volcanic sand (Unno et al., 2013). 

Therefore, the proposed model is also able to predict the fully undrained cyclic behavior of 
unsaturated soils, such as liquefaction. 

3.4 CONCLUSIONS 

The proposed constitutive model was validated through the series of experimental results 

conducted by Koike (2010) using the calibrated constitutive model parameters for unsaturated 

soil and soil water characteristic curve of the 5:5 mixed Toyoura sand and Fujinomori clay by 

weight (Table 3-3 and Table 3-4). The capabilities of the proposed model to predict the behavior 

of unsaturated soil against the compaction, the soaking, the fully drained shearing and the fully 

undrained shearing are illustrated. This set of constitutive model parameters will be used 

through the simulations in this study unless otherwise specified. 

, 34 : % 



   

CHAPTER 4  

INTERPRETATION OF COMPACTED SOIL BEHAVIORS THROUGH THE 
CONSTITUTIVE MODEL FOR UNSATURATED SOILS 

In this study, the simulations of compacted soil behaviors will be performed from the 

origin as the compaction process to the strengths and the failures against loadings using the 

proposed constitutive model for unsaturated soils. 

From the literature reviews, the soil mechanisms during compaction have been studied by 

many researchers through both experiments and numerical simulations in order to develop the 

constitutive models for the compaction of unsaturated soils. Tarantino & De Col (2008) 

observed the positive slope of post-compaction suction contours in the compaction plane at 

high water contents by conducting 1-D static compaction test. They found that a coupled 

mechanical water retention model is required for the simulation of compaction. Kikumoto et al. 

(2010) proposed the simplify 1-D coupled hydro-mechanical critical state constitutive model 

for unsaturated soils which is capable to generate the proper typical compaction curves for 

various soil types. Alonso et al. (2013) proposed the model for predicting the compaction 

behavior incorporating the effect of microstructure on the soils compacted on the dry side and 

the wet side of optimum. Zhou & Sheng (2015) proposed the model which is capable to model 

the hydro-mechanical behavior of unsaturated compacted soils with the different initial 

densities.  

In addition, the strengths and the failures of compacted soils under the various loadings, 

including long term shearing, hydraulic collapse due to the heavy rainfall and liquefaction due 

to the fully undrained cyclic shearing, have also been studied by many researchers through the 

combination of experiments and simulations. Sivakumar and Wheeler examined the soil 

modelling considering the effects of compaction effort and compaction water content through 

the experimental results of soaking, isotropic loading (Wheeler & Sivakumar, 2000) and 

shearing (Sivakumar & Wheeler, 2000). They found that compaction effort and compaction 

water content affect initial position of yield surface and initial suction, respectively. Gallipoli 

et al. (2003a) and Gallipoli et al. (2003b) improved the elastoplastic constitutive model by 

incorporating the variation of degree of saturation and effect of suction, respectively. Their 

proposed model succeeds in predicting the mechanical behavior of unsaturated soil under 

isotropic compression, soaking and shearing. Sun et al. (2007b) proposed the 3-D elastoplastic 

constitutive model for coupled hydro-mechanical behaviors of unsaturated compacted soils 

with different initial densities using the same material constant. The experimental results with 
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different initial densities under isotropic compression, triaxial compression and collapse 

behavior could be predicted well by their proposed model. Marinho et al. (2013) examined the 

influence of soil structure associated with the initial compaction water contents and the initial 

stress on the shear strength of compacted soil. They found that the shear strength behavior is 

significantly influenced by the different initial compaction water contents. An empirical model 

was proposed to estimate the 3-D failure envelope of the tested compacted residual soil for any 

condition of the initial stress state. Zhou & Sheng (2015) proposed the hydro-mechanical model 

for unsaturated compacted soil which is capable to predict the dependence of loading–collapse 

volume on initial void ratio and density effect on the shearing-induced saturation change. 

Komolvilas (2017) proposed the 3-D simplify critical state constitutive model for unsaturated 

soil that could describe the hydraulic collapse behavior of unsaturated soils under isotropic and 

anisotropic conditions. Zhang et al. (2016) proposed the couple hydromechanical elastoplastic 

constitutive model for unsaturated sands to investigate the effects of initial degree of saturation, 

relative density and mean effective stress on the liquefaction resistance of unsaturated sands. 

Komolvilas & Kikumoto (2017) proposed the 3-D simplify critical state constitutive model for 

unsaturated soil to investigate the effects of initial degree of saturation, relative density and 

mean effective stress on the liquefaction behavior in unsaturated clay. 

Based on the previous studies, the behaviors of compacted soils at the origin, the services 

and the failures with some prescribed initial states under the long term shearing, the heavy 

rainfall and the fully undrained cyclic shearing have been studied by many researchers in the 

framework of unsaturated soils both in experiments and elementary simulations. However, the 

progressive life of the compacted soil with the variations of initial compaction control 

parameter from the origin through the failure has not been widely studied yet. 

In this chapter, by the proposed model that suitable for the unsaturated compacted soils 

(Chapter 2), the series of simulations that beginning with the compaction process through the 

failures will be produced. We further explore the mechanisms of the soil compaction, the 

compacted soils during soaking, the compacted soils before and after soaking under the 

monotonic shearing and the compacted soils under fully undrained static cyclic shearing 

through the series of elementary simulations. The effects of compaction water content and 

compaction effort on the characteristic behaviors of unsaturated compacted soils are 

investigated. Then, the responses of unsaturated compacted soil under the considered loads 

which rely on its characteristic after compaction are also interpreted. The set of validated 

parameters for 5:5 mixed Toyoura sand and Fujinomori clay by weight (Table 3-3 and 3-4) is 

used through the series of simulation. 
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4.1 SOIL COMPACTION 

4.1.1 Compaction simulation procedure 

4.1.1.1 Specimen preparation stage 

First of all, the initial state of unsaturated soil was assumed to be identical: void ratio e0 

0.95, water content wn 6.37 % and degree of saturation Sr0 17.94 % under mean net stress pnet 

20.0 kPa where pore air pressure ua 98.0 kPa (assumed atmospheric pressure) and pore water 

pressure uw 62.50 kPa. Then, the initial water content was increased to the prescribed water 

contents by increasing uw (or decreasing suction s) under the constant mean net stress. The 

prescribed water content specimens in the range of 7.6% and 32.3% were prepared in the 

simulations. Prepared specimens A through E were selected by the prescribed degree of 

compaction or D.C. as the substitute specimens for the explanation of mechanism of soil 

compaction and the behaviors of compacted soils in the study. Table 4-1 shows the details of 

specimens A through E before compaction. From the simulation results, Figure 4-1 reveals that 

degree of saturation increased as the decrease of suction under constant mean net stress during 
the water content adjustment. Consequently, for the simulation using the proposed model, the 

degree of saturation could be varied by the suction control. 

Table 4-1 Details of specimens A through E before and after compactions. 

Specimen wn 
[%] 

D.C. 
[%] 

Before compaction (A ~ E) 
After compaction (A2 ~ E2) 
(Compaction case 1) 

e Sr [%] s [kPa] e Sr [%] s [kPa] 
A ® A2 10.51 90.0 0.948 29.61 4.39 0.787 35.69 7.12 
B ® B2 18.44 95.0 0.931 52.96 1.43 0.692 71.21 3.48 
C ® C2 22.69 100.0 0.917 66.10 1.00 0.608 99.78 0.42 
D ® D2 25.91 95.0 0.904 76.59 0.76 0.692 99.99 0.00 
E ® E2 29.46 90.0 0.886 88.91 0.50 0.787 99.99 0.00 

 

 
Figure 4-1 Variation of degree of saturation due to suction control in the specimen 

preparation stage. 
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4.1.1.2 Compaction stage 

The sequence of compaction process significantly affects the behaviors of the compacted 

soils before and after soakings. It is important to closely duplicate the field condition (Gibbs et 

al., 1960), especially the effect of remained confining pressure to the volumetric behavior 

during soaking and the shear strength of compacted soils that have been experimentally 

investigated by many researchers (Holtz & Gibbs, 1956; Turnbull & Foster, 1956; Seed et 

al.,1960; Lambe, 1960 and Sun et al., 2007b). Therefore, two cases of the compaction process 

considering the effect of confining pressure were simulated in this study as follows. 

• Compaction case 1 is named for compaction without unloading to the initial state. It 
represents the compacted specimen under high confining pressure after compaction.  

• Compaction case 2 is named for compaction with unloading to the initial state. It 
represents the compacted specimen under low confining pressure after compaction.  

However, in this section, only compaction case 1 is thoroughly described in this section for the 

explanation of compaction curve generation through the simulations.  

For compaction case 1, the prescribed water content specimens were isotopically 

compressed to the defined compaction stress under exhausted air - undrained water condition. 

During the compaction, the compaction water contents were kept constant by the balancing of 

the increase of degree of saturation and the decrease of void ratio. The defined compaction 

stresses were 78.5, 314.0 and 1256.0 kPa which were substituted by compaction stress index ! 
equal to 1, 2 and 3, respectively. For the substitute specimens A through E with the variation 

number of compaction stress !	(A! through E!), the compression behaviors are illustrated in 
Figure 4-2. For each prescribed water content specimen, the final void ratio, degree of saturation 

and suction for each compacted stress were observed after the compaction. Then, the dry 

density #! was calculated by the observed void ratio e by: 
 #! =

#"%#
1 + (	 (4-1) 

where #" is the density of water and %#	is the specific gravity of soil. After compaction, the dry 
density, void ratio and post compaction suction are plotted against compaction water contents 

as shown in Figure 4-3. The final states of the compacted specimens A2 through E2 of 

compaction case 1 are also summarized in Table 4-1. Then, we consecutively performed the 

same simulation process under varied prescribed water content and compaction stress. The 

compaction curves of compaction case 1 and case 2 were numerically generated as shown in 

Figure 4-4 and Figure 4-5, respectively. With the variations of water content wn, contours of 
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prescribed post compaction degree of saturation Sr can be drawn in the compaction plane by 

calculated void ratio e using basic volume mass relationship as given by: 

 ( = 	)$%#*%
	 (4-2) 

The contours are increased with dry density and water content and they are limited by the zero-

air void curve. Last, post compaction suctions contours are also plotted in Figure 4-4 and Figure 

4-5. The suction contour had the positive slope which is consistence with the study of 

Tanrantino & De col (2008). We can see from the contours that suction increased as the 

increasing of degree of saturation at constant water content. It implies that the density affects 

the post compaction suctions during compaction could be predicted well by the proposed 

coupled hydro-mechanical model for unsaturated soils.  

4.1.2 Characteristics of compacted soil 

The typical behavior of compacted soils along the compaction curve have been studied by 

many researchers from time to time. The convex-upwards curve with maximum dry density 

and optimum water content is the typical compaction curve that was firstly published by Proctor 

(1933). Due to the increasing of compaction effort, the compaction curve is observed to shift 

upward left-hand side (Johnson and Sallberg, 1960). The characteristics of compacted soils 

along the compaction curve have been continuously studied by many researchers through the 

experiments (see for instance, Marwick, 1945; Lambe, 1958; Seed & Chan, 1959; Lambe & 

Whitman, 1969; and Koga, 1991). Most of the studies have explained the characteristics of 

compacted soils along the compaction curve by the different of particle reorientation as the 

result of compaction water content and compaction effort. They found that these parameters 

reflect the characteristics of compacted soils in the form of density and degree of saturation. As 

the proposed model is fabricated by the stress-strain relationship of unsaturated soil, including 

the effects of density and the state boundary surface that moves in volumetric direction due to 

variation of the degree of saturation. Therefore, the following parametric study results 

demonstrate the capability of the proposed model to simulate the compaction mechanism. 

In the parametric study, the characteristics of compacted soil are explained in this study 

through the compression behaviors (Figure 4-2); specimens A2 through E2 of compaction case 

1 for instance. Figure 4-2 reveals that soils having lower water content and degree of saturation 

exhibited higher stiffness and smaller change of void ratio in compression. At a given 

compaction stress 314.0 kPa, starting with the specimen A2 in Figure 4-6, water content 

increased, thereby increasing the dry density and degree of saturation as represented by the 

specimen B2. The tendency of compacted soil thereof continued until the highest packing  
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Figure 4-2 Simulation of isotropic compaction test of specimens Ai through Ei where i = 1, 2, 
3 in the relationship of mean net stress against a) void ratio and b) degree of saturation. 

(Compaction case 1) 

 
Figure 4-3 Final state of specimens Ai through Ei where i = 1, 2, 3 after compaction 

(Compaction case 1). 
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Figure 4-4 Simulation of compaction curve for different compaction stresses 78.5, 314.0 and 

1256.0 kPa of compaction case 1. 

 
Figure 4-5 Simulation of compaction curve for different compaction stresses 78.5, 314.0 and 

1256.0 kPa of compaction case 2. 

density (or maximum dry density) which was observed at the optimum water content (specimen 

C2); thereafter, increasing of water content resulted in lowering the dry density with high 

degree of saturation as represented by specimens D2 and E2. This is because, meanwhile, the 

larger water content specimens are more compressible in the beginning stage of the compaction, 

but further compression hardly occurs once the soil approached the saturated state without 

drainage of water since the water is not allowed to flow out in the compaction process (Figure 

4-2). Consequently, the typical compaction curve which is the convex-upwards curve with 

maximum dry density and optimum water content could be observed as shown in Figure 4-4 

and Figure 4-5 for compaction case 1 and case 2, respectively. Through a compaction curve, 

Figure 4-6, compacted soils are categorized as the dry side of optimum water content, the wet 

side of optimum water content and the optimum water content. They are categorized by the 
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Figure 4-6 Compaction curve and the tendencies of degree of saturation and suction against 

compaction water content (compaction case 1). 

characteristic of compaction water content that affects dry density and degree of saturation 

during compaction as explained through the substitute specimens A2 through E2. Moreover, 

Figure 4-6 also shows the effect of compaction effort to the characteristics of compacted soil. 

At a given water content, compaction effort hardly influenced to the dry density of soils 

compacted wet of optimum while significantly affected to the soils compacted dry of optimum. 

Since there is no substantial change in volume while approaching the saturated state as stated 

above. Increasing the compaction effort by keeping constant water content, the specimen 

changed from dry of optimum to be wet of optimum. The optimum water content decreased 

with the increasing of compaction effort, so the compaction curves shifted upward left-hand 

side. In addition, the proposed model could generate the typical compaction curve which  
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Figure 4-7 Typical compaction curve of various soil types 

reflects the characteristic of each soil type by using the specific constitutive model parameter 

as shown in Figure 4-7. 

Coefficient of permeability (k) of unsaturated compacted soil is able to calculate by the 

function of the void ratio and the degree of saturation (Appendix D) which they were generated 

by the compaction simulation using the proposed model. The calculated + of compaction case 
1 and case 2 are plotted with respect to the compaction water content as shown in Figure 4-17(c) 

and Figure 4-18(c), respectively. From the simulations, the characteristics of the simulated dry 

density and degree of saturation provided the typical characteristic of + that increases with the 
increasing of compaction water content as shown in the experimental result of Barden & 

Pavlakis (1971) (Figure 4-8(a)). In addition, at a given compaction water content, increasing of 

degree of saturation due to the increasing of compaction effort resulted in the increasing of +. 
To summarize, the proposed model is able to generate the typical convex-upward 

compaction curves with maximum dry densities and optimum water contents for various soil 

types. It also could generate the transition of the compaction curve due to the compaction stress. 

The simulation results of compaction using the proposed model could be used to provide the 

typical characteristic of coefficient of permeability. We found that the realistic compaction 

curve as in the experimental results could be generated by considering the over consolidated 

(OC) compacted soil. 

4.2 BEHAVIORS OF COMPACTED SOILS 

The effect of initial compaction control parameter, including compaction water content, 

compaction effort and field condition, to the serviceability of the embankment through the  
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Figure 4-8 Effect of compaction water content on (a) coefficient of permeability before 

soaking (Barden & Pavlakis, 1971) and (b) coefficient of permeability after soaking (Smith et 
al., 1999) of compacted soils 

serviced life of compacted soil under soaking (heavy rainfall), monotonic shearing (long term 

structural load) and fully undrained cyclic loading (earthquake) is considered in the parametric 

study for the interpretation of compacted soil behavior using the proposed constitutive model 

for unsaturated soils.  

4.2.1 Behaviors of unsaturated compacted soils under soaking process 

Soaking process was applied in the simulation to imitate the compacted soils under the 

heavy rainfall. Compacted specimens of compaction case 1 and case 2 in Section 4.1 were 

continuously soaked to the fully saturated state by increasing pore water pressure ," from the 
current state until the suction value approaching zero under constant mean net stress of each 

specimen. 

For compaction case 1, the compacted specimens were soaked under constant confining 

pressure equal to their compaction stress 78.5, 314.0 and 1256 kPa. Figure 4-9(a) shows the 

collapse compression behaviors during soaking of compacted specimens A2 through E2 as the 

representative. Tendencies of dry density, changes of total volumetric strain after soaking and 

coefficient of permeability are plotted against the compaction water content for all compacted 

specimens and compaction efforts as shown in Figure 4-17(a) through Figure 4-17(c), 

respectively. In the simulation, after soaking, degree of saturation of soil compacted dry side of 

optimum extremely increased from their lower current state while it insignificantly changed in 

wet side of optimum. Consequently, the soil compacted dry side of optimum showed large 

(a) (b)
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compression collapse during soaking and it decreased with the increasing of compaction water 

content. The compression collapse resulted in the significant increase of dry density. While + 
after soaking to the saturated state significantly increased from before soaking state due to the 

extreme increasing of degree of saturation after soaking. As opposed to + before soaking, at a 
given compaction water content, increasing of compaction effort resulted in the decreasing of 

saturated + since packing density of soil controls + at the fully saturated state. In contrast, soil 
compacted wet side of optimum, the volumetric behavior and degree of saturation were not 

affected by compaction water content and compaction effort since they were approached 

saturated state before soaking as the result of high remained confining pressure.  

For compaction case 2, the compacted specimens were soaked under a constant confining 

pressure after unloading to the initial state of compaction. For this case, Figure 4-9(b) and 

Figure 4-18(a) through Figure 4-18(c) are plotted with the same relations as Figure 4-9(a) and 

Figure 4-17(a) through Figure 4-17(c) of compaction case 1, respectively. Tendencies of dry 

density, changes of total volumetric strain after soaking and + showed the similar trend as the 
compaction case 1. However, due to the low remained confining pressures during soaking, the 

small amount of compression collapse behavior and some of the swelling behavior were 

observed in this compaction case. Furthermore, at a given compaction water content, the higher 

compaction effort or higher over consolidation ratio reduced the magnitude of collapse. This 

behavior resulted in the variation of + after soaking with the packing density of compacted soil 
along the compaction curve and compaction effort.	+ after soaking of soil compacted dry side 
of optimum decreased with increasing of compaction water content and slightly increased on 

the wet side of optimum. 

All in all, refer to the simulation results, the remained confining pressure and the initial 

compaction control parameter affect the volumetric behavior of compacted soil upon soaking. 

First, lower compaction water content exhibits higher magnitude of compression collapse due 

to soaking, especially volumetric strain of the specimens compacted dry of optimum. Thus, in 

term of volumetric behavior of compacted soil after soaking, the compaction at larger water 

content especially wet side of optimum is proper for subsequent soaking. This is consistent with 
the typical volumetric behavior of compacted soil upon soaking that have been investigated by 

many researchers (Turnbull & Foster, 1956; Yoder & Witezak, 1975; Alonso, 1987; Taibi et 

al., 2011; Alonso et al., 2013; Tatsuoka & Shibuya, 2014 and Mountassir et al., 2014). Second, 

at a given compaction water content and a compaction stress, normal consolidated (NC) soil 

which is generated by the case of without unloading after compaction shows higher magnitude 

of compression collapse than over consolidated (OC) soil which is generated by the case of  



Chapter 4 40 

 

 
Figure 4-9 Change of total volumetric strain against suction of specimens A2 through E2 a) 

compaction case 1 and b) compaction case 2 

unloading after compaction. Highly over consolidated (HOC) specimen which is compacted 

under high compaction effort and unloaded to the low confining pressure is able to expand. 

This behavior corresponds with the investigation reported by Cox (1978), Rampino et al. 

(2000), Sun et al. (2007c) and Komolvilas (2017). Last, at a given confining pressure during 

soaking of compacted OC soils, the greater compaction effort (or HOC soil) reduces the 

magnitude of compression collapse (Sivakumar and Wheeler, 2000). In addition, after soaking 

to saturated state, final packing density as the result of compaction process and compression 

collapse due to soaking controls the characteristic of + in the compaction. This is consistent 
with the typical characteristic of +after soaking of compacted soil with the compaction water 
content and compaction effort (Figure 4-8(b)). 

We can see that the proposed model is able to predict the volumetric behavior upon 

soaking of compacted soil considering the initial compaction control parameter and the 

remained confining pressure (effect of OCR). In addition, characteristic of k at the saturated 

state along the compaction curve could be consequently investigated from the hydraulic and 

volumetric behaviors after soaking. The results conform with the experiments that have been 

investigated by many researchers. 

(a) 

(b) 
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4.2.2 Behaviors of unsaturated compacted soils under fully drained static monotonic 
shearing 

The typical strength of compacted soil along the compaction curve has been study by many 

researchers. Generally, shear strength of compacted soil is a function of both density and water 

content. The strength of soils compacted on dry side of optimum are significantly higher than 

soil compacted on wet side of optimum. At a given water content, it increases with the density 

and degree of saturation. (Seed & Monismith, 1954; Leonard, 1955; Bell, 1956; Seed & Chan, 

1961; Yoder & Witezak, 1975; Essigman, 1976 and Koga, 1991). In addition, after soaking, the 

typical tendency of the strength is convex-upwards curve with the maximum peak strength and 

optimum water content of compaction. The strength of soil compacted at the optimum water 

content and over are slightly dropped upon soaking. However, the strengths significantly 

decrease on the dry side of optimum (Holtz and Gibbs, 1956; Seed & Chan, 1961; Yoder & 

Witezak, 1975; Wilson, 1977 and Tatsuoka & Shibuya, 2014). Figure 4-10 shows the examples 

of previous experimental studies about the strength of compacted soils before and after soaking 

using California Bearing Ratio (CBR) test. 

 
Figure 4-10 Tendencies of CBR values before and after soaking from the previous 
experimental studies of a) Yoder and Witezak (1975) and b) Tatsuoka et al. (2016) 

In this study, the behaviors of unsaturated compacted soils under fully drained static 

monotonic shearing considering the effects of compaction control parameter and soaking were 

simulated using the proposed model in order to represent its capability. 

In the parametric study, simulations of the mean stress constant triaxial shearing test under 

unsaturated condition were performed on all of the compacted specimens before soaking 
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(Section 4.1.1) and the compacted specimens after soaking (Section 4.2.1) for both compaction 

case 1 and case 2. By the strain control, the specimens were continuously sheared to the critical 

state under fully drained condition. Shear behaviors and the comparison between peak strength 

of compacted soil before and after soaking are discussed in this section. 

4.2.2.1 Shear behaviors of unsaturated compacted soils before soaking  

First, the effect of overconsolidation ratio (OCR), which is caused by the different 

compaction procedure (compaction case 1 (NC soil) and compaction case 2 (OC soil)), to the 

shearing behaviors is discussed. For compacted specimens A2 through E2, the shearing 

behaviors of NC compacted soil (compaction case 1) exhibited strain hardening and volumetric 

contraction behaviors (Figure 4-11). While the shearing behaviors of OC compacted soil 

(compaction case 2) exhibited strain softening and dilation behaviors (Figure 4-13).  

Second, the effect of constant confining pressure during shearing process; high confining 

pressure (compaction case 1) and low confining pressure (compaction case 2); to the amplitude 

of peak strength is discussed. For all specimens and compaction efforts, the peak strength of 

compaction case 1 and case 2 are plotted against the compaction water content as shown in 

Figure 4-12 and Figure 4-14, respectively. We can see that both compaction cases exhibited the 

similar tendency of the peak strength against compaction water content. However, the peak 

strength of compaction case 1 is greater than compaction case 2 due to the high confining 

pressure.  

Last, the tendency of peak strength against compaction water content is discussed 

according to the simulation results. From Figure 4-12 and Figure 4-14, the peak strength of 

soils compacted dry of optimum is significantly higher than the soils compacted wet of 

optimum. For soils compacted dry of optimum, with larger compaction water content, the 

significant decrease of peak strength corresponded to the increase of post compaction density 

and degree of saturation. On the other hand, on the wet side of optimum, the decrease of peak 

strength corresponded to the decrease of post compaction density while the post compaction 

degree of saturation was approximately the same along the wet side (nearly saturated state). 

Consequently, we can imply that post compaction degree of saturation significantly controls 

the peak strength of compacted soils. If degree of saturation is approximately the same, peak 

strength increases with increased density. In addition, at a given water content, compaction 

effort did not influence to the peak strength of soils compacted wet of optimum while 

significantly affected to soils compacted dry of optimum. This is because the density and degree 

of saturation are insignificantly changed at the nearly saturated state. By these reasons, we can  
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Figure 4-11 Relations of deviatoric stress and total volumetric strain against deviatoric strain 

of compacted specimens during shear before soaking (compaction case 1). 

 
Figure 4-12 Tendency of peak strength before soaking with compaction water content. 

(compaction case 1).  

conclude that variations of density and degree of saturation in the compaction plane affect the 

strength of compacted soil. 

In conclusion, the peak strength of compacted soils before soaking are consistent with the 

typical tendency of shear strength along the compaction curve. Therefore, the proposed model 

is able to predict the peak strength varied with compaction water content and compaction effort. 

4.2.2.2 Shear behaviors of unsaturated compacted soil after soaking  

After the compacted soils were soaked, Figure 4-15 and Figure 4-16 show the similar 

tendency of shearing behaviors as discussed in Section 4.2.2.1 considering the effect of OCR 

of compacted specimens A2 through E2 for compaction case 1 and case 2, respectively. In 

addition, the comparisons between peak strength of compacted soils before and after soaking 

against compaction water content of compaction case 1 and case 2 are generated as shown in 

Figure 4-17 and Figure 4-18, respectively. Change of volumetric strain of soil after soaking is 
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Figure 4-13 Relations of deviatoric stress and total volumetric strain against deviatoric strain 

of compacted specimens during shear before soaking (compaction case 2). 

 
Figure 4-14 Tendency of peak strength before soaking with compaction water content. 

(compaction case 2). 

also taken into consideration for the discussion of its effect to the variation of the peak strength. 

For compaction case 1, specimens A2 through E2 exhibited strain hardening and 

volumetric contraction behaviors (Figure 4-15) for NC compacted soils. For soils compacted 

dry of optimum, Figure 4-17(d), the peak strength insignificantly reduced after soaking. This is 

because the balancing between the influence of the density and the degree of saturation after 

soaking. The compression collapse behavior induced the significant denser state of soils (Figure 

4-17(b)) while the strength of soil was also deduced by the increasing of the degree of saturation 

which was approached to 100% during soaking from the drier state. For soils compacted wet 

of optimum, the peak strength after soaking was similarly the same (Figure 4-17(d)) since there 

was no change of density (Figure 4-17(b)) and degree of saturation during soaking of the fully 

saturated specimens. 

For compaction case 2, specimens A2 through E2 exhibited strain softening and dilation 

behaviors (Figure 4-16) for OC compacted soils. Figure 4-18(d) shows the reduction of peak 
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strength after soaking of compacted soils through the compaction curve. We observed the 

significant reduction of peak strength on the dry side of optimum. This is because, as the 

discussion in Section 4.2.1, the small amount of compression collapse occurred (Figure 

4-18(b)) therefore the extreme increasing of degree of saturation dominantly affected the 

reduction of peak strength after soaking. While the specimens compacted wet of optimum, less 

peak strength reduction were observed as the result of lowering both collapse behavior (Figure 

4-18(b)) and variation of degree of saturation due to high initial degree of saturation before 

soaking (nearly saturated soil). Thus, the relation of peak strength of compacted soil after 

soaking against the compaction water content demonstrated the convex-upward curves with the 

maximum peak strength and the optimum water content similar to the tendency of compaction 

curve. Moreover, the soils which were compacted with higher compaction effort exhibited 

greater reduction of peak strength and lower collapse compression. However, it remained the 

higher peak strength (Figure 4-18). 

From both compaction cases, the initial compaction control parameter and the remained 

confining pressure during soaking affect the variations of degree of saturation and dry density 

of the compacted soil after soaking. Their variations also significantly affect the peak strength 

of compacted soil after soaking. During soaking, the peak strength increases with the denser 

state of compacted soil meanwhile it dominantly decreases with the increase of degree of 

saturation. However, for all specimens along the compaction curve, most of the peak strength 

after fully soaking is reduced. Although, remaining high confining pressure during soaking is 

able to alleviate the reduction of peak strength after soaking. However, it results in high 

magnitude of compression collapse which is not proper for the serviceability of the 

embankment. The maximum peak strength of the soaked soil is at the optimum water content 

with the small amount of collapse compression. In addition, the soil compacted with higher 

compaction effort exhibit greater peak strength after soaking. 

In conclusion, the proposed model properly predicts the tendency of peak strength of 

compacted soils after soaking through the compaction curve. The simulation results of the peak 

strength of compacted soils after soaking, especially for the OC soils, are consistent with the 

typical tendency of shear strength after soaking of compacted soil. 

By the proposed model, the dry density, peak strength before soaking and peak strength 

after soaking in the relations of compaction water content and compaction effort were generated 

as the 3-D surfaces in Figure 4-19 (compaction case 1) and Figure 4-20 (compaction case 2). 

Regarding the 3-D surfaces, the engineers could specify the optimum compaction control 

parameters in the construction for the considered range by the simulations. The solid lines in 
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Figure 4-19 and Figure 4-20 illustrate the simulation results that we already discussed in this 

Chapter for compaction stress 1256.0 kPa. 

 
Figure 4-15 Relations of deviatoric stress and total volumetric strain against deviatoric strain 

of compacted specimens during shear after soaking (compaction case 1). 
 

 
Figure 4-16 Relations of deviatoric stress and total volumetric strain against deviatoric strain 

of compacted specimens during shear after soaking (compaction case 2). 
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Figure 4-17 Relations of a) dry density, b) changes of volumetric strain, c) coefficient of 

permeability and d) peak strength of compacted soil against compaction water content due to 
soaking after compaction (compaction case 1). 
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Figure 4-18 Relations of a) dry density, b) changes of volumetric strain, c) coefficient of 

permeability and d) peak strength of compacted soil against compaction water content due to 
soaking after compaction (compaction case 2). 
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Figure 4-19 Simulation of compaction case 1; a) compaction surface, b) peak strength surface 

before soaking and c) peak strength surface after soaking 

4.2.3 Behaviors of unsaturated compacted soils under fully undrained static cyclic 
shearing 

In the parametric study, using the similar simulation algorithm of compaction process 

(Section 4.1), initial state of unsaturated soil (5:5 mixed Toyoura sand and Fujinomori clay by 

weight) for compaction process was newly set for the clear explanation of liquefaction behavior 

of unsaturated compacted soil when subjected to fully undrained cyclic loading. 

For this series of compaction simulation, initial state of soil was assumed to be identical: 

void ratio e0 1.143, water content wn 6.52 % and degree of saturation Sr0 15.25 % under mean 

total stress p 0.9 kPa, pore air pressure ua 0.0 kPa and pore water pressure uw -4.22 kPa. Water 

content was first increased to the prescribed water contents by increasing uw. Each specimen 

was isotopically compressed to the prescribed compaction stress of 78.5, 314.0 and 1256.0 

kPa, respectively, and unloaded to the initial stress level of 0.9 kPa under exhausted air and  

(a) 

(b) (c) 
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Figure 4-20 Simulation of compaction case 2; a) compaction surface, b) peak strength surface 

before soaking and c) peak strength surface after soaking 

undrained water condition. Compaction behaviors of five specimens having different water 

contents are compared in Figure 4-21. Final states of the compaction simulation are summarized 

in Table 4-2. We consecutively performed the similar simulation under varied water contents 

and compaction stresses and plotted final values of water content and dry density (or void ratio). 

By the series of simulations, the convex- upward compaction curves are shown in Figure 4-22. 

The specimens A to E in Figure 4-21 and Table 4-2 are also indicated in this figure. 

According to the mechanism of liquefaction, the liquefaction resistance could be 

considered by the number of cycles causing liquefaction which initial mean effective stress 

gradually reduces to almost zero. Therefore, 0.10 % of initial mean effective stress -&"  is 
selected as judgment criteria of liquefaction in this study for simulation effort reduction. In 

addition, in the case of the soil is unable to liquefy with the limit number of cycles, the tendency 

of liquefaction resistance is also showed in the relationship of water content and mean effective 

(a) 

(b) (c) 
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stress reduction ratio at the proper cycles of loading. Mean effective stress reduction ratio, 

Equation (4-3), is the rate of decrease in the mean effective stress of unsaturated soil after they 

are subjected to cyclic shear loading (Unno et al., 2008).  

 .(/0	(11(23!4(	536(55	6(7,23!80	6/3!8 = 1 − -"
-"(

	 (4-3) 

The higher the mean effective stress reduction ratio, the lower is the liquefaction resistance of 

unsaturated soil. By this definition, the apparent tendency of liquefaction resistance could be 

clearly presented. 

Liquefaction behaviors and the comparison between liquefaction resistance of compacted 

soil along the compaction curve are discussed in this section. 

 
Figure 4-21 Simulation of isotropic compaction test of specimens A, B, C, D and E when 
compaction stress 314.0 kPa in the relationship of mean total stress vs. (a) void ratio and (b) 

degree of saturation. 

 
Figure 4-22 Simulation of compaction curve for different compaction stresses 78.5, 314.0 and 

1256.0 kPa at the final state of compaction (after unloading). 
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Table 4-2 Description of the variables of specimens A, B, C, D and E.  

Sample 
Water 
content 
(%) 

Degree of 
compaction 

(%) 

Degree of 
saturation 
(%) 

Number of cycles 
causing liquefaction Remarks 

A 13.84 92.0 63.97 49 wn < wopt (dry side) 
B 20.46 97.0 77.18 36 wn < wopt (dry side) 
C 22.85 100.0 92.90 39 wn = wopt (optimum) 
D 25.04 97.0 94.15 38 wn > wopt (wet side) 
E 28.62 92.0 95.29 35 wn > wopt (wet side) 

4.2.3.1 Liquefaction behaviors of unsaturated compacted soils after compaction  

Fully undrained (unexhausted-air, undrained-water) cyclic radial constant triaxial shearing 

with 100 cycles of ± 0.3 % axial strain amplitude (Figure 4-23), was applied to the compacted 

soils that were numerically generated in the section. 

Cyclic behaviors of the compacted samples A to E (Figure 4-22) are illustrated in Figure 

4-24. From Figure 4-24(e), all the specimens experienced a significant reduction in mean 

effective stress after several cycles of fully undrained cyclic shearing. The number of cycles 

causing liquefaction of samples A to E are shown in Table 4-2. From the table, it reveals that 

samples A and E demonstrated the highest and lowest liquefaction resistance in the considered 

range, respectively. However, specimen C which was at optimum water content demonstrated 

the highest liquefaction resistance in the range of water content between specimens B and D. 

Both pore water pressure and pore air pressure of all the specimens gradually increased and 

became constant when the soil were liquified, as shown in Figure 4-24(a) and Figure 4-24(b), 

respectively. With the increase in pore air pressure, the void ratio was decreased as shown in 

Figure 4-24(d), which highlights the liquefaction characteristic of unsaturated soils. However, 

specimens C, D, and E did not exhibit evident variation in the void ratio as they were compacted 

on the wet side of optimum and they were in nearly saturated state after compaction. Lastly, the 

degree of saturation of all specimens increased and became constant when the soils were 

liquified. The increasing of the degree of saturation of specimens A and B is higher than C, D, 

and E due to the lower of initial degree of saturation (Figure 4-24(c)). 

 
Figure 4-23 Fully undrained (unexhausted-air, undrained-water) cyclic radial constant triaxial 

shearing with 100 cycles of ± 0.3 % axial strain amplitude 
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Figure 4-24 Simulation of fully undrained cyclic loading of Points A, B, C, D and E when 
compaction stress 314.0 kPa in the relationship of number of cycles vs. (a) pore water 

pressure, (b) pore air pressure, (c) degree of saturation, (d) void ratio, (e) mean effective stress 
and (f) mean effective stress reduction ratio. 

Moreover, the liquefaction resistance of compacted soil was further interpreted as shown 

in Figure 4-25. The specimens A to E in Figure 4-24 and Table 4-2 are indicated in the figure. 

As shown in Figure 4-25, the tendency of liquefaction resistance is separately discussed into 

three main groups. Group 1, low degree of saturation, the liquefaction resistance is very high. 

It is dominantly affected by the degree of saturation (Komolvilas & Kikumoto 2017). Group 2, 

high degree of saturation in the dry side of the compaction curve, the liquefaction resistance is 

quite consistent. It is affected by the combined effects of degree of saturation and dry density. 

Group 3, the specimens compacted in the wet side of the compaction curve, the liquefaction 

resistance is low at larger water content. In this group, the liquefaction resistance is dominantly 

affected by the dry density while the degree of saturation is quite steady. Hence, the simulation 

results indicate that the water content of compaction affects the liquefaction resistance of the 

compacted soil through degree of saturation and dry density. Aiming to achieve the optimum  
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Figure 4-25 Simulation of the tendency of liquefaction potential varied with water content 

associated with the simulated compaction curve. 

water content is rational way to increase liquefaction resistance. The ranges of water content in 

the compaction curve which is defined as Group 1 through Group 3 are illustrated in Figure 

4-25(c), take the compaction stress 314.0 kPa for instance. Besides, we can see from Figure 

4-25(c) and Figure 4-25(d) that the compaction effort significantly affects the liquefaction 

resistance of compacted soils at low water content and the effect gradually decreases when 

water content increases.  

In the simulation, compacted soil with water content approximately less than 10.0% could 

not be liquefied with 100 cycles of shearing (Figure 4-25(c)). So, the tendency of liquefaction 
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resistance is also illustrated in the relationship of water content and mean effective stress 

reduction ratio at 30 cycles of shearing which the apparent tendency is presented (from Figure 

4-25(d)). Figure 4-25(d) shows a similar tendency as the relation between the number of cycles 

causing liquefaction and water content (Figure 4-25(c)).  

4.3 CONCLUSIONS 

Through the simulations using proposed constitutive model for unsaturated soils, they 

confirm that the compaction water content affects the behavior of compacted soils including 

characteristic of compaction curve, hydraulic collapse, shear strength and liquefaction 

resistance through the degree of saturation and dry density. First, the proposed model could 

predict well the mechanism of compaction. By the proposed model, the typical convex-upward 

curves with maximum dry density and optimum water content could be numerically generated 

for various soil types and their transition due to compaction stress is properly simulated. The 

typical characteristic of coefficient of permeability before and after soaking against compaction 

water content are properly calculated from the unique characteristic of degree of saturation and 

dry density from the compaction and soaking simulations. Second, regarding the shearing 

behaviors under fully drained static monotonic shearing, the proposed model could demonstrate 

the different between the strength of compacted soil before and after soaking of the compacted 

specimens along the compaction curve. Initial compaction control parameter and remained 

confining pressure affect the peak strength of the compacted soil both before and after soakings. 

After soaking, the convex-upward peak strength curves which the maximum peak strengths are 

observed at the optimum water content with the small amount of volumetric change. Last, 

regarding the liquefaction behavior of compacted soil, the liquefaction resistance is very high 

in the dry side of compaction curve which is dominantly affected by degree of saturation. When 

the water contents are approached the optimum water content or higher, combined effect of 

degree of saturation and dry density on liquefaction resistance could be seen. In addition, the 

compaction effort significantly affects the liquefaction resistance at low water content and the 

effect gradually decrease when water content increase. All the tendencies simulated by the 

proposed model are correspondence with the experimental results reported by many 

researchers. 

For the considering condition, we recommend that soil compacted at the optimum water 

content is suitable for the compacted soil confronted with the heavy rainfall and subjected to 

the static monotonic shearing. This is because the highest peak strength, the minimum 

volumetric changes and low coefficient of permeability after soaking are observed. In case of 

the optimum water content could not be reached in the compaction process, the soil shall be 
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compacted on the wet side of optimum to prevent the highly collapse compression due to 

soaking for the serviceability of the embankment. In addition, aiming to achieve the optimum 

water content is also the rational way to increase the liquefaction resistance of the unsaturated 

compacted soil. Importantly, engineer can specify the optimum compaction control parameters 

in the construction for the considered range by the simulation of the proposed model. 

Exploring the real geotechnical engineering which the soil shall be considered in the 

heterogeneity condition, with the validity and capability of the proposed model as described in 

Chapters 3 and 4, the proposed constitutive model for unsaturated soil is implemented to the 

algorithm of soil-water-air three-phases seepage-deformation coupled finite element method 

(Chapter 5). Afterward, the interpretation of the mechanics of unsaturated soil in the 

heterogenous problems is discussed in Chapter 6. 



   

 

CHAPTER 5  

FINITE ELEMENT ANALYSIS FOR UNSATURATED SOILS 

In the continuum mechanics, the elementary behaviors of unsaturated compacted soil are 

interpreted and explained by the elastoplastic constitutive model for unsaturated soils (Chapter 

4). However, the interpretation based on the basic soil properties does not allow the solution of 

the real condition of geotechnical work which the stress-strain distribution in the considered 

domain system is non-uniform. The variation of stress-strain distribution can be caused by the 

heterogeneities of typical soil deposit and man-made soil structure, the seasoning ground water 

level and the non-uniform pressure load on the space. Therefore, in this study, the heterogeneity 

at the initial state of density and degree of saturation of the unsaturated media on the soil 

structure is taken into account in the geotechnical engineering design. Finite element method 

or FEM is a calculation procedure which keeps track of the variation of stress-strain distribution 

of many small elements of soil in the domain system. At the same time, it ensures compatibility 

and equilibrium of the stress-strain state for each small element with its neighbors. 

To interpret the real condition of geotechnical work and achieve the purpose of the 

research, in-house coupled FEM program for unsaturated soils are generated. In this chapter, 

the general steps of Galerkin’s FEM are briefly described. For clearly explanation and 

programming algorithm checking, finite element equations for in-house FEM programs are 

formulated staring from the simple algorithm of saturated soil through the complicated 

algorithm of unsaturated soil. The in-house FEM programs are simply generated by the 

assumption of two-dimensional or 2-D plane strain condition. Therefore, application of the 

programs is limited for the oedometer compression test and the biaxial shearing test only. In 

addition, for the scope of this study, the soil-water-air three-phase seepage-deformation coupled 

FEM for unsaturated soil is based on the assumption of constant air pressure. However, by the 

low loading rate, this assumption is still applicable in many practical situations and sufficiently 

response to the purpose of this study including the interpretation of the soil compaction and the 

fully drained shearing behaviors. Finally, the in-house FEM programs for saturated and 

unsaturated soils are validated through the exact solution or the proposed elastoplastic 

constitutive model in order to ensure their algorithm and accuracy. 

Afterwards, in the Chapter 6, the parametric study through FEM will be performed using 

the validated soil-water-air three-phase seepage-deformation coupled FEM in order to interpret 

the mechanism of unsaturated soil in the heterogenous problems. 
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5.1 GENERAL STEP OF FINITE ELEMENT METHOD 

The development process for FEM is generally performed by the following 5 main steps: 

1) Subdividing the problem domain into finite elements 
2) Selecting the element geometry and the element interpolation function 

3) Formulation of FEM equation (using weighted residuals Galerkin’s method) 

4) Solving the assembled global equation 

5) Boundary condition application and determination of the approximate solution 

Further details of each main steps are explained by the followings. 

5.1.1 Subdividing the problem domain into finite elements 

The problem domain system ! and the boundary of the domain system "	are discretized 

into the finite element domain $!"!  and the boundary of the finite element domain %!"! , 

respectively. The superscription ele denotes number of elements &!"  in the domain system 

where 1 ≤ )*) ≤ &!" (Figure 5-1). 

 

Figure 5-1 Subdividing the problem domain into finite elements 

5.1.2 Selecting the element geometry and element interpolation function 

FEM is a numerical method to find the approximate solution of the governing equation 
which is applicable to the complex shape or its original shape of the problem. The infinite value 

will be approximated by replacing the problem with the shaped finite elements. Because of this, 

the accuracy of the approximate solution and the numerical stability due to the locking problem 

are depend on mesh size, amount of element, element geometry and interpolation function.  

Keeping the accuracy of the approximate solution and the robustness of the in-house FEM 

program, in this section, the appropriate element geometry, interpolation functions and 

alternative FEM formulation (locking remediation options) are together specified for the in-

house FEM program based on the characteristic of each interested problem. Although the size 
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and amount of element could improve the accuracy and delay the locking problem, but they 

will not be discussed in this section. This is because, they would take the high price of 

computational and could not completely eliminate the problem.  

 

Figure 5-2 Basic type of elements in 2-D FEM 

 

Figure 5-3 Transformation of a) trapezium (4 nodes or 8 nodes) and b) curved surfaces (8 

nodes) elements to the natural coordinate (x - h) square element 
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5.1.2.1 Element geometry and interpolation function 

For 2-D problems in the plane strain condition, the quadrilateral (rectangular) element 

which is the basic type of element in 2-D FEM (Figure 5-2(c) and Figure 5-2(d)) shall be applied 

into the in-house FEM program in this study. Since it could provide a better solution due to the 

curved plane of bilinear or serendipity interpolation function with a less computational price 

compare to the triangular element (Figure 5-2(a) and Figure 5-2(b)). In the incompressible case, 

although, the quadrilateral may face the locking problems, but they could be eliminated by 

selecting the appropriate element interpolation function and alternative FEM formulation (See 

further discussion in Section 5.1.2.2).  

In the practical, however, the linear or curved surfaces trapezium element shall be used 

instead of the rectangular element in order to exactly generate the complex shape of the 

problem. By this condition, the numerical integration over the trapezium element for element 

matrix generation is much more complicated. Solving this, the Gauss-Legendre integration 

formulas (See Appendix B-4) which is the simple integration method is implemented into the 

program. However, for the integrating by the Gauss-Legendre formulas, the local coordinate 

(x-y) of trapezium element must be transformed into the natural coordinate (x - h) square 

element with the distance from -1 to 1 in each direction (Figure 5-3). Doing this, any x-y 

coordinates in the trapezium element can be written in the relation of local trapezium element 

node (xi, yi) and the shape function in term of natural coordinates, +,#(., 0) by: 

 
2(., 0) =4+,#(., 0)2#

$

#%&

= 56,(., 0)7
&×$

{9}$×&	

;(., 0) =4+,#(., 0);#

$

#%&

= 56,(., 0)7
&×$

{<}$×&	

(5-1) 

where i (= 1, 2,…, &) denotes node number of the n-nodes element, 2# and ;# represent x and y 

coordinates at node i of trapezium element, and +,(.# , 0#) is the shape function that is used to 

transform the shape of the element. The selected shape function for the in-house FEM in term 

of natural coordinate (Zienkiewicz et al., 2005), including bilinear quadratic lateral (4 nodes) 

and serendipity quadrilateral element (8 nodes), are illustrated in Appendix B-1. 

Moreover, for the determination of approximate solution distribution which is generally 

written by:  

 
=> =4+#=#

$

#%&

= [6]&×${A}$×&	 (5-2) 
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where i (= 1, 2,…, & ) denotes node number of the n-nodes element, =#  or {A}  is the 

approximate solution of any element and +#  or [6] is the element interpolation function. In 

order to simplify the approximate solution determination, the assumption of isoparametric 

element is applied. Therefore, the selected shape function is also used as the interpolation 

function of the element as expressed by: 

 +# =	+,#(., 0)	 (5-3) 

The isoparametric element, which is widely used for solving general problem in FEM 

(Zienkiewicz et al., 2005), will be applied to the FEM equation formulation in Section 5.1.3. 

In summary, for the in-house FEM program, the FEM equation is generated for the 

trapezium elements using the shape function of quadrilateral element in term of natural 

coordination, the approximate solution of an element could be determined by integrating on the 

square isoparametric element by the Gauss-Legendre integration. 

5.1.2.2 Alternative FEM formulation for locking remediation 

In fact, for the problems that is solved by standard FEM (or deformation-only analysis 

uncoupled FEM) the best approximated solution of Galerkin’s FEM (Section 5.1.3) is precisely 

accommodated by selecting a suitable quadrature rule in order to maintain the full rate of 

convergence of the exactly integrated formulation using Gauss-Legendre integration. The 

proper quadrature rule including the optimal number of gauss point, weight of gauss integration 

and gauss point location for numerical integration of the specified shape function are illustrated 

in Table B-1 in Appendix B-4. However, the poor approximation could have happened if there 

is no any function in trial solution which is able to accurately predict the exact solution. This 

case refers to the constrained media problem which includes incompressible or nearly 

incompressible behavior and the constant volumetric plastic strain at the critical state of the 

elastoplastic constitutive model or known as the locking problem. The alternative finite element 

formulations, including the reduced integration techniques and the mixed finite element 

method, have been suggested to accommodate the successful approximation (Hughes, 1987 and 

Zienkiewicz et al., 2005). 

5.1.2.2.1 Mixed Finite Element Method  

Mixed Finite Element Method (or Mixed FEM) is applicable for generating the coupled 

FEM, displacement and pressure variable capturing the seepage – deformation behavior of soil 

in fully saturated and unsaturated conditions. Besides, it effectively improves the locking 

problem. 
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Due to the fact that the incompressible or nearly incompressible problems analysis using 

the standard FEM, the pressure value could be determined only up to an arbitrary constant due 

to the locking behavior. This is because solving a single governing equation in the standard 

matric problem is not valid for all behaviors. Therefore, the way of the improvement using 

Mixed FEM is establishing the “constrained variational problem” which is modified from the 

original governing equation in order to capture all the possible behaviors. The additional 

governing equation or constraints shall be added and combined with the original condition. 

However, using this method, the matrix equation is different from the standard FEM. The 

eigen value of coefficient matrix is not always positive. In the severe case, especially when the 

improper interpolation function combination of the mixed element is used, the eigen value may 

lead to be zero (or singular coefficient matrix) in the incompressible case which the solution is 

impossible. Since the combination of interpolations may lead to poor numerical performance 

and even nonconvergence, so selecting the proper element geometry and interpolation function 

is the first important step for generation the mixed FEM. 

Selecting the proper interpolation function for mixed FEM requires two necessary 

coefficient matrix singularity assessment methods which are the constrain count and the 

Babuska-Brezzi (LBB) stability condition. 

Constraint count (Hughes, 1987) is the first simple criterion, in order to determine the 

ability of an element performing in the constrained media. Constraint ratio, B, by: 

 B =
&!(
&)
	 (5-4) 

where &!( is the total number of equilibrium equations after boundary conditions have been 

imposed and &)  is the total number of incompressibility constraints (or number of 

incompressibility equation in linear pressure equation). The interpretation of B-value, for 2-D 

element about the locking problems and accuracy of approximation result are summarized in 

Table 5-1. 

Even though the constraint count is able to alleviate the locking (B-value is more than or 

equal to optimal value as shown in Table 5-1) but the element may exhibit spurious pressure 

modes due to the non-convergence of FEM. Therefore, Babuska-Brezzi (LBB) stability 

condition (Babuska, 1971; Babuska, 1973 and Brezzi, 1974) which is the mathematical 

convergence theory for mixed FEM shall be additionally taken into account in order to control 

the stability (or singularity) of the element equation solving.  

Regarding to the singularity assessment on the coefficient matrix, serendipity deformation 

quadrilateral (8 nodes) and the bilinear pore water pressure quadrilateral (4 nodes) are widely 

used in the incompressible analysis (Hughes, 1987). Since this element could alleviate the 
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locking problem by satisfying the Babuska-Brezzi condition and constraint count with the 

lowest possible constraint ratio.  

In conclusion, the proper set of elements, serendipity deformation quadrilateral (8 nodes) 

and the bilinear pressure quadrilateral (4 nodes), is used in this study for coupled pressure – 

deformation analysis (Figure 5-4). Mixed FEM which is the arbitrary combinations of 

displacement and pressure alternative finite element formulation is implemented and described 

in Sections 5.2.3 and 5.2.4 for saturated and unsaturated soils, respectively. 

5.1.2.2.2 Reduced integration technique 

The standard FEM for deformation – only analysis is the simple way to evaluate the 

compressibility (load – deflection) problem. For incompressible application, however, this 

element frequently exhibits a tendency of lock since the element interpolation function could 

not represent the field approximation distribution as mention before. By this reason, the 

approximate solution calculated by the numerical integration (Gauss’s Integration) on the 

surface of each Gauss point will give some erroneous. For standard FEM, the simple 

modification to alleviate the locking is reducing the order of Gauss’s integration lower than 

normally used for the coefficient matrix generation. This modification is called reduced 

integration (Zienkiewicz et al., 1971). However, the reduced integration causes unwanted 

behavior of the element (or spurious mode) since it reduces the rank of the stiffness matrix, 

especially in the lower order element.  

Regarding this study, the performance of the quadrilateral element type in order to alleviate 

locking problem is discussed. Bilinear quadrilateral (4 nodes) element is one of the lower-order 
elements that has the high tendency of locking. It is troubled with both 2 kinds of locking, 

volumetric locking and shearing locking (Macneal, 1994). Due to the lower order element, 

eliminating both kinds of locking using fully reduced integration severely lead to the spurious 

mode. Recently, many researchers have developed the solutions for locking problem in lower 
order element which is sophisticated and out of scope in this study such as selective reduced 

integration (Hughes et al., 1978), B-bar method (Hughes, 1980), mixed assumed strain method 

(Simo & Rifai, 1990) and etc.  

Table 5-1 Constraint ratio B-value interpretation for 2-D problem (Hughes, 1987) 
Constraint ratio Interpretation 

B > 2 too few incompressibility constraint 

B = 2 optimal 

B < 2 too many incompressibility constraints 

B ≤ 1 locking 
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In the other hand, serendipity quadrilateral (8 nodes) which is the higher order element 

that can exactly interpolate field properties is used in this study. Although, it is only troubled 

with the shearing locking (Macneal, 1994), fully reduced integration could solve the issue 

without the spurious mode. Therefore, the in-house FEM for deformation – only analysis 

uncoupled FEM in this study for solving 2-D problems is based on the serendipity quadrilateral 

element (8-nodes), together with fully reduced integration (four Gauss points per element). This 

particular combination is chosen for its simplicity, and also its well-known ability to compute 

collapse loads accurately (e.g., Zienkiewicz et al., 1975; Griffiths, 1980 and Griffiths, 1982).  

In conclusion, the element geometry, element interpolation function and alternative 

formulation for locking remediation are summarized as follows; 

• For uncoupled FEM deformation-only analysis, the standard FEM serendipity 
quadrilateral (8 nodes) deformation element is used to perform the numerical 

simulation with the full reduced integration (four Gauss points per element) (Figure 

5-4(a)).  

• For uncoupled FEM pressure-only analysis, no locking problem, the standard FEM 
bilinear quadrilateral (4 nodes) pressure element is used to perform the numerical 

simulation without any reduced integration (four Gauss points per element) (Figure 

5-4(b)).  

• For coupled FEM seepage (2 and 3 phases) – deformation analysis, the mixed FEM 
serendipity deformation quadrilateral (8 nodes) and the bilinear pressure 

quadrilateral (4 nodes)”, is used to perform the numerical simulation for saturated 

and unsaturated conditions (Figure 5-4(c)).  

 

Figure 5-4 The element geometry, location of node and its gauss point using in the in-house 

FEM programs a) uncoupled FEM deformation-only analysis, b) uncoupled FEM pressure-

only analysis, c) coupled FEM seepage (2 and 3 phases) – deformation analysis 
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5.1.3 Formulation of FEM equation by weighted residuals Galerkin’s method 

Most of the engineering problems could be explained by the conventional differential 

equation that the solution is always truth on every single point in the domain as known as the 

governing equation (or strong form). However, determining the exact solution of governing 
equation using analytic solution is tough or impossible. 

FEM is the numerical method for determining the approximate solution of the governing 

equation. In the FEM development process, the governing equation will be relaxed all 

requirements on solutions to a certain extent, the weak form is formulated. Weak form is the 

integral equation containing the differentiate equation states that the conditions need to be 

satisfied in an average sense. Although all solutions of the weak form will not satisfy the 

governing equation, but the weak form implies the governing equation. Thus, we could obtain 

the approximate solution of the governing equation by solving the weak form afterward. 

In this study, the well-known weighted residuals Galerkin’s method is implemented to the 

in-house FEM program in order to generate the weak form of the governing equation, since this 

method provides the simple calculation, low computation price and the symmetric finite 

element matric which is good for the large problem computational. So, in this section, following 

is step by step explanation of the important procedure in order to formulate FEM equation by 

the weighted residuals Galerkin’s method. 
Step 1: Determination of the differential equation corresponding to the considered problem 

General differential equation can be written by Equation (5-5) , where L is the differential 

operator and =F is the exact solution. 

 G(=F) = 0	 (5-5) 

Step 2: Determination of distribution of approximate solution on the element (spatial 

discretization)  

By the assumption of isoparametric element, general distribution of approximate solution 

(Equation (5-2)) can be written as the distribution of approximation in local x-axis and y-axis 

for &-nodes 2-D element by: 

 In x-axis:            ϕJ* = N&ϕ*! + N+ϕ*" +⋯+ N,ϕ*# 

In y-axis:            ϕJ- = N&ϕ-! + N+ϕ-" +⋯+ N,ϕ-# 

(5-6) 

where	& is number of nodes of an element and +# is the isoparametric element interpolation 

function in term of natural coordinate (Appendix B-1). Equation (5-6) can be written in the 

matrix form as expressed by: 
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or we can write in the compacted form as: 

 [AJ\ = [6]{A}	 (5-8) 

where [AJ\  denotes the vector of approximated solution distribution, [6]  denotes the row 

matrix of isoparametric interpolation function and {A} denotes the nodal vector of approximate 

solation or unknown of each node in the element. 

Step 3: Formulation the finite element equation by weighted residuals Galerkin’s method 

From Equation (5-5), if the exact solution =F is substituted by the approximate solution => 

(Equation (5-2)), some errors or residual (]) may be occurred as shown in Equation (5-9). 

 
] = 	G^=>_ = G([6]&×${A}$×&) = G(4+#=#

$

#%&

)	 (5-9) 

Using the Galerkin’s method, the residual is weighted by multiplying with weighting 

function ( #̀), then we integrate the multiplied equation on all the domain of element and set 

the result to be zero as shown in Equation (5-10). 

 
a #̀]b! = 0	
&

0&
	 (5-10) 

Step 4: Integration by parts 

Substitute the residual (Equation (5-9)) into Equation (5-10), we will get: 

 
a #̀]b! =	a #̀G(

1%&%

&

0&
4+#=#

$

#%&

)b! = 0	 (5-11) 

For a body of arbitrary shape, we usually consider the points inside the body as the domain 

denoted by $!"!  and the boundary of the domain in denoted by %!"!  (Figure 5-1). In any 

conservation law, a weak form of the differential equations (Equation (5-11)) could be written 

in the combinations of domain and boundary of the element based on the divergence theorem 

which is the surface integral of a vector field over a closed surface is equal to the volume 

integral of the divergence over the region inside the surface as written by: 
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a #̀G
1%&%

c4+#=#

$

#%&

db! = a ( #̀ , +# , =#)b! +a ( #̀ , +# , =#)b" = 0
2%&%1%&%

	 (5-12) 

For 2-D problem as considering in this study, the second derivative part in Equation (5-12) 

would cause them to vanish (Smith, Griffiths, & Margetts, 2014), this difficulty is resolved by 

applying Green’s theorem (Zienkiewicz et al., 2005) which is equivalent to divergence theorem 

in 2-D. In addition, the element interpolation function is normally selected as the weighting 

function in the calculation which is called Buvnov-Galerkin ( #̀ = +#). Therefore, the final 

element equation can be generally written by: 

 
a +#G
1%&%

c4+#=#

$

#%&

db! = a (	+# , =#)b! +a (	+# , =#)b" = 0
2%&%1%&%

	 (5-13) 

The general procedure for finite element equation formulation described here will be 

applied for the considering problems in Section 5.2. 

5.1.4 Solving the assembled FEM global equation 

The matrix forms of element equations are generated and summed up into the global 

equation in the domain. In this study, a typical global equation system is normally expressed in 

the form of first-order time dependent problems as: 

 [e3]{A} + [f3][Ȧ\ = {h3}	 (5-14) 

where {A}  represents the approximate dependent variable nodal vector, [e3]  and [f3] 

represent the general coefficient matrices and {h3} represents the general load vector.  

From Equation (5-14), the Euler’s method (Figure 5-5) is the computational method in 

order to approximate the solution of the ordinary differential equation as typically shown in 

Equation (5-15). 

 =̇ = i(j, =)	 (5-15) 

Defining the initial condition =(j4) = =4, for any step of time j$' = j$'0& + ℎ5, the dependent 

variable of any time step &5 (or =$') is determined by: 

 =$' = =$'0& + ℎ5i(j$'0&, =$'0&)	 (5-16) 

for all considering time range j4 ≤ j ≤ j4 + Δj and ℎ5 is the constant sub-increment of Δj. 

In addition, for the nonlinear elastoplastic problems, the incremental method is applied. 

This method approximates the nonlinear problem by using a piecewise linear step. If the 

discretized time ℎ5 is very small, the nonlinear problem is able to approximate by the linear 

interpolation. For the &5
56  time step ranging from j$'0& to j$' = j$'0& + ℎ5 , the interpolated 

dependent variable =$0&78 is linearly interpolated by: 
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 =$'0&78 = m=$' + (1 − m)=$'0&	 (5-17) 

where interpolation parameter m = [0,1] for sub-incremental interpolated time is in the range 

of range j$'0& ≤ j$'0&78 ≤ j$' (Figure 5-5). 

With the time discretization and the Euler’s method, the dependent variable = and =̇ for 

non-linear problem can be written as Equations (5-18) and (5-19), respectively. 

 = = m=|576' + (1 − m)=|5	 (5-18) 

 
=̇ =

o=
ℎ5

=
=|576' − =|5

ℎ5
	 (5-19) 

where =|5 , =|576'  is the dependent variable at current time j and the next step time j + ℎ5 . 

Substituting Equations (5-18) and (5-19) into the Equation (5-14), the approximate  solution 

could be solved form the global equation system. 

In this study, choosing the value of m = 0 together with the small discretized time ℎ5 , 

gives the forward Euler’s method which is accurate and robust in solving the systems of 

ordinary differential equations for nonlinear problems. It is closely related to the large family 

of explicit methods which are used for solving systems of ordinary differential equations. This 

property makes them attractive for geomechanics studies which frequently employ very 

complex constitutive laws. Therefore, the explicit Euler’s is implemented to the in-house FEM 

program in order to solve the finite element equation. 

The general procedure for solving the finite element equation described here will be 

applied for the considering problems in Section 5.2. 

 

Figure 5-5 Euler’s method and sub-incremental time step 
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5.1.5 Boundary condition application and determination of the approximate solution 

After the global FEM equation was discretized by time for solving ordinary differential 

equation, then the boundary conditions are applied in order to determine the interested 

approximated solution. 

In this study, the boundary conditions shall be applied to the nodal variable vectors of the 

global equation, including the incremental of displacement {pq}, the pore water pressure at 

time j [q:|;\, the pore water pressure at time j + ℎ5	[q:|;7<(\,  increment of external force 

{rs=>;} and inflows-outflows of water {h}. 

The stated variables need to be control at the boundary of the domain for setting the 

drainage condition and loading condition for solving the finite element equation of each 

experiments. 

5.1.5.1 Displacement boundary condition 

The displacement in the specified direction at the boundary could be constrained by the 

following conditions at constrained nodal points of the boundary. 

• Compression or shearing by the displacement control in the specific direction; 

 
ot =

uvjw*	bxyz*w{)|)&j
&}|~)B	vi	bxy{Bxjx�x&Ä	yj)z

	 (5-20) 

• The boundary is not allowed to be deformed in the specific direction; 

 ot = 0	 (5-21) 

5.1.5.2 External force boundary condition 

The external force in the specified direction at the boundary could be constrained by setting 

the following conditions at constrained nodal points of the boundary. 

• Compression or shearing by the force control in the specific direction; 

 
ΔÅ!.5 =

Total	external	force
number	of	discritizing	step

 (5-22) 

• The external force at the boundary is kept constant in the specific direction; 

 oÅ!.5 = 0	 (5-23) 

5.1.5.3 Seepage boundary condition 

Disallowing the inflows or outflows of water through the surface boundary or undrained 

water condition could be constrained by setting the following condition at constrained nodal 

points of the boundary. 
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 ñ = 0	 (5-24) 

Allowing the inflows or outflows of water through the surface boundary or drained water 

condition could be constrained by setting the following condition at constrained nodal points 

of the boundary. 

 ot? = 0	or	t?|576' = t?|5	 (5-25) 

Remarks: In this study, }@ is assumed to be constant in order to allow the air flow in and out 

freely along the surface and in the domain. 

Boundary conditions for the considering experiments are presented by the illustration of 

3x3 rectangular elements figures as shown in Figure 5-6. 

 

Figure 5-6 Boundary conditions of the considering experiments: (a) oedometer consolidation 

test of saturated soil (open layer), (b) oedometer fully drained compression test , (c) 

oedometer compaction test, (d) biaxial radial constant fully drained shearing test and (e) 

biaxial radial constant exhausted air – undrained water shearing test 



Chapter 5   

 

71 

5.2 FORMULATION AND SOLUTION OF FINITE ELEMENT EQUATIONS FOR 

CONSIDERING PROBLEMS 

This section illustrates the development process of FEM for considering problems starting 

from the simple algorithm of saturated soil through the complicated algorithm of unsaturated 

soil. Followings are the considered formulation list of finite element equation in this study: 

1) Formulation of solid deformation uncoupled FEM for saturated soils  

2) Formulation of transient state of water seepage uncoupled FEM for saturated soils  

3) Formulation of soil – water two – phase seepage – deformation coupled FEM for 

saturated soils 

4) Formulation of soil – water – air three – phase seepage – deformation coupled FEM 

for unsaturated soils (constant air pressure) 

5.2.1 Formulation of solid deformation uncoupled FEM for saturated soils 

The formulation of solid deformation uncoupled FEM for saturated soils is represented by 

the governing load – deflection equation. It is established from 3 mains governing equations as 

listed below: 

1) Principal of static equilibrium for 2 – D in a plane stress state 

2) Principal of effective stress when excess pore water pressure }̇? = 0 

3) Constitutive model for saturated soil for 2 -D plane strain condition óAȦ = 0 

The principal of static equilibrium in 2-D plane stress condition (x-y plane, òAȦ = 0) can 

be written in the differential equations by: 

 In x-axis:												BĊ))
B.

+
BĖ)*
B/

+ ~̇. = 0	

In y-axis:												
BĊ**
B/

+
BĖ)*
B.

+ ~̇/ = 0	
(5-26) 

where ò̇.. and ò̇// are the incremental total stresses along the x-axis and y-axis, respectively. 

ô̇./ is the incremental shear stress on the x-y plane and ~̇., ~̇/ are the incremental body forces 

(units of force/length2) along the x-axis, y-axis, respectively. The Equation (5-26) could be 

written in the matrix form as: 

 

⎣
⎢
⎢
⎢
⎡
ù
ù2

0
ù
ù;

0
ù
ù;

ù
ù2⎦
⎥
⎥
⎥
⎤
°
ò̇..
ò̇//
ô̇./

¢ + £
~.̇
~/̇
§ = •0

0
¶	 (5-27) 

or we can write in the compacted form as: 

 [ß]F{®̇} + [©̇\ = {™}	 (5-28) 

where [ß]F 	denotes the transpose matrix of differential operator [´] that can be expressed by: 
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[ß]F = ¨

B

B.
0

B

B/

0
B

B/

B

B.

≠			and		[ß]	=		

⎣
⎢
⎢
⎢
⎡
B

B.
0

0 B

B/
B

B/

B

B.⎦
⎥
⎥
⎥
⎤

	 (5-29) 

The increment of total stress vector {®̇} which denotes [ò̇..	, ò̇//	, ô̇./\ are specifically defined 

for all plane strain analysis in this chapter, the increment of body force [©̇\ denotes [~.̇	, ~/̇\ 

and {™} is the zero vector.  

In this study, assuming that there is no change of the body force ([©̇\ = {™}), therefore the 

Equation (5-28) can be shorten as written by: 

 [ß]F{®̇} = {™}	 (5-30) 

From Equation (5-30), the weak form is generated using the weighted residuals Galerkin’s 

method with the matrix of weighting function [ÆG]  for the displacement approximation. 

Considering a body, the domain $!"! and boundary of the domain %!"!, the weak form can be 

written by: 

 
a [ÆG]
1%&%

[ß]F{®̇}b! = {™}	 (5-31) 

Integrating Equation (5-31) by parts using the Green theorem for 2-D problem in the 

second derivative part results in the weak form as: 

 
a [ÆG]({®̇} ∙ {∞±})b" − a [ÆH]{®̇}b!

1%&%
= {™}

2%&%
	 (5-32) 

where ({®̇} ∙ {∞±}) = P
ò..̇ ô./̇
ô./̇ ò//̇

R ∙ •
&.
&/¶ = N

ò..̇ &. + ô./̇ &/
ô./̇ &. + ò//̇ &/

O	is the vector of surface traction 

forces acting on the surface boundary " . Since the direction of unit vector {∞±} is always 

positive (+) orthogonal to the surface, so the compressive stress vector which is in the opposite 

direction will be implicitly negative (-). Since the compressive force is always defined as the 

positive value in the world of soil mechanics, the negative sign (-) shall be applied to the stress 

with resulting in the positive traction force in the compression case as: 

 {≤̇} = −{®̇} ∙ {∞±}	 (5-33) 

In addition, refer to Equation (5-32), the total stress {®̇} is always positive (+) for the 

compression case in soil mechanics. However, the compression produces the negative sign (-) 

on the displacement increment which resulting in the negative strain (compatibility) or matrix 

of weighting function [ÆH] for the strain approximation is negative. Hence, in order to keep 
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the positive internal stress-strain in compression case, the negative sign shall multiply to the 

weighting function for the strain approximation [´ÆG] as shown in Equation (5-34). 

 [ÆH]{®̇} = −[ßÆG]{®̇}	 (5-34) 

Substitute Equations (5-33) and (5-34) into Equation (5-32), we will get: 

 
−a [ÆG]{≤̇}b" + a [ßÆG]{®̇}b!

1%&%
= {™}

2%&%
	 (5-35) 

The matrix of weighting function [Æ]  is assumed to be equal to the matrix of 

isoparametric interpolation function [+] using Buffnode’s Galerkin. Then, Equation (5-35) can 

be written by: 

 
−a [6G]I{≤̇}b" + a [ß6G]I{®̇}b!

1%&%
= {™}

2%&%
	 (5-36) 

where the matrix forms of [6G]I and [ß6G]I are illustrated in Appendix B-2. 

The total stress increment ®̇ in Equation (5-36), using the principal of Terzaghi’s effective 

stress for dried soils or fully drained condition of saturated soils, is equal to the Terzaghi’s 

effective stress increment ®J̇ as expressed by: 

 {®̇} = [®J̇ \	 (5-37) 

Considering the load – displacement problem in FEM for solid mechanics, for the saturated 

soil, constitutive model plays the important role to relate the increment of internal effective 

stress in the loading part and the increment of internal total strain in the displacement part by: 

 ®̇J = ≥=K: µ̇		 (5-38) 

where ®̇J , µ̇ , ≥=K  are specifically defined for the Terzaghi’s effective stress vector, strain 

vector and elastoplastic stiffness tensor of the proposed constitutive model for fully saturation 

case (Chapter 2). 

In plane strain condition, the increment of normal strain in z-axis is zero or óȦA = 0, the 

reduced form of constitutive equation can be re-written as shown in the matrix form by: 

 

∂

ò′̇ ..
ò′̇ //
ô′̇./

∏ = π

∫&&
!L ∫&+

!L ∫&M
!L

∫+&
!L ∫++

!L ∫+M
!L

∫M&
!L ∫M+

!L ∫MM
!L
ª °
ó..̇
ó//̇
º./̇

¢	 (5-39) 

or we can write in the compacted form as: 

 [®′̇ \ = Ω≥NO
=Kæ {µ̇} 	= [≥]{µ̇}		 (5-40) 
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where [øJ̇ \ and {µ̇} are specifically defined for this chapter for the Terzaghi’s effective stress 

vector and strain vector in x-y plane for plane strain condition. The subscription orders x and ¿ 

of the elastoplastic stiffness matrix Ω≥NO
=Kæ refer to the stress part and the strain part, respectively. 

In addition to Equation (5-39), the subscription indices, including 1, 2 and 4, denote the normal 

stress (ò..) or strain (ó..) in x-axis, the normal stress (ò//) or strain (ó//) in y-axis and shear 

stress (ô./) or strain (º./) on the x-y plane, respectively. 

The strain increment vector {µ̇} in Equation (5-40) could be written in term of nodal 

displacement increment vector [q̇\ by: 

 {µ̇} = [¡G][q̇\	 (5-41) 

where [¡G] denotes the element strain – displacement matrix. See Appendix B-2 for further 

details of vector and matrix calculation for this equation. 

Substituting the combination of Equations (5-40) and (5-41) into Equation (5-36), we will 

get the element equation for the solid deformation uncoupled FEM for saturated soils as: 

 
−a [6G]I{≤̇}b¬ + a [´6G]I[≥][√P]bƒ[q̇\

1%&%
= {™}

2%&%
 (5-42) 

As proved in Appendix B-2, we could replace [´6G]  in the Equation (5-42) by [¡G] 

matrix and rearrange the equation as shown below: 
 

a [¡G]I[≥][¡G]b![q̇\
1%&%

= a [6G]I{≤̇}b"
2%&%

	 (5-43) 

From Equation (5-43), the system equation is combined from many elements and it can be 

written in the compacting matrix form as expressed by: 

 5e=K
QR;7[q̇\ = [ṡ=>;\	 (5-44) 

where the summary of integration equation of the coefficient matrices and the nodal load 

vectors is shown in Table 5-2 

Table 5-2 Summary of integration equation for the formulation of solid deformation uncoupled 
FEM for saturated condition  

No. Coefficient matrices or Nodal load vectors Integration equation 

1 Elastoplastic element stiffness matrix 
 (saturated soil)  5e=K

QR;7 = a [√P]I[≈][√P]b!
S

 

2 Nodal external force vector 
[ṡ=>;\ = a [6G]I{∆̇}b"

T

̇
 

Remarks: See Appendix B-5 for further details and formulas of the numerical integration. 
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5.2.2 Formulation of transient state of water seepage uncoupled FEM for saturated 

soils 

The purpose of establishing the formulation of transient state of water seepage uncoupled 

FEM for saturated soils in this study is to validate the FEM with the Terzaghi’s theory of 

consolidation (one dimensional flow) in the part of pore water pressure distribution with time.  

Assuming that water and soil particle are the incompressible materials, therefore the 

FEM’s formulation is generated based on the assumption that the net volume of water flow 

through the soil Δ«? is equal to the volume change of soil Δ« as written by: 

 o«? = o«	 (5-45) 

In the transient condition, the volume changes are considered with small increment of time j, 

Equation (5-45) can be re-written as: 

 ù«?
ùj

=
ù«
ùj
		 (5-46) 

With regards to the equilibrium Equation (5-46), the FEM formulation is established from 

3 mains governing equations as listed below: 

1) Darcy’s law  

2) Continuity of flow 

3) Volumetric behavior of soil in 1-D 

First, the transient net volume of water flow through the soil is equivalent to the net flow 

rate »$!5 which can be written as: 

 ù«?
ùj

= »$!5	 (5-47) 

 »$!5 = »UV5 − »#$ (5-48) 

where »UV5 and »#$ are outflow rate and inflow rate, respectively. For 2-D element in the x-y 

plane (Figure 5-7), considering a unit thickness of soil element b� = 1 and there is no flow in 

z-direction (»A = 0,
B(+
BA

= 0), »UV5 and »#$ can be written as the Equations (5-49) and (5-50), 

respectively. 

 
»UV5 = ». +

ù».
ù2

b2 + »/ +
ù»/
ù;

b;	 (5-49) 

 »#$ = ». + »/ (5-50) 

Substituting Equations (5-48), (5-49) and (5-50) into Equation (5-47), we will get: 

 ù«?
ùj

= (». +
ù».
ù2

b2 + »/ +
ù»/
ù;

b;) − ». − »/ =
ù».
ù2

b2 +
ù»/
ù;

b;	 (5-51) 
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Figure 5-7 Water flow through a soil element  

Since the flow rate in the specified direction »W#X can be written in term of velocity of 

water flow in the specified direction …W#X and the cross-section area  ) that orthogonal with the 

direction of flow as: 

 »W#X = …W#X ) 	 (5-52) 

Considering the velocity of water flows in or out in x-direction …. and y-direction …/, from the 

Darcy’s law which is in the assumption of the saturated soil in a slow range of velocity and 

there is no change of the body force, …. and …/ can be written as: 

 
…. = −À.

ùℎ
ù2
		 , …/ = −À/

ùℎ
ù;
			 (5-53) 

where ℎ is the total head pressure (considering only the pressure head) and À. , À/  are the 

saturated coefficients of permeability in x-direction and y-direction, respectively. Therefore, 

the flow rate in x-direction and y-direction can be written by Equations (5-54) and (5-55), 

respectively. 

 
». = −À.

ùℎ
ù2
 /0A = −À.

ùℎ
ù2
b;b� (5-54) 

 
»/ = −À/

ùℎ
ù;
 .0A = −À/

ùℎ
ù;
b2b�	 (5-55) 

Substituting Equations (5-54) and (5-55) into Equation (5-51), we will get the form of 

Laplace’s equation for 2-D steady state flow as: 

 ù«?
ùj

= −À.
ù+ℎ
ù2+

b;b�b2 − À/
ù+ℎ
ù;+

b2b�b;	 (5-56) 
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Second, in the side of the volume change of soil Δ« , the coefficient of volume 

compressibility |Y	,which is the ratio of volumetric strain of soil and increment of vertical 

effective stress (Δò/J ), is used. It is also the reciprocal of the constrained modulus (Ã)U$) or the 

modulus of the oedometer compression as shown below: 

 
|Y =

Z[

[

oò/J
=

1
Ã)U$

	 (5-57) 

where « is the total volume of soil. Therefore, the volume change of soil (Δ«) in the oedometer 

compression test which is equivalent to the Terzaghi’s theory of consolidation can be calculated 

by: 

 o« = |Yoò/J«	 (5-58) 

In the transient condition, the volume change of soil is considered with small increment of 

time j, Equation (5-58) can be re-written as: 

 ù«
ùj

= |Y
ùò/J

ùj
b2b�b; (5-59) 

For the consolidation in the saturated soil, the increment of total vertical stress is zero, the 

increment of effective stress with time can be written by: 

 ùò/J

ùj
= −

ù}?
ùj
 (5-60) 

where }? is pore water pressure. Substituting Equation (5-60) into Equation (5-59), we get: 

 ù«
ùj

= −|Y
ù}?
ùj

b2b�b;	 (5-61) 

Finally, substituting Equations (5-56) and (5-61) into the equilibrium equation (Equation 

(5-46)), the differential equation for the formulation of transient state of water seepage 

uncoupled FEM for saturated soils can be written as: 

 
−À.

ù+ℎ
ù2+

b;b�b2 − À/
ù+ℎ
ù;+

b2b�b; = −|Y
ù}?
ùj

b2b�b;	 (5-62) 

Then, we will get: 

 
−À.

ù+ℎ
ù2+

− À/
ù+ℎ
ù;+

= −|Y
ù}?
ùj
 (5-63) 

Substituting the pressure head ℎ in Equation (5-63) by the following equation: 

 ℎ = }?/º?	 (5-64) 

Equation (5-63) can be re-written in term of pore water pressure }? as: 

 
−

À.
|Yº?

ù+}?
ù2+

−
À/

|Yº?

ù+}?
ù;+

= −
ù}?
ùj

	 (5-65) 
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As the characteristics of the oedometer compression test, that water cannot flow in and 

flow out in the x-direction (lateral is constrained by the steel proving ring), the flow rate ». at 

the boundary is zero (
B"6
B."

= 0). Therefore, Equation (5-63) satisfies the formula of coefficient 

of volume compressibility for 1-D consolidation. However, for simplicity and uniqueness of 

coding in the coupled pressure – deformation FEM, 2-D flow is described herein. 

The compacted form of Equation (5-65) is written and rearranged by: 

 
−{ß}I[e:]{ß}?} +

ù}?
ùj

= 0	 (5-66) 

where the conductivity matrix [e:]  denotes 
\
]) 4
4 ]*

^

_,`-
 , º?	 is unit weight of water and 

{´}I	denotes the transpose matrix of differential operator {´} as shown below: 

 
{ß}I = Ω

B

B.

B

B/
æ,	{ß} = °

B

B.
B

B/

¢		 (5-67) 

From Equation (5-66), the weak form is generated using the weighted residuals Galerkin’s 

method with the matrix of weighting function 5ÆG.7 for pore water pressure approximation. 

Considering a body, the domain $!"! and boundary of the domain %!"!, the weak form can be 

written by: 

 
−a 5ÆG.7{ß}

I[e:]
1%&%

{ß}?}b! + a 5ÆG.7}?̇b!
1%&%

= {™}	 (5-68) 

Integrating Equation (5-68) by parts using the Green theorem for 2-D problem in the 

second derivative part results in the weak form as: 

 
a 5ÆG.7{ß}

I[e:]{´}?}b! + a 5ÆG.7}?̇b!
1%&%1%&%

= a 5ÆG.7{´}
I[e:](}? ∙ {∞±})b"

2%&%
 

(5-69) 

The matrix of weighting function [Æ]  is assumed to be equal to the matrix of 

isoparametric interpolation function [6]	using Buffnode’s Galerkin. Then, Equation (5-69) can 

be written by: 

 
a 56G.7

I
{´}I[Œa]{´}?}b! + a 56G.7

I
}?̇b!

1%&%1%&%

= a 56G.7
I
{´}I[e:](}? ∙ {∞±})b"

2%&%
 

(5-70) 

where the matrix forms of 56G.7
I
 are illustrated in Appendix B-2. 
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The approximation of the pore water pressure }?	and the transient pore water pressure 

with time }?̇  can be written as Equations (5-71) and (5-72), respectively, as proved in 

Appendix B-2. 

 }? = 56G.7{q:}	 (5-71) 

 }?̇ = 56G.7[q:̇\	 (5-72) 

where 56G.7 is the matrix of isoparametric interpolation function [6], {q:} is the nodal pore 

water pressure vector and [q:̇\ is the nodal transient pore water pressure with time vector. See 

Appendix B-2 for further details of vector and matrix calculation for these equations. 

Substituting Equations (5-71) and (5-72) into Equation (5-70), we will get the element 

equation for the transient state of water seepage uncoupled FEM for saturated soils as: 

 
a 5ß6G.7

I
[e:]5ß6G.7b!{q:} + a 56G.7

I
56G.7b![q:̇\

1%&%1%&%

= a 56G.7
I
{ß}I[e:](}? ∙ {∞±})b"

2%&%
	

(5-73) 

As proved in Appendix B-2, we could replace 5ß6G.7 in the Equation (5-73) by 5¡G.7 as: 

 
a 5¡G.7

I
[e:]5¡G.7b!{q:} + a 56G.7

I
56G.7b![q:̇\

1%&%1%&%

= a 56G.7
I
{ß}I[e:](}? ∙ {∞±})b"

2%&%
	

(5-74) 

From Equation (5-74), the system equation is combined from many elements and it can be 

written in the compacting matrix form as expressed by: 

 [e<]{q:} + [fb][q:̇\ = {h} (5-75) 

For solving the nonlinear first order differential equation, discretizing Equation (5-75) 

with time (see Appendix B-6), we will get: 

 (mℎ5[e<] + [fb])[q:|;7<(\ = ℎ5{h} + ([fb] − (1 − m)ℎ5[e<])[q:|;\ (5-76) 

where the summary of integration equation of the coefficient matrices and the nodal load 

vectors is shown in Table 5-3 
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Table 5-3 Summary of integration equation for the formulation of transient state of water 
seepage uncoupled FEM for saturated condition 

No. Coefficient matrices or Nodal load 
vectors 

Integration equation 

1 Suction independent permeability 
element matrix [e<] = a 5¡G.7

I
[e:]5¡G.7b!

1
 

2 Mass matrix 
[fb] = a 56G.7

I
56G.7b!

1
 

3 Nodal inflows/outflows vector 
{h} = a 56G.7

I
{´}I[Œa](}? ∙ {œ±})b"

2
 

Remarks: See Appendix B-5 for further details and formulas of the numerical integration. 

5.2.3 Formulation of soil – water two – phase seepage – deformation coupled FEM for 

saturated soils 

The mixed FEM formulation which incorporates displacement and pore water pressure 

freedoms is used to generate the formulation of soil-water two-phase seepage-deformation 

coupled FEM for saturated soil. The coupled element equation of the seepage – deformation 

analysis combines 2 parts of the governing equation as follows; 

• The combination of the principal of static equilibrium in 2 – D and principal of 
effective stress for saturated soils 

• The combination of the volume change of soil relating with the inflows/outflows of 
water through the soil elements 

The detail of each part is further explained in this section. 

5.2.3.1 The combination of the principal of static equilibrium in 2-D and principal of effective 
stress for saturated soils 

In this part, the element equation is established from the combinations of 3 main governing 

equations which are shown in the following list: 

1) Principal of static equilibrium for 2 – D plane stress condition 

2) Principal of effective stress for saturated condition 

3) Constitutive model for saturated soil for 2 -D plane strain condition óAȦ = 0 

The governing load – deflection equation for the solid deformation uncoupled FEM for 

saturated soil (Section 5.2.1) is the basic element for proving the element equation in this 

section. The element equation could be continuously proved by replacing the total stress with 

the effective stress and pore water pressure based on the principle of Terzaghi’s effective stress.  
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Starting from the weak form Equation (5-36) of governing load – deflection equation for 

the solid deformation uncoupled FEM for saturated soil (Section 5.2.1), it is rewritten in this 

section in term of total stress vector {®̇} as: 

 
−a [6G]I{≤̇}b" +a [ß6G]I{®̇}b!

1%&%
= {™}

2%&%
	 (5-77) 

where the matrix forms of [6G]I and [ß6G]Iare illustrated in Appendix B-2. 

In order to couple the excess pore water pressure with the deformation analysis, the total 

stress vector {®̇}  in Equation (5-77) will be substituted by Equation (5-78) which is the 

principal of effective stress for saturated soil or the Terzaghi’s effective stress. 

 {®̇} = [®J̇ \ + {–}}̇?	 (5-78) 

where {–}	which denotes {1, 1, 0} is multiplied to the excess pore water pressure for plane 

strain condition since the shearing stress is not affected by excess pore water pressure. Then, 

we get: 

 
−a [6G]I{≤̇}b" + a [ß6G]I[®J̇ \b! +a [ß6G]I{–}}̇?b!

1%&%1%&%
= {™}

2%&%
	 (5-79) 

Substituting øJ̇  by the combination of Equation (5-40) and Equation (5-41) of Section 

5.2.1) and discretization of }̇? Equation (5-72) of Section 5.2.2 into Equation (5-79), we get: 

 
−a [6G]I{≤̇}b" + a [ß6G]I[≥][¡G]b![q̇\

1%&%2%&%

+a [ß6G]I–56G.7b!
1%&%

[q:̇\ = {™}	
(5-80) 

where [≥] is the reduced form of elastoplastic stiffness tensor as stated in Section 5.2.1. The 

matrix forms of [6G]Iand [ß6G]Iare illustrated in Appendix B-2.1 for deformation part and 

56G.7  are illustrated in Appendix B-2.2 for pressure part. 	[q̇\  is the nodal derivative 

displacement with time vector and [q:̇\ is the nodal transient pore water pressure with time 

vector. 

As proved in Appendix B-2, we could replace [ß6G] and 5ß6G.7 into the Equation (5-80) 

by [¡G] and 5¡G.7, respectively. We will get the first part of element equation which is the 

combination of the principal of static equilibrium in 2 – D and principal of effective stress for 

saturated soils as follows: 
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a [¡G]I[≥][¡G]b![q̇\
1%&%

+a [¡G]I{–}56G.7b!
1%&%

[q:̇\

= a [6G]I{≤̇}b"
2%&%

	
(5-81) 

From Equation (5-81), the system equation is combined from many elements and it can be 

written in the compacting matrix form as expressed by: 

 5e=K
QR;7[q̇\ + [—][q:̇\ = [ṡ=>;\ (5-82) 

where the summary of integration equation of the coefficient matrices and the nodal load 

vectors is shown in Table 5-4. 

5.2.3.2 The combination of the volume change of soil relating with the inflows/outflows of 
water through the soil elements 

In this part, the element equation is established from the combinations of 3 main governing 

equations which are shown in the following list: 

1) Darcy’s law  

2) Continuity of flow 

3) Volumetric behavior of soil  

The equilibrium of net volume of water flow through the soil (Δ«?) and the volume change 

of soil (Δ«) (Section 5.2.2) is the basic element for proving the element equation in this section. 

However, in the part of Δ«, the element equation could be continuously proved by replacing 

|Y with the increment of volumetric strain óẎ. Doing this, the flow of water could be directly 

related to both the transient pore water pressure and the nodal derivative displacement with 

time [q̇\. In the transient condition, the volume change of soil in plane strain is considered with 

small increment of time j. It can be written as: 

 ù«
ùj

= ó.̇.b2b;b� + ó/̇/b;b2b�	 (5-83) 

where the rate of volume change is always positive value in case of compression or outflows 

water. Equation (5-83) can be written in the matrix form of the derivative strain with time vector 

(as expressed in Equation (5-39)) as: 

 ù«
ùj

= ⌊1 1 0⌋°
ó..̇
ó//̇
º./̇

¢ b2b; = {–}I[µ̇>0c\b2b;b� (5-84) 

where {–}	which denotes {1, 1, 0} is multiplied with the strain vector [µ̇>0c\ to eliminate the 

deviatoric strain part for determining the volume change of soil for plane strain condition. 
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Substitute Equations (5-84) for the volume change of soil and Equation (5-56) for the net 

flow rate as stated in Section 5.2.2 into the same equilibrium equation as expressed by Equation 

(5-46), the differential equation for the formulation of coupled pressure-deformation by the 

considering the volumetric change of soil relating with the inflows/outflows of water can be 

written as: 

 
−À.

ù+ℎ
ù2+

b;b�b2 − À/
ù+ℎ
ù;+

b2b�b; = {–}I[µ̇.0/\b2b;b�	 (5-85) 

Finally, we will get: 

 
−À.

ù+ℎ
ù2+

− À/
ù+ℎ
ù;+

= {–}I[µ̇.0/\	 (5-86) 

Then using the definition of pressure head ℎ as stated in Equation (5-64), the Equation (5-86) 

can be rewritten in term of pore water pressure by: 

 
−
À.
º?

ù+}?
ù2+

−
À/
º?

ù+}?
ù;+

= {–}I[µ̇.0/\	 (5-87) 

The compacted form of Equation (5-87) is written and rearranged by: 

 −{´}I[Œa]{´ud} − {‘}I[’̇*0-\ = 0 (5-88) 

where the conductivity matrix [e:] denotes 
\
]) 4
4 ]*

^

`-
 and {ß}I	denotes the transpose matrix of 

differential operator {ß} as shown in Equation (5-67). 

From Equation (5-88), the weak form is generated using the weighted residuals Galerkin’s 

method with the matrix of weighting function 5ÆG.7  for the pore water pressure 

approximation. Considering a body, the domain $!"!  and boundary of the domain %!"! , the 

weak form can be written by: 

 
−a 5ÆG.7{ß}

I[e:]
1%&%

{ß}?}b! −a 5ÆG.7{–}
I[µ̇.0/\b!

1%&%
= {™}	 (5-89) 

Integrating Equation (5-89) by parts using the Green theorem for the 2-D problem in the 

second derivative part results in the weak form as: 

 
a 5ÆG.7{ß}

I[e:]{ß}?}b! − a 5ÆG.7{–}
I[µ̇.0/\b!

1%&%1%&%

= a 5ÆG.7{ß}
I[e:](}? ∙ {∞±})b"

2%&%
	

(5-90) 

The matrix of weighting function [Æ]  is assumed to be equal to the matrix of 

isoparametric interpolation function [6] using the Buffnode’s Galerkin. Then, Equation (5-90) 

is written by: 
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a 56G.7

I
{ß}I[e:]{ß}?}b! − a 56G.7

I
{–}I[µ̇.0/\b!

1%&%1%&%

= a 56G.7
I
{ß}I[e:](}? ∙ {∞±})b"

2%&%
	

(5-91) 

where the matrix forms of 56G.7
I
are illustrated in Appendix B-2. 

Substituting Equation (5-41) which is the strain-displacement equation (Section 5.2.1) and 

discretization of }? Equation (5-71) (Section5.2.2) into Equation (5-91), we will get: 

 
a 5ß6G.7

I
[e:]5ß6G.7b!{q:} − a 56G.7

I
{–}I[¡G]b![q̇\

1%&%1%&%

= a 56G.7
I
{ß}I[e:](}? ∙ {∞±})b"

2%&%
	

(5-92) 

where the matrix forms of 56G.7
I
 and 5ß6G.7

I
are illustrated in Appendix B-2.2 for pressure 

part and [¡G] are illustrated in Appendix B-2.1 for deformation part.	{q:} is the nodal pore 

water pressure vector and [q̇\ is the nodal derivative displacement with time vector. 

As proved in Appendix B-2, we could replace 5ß6G.7 into the Equation (5-92) by5¡G.7, 

we will get the second part of element equation which is the combination of the volume change 

of soil relating with the inflows/outflows of water through the soil elements as follows: 

 
a 56G.7

I
{–}I[¡G]b![q̇\ − a 5¡G.7

I
[e:]5¡G.7b!{q:}

1%&%1%&%

= −a 56G.7
I
{ß}I[e:](}? ∙ {∞±})b"

2%&%
	

(5-93) 

From Equation (5-93), the system equation is combined from many elements and it can be 

written in the compacting matrix form as expressed by: 

 [—e][q̇\ − [e<]{q:} = {h} (5-94) 

where the summary of integration equation of the coefficient matrices and the nodal load 

vectors is shown in Table 5-4. 

Combining the element Equation (5-82) for the static equilibrium and Equation (5-94) for 

the continuity of flow, we could generate the formulation of soil – water two – phase seepage 

– deformation coupled FEM for saturated soil as shown below: 

 
P
e=K
QR; —

—e ™
R N q̇
q:̇

O + P
™ ™
™ e<

R N
q
q:

O = Nṡ=>;
h
O	 (5-95) 

For solving the nonlinear first order differential equation, discretizing Equation (5-95) 

with time (see Appendix B-6), we will get: 
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÷
e=K
QR; —

—e −me<ℎ5
◊ N

rq
q:|;7<(

O = N
rs=>; + —q:|;

ℎ5h+ (1 − m)ℎ5e<q:|;
O (5-96) 

where the summary of integration equation of the coefficient matrices and the nodal load 

vectors is shown in Table 5-4. 

Table 5-4 Summary of integration equation for formulation of soil – water two – phase seepage 
– deformation coupled FEM for saturated condition 

No. Coefficient matrices or Nodal load 
vectors 

Integration equation 

1 Elastoplasticity element stiffness 
matrix (saturated soil)  5e=K

QR;7 = a [¡G]I[≥][¡G]b!
1

 

2 Suction-independent permeability 
element matrix [e<] = a 5¡G.7

I
[e:]5¡G.7b!

1
 

3 Rectangular coupling pressure 
deformation element matrix  
(stress part) 

[—] = a [¡G]I{–}56G.7b!
1

 

4 Rectangular coupling pressure 
deformation element matrix  
(strain part) 

[—f] = a 56G.7
I
{–}I[¡G]b!

1
 

5 Nodal external force vector 
[ṡ=>;\ = a [6G]F{≤̇}b"

2

̇
 

6 Nodal inflows/outflows vector 
{h} = −a 56G.7

F
{´}I[e:](}? ∙ {∞±})b"

2
 

Remarks: See Appendix B-5 for further details and formulas of the numerical integration. 

5.2.4 Formulation of soil – water – air three – phase seepage – deformation coupled 

FEM for unsaturated soils (constant air pressure) 

The mixed FEM formulation which incorporates displacement, pore water pressure and 

pore air pressure freedoms is used to generate the formulation of soil-water-air three-phase 

seepage-deformation coupled FEM for unsaturated soil. In this study, the air pressure is 

constant which is applicable in many practical situations including the soil compaction and 

fully drained shearing under low loading rate. The coupled element equation of the seepage – 

deformation analysis capturing the unsaturated soil behavior combines 2 groups of the 

governing equation as follows; 

• The combination of the principal of static equilibrium in 2 – D and principal of 
effective stress for unsaturated soils 

• Mass conservation for pore water 

The detail of each part is further explained in this section. 
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5.2.4.1 The combination of the principal of static equilibrium in 2 – D and principal of effective 
stress for unsaturated soils 

In this part, the element equation is established from the combinations of 4 main governing 

equations which are shown in the following list: 

1) Principal of static equilibrium for 2 – D in a plane stress state 

2) Principal of Bishop’s effective stress for unsaturated condition 

3) Constitutive model for unsaturated soil for 2 – D plane strain condition, óAȦ = 0  

4) Soil water characteristic curve, SWCC 

The governing load – deflection equation for the solid deformation uncoupled FEM for 

saturated soil (Section 5.2.1) is the basic element for proving the element equation in this 

section. The element equation could be continuously proved by rewriting the total stress using 

the principle of Bishop’s effective stress for unsaturated soil (Equation (A-1)) in order to couple 

the water and air phases with the deformation analysis. According to the main purposes of this 

study, the interpretation of the compaction behavior, the coupled FEM formulation is simplified 

by assuming the zero excess pore air pressure or }̇@ = 0. With this assumption, this formulation 

is only applicable under the limit of the drainage condition which is the air must be completely 

drained out including the soil compaction and fully drained shearing. The Equation (A-1) can 

be written with the specified assumption in 2-D plane strain condition by: 

 {®̇} = [®"̇\ + {–}ŸX}?̇ − {–}(}@ − }?)Ÿ̇X 	 (5-97) 

where [®"̇\ are specifically defined for this chapter for the Bishop’s effective stress vector in 

x-y plane for plane strain condition and {–}	which denotes {1, 1, 0} is multiplied to the excess 

pore pressure since the shearing stress is not affected by excess pore pressure. 

Starting from the weak form (Equation (5-36)) of governing load – deflection equation for 

the solid deformation uncoupled FEM for saturated soil (Section 5.2.1), it is rewritten in this 

section in term of total stress vector {®̇} as: 

 
−a [6G]I{≤̇}b" +a [ß6G]I{®̇}b!

1%&%
= {™}

2%&%
	 (5-98) 

where the matrix forms of [6G]Iand [ß6G]I  are illustrated in Appendix B-2. Substituting 

Equation (5-97) into Equation (5-98), we will get: 

 
−a [6G]I{≤̇}b¬ + a [ß6G]I[®"̇\bƒ +a [ß6G]I{–}ŸX}̇?bƒ

1%&%1%&%2%&%

−a [ß6G]I{–}(}@ − }?)Ÿ̇Xbƒ
1%&%

= ™ 

(5-99) 
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Considering the load – displacement problem in FEM for solid mechanics, the constitutive 

model plays the important role to relate the increment of internal effective stress vector in the 

loading part and the increment of internal total strain vector in the displacement part including 

the effect of degree of saturation for unsaturated soils by: 

 ®"̇ = ≥=K: µ̇ − ≥g/Ÿ̇X 	 (5-100) 

where ®"̇, µ̇, ≥=K  and ≥g/  are specifically defined for the Bishop’s effective stress vector, 

strain vector, elastoplastic stiffness tensor and the saturation stiffness tensor of the proposed 

constitutive model for unsaturated soil (Chapter 2). 

In plane strain condition, the increment of normal strain in z-axis is zero or óȦA = 0, the 

reduced form of constitutive equation can be re-written as shown in the matrix form by: 

 

∂

ò"̇..
ò"̇//
ô"̇./

∏ = π

∫&&
!L ∫&+

!L ∫&M
!L

∫+&
!L ∫++

!L ∫+M
!L

∫M&
!L ∫M+

!L ∫MM
!L
ª °
ó..̇
ó//̇
º./̇

¢ + ∂

∫&
h0

∫+
h0

∫M
h0

∏ Ÿ̇X 	 (5-101) 

or we can write in the compacted form as: 

 [®"̇\ = Ω≥NO
=Kæ {µ̇} − 5≥i

g/7Ÿ̇X = [≥]{µ̇} − [≥Qj]Ÿ̇X 	 (5-102) 

where [®"̇\ and {µ̇} are specifically defined for the bishop’s effective stress vector and total 

strain vector in x-y plane for plane strain condition. The subscription orders i and j of the plane 

strain elastoplastic stiffness matrix Ω≥NO
=Kæ refer to the stress part and the strain part, respectively. 

The subscription order k of the plane strain saturation stiffness matrix 5≥i
g/7 refers to the stress 

part. The subscription indices of the matrices, 1, 2 and 4, denote the normal stress (ò..) or strain 

(ó..) in x-axis, the normal stress (ò//)  or strain (ó//) in y-axis and shear stress (ô./) or strain 

(º./) on the x-y plane, respectively. In addition, the rate of degree of saturation Ÿ̇X is determined 

from the SWCC. For the constant air pressure condition, it could be written as: 

 Ÿ̇X = ⁄k}?̇ + ⁄[{–}I{µ̇}	 (5-103) 

where ⁄kand ⁄[are the variation parameters of the suction part and volumetric part as shown 

in Appendix B-7.  

Substituting ®"̇  Equation (5-102), rate of degree of saturation Equation (5-103), 

discretization of ’̇ Equation (5-41) of  Section 5.2.1 and discretization of }̇? Equation (5-72) 

of Section 5.2.2 into the Equation (5-99), we will get: 
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a [ß6G]I([≥][¡G] − [≥Qj]⁄[{–}I[¡G])b![q̇\
1%&%

−a [ß6G]I
1%&%

[≥Qj]⁄k56G.7b![q̇:\

+ a [ß6G]I{–}ŸX56G.7b![q̇:\
1%&%

−a [ß6G]I{–}(}@ − }?)⁄k56G.7b![q̇:\
1%&%

−a [ß6G]I{–}(}@ − }?)⁄[{–}I[¡G]b![q̇\
1%&%

= a [6G]I{≤̇}b"
2%&%

	

(5-104) 

Then, arranging the equation as the matrix coefficient of [q̇\, [q̇:\ by: 

 
a [ß6G]I([≥][¡G] − [≥Qj]⁄[{–}I[¡G]
1%&%

− {–}(}@ − }?)⁄[{–}I[¡G])b![q̇\ + a [ß6G]I
1%&%

(−[≥Qj]⁄k56G.7

+ {–}ŸX56G.7 −–(}@ − }?)⁄
k56G.7)b![q̇:\ = a [6G]I{≤̇}b"

2%&%
	

(5-105) 

The matrix forms of[6G]I and [ß6G]I are illustrated in Appendix B-2.1 for deformation part 

and 56G.7 are illustrated in Appendix B-2.2 for pressure part.	{q} is the nodal displacement 

vector and [q:̇\ is the nodal transient pore water pressure with time vector. 

As proved in Appendix B-2, we could replace [´6G]  and 5´6G.7  into the Equation 

(5-105) by	[¡G] and 5¡G.7, respectively, we will get the first part of element equation which is 

the combination of the principal of static equilibrium in 2 – D and principal of effective stress 

for saturated soils as follows: 

 
a [¡G]I([≥][¡G] − [≥Qj]⁄[{–}F[¡G]
1%&%

− {–}(}@ − }?)⁄[{–}I[¡G])b![q̇\ + a [¡G]I
1%&%

(−[≥Qj]⁄k56G.7

+ {–}ŸX56G.7 − {–}(}@ − }?)⁄
k56G.7)b![q̇:\ = a [6G]I{≤̇}b"

2%&%
	

(5-106) 

From Equation (5-106), the system equation of static equilibrium of unsaturated soil and 

movement of SBSs due to ŸX  is combined from many elements and it can be written in the 

compacting matrix form as expressed by: 

 5e=K
GlQR;7[q̇\ + [€][q:̇\ = [ṡ=>;\	 (5-107) 

where the summary of integration equation of the coefficient matrices and the nodal load 

vectors is shown in Table 5-5. 
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5.2.4.2 Mass conservation for pore water 

In this part, the element equation is established from the combinations of 3 main governing 

equations which are shown in following list: 

1) Darcy’s law  

2) Continuity of flow 

3) Mass conservation law 

Capturing the unsaturated soil behavior, the mass conservation law of each phase, solid-

water-air, shall be considered. However, assuming here that the soil particles are 

incompressible, and the air pressure is constant. Therefore, the mass conservation for pore water 

is the sufficient way in order to capture the variations of pore water pressure and volumetric 

behavior that are resulted by the flow in unsaturated soil. 

The FEM coupled pressure-deformation in this part is originated by the mass conservation 

for pore water. For a given closed surface in the domain, the change in time of the mass enclosed 

by surface is equal to the mass traverses the surface. Considering the mass balance of pore 

water and assuming that there is no mass is exchanged between the phases lead to the continuity 

equation of flow as shown in the followings: 

 ‹̇? + ‹?{ß}I ∙ {›:} = 0	 (5-108) 

when {›:} is the Darcy’s velocity vector of water, ‹? is the true density of pore water and ‹? 

is the density of pore water in the soil element which can be determined by the following 

equation. 

 ‹? = &!ŸX‹?	 (5-109) 

where &! is the porosity which can be expressed as a function of specific volume … in small 

strain by: 

 &! = (… − 1)/…U (5-110) 

First, the change in time of the pore water mass ‹̇d  in Equation (5-108) could be 

determined by differentiating Equation (5-109) with time as: 

 ‹?̇ = ((‹?&!)ŸX)̇ = ‹?&!ŸẊ + ŸX(‹?&!̇ + &‹?̇)	 (5-111) 

Assuming here too that water is incompressible which is ‹?̇ ≈ 0, Equation (5-111) can be 

written as: 

 ‹?̇ = ‹?&!ŸẊ + ŸX‹?&!̇ 	 (5-112) 

The volumetric behavior is included in the part of &!̇ by: 
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 &!̇ = −óẎ = −{–}I{µ̇}	 (5-113) 

Substituting Equation (5-113) into Equation (5-112), we will get: 

 ‹?̇ = ‹?&!ŸẊ − ŸX‹?{–}I{µ̇} (5-114) 

Second, in the part the traversing pore water mass through the surface ‹?{ß}I ∙ {›:} in 

Equation (5-108). From the definition of the Darcy’s law and the pressure head as stated in 

Section 5.2.2 ‹?{ß}I ∙ {›:} can be written in another form by: 

 ‹?{ßI} ∙ {›:} = −‹?{ß}I[e:]{ß}?}	 (5-115) 

Substituting Equations (5-114) and (5-115) into Equation (5-108), we will get: 

 ‹?&!ŸẊ − ŸX‹?{–}I{µ̇}−‹?{ß}I[e:]{ß}?} = 0 (5-116) 

Since ‹?is the constant, so the continuity equation of flow is written by: 

 ŸX{–}I{µ̇}−&!ŸẊ + {ß}I[e:]{ß}?} = 0 (5-117) 

From Equation (5-117), the weak form is generated using the weighted residuals 

Galerkin’s method with the matrix of weighting function 5ÆG.7 for the pore water pressure 

approximation. Considering a body, the domain $!"!  and boundary of the domain %!"! , the 

weak form can be written by: 

 
a 5ÆG.7ŸX{–}

I{µ̇}b!
1%&%

−a 5ÆG.7
1%&%

&!Ÿ̇Xb!

+a 5ÆG.7{ß}
I[e:]{ß}?}

1%&%
b! = {™}	

(5-118) 

The matrix of weighting function [Æ]  is assumed to be equal to the matrix of 

isoparametric interpolation function [6]  using the Buffnode’s Galerkin. Then, Equation 

(5-118) is written by: 

 
a 56G.7

I
ŸX{–}I{µ̇}b!

1%&%
−a 56G.7

I

1%&%
&!Ÿ̇Xb!

+a 56G.7
I
{ß}I[e:]

1%&%
{ß}?}b! = {™}	

(5-119) 

Integrating Equation (5-119) by parts using the Green theorem for the 2-D problem in the 

second derivative part is separately shown as follows: 

 
a 56G.7

I
ŸX{–}I{µ̇}b!

1%&%
−a 56G.7

I

1%&%
&!Ÿ̇Xb!

+a 56G.7
I
{ß}I[e:](}? ∙ {∞±})b"

2%&%
−a 56G.7

I
{ß}I[e:]{ß}?}b!

1%&%
= ™	

(5-120) 
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Substituting rate of degree of saturation Equation (5-103), discretization of µ̇ Equation 

(5-41) of  Section 5.2.1 and discretization of }?  Equation (5-71) of Section 5.2.2 into the 

Equation (5-120) we will get: 

 
a 56G.7

I
ŸX{–}I[¡G]b![q̇\

1%&%
−a 56G.7

I

1%&%
&!⁄k56G.7b![q̇:\

− a 56G.7
I

1%&%
&!⁄[{–}F[¡G]b![q̇\

− a 5ß6G.7
I
[e:]5ß6G.7b!{q:}

1%&%

= −a 56G.7
I
{ß}I[e:](}? ∙ {∞±})b"

2%&%
	

(5-121) 

Then, arranging Equation (5-121) as the matrix coefficient of q̇, q̇: and q: by: 

 
a 56G.7

I
(ŸX{–}I[¡G] − &!⁄[{–}I[¡G])b![q̇\

1%&%

−a 56G.7
I

1%&%
&!⁄k56G.7b![q̇:\ − a 5ß6G.7

I
[e:]5ß6G.7b!{q:}

1%&%

= −a 56G.7
I
{ß}I[e:](}? ∙ {∞±})b"

2%&%
	

(5-122) 

From Equation (5-122), the system equation of continuity flow including effect of ŸX is 

combined from many elements and it can be written in the compacting matrix form as: 

 [f][q̇\ − [fl][q̇:\ − [‡]{q:} = {h} (5-123) 

where the summary of integration equation of the coefficient matrices and the nodal load 

vectors is shown in Table 5-5. 

Combining Equations (5-107) and (5-123) which are the element equation for the static 

equilibrium and the element equation for the continuity of flow, we could generate the 

formulation of soil – water - air three – phase seepage – deformation coupled FEM for 

unsaturated soils as shown by: 

 
Pe=K

GlQR; €
f −fl

R N q̇
q:̇

O − Ω™ ™
™ ‡

æ N
q
q:

O = Nṡ=>;
h
O (5-124) 

For solving the nonlinear first order differential equation, discretizing Equation (5-124) 

with time (see Appendix B-6), we will get: 

 
÷
e=K
GlQR; €
f −(m‡ℎ5 + fl)

◊ N
rq

q:|;7<(
O = N

rs=>; + €q:|;
ℎ5h+ ((1 − m)ℎ5‡ − fl)q:|;

O (5-125) 

where the summary of integration equation of the coefficient matrices and the nodal load 

vectors is shown in Table 5-5. 
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Table 5-5 Summary of integration equation for formulation of soil – water – air three – phase 
seepage – deformation coupled FEM for unsaturated condition (constant air pressure) 

No. Coefficient matrices or 
Nodal load vectors 

Integration equation 

1 Elastoplastic stiffness 
element matrix 
(deformation part)  

5e=K
GlQR;7 = a [¡G]I([≥][¡G] − [≥Qj]⁄[{–}I[¡G]

1
− {–}(}@ − }?)⁄[{–}I[¡G])b!	

2 Elastoplastic stiffness 
element matrix  
(pressure part) 

[€] = a [¡G]I(−[≥Qj]⁄k56G.7 + {–}ŸX56G.7
S

− {–}(}@ − }?)⁄k56G.7)bƒ 

3 Rectangular coupling 
pressure deformation 
element matrix (density-
dependent degree of 
saturation) 

[f] = a 56G.7
I
(ŸX{–}I[¡G] − &!⁄[{–}I[¡G])bƒ

S
 

4 Suction-dependent degree 
of saturation element 
matrix 

[fl] = a 56G.7
I

S
&!⁄k56G.7bƒ 

5 Permeability element 
matrix 
  

[‡] = a 5¡G.7
I
[e:]5¡G.7bƒ

S
 

6 Nodal external force 
vector {rs=>;} = a [6P]I{≤̇}b¬

T
 

7 Nodal inflows/outflows 
vector {h} = −a 56G.7

I
{´}I[e:](}? ∙ {∞±})b¬

T
 

Remarks: See Appendix B-5 for further details and formulas of the numerical integration. 

5.3 VALIDATION OF FEM FOR PREDICTING THE BEHAVIOR OF 

SATURATED AND UNSATURATED SOILS 

Ensuring algorithm and accuracy of the in-house FEM programs for saturated and 

unsaturated soils which were generated in this study, all the FEM formulations in Section 5.2 

were validated in this section through the exact solution or the proposed elastoplastic 

constitutive model. Calibrated constitutive model parameters for unsaturated soil and soil water 

characteristic curve (Table 3-3 and Table 3-4) of 5:5 mixed Toyoura sand and Fujinomori clay 

by weight were used to determine the internal stress – strain on each Gauss’s point in Finite 

Element Analysis or FEA and the elementary simulation in all validations unless otherwise 

specified. For the behavior of water seepage, coefficient of water permeability in x and y 

directions are assumed to be constant equal to 10-8 m/s. 

5.3.1 Validation of FEM for predicting the behavior of saturated soils 

Two main validation parts were performed in this study in order to validate the FEM for 

predicting the behavior of saturated soils as described below; 
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• The uncoupled FEM pressure-only analysis (Section 5.2.2) and coupled FEM 
pressure – deformation analysis for saturated soils (Section 5.2.3) were validated 

through the exact solution of Terzaghi’s theory of consolidation. By this, both 

approximations of elastic deformation and distribution of pore water pressure 

through the saturated soil elements during loading could be validated. 

• The uncoupled FEM deformation-only analysis (Section 5.2.1) and coupled FEM 
pressure – deformation analysis for saturated soils (Section 5.2.3) were validated 

through the elementary simulation of elastoplastic constitutive model for saturated 

soil. By this, the stress-strain behavior of saturated soils when subjected to the 

considering plane strain condition tests could be validated. 

5.3.1.1 FEM validation through the Terzaghi’s theory of consolidation 

Uncoupled FEM pressure – only analysis and coupled FEM pressure – deformation 

analysis for saturated soils could be validated through the Terzaghi’s theory of consolidation, 

especially the approximations of water flows and elastic settlement during the consolidation 

process.  

Validating with the Terzaghi’s theory of consolidation, the recompression index ·, which 

controls the elastic volumetric behavior of soil in the constitutive model for FEA, must be 

adjusted to obtain the equivalent soil stiffness as the coefficient of volume compressibility |Y 

which controls the elastic volumetric behavior of soil in the Terzaghi’s consolidation theory. 

As one of the theory’s assumption is linear elastic soil skeleton, so the parameters · and |Y 

shall be determined based on the constant Young’s modulus E as shown below. 

Assuming that constant E 1000.0 kPa (typically for very soft clay) and elastic poison’s 

ratio …! 0.25, |Y is determined by reciprocal of constrained modulus ∫&0W or in term of E as:  
 

|Y =
(1 + …!)(1 − 2…!)

(1 − …!)	⁄
=
(1 + 0.25)^1 − 2(0.25)_

(1 − 0.25)1000.0
= 8.33⁄0M	ÀÊw0&	 (5-126) 

and by assuming an initial void ratio )4 0.60 and a constant mean effective stress z′ 10.0 kPa, 

· is determined for the validation as: 

 
· =

3(1 − 2…)zJ…4
⁄

=
3^1 − 2(0.25)_(10.0)(1.6)

1000.0
= 0.024	 (5-127) 

For elementary simulation, in the oedometer, the soil element was immediately loaded by 

the constant external vertical pressure Δò/ 100 kPa at the initial stage which generated the 

initial uniform excess pore water Δ}?4 100 kPa in the soil element. Then, it was continuously 

consolidated until the end of primary (t = 8000 secs) or until there is no excess pore pressure.  
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Table 5-6 The constitutive linear elastic parameter for the coupled and uncoupled FEA of 
saturated soils 

Parameters  

Young’s Modulus, E [kPa] 1000.0 

Coefficient of permeability, k [m/s] 1E-8 

Poisson’s ratio, ve 0.25 

Mean effective stress, z′[kPa] 10.0 

Initial void ratio, )4 0.6 

Recompression index, · 0.024 

Table 5-7 The constitutive linear elastic parameter for exact solution of Terzaghi’s theory of 
consolidation 

Parameters  

Young’s Modulus, E [kPa] 1000.0 

Coefficient of permeability, k [m/s] 1E-8 

Poisson’s ratio, ve 0.25 

Coefficient of volume compressibility, |Y [kPa-1] 8.33E
-4 

 

For numerical simulation, the soil sample, 0.10 m height and 0.10 m width, was meshed 

from many rectangular elements. The initial condition, boundary condition, element geometry 

and meshing corresponding with the elementary simulation for uncoupled and coupled FEM of 

saturated soils were applied as shown in Figure 5-8 and Figure 5-9. Total consolidation time 

was discretized to be a small time increment 0.025 secs per step in order to keep the accuracy 

of the non-linear approximation solution comparing with the exact solution. 

Using the constitutive linear elastic parameter summarized in Table 5-6 and Table 5-7, the 

numerical analysis could be validated through the exact solution of Terzaghi’s theory of 

consolidation. Both approximate excess pore water pressure from the uncoupled FEM pressure-

only analysis and coupled FEM pressure-deformation analysis could be validated through the 

exact solution of pore water distribution using Equation D-6. Moreover, the approximate elastic 

settlement from the coupled-pressure deformation FEM could be validated through the exact 

solution of vertical settlement using Equation D-7. 

Validating with the exact solution, the approximation of excess pore water pressure 

distribution and vertical settlement at top of the soil sample are plotted together with the exact 

solution in Figure C-1 and Figure C-2, respectively. They revealed that the proposed uncoupled 

FEM pressure-only analysis and coupled FEM pressure – deformation analysis for saturated 

soils provide the accurate approximation of pressure distribution and elastic settlement that 

conforming with the exact solution of Terzaghi’s theory of consolidation (Appendix D-2). 
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Figure 5-8 Initial condition and boundary condition of 1-D consolidations of saturated soils 

 

Figure 5-9 Element geometry and meshing of the 1-D consolidations (a) uncoupled FEM and 

(b) coupled FEM of saturated soils 

5.3.1.2 FEM validation through the simulation of proposed elastoplastic constitutive model 
for saturated soil  

Uncoupled FEM deformation - only analysis and coupled FEM pressure – deformation 

analysis for saturated soil could be validated through the simulation of proposed elastoplastic 

constitutive model for saturated soil, especially the approximations of load – displacement 

relation. 

Both numerical simulation of the soil element using FEM and elementary simulation using 

the constitutive model were conducted. The initial states of soils were defined: initial void ratios 
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)4 which represent dense and loose packing density (Table 5-8) under mean effective stress z′ 

98.0 kPa and initial pore water pressure }?4 100.0 kPa. The soils were vertically compressed 

to 60% strain with the fully drained condition in oedometer compression test and biaxial radial 

constant shearing test, respectively. The simulation conditions for the validation are 

summarized in Table 5-8. 

For numerical simulation, the soil samples were meshed by using a rectangular element, 

1.0 m height and 1.0 m width, in order to validate with the elementary simulation under the 

continuum media condition. The initial condition, boundary condition, element geometry and 

meshing corresponding with the elementary simulation cases (Table 5-8) for uncoupled and 

coupled FEM of saturated soils were applied as shown in Figure 5-10 and Figure 5-11, 

respectively.  

The set of comparison between the numerical simulation using both coupled and 

uncoupled FEMs and the elementary simulation results of each validation case is plotted in 

Figures C-3 through C-6 (Appendix C-2). They reveals that the generated uncoupled FEM 

deformation-only analysis and coupled FEM pressure – deformation analysis for saturated soils 

provide the accurate approximation of elastoplastic stress – strain relationship conforming with 

the proposed elastoplastic constitutive model for saturated soil which already validated through 

the experimental results. 

In conclusion, the in-house FEM program for saturated soils is capable to predict the 

pressure – deformation behavior of saturated soils for the variation of packing density under 

plane strain and drained water condition based of the proposed constitutive model for saturated 

soil. 

Table 5-8 Simulation condition for the validation of soil-water two-phase seepage-deformation 
coupled FEM for saturated soils 

Packing densities Testing Case No. 

Dense )4=1.4 
Oedometer compression 1DS 

Biaxial radial constant shearing 2DS 

Loose )4= 1.6 
Oedometer compression 1LS 

Biaxial radial constant shearing 2LS 
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Figure 5-10 Geometry and boundary condition for the validation of uncoupled FEM for 

saturated soil for the validation case in Table 5-8 

 

Figure 5-11 Geometry and boundary condition for the validation of coupled FEM for 

saturated soil for the validation case in Table 5-8 

5.3.2 The validation of soil-water-air three-phase seepage-deformation coupled FEM 

for unsaturated soils 

The soil-water-air three-phase seepage-deformation coupled FEM for unsaturated soils 

(Section 5.2.4) was validated through the simulation of constitutive model for unsaturated soil 

with the considering plane strain condition tests, especially the approximations of load – pore 

pressure - displacement relation. 

Both the numerical simulation of a soil element using FEM and elementary simulation 

using the constitutive model were conducted with 8 cases of the simulation condition as 

summarized in Table 5-9. The initial states of soils, also using in elementary simulation of 

constitutive model were defined: initial void ratios )4 which represent dense and loose packing 
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density (Table 5-9) under mean net stress pnet 20.0 kPa, pore air pressure ua 98.0 kPa (assumed 

atmospheric pressure) and pore water pressure uw 97.0 kPa. 

Table 5-9 Simulation condition for the validation of soil-water-air three-phase seepage-
deformation coupled FEM for unsaturated soils 

Packing 
densities 

Testing Loading target 
(strain control) 

Drainage conditions 
Case 
No. 

Loose 
)4=1.226 

Oedometer 
compression Saturated state 

Fully drained 1L 

Exhausted air - undrained water 2L 

Biaxial radial 
constant shearing 

Critical state  
Fully drained 3L 

Exhausted air - undrained water 4L 

Dense 
)4= 0.8 

Oedometer 
compression Saturated state 

Fully drained 1D 

Exhausted air - undrained water 2D 

Biaxial radial 
constant shearing 

Critical state 
Fully drained 3D 

Exhausted air - undrained water 4D 

For numerical simulation using FEM, the soil samples were meshed by using a rectangular 

element, 1.0 m height and 1.0 m width, in order to validate with the elementary simulation 

under the continuum media condition. For a soil element, the initial condition, boundary 

condition and geometry for each validation case (Table 5-9) are illustrated in Figure 5-12. In 

this study, the coefficient of water permeability is assumed to be constant equal to the saturated 

case since the total drainage time is not considered. 

The set of comparison between the numerical simulation using the coupled FEM for 

unsaturated soils and the elementary simulation results of each case is plotted in Figures C-7 

through C-22 (Appendix C-3). They reveals that the generated the coupled pressure – 

deformation analysis FEM for unsaturated soils provide the accurate approximation of 

elastoplastic stress – strain relationship that conforming with the proposed elastoplastic 

constitutive model for unsaturated soil that already validated through the experimental results. 

In conclusion, coupled FEM for unsaturated soils is capable to predict the behavior of 

heterogenous media of unsaturated soil (variation in density and degree of saturation) under 

plane strain and exhausted air condition based of the proposed constitutive model for 

unsaturated soil. 
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Figure 5-12 Geometry and boundary condition for the validation of coupled FEM for 

unsaturated soil 



   

CHAPTER 6   

EFFECT OF HETEROGENEITY IN 1-D STATIC COMPACTION  

The interpretation of compaction mechanisms that was discussed in Chapter 4 is performed 

by the elementary analysis. The analysis is under the condition of continuum mechanics based 

on the assumption of very small domain; therefore, we infer that soil properties in the domain 

is homogenous. However, using only the constitutive model for unsaturated soils under the 

assumption of continuum mechanics could not be applied to investigate the real condition of 

geotechnical work. This is because, there are the heterogeneities of soil, water and air phases 

in the considering domain of unsaturated soils. Therefore, soil-water-air three-phases seepage-

deformation coupled FEM for unsaturated soil is a tool to investigate the heterogeneity problem 

by sub-dividing the domain into the small elements. In each small element, a different set of 

soil properties could be applied. 

Recently, coupled FEM for unsaturated soil has been applied as a tool in order to 

investigate the unsaturated soil behaviors by many researchers. For the compaction mechanism, 

using coupled FEM for unsaturated soil, Kawai, et al. (2012) and Kawai, et al. (2014) 

investigated 1-D static compaction mechanisms by considering pore water pressure and pore 

air pressure. Kawai, et al. (2016) investigated the distributions of dry density and degree of 

saturation after compaction. However, most of the studies, the initial states of soil were 

uniformly defined in the domain as the homogenous material. In another way, recent numerical 

investigations using coupled FEM for unsaturated soil, either the assumption of passive pore 

air pressure (Song, et al., 2012; Borja & Song, 2014; Song, 2014) or active pore air pressure 

(Song, et al., 2017), considering the material heterogeneity effect at the initial state have been 

performed by many researchers. They found that the material heterogeneities, such as density 

and degree of saturation, play an important role in triggering strain localization in unsaturated 

porous media (Song, et al., 2017 and Likos, et al., 2019). However, their main purpose is to 

interpret the inception of strain localization in unsaturated soils only. 

In this study, using the proposed coupled FEM for unsaturated soil which is implemented 

by the proposed constitutive model for unsaturated soils, the interpretation of 1-D static 

compaction mechanisms considering the effect of heterogeneity in unsaturated porous media 

were performed. Considering the heterogeneities of dry density and degree of saturation, the 

numerical investigation results in this section proved that effect of heterogeneity shall be taken 

into account for the compaction control parameter specification in order to alleviate the 

localization failure (Song, et al., 2017). Moreover, the quality control of compaction test in the 
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laboratory is affected by the material heterogeneity and it is quite necessary to the compaction 

work starting from the sample preparation stage. Since the compaction control parameter for 

the field compaction and the strength for the engineering design are generated by the laboratory 

test, therefore the engineers should emphasize the quality control of compaction test in the 

laboratory. 

Finally, we aim to indicate the recommendations for heterogeneity alleviation by the 

compaction control parameter specifications and the quality control of soil preparation for 

compaction test in the laboratory which affects the field compaction procedure, design process 

and cost and planning management of the embankment construction.  

The numerical investigations were performed in this chapter for 1-D static compaction on 

unsaturated soil using 2-D soil-water-air three-phases seepage-deformation coupled FEM 

(passive pore air pressure) as proposed in Chapther 5. In this chapter, coefficient of water 

permeability in x and y directions were assumed to be constant equal to 5x10-7 m/s. The sets of 

validated parameters for 5:5 mixed Toyoura sand and Fujinomori clay by weight (Table 3-3 

and 3-4) were used through the numerical investigation in the part of constitutive model for 

unsaturated soils implementation. 

6.1 EFFECT OF MATERIAL HETEROGENEITY IN 1-D STATIC COMPACTION 

ON UNSATURATED SOILS 

The numerical investigations were performed in this section to illustrate the effect of 

material heterogeneity in 1-D static compaction on unsaturated soils. The comparison of 1-D 

static compaction mechanism between homogenous and heterogenous soil samples are 

demonstrated as follows. 

6.1.1 Geometry, meshing and boundary condition in the numerical investigation 

In this study, for 2-D FEM, the dimensions of compaction mold were assumed to be 10 

cm width and 10 cm height as shown in Figure 6-1. Considering volume of the mold per unit 

length (1 cm), the total volume of compaction mold !"#$% was 100 cm3. By the controlling of 
prescribed dry density &% and compaction water content '( in the compaction process, mass 
of dried soil )* and mass of water )+ which were calculated by Equation (6-1), and Equation 

(6-2), respectively shall be uniquely prepared. 

 )* = &%!"#$%	 (6-1) 

 )+ =
'(
100	)*	 (6-2) 

In this numerical simulation, each soil sample was meshed by 100 square elements which 

the initial dimension of each element was 1 cm width by 1 cm height per unit length (1 cm). 
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The boundary conditions of displacement, external force and seepage of water and air 

(exhausted air – undrained water) of 1-D static compaction were set as shown in Figure 6-2. 

6.1.2 Initial states of unsaturated soil samples 

For &% 1.5 g/cm3 and '( 22% of homogenous (U22) and random heterogenous (1R22) 
soil samples, )*	150	1 and )+	33	1 were prepared for the compaction. In this study, U22 
denotes the homogenous soil sample with &% 1.5 g/cm3 and '( 22%. While 1R22 denotes the 
1st random arrangement of heterogenous soil sample with &%333 1.5 g/cm3, '( 22% and standard 
deviation SD 0.1. Initial states of unsaturated soils for U22 and 1R22 are described below. 

6.1.2.1 Homogenous soil sample (U22) 

Initial state of homogenous soil sample was assumed to be identical for all elements. By 

the prescribed dry density and compaction water content, initial void ratio 45 0.782 and degree 
of saturation 675 75.20% were calculated by Equation (4-1) and Equation (4-2), respectively. 
Assuming that pore air pressure 89 98.0 kPa (atmospheric pressure) and the soil was compacted 
on the main wetting curve (:; = 0), pore water pressure 8+ 96.43 kPa could be calculated by 
Equation (2-6). Initial isotropic total stress was 118.0 kPa in the simulation. The initial state of 

numerical simulation in form of meshed element including the prescribed specific volume, 

degree of saturation and pore water pressure are illustrated in Figure 6-6(a). 

6.1.2.2 Heterogenous soil sample (1R22) 

For the prescribed mean dry density &%333	1.5	g/cmA , element initial dry densities were 

randomly distributed to 100 elements of the heterogenous soil sample based on the assumption 

of normal distribution with SD was 0.10 (Figure 6-3). Volume of each element !B$B and its 
geometry were similarly defined across the domain, then initial void ratio 45,B$B and degree of 
saturation 675,B$B  of each element were calculated by Equation (4-1) and Equation (4-2), 
respectively. Assuming that pore air pressure 89 98.0 kPa (atmospheric pressure) and the soil 
was compacted on the main wetting curve (:; = 0), the uniform distribution of an unique 8+ 
96.718 kPa across the domain which was calculated by Equation (2-6) could be solved by 

controlling the total mass of water in the domain )+	33	1 as specified in this section for wn 
22%. The random initial state of numerical simulation in form of meshed element including 

prescribed specific volume, degree of saturation and pore water pressure are illustrated in 

Figure 6-6(b). 
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Figure 6-1 Geometry of compaction mold and soil sample 

 

 
Figure 6-2 FEM boundary conditions of 1-D static compaction for soil samples 

 

 
Figure 6-3 Normal distribution of dry density for heterogenous soil sample                          

(SD = 0.1 and &%333 = 1.5 g/cm3) 
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6.1.3 Numerical results of compaction 

6.1.3.1 Homogenous soil sample (U22) 

6.1.3.1.1 Numerical investigation results 

The homogenous soil sample (U22) was statically compacted by the uniform vertical 

pressure at the top surface of the sample until approaching the fully saturated state. The 

displacement rate was controlled at 0.001 mm/s to allow the local drainage of water in each 

element (Song, et al., 2017). By this condition, we could infer that air was also locally drained 

since the air permeability is higher than the water permeability. Stress – strain at the top surface 

of the sample and average dry density – applied vertical compaction stress are plotted in Figure 

6-5(a) and Figure 6-5(b), respectively. In addition, the results of numerical simulation in form 

of meshed element including the specific volume, degree of saturation and pore water pressure 

at the applied vertical compaction stress 200 kPa and the saturated state are illustrated in Figure 

6-6(a). 

6.1.3.1.2 Validations of FEM through the elementary simulation 

1-D static compaction results of homogenous soil sample (U22) which was performed by 

coupled FEM for unsaturated soils (Section 6.1.3.1.1) was validated through the elementary 

simulation under the same condition. Figure 6-4 reveals that compaction of homogenous soil 

sample by the numerical analysis, which is under the continuum mechanics and localized 

drainages conditions as the elementary analysis, provides the accurate approximation of stress-

strain relationship conforming with the proposed elastoplastic constitutive model for 

unsaturated soils.  

6.1.3.2 Heterogenous soil sample (1R22) 

6.1.3.2.1 Numerical investigation results 

The heterogenous soil sample (1R22) was statically compacted in 1-D by the displacement 

control at the top surface of the sample until approaching the fully saturated state. The 

displacement rate was controlled at 0.001 mm/s to allow the local drainages as previous 

described. Stress – strain at the top surface of the sample and average dry density – applied 

vertical compaction stress are plotted in Figure 6-5(a) and Figure 6-5(b), respectively. In 

addition, the results of numerical simulation in form of meshed element including the specific 

volume, degree of saturation and pore water pressure at the applied vertical compaction stress 

200 kPa and the saturated state are illustrated in Figure 6-6(b). 
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6.1.4 Effect of material heterogeneity to the properties of compacted soils 

In the comparison of the average dry density after compaction between the homogenous 

(U22) and heterogenous (1R22) soil samples (Figure 6-5(b)), we found that the average dry 

density of random heterogenous soil sample (1R22) is higher than the average dry density in 

the homogenous soil sample (U22) at a given applied vertical compaction stress. Higher 

compaction effort resulted in higher different dry density between the homogenous and 

heterogenous soil samples. While at the saturated state, the average dry densities are almost 

equal among the cases. Since they are limited by the incompressibility of water at the saturated 

state of 1-D compaction; therefore, the compaction effort did not affect the average dry density 

at this state. However, in the simulations, the average dry densities of heterogenous soil sample 

are a little lower than the homogenous soil sample. This is because fully saturated state for all 

elements could not be approached in the heterogenous soil sample under the same accuracy 

step in the simulation. 

Considering the heterogenous soil sample (1R22), in addition to the increasing of 

compaction effort could cause the increasing of average dry density. Moreover, it also caused 

the decreasing of the variations of element dry density. During the compaction, low variation 

of the distribution curves of element dry density were observed and it continuously slid to the 

denser part by some limit of the maximum dry density (Figure 6-7). This is because, with 

increasing of compaction effort, the looser elements were highly deformed compare to the 

denser elements due to the high stiffness of the denser element and the limitation of minimum 

void ratio of each soil type. By these results, heterogeneity on materials which cause the 

localized failure under loadings (Song, et al., 2017) could be alleviated. Decreasing variation 

of element dry density after compaction (approaching the homogenous material) could be done 

by increasing the compaction effort in the compaction process. 

 In addition, the skewness of element dry density positively increased especially in the 

high compaction effort (Figure 6-7). Figure 6-7 shows that the number of lower dry density 

element is more than the denser dry density element with the small variation after compaction. 

This result implies that some looser elements could not be deformed due to the stress absorption 

of the denser element around their elements.  

In conclusion, the material heterogeneities at the initial state including dry density and 

degree of saturation affect the average dry density at any considering stage of compaction 

excluding in the saturated state. Specified the appropriate compaction effort, the effect of 

heterogeneity after compaction on the localized behavior of compacted soil when subjected to 

loadings could be alleviated. After the effect of heterogeneity on the properties of compacted 

soils was confirmed in this section. Then, in the next section, for a given distribution of the dry 
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density (SD 0.1, &%333 1.5 g/cm3), the significance of element dry density arrangement in the 
heterogeneity soil sample shall be investigated. 

 

 
Figure 6-4 Validation of numerical analysis (U22) through the elementary analysis 

 

 
Figure 6-5 Comparisons of (a) stress – strain relationship at the top surface and (b) average 

dry density of compacted soil between homogenous and heterogenous soil samples 
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Figure 6-6 Numerical simulation results (meshed element) including D, 67 and 8+ of the 
initial, applied vertical pressure 200 kPa and saturated states for cases (a) U22 and (b) 1R22 
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Figure 6-7 Variations of element dry density distributions during the compaction of 1R22  
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6.2 EFFECT OF INITIAL DRY DENSITY DISTRIBUTION ARRANGEMENT IN 

1-D STATIC COMPACTION ON UNSATURATED SOILS 

Refer to the numerical investigations in Section 6.1, the heterogeneities of initial dry 

density and degree of saturation of unsaturated soil affect the property of compacted soils. In 

this section, the effect of various initial dry density distribution arrangement in 1-D static 

compaction on unsaturated soils was investigated by keeping )*	150	1, )+	33	1, SD 0.1 and 
&%333 1.5 g/cm3 as defined in Section 6.1. 

6.2.1 Arrangements of initial dry density in the heterogenous soil sample 

Following five arrangements of element dry density in heterogenous soil samples, 

including SV22; SH22; 1R22; 2R22 and 3R22 where &%333 1.5 g/cm3 and SD 0.1, were set in 
order to investigate the effect of initial element dry density arrangement to the variation of dry 

density of compacted soil when the equivalent initial dry density was kept constant. In this 

study, SV22 and SH22 denote the segregated soil samples in vertical and horizontal directions, 

respectively, with '( 22%. While 1R22, 2R22 and 3R22 denote the 1st, 2nd and 3rd random 
arrangement of heterogenous soil samples, respectively, with '( 22%. SV22 and SH22 were 
extremely set in order to investigate the extremely effect of the arrangement. While 1R22, 2R22 

and 3R22 were set to investigate the variation of dry density of compacted soil when the normal 

distribution of dry density (SD = 0.1 and &%333 = 1.5 g/cm3) was randomly mixed.  
• SV22: The geometry domain was vertically segregated to two main parts, parallel 

arrangement, where dry density 1.4 g/cm3 and 1.6 g/cm3 were uniformly distributed 

in each part as shown in Figure 6-10(a). 

• SH22: The geometry domain was horizontally segregated to two main parts, series 
arrangement, where dry density 1.4 g/cm3 and 1.6 g/cm3 were uniformly distributed 

in each part as shown in Figure 6-10(b). 

• 1R22: Normal distribution of dry density (SD = 0.1, &%333 = 1.5 g/cm3, Figure 6-3) was 
randomly arranged in the heterogenous soil sample as shown in Figure 6-6(b). The 

arrangement was similar to the arrangement of heterogenous soil sample in Section 

6.1.2.2 

• 2R22 and 3R22: Normal distribution of dry density (SD = 0.1, &%333 = 1.5 g/cm3, Figure 
6-3) was randomly arranged in the heterogenous soil samples, 2R22 and 3R22, as 

shown in Figure 6-11(a) and Figure 6-11(b), respectively. 
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6.2.2 Numerical results of compaction 

The prescribed arrangements of dry density in the heterogenous soil samples were 

statically compacted by the displacement control at the top surface of the sample until 

approaching the fully saturated state. The displacement rate was controlled at 0.001 mm/s to 

allow the local drainages as previous described. Stress – strain at the top surface of the sample, 

average dry density – the applied vertical compaction stress and coefficient of variation (only 

1R22, 2R22 and 3R22) – the applied vertical compaction stress are plotted in Figure 6-8(a), 

Figure 6-8(b) and Figure 6-9, respectively. In addition, the results of numerical simulation in 

form of meshed element including the specific volume, degree of saturation and pore water 

pressure at the applied vertical compaction stress 200 kPa and the saturated state for SV22 & 

SH22 and 2R22 & 3R22 are illustrated in Figure 6-10 and Figure 6-11, respectively. 

6.2.3 Effect of initial dry density distribution arrangement to the properties of 

compacted soils 

Refer to the comparison of the average dry density between the various arrangements of 

initial dry density distribution in heterogenous soil samples as shown in Figure 6-8, we found 

that average dry density of arrangement SH22, 1R22, 2R22 and 3R22 are significantly higher 

than the average dry density in the homogenous soil sample (U22) at a given applied vertical 

compaction stress. In addition, their sequence from highest to lowest dry density was SH > 

1R22 ≈ 2R22 ≈ 3R22. Considering only the random arrangements, including 1R22; 2R22; 
3R22, the random arrangement of initial element dry density insignificantly affected the 

average dry density of compacted soil among their group (Figure 6-9). While the average dry 

density of compacted soil of SV22 is lower than the U22 due to the parallel distribution. 

However, at the saturated state, average dry density was not affected by the arrangement as 

long as every element are uniformly approached the saturated state. 
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Figure 6-8 Comparisons of (a) stress – strain relationship at the top surface and (b) average 

dry density of compacted soil between homogenous and heterogenous soil samples 
(arrangement effect)  

 
Figure 6-9 Coefficient of variation of random heterogeneity soil samples (only 1R22, 2R22 

and 3R22) with applied vertical compaction stress 
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Figure 6-10 Numerical simulation results (meshed element) including D, 67 and 8+ of the 
initial, applied vertical pressure 200 kPa and saturated states for cases (a) SV22 and (b) HV22 
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Figure 6-11 Numerical simulation results (meshed element) including D, 67 and 8+ of the 
initial, applied vertical pressure 200 kPa and saturated states for cases (a) 2R22 and (b) 3R22 
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6.3 EFFECT OF INITIAL DRY DENSITY VARIATION IN 1-D STATIC 

COMPACTION ON UNSATURATED SOILS 

Refer to the numerical investigations in Section 6.2, the random distribution arrangement 

of the dry density which is normally distributed with SD 0.1 and &%333 1.5 g/cm3 results in 
insignificant variation of average dry density after compaction among their group. Therefore, 

in this section, the random arrangement  of the dry density which was normally distributed with 

the prescribed SD (Figure 6-12) by keeping the same )*	150	1, )+	33	1 and &%333 1.5 g/cm3 for 
'(	22%as defined in Section 6.1 were statically compacted in 1-D to investigate the effect of 
initial dry density variation in 1-D static compaction on unsaturated soils. 

6.3.1 Variations of initial dry density in the heterogenous soil sample 

The normal distribution of dry density in the heterogenous soil sample of SD 0.01, 0.05, 

0.08, 0.10 and 0.117 were set in order to investigate the effect of variation of initial dry density 

to the compacted soil when the equivalent initial dry density, )* and )+ were kept constant. 

The random arrangement of initial states of numerical simulation in form of meshed element 

including prescribed specific volume, degree of saturation and pore water pressure of SD 0.05 

and 0.01 are illustrated in Figure 6-15(a) and Figure 6-15(b) respectively, as representatives. 

While, the meshing for numerical simulation with the random arrangement of SD 0.01 are 

illustrated in Figure 6-6(b). 

6.3.2 Numerical results of compaction 

The different variations of dry density in the heterogenous soil samples were statically 

compacted in 1-D by the displacement control at the top surface of the sample until approaching 

the fully saturated state. The displacement rate was controlled at 0.001 mm/s to allow the local 

drainages as previous described. Stress – strain at the top surface of the sample, average dry 

density – the applied vertical compaction stress and percent difference of compacted dry density 

– variation of initial dry density of vertical applied stress 200 kPa are plotted in Figure 6-13(a), 

Figure 6-13(b) and Figure 6-14, respectively. In addition, the results of numerical simulation in 

form of meshed element including the specific volume, degree of saturation and pore water 

pressure at applied vertical compaction stress 200 kPa and the saturated state of 1R22-SD0.05 

and 1R22-SD0.01 are illustrated in Figure 6-15(a) and Figure 6-15(b) respectively. While, the 

results of numerical simulation in form of meshed element of 1R22-SD0.10 are illustrated in 

Figure 6-6(b). 
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Figure 6-12 Variations of dry density in heterogenous soil samples 

 

 
Figure 6-13 Comparisons of (a) stress – strain relationship at the top surface and (b) average 
dry density of compacted soil between homogenous soil sample and heterogenous soil 

samples (SD 0.1117, 0.100, 0.080, 0.050 and 0.010) 
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Figure 6-14 Difference of compacted dry density with variation of initial dry density for 

applied vertical stress 200 kPa 

6.3.3 Effect of initial dry density variation distribution to the properties of compacted 

soils 

In the comparison of the average dry density between the variations of initial dry density 

distribution in heterogenous soil samples as shown in Figure 6-13(b) and Figure 6-14, we found 

that the average dry density at a given applied vertical compaction stress of higher variation of 

initial dry density (or higher SD) significantly deviated from the homogenous case (U22) in the 

denser side. On the other hands, average dry density after compaction in the case of low 

variation of initial dry densities (e.g., 1R22-Sd0.01) closed to the dry density of homogenous 

soil sample (U22). However, at the saturated state, average dry density was not affected by the 

variation of dry density as long as every element were uniformly approached the saturated state. 

6.4 CHARACTERISTICS OF COMPACTION CURVE OF HETEROGENOUS 

UNSATURATED SOIL 

In this section, the effect of compaction water content along the compaction curve to the 

characteristic of compaction curve considering the effect of initial heterogeneity was 

investigated. Refer to the numerical investigations in Sections 6.2 and 6.3, in order to avoid the 

effect of arrangement and clarify the effect of the heterogeneity, the random arrangement of the 

dry density which was normally distributed with SD 0.1 and &%333 1.5 g/cm3 was selected for the 
investigation of characteristics of the compaction curve in this section. By keeping, &%333 1.5 
g/cm3 and )*	150	1, the variations of compaction water content '( of the heterogenous soil 
sample along the compaction curve were controlled by the variation of )+.  

6.4.1 Variations of compaction water content along the compaction curve 

First, the elementary compaction curves of homogenous soil sample were generated. The 

similar initial dry density 1.5 g/cm3 was controlled by setting an identical initial void ratio 45 
0.782. Compaction water contents were varied in the prescribed range then the initial degree of 

saturations 675 of each '( in the range were calculated by Equation (4-2). Assuming that pore 
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Figure 6-15 Numerical simulation results (meshed element) including D, 67 and 8+ of the 
initial, applied vertical pressure 200 kPa and saturated states for cases (a) 1R22-SD0.05 and 

(b) 1R22-SD0.01 
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air pressure 89  98.0 kPa (atmospheric pressure) and the soil was compacted on the main 
wetting curve (:; = 0), pore water pressure 8+ could be calculated by Equation (2-6) for each 
'(. Initial isotopic total stress was 118.0 kPa in the simulation. The soil elements were statically 
compacted in 1-D by the vertical stress control to the applied vertical compaction stress 100 

kPa, 200 kPa and 300 kPa. The convex-upward compaction curves with maximum dry densities 

and optimum water content were numerically generated, and their transition due to compaction 

stress were generated as shown in Figure 6-17. 

From the compaction curve which was generated in the elementary simulation Figure 6-17, 

the compaction water content '( 22%, 24% and 25% were selected as the representative of 
compacted soil on the dry side of optimum (1R22), optimum water content (1R24)  and wet 

side of optimum (1R25) of the compaction curve at applied vertical compaction stress 200 kPa 

in the numerical investigation of the heterogenous soil samples (the random arrangement of the 

dry density which was normally distributed with SD 0.1 and &%333 1.5 g/cm3). By keeping, &%333 1.5 
g/cm3 and )*	150	1, the )+ were adjusted to be 33 g, 36 g and 37.5 g for '( 22%, 24% and 
25%, respectively. The random initial states of numerical simulation in form of meshed element 

including prescribed specific volume, degree of saturation and pore water pressure of 1R24 and 

1R25 are illustrated in Figure 6-16(a) and Figure 6-16(c) respectively. While, the random initial 

state of numerical simulation in form of meshed element of 1R22 are illustrated in Figure 

6-6(b). 

6.4.2 Numerical results of compaction 

With the same arrangement and variation of initial dry density, the variation of water 

content 22%, 24% and 25% in the heterogenous soil samples were investigated. They were 

statically compacted in 1-D by the displacement control at the top surface of sample until 

approaching the fully saturated state. The displacement rate was controlled at 0.001 mm/s to 

allow the local drainages as previous described. The average dry density after compaction of 

each compaction water content along the compaction curve at the vertical compaction stresses 

100 kPa, 200 kPa and 300 kPa are illustrated in the Figure 6-17. Figure 6-16(a) and Figure 

6-16(b) show the numerical investigation results when the heterogenous soil samples 1R24 and 

1R25 were compacted to the saturated state, respectively. While, the numerical investigation 

results with the random arrangement of 1R22 are illustrated in Figure 6-6(b). 
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Figure 6-16 Numerical investigation results of heterogenous soil sample (a) wn  = 24% and (b) 
wn  = 24.72% and (c) wn = 25% including the specific volume, degree of saturation and pore 

water pressure, at initial state and saturated state 
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6.4.3 Characteristics of compaction curve of heterogenous unsaturated soil 

 From Figure 6-17, at a given applied vertical compaction stress, the average dry density 

of heterogenous compacted soil is higher than the homogenous soil sample on the dry side of 

compaction. However, at the optimum water content and wet side of compaction, the dry 

densities were limited by the incompressibility of soils due to the approaching of saturated state. 

Consequently, considering the effect of the initial heterogenous dry density with the similar 

applied vertical compaction stress, the moving of typical compaction curves to the upper left 

was observed in the numerical investigation. 

In addition, the effect of heterogeneity at the initial state to the behavior of compacted soil 

on the dry side and wet side at the same degree of compaction were also investigated in this 

section. Since the typical compaction curve moves to the upper left part, so we added the 

random arrangement case 1R24.72 on the wet side of compaction which provides the same 

degree of compaction as 1R22 on the dry side at the applied vertical stress 200 kPa. By keeping, 

&%333 1.5 g/cm3 and )*	150	1, the )+ was adjusted to be 37.08 g for '( 24.72%. It was statically 
compacted in 1-D by the displacement control at the top surface of sample until 200 kPa or 

approaching the fully saturated state with the displacement rate 0.001 mm/s. The average dry 

density after compaction of 1R24.72 at the applied vertical compaction stresses 200 kPa is 

illustrated as point a in Figure 6-18. At the same degree of compaction, the effect of 

heterogeneity at the initial state to the behavior of compacted soils could be explained by the 

current variation of dry density of compaction as shown in Figure 6-18. The distribution curve 

and variation of SD of element dry density during compaction reveal that the soils compacted 

on the wet side provided lower variation of dry density than the dry side after compaction at 

the same degree of compaction. Since the initial element dry densities of cases 1R22 and 

1R24.72 are similar, therefore the small variation and high magnitude of initial degree of 

saturation on the wet side results in the low heterogeneity of element dry density after 

compaction. The heterogenous soil on the wet side could compacted easily even under the low 

compaction effort as reflected by the skewness of element dry density during the compaction 

(Figure 6-18). Moreover, in Figure 6-18, at the final point of compaction point c and point b′ 
of the difference compaction water content 1R22 and 1R24.72, respectively, the optimum water 

content for each compaction effect was observed. It reveals that aiming to compact the initial 

heterogenous soil sample at the optimum water content, higher compaction effort results in low 

variation of final dry density after compaction. 

In conclusion, the compaction water content affects the material heterogeneities of the 

compacted soil. At the same degree of compaction, the soil which is compacted on the wet side  
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Figure 6-17 Effect of heterogeneities of dry density and degree of saturation to the 

characteristic of compaction curve 

 
Figure 6-18 Variations of element dry density distributions of heterogenous soil samples 

considering the effect of compaction water content on 1R22 and 1R24.72 

are numerically observed the low heterogeneity effect. In addition, at the optimum water 

content, higher compaction effort results in low variation of final dry density. Therefore, the 

appropriate specifications of compaction water content and compaction effort are the optimum 
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water content and high compaction effort. By this specification, the effect of heterogeneity after 

compaction to the strain localization behavior of compacted soil when subjected to loadings 

could be alleviated. 

6.5 IMPLEMENTATION THE EFFECT OF HETEROGENEITY TO THE 

COMPACTION QUALITY CONTROL  

Using the numerical investigation results from Sections 6.1 through 6.4, we could 

implement them in order to provide the recommendation of the quality control of soil 

preparation for compaction test which affects the field work procedure, design process and cost 

and planning management of the embankment construction.  

Controlling the field work of soil compaction, the compaction control parameter including 

optimum water content, maximum dry density and compaction effort are generated for the fill 

material by performing the compaction test in the laboratory. From the numerical investigation, 

we found that the heterogeneity of initial dry density and degree saturation of the sample affect 

the average dry density of compacted soil. In this section, refer to the investigation result, we 

can conclude that controlling the quality of sample preparation before compaction could control 

the properties and strength of compaction in the construction and design process to be safe as 

following discussion. 

6.5.1 Case A: Well preparing of the fill material for compaction test 

In this section, following discussions about the effect of preparing fill material for 

compaction test in laboratory and field compaction are illustrated in Figure 6-19.  

In the stage of sample preparing for compaction test in laboratory, the fill material is dried 

and pounded, then it is sieved to filter out the large soil sample and mixed well with water. By 

this process, the prepared sample has the small variation of initial dry density and degree of 

saturation in the compaction mold. For this case, in the theoretical thinking, the well-prepared 

sample is homogenous soil sample. From the numerical investigation result of homogenous 

sample (Figure 6-13), with the effect of variation of heterogeneity, the minimum dry density 

can be observed from the compaction test. 

In the field compaction, using the compaction control parameter from the laboratory 

testing result, the initial proportions of dry soil mass and water mass is controlled. However, in 

the field, the small variation of soil sample is hardly prepared like in the laboratory (Case I: 

poor preparing). At the controlled optimum water content and compaction effort, in case of the 

well-prepared sample in laboratory test, similar average dry density and degree of saturation 

could be observed in the field compaction due to the approaching of saturated state. This 

statement is referred from the numerical investigation result considering the effect of 
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compaction water content on the heterogeneity (Figure 6-17). This result is on the assumptions 

that the compaction energy is completely transferred to any depth of the soil and the soils is 

compacted without unloading after compaction. By this result, refer to the parametric study of 

compacted soil in Chapter 4, the strength before and after soaking, magnitude of compression 

collapse and liquefaction resistant of field compaction are confirmed to be similar to the 

properties that used in the design process. 

In conclusion, the coupled FEM for unsaturated soils could perform the numerical 

investigation considering the effect of heterogeneity in the initial stage of compaction. From 

the results, we can conclude that well preparing of the fill material for compaction test in 

laboratory could efficiently control the properties and strength of compacted soil in the 

construction design and management (cost and planning). 

However, even the degree of saturation is uniformly distributed in the soil sample when 

the soil is compacted at the optimum water content, but the heterogeneity of the density is still 

remained. Refer to the study of Song (2017), they found that the heterogeneity of density causes 

the localization failure. Therefore, using the coupled FEM considering the effect of 

heterogeneity proposed in this study is still necessary to predict the strength of compacted soil 

with the effect of localization in the future study. 

6.5.2 Case B: Poor preparing of the fill material for compaction test 

In this section, following discussions about the effect of preparing fill material for 

compaction test in laboratory and field compaction are illustrated in Figure 6-20. 

In the case of the fill material is poorly prepared in the stage of sample preparing for 

compaction test in laboratory. The prepared sample have the large variation of initial dry density 

and degree of saturation in the compaction mold. By the assumption that the soil is randomly 

mixed, from the numerical investigation result of heterogenous sample (for example SD 0.1 in 

Figure 6-13), with the effect of variation of heterogeneity, the higher dry density can be 

observed from the compaction test. Especially, the heterogenous compaction curves slide to the 

upper left. 

In the field compaction, using the compaction control parameter from the laboratory 

testing result, the initial proportions of dry soil mass and water mass is controlled. Since the 

variation of prepared soil sample could not completely control in the field. Therefore, two 

extreme possibilities of heterogeneity variation could be occurred. If the variation of prepared 

sample in the field (random distribution) is higher than the laboratory (Case I, Figure 6-20), the 

result shows the same tendency as Case A (Section 6.5.1). However, if the variation of prepared 
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soil sample in the field is smaller than in the laboratory (Case II, Figure 6-20), uncertainty in 

the design and its effect to the construction management could be occurred. 

6.5.2.1 Small variation of prepared soil sample in the field or similar to the laboratory 
preparing (Case II, Figure 6-20) 

At the controlled optimum water content and compaction effort, in case of the poor-

prepared sample in laboratory test, average dry density is lower than the expected dry density 

in the laboratory. Especially, the compacted soil is observed on the dry side of compaction 

when using the optimum compaction water content from the laboratory test. These statements 

are referred from the numerical investigation result considering the effect of compaction water 

content on the heterogeneity (Figure 6-17). 

By this result, limiting the compaction effort and compaction water content by compaction 

control parameter, the designer engineer has to reduce the strength and liquefaction resistance 

in the design due to the lower compacted dry density. Moreover, the magnitude of compression 

collapse is higher than expectation of designer for the design at the optimum water content. 

Finally, even the strength after soaking of soil compacted in the dry side of optimum without 

unloading after compaction is insignificant but it is significantly reduced for unloading case. 

These statements are referred from the parametric study of compacted soil in Chapter 4. 

In conclusion, the coupled FEM for unsaturated soil could perform the numerical 

investigation considering the effect of heterogeneity in the initial stage of compaction. From 

the results, we can conclude that engineer need to reduce the efficiency of compacted soil and 

overestimate the serviceability in the heavy rainfall case. The strength of the soil structure needs 

to be reduced just because the poor preparing of the fill material in the compaction laboratory 

test. This significantly affects to the construction management (cost and planning) in each 

project. However, followings discuss about the recommendation in order to achieve the 

required dry density using the coupled FEM for unsaturated soil considering the effect of 

heterogeneity. 

6.5.2.1.1 Increasing compaction effort but keeping compaction water content as compaction 
control parameter 

In order to achieve the target dry density as specified in the compaction control parameter, 

with the constant compaction water content, the compaction effort must be increased. By this 

process, although the strength and serviceability are not changed in the design, but it consumes 

higher cost and time in the construction. 



Chapter 6   125 

6.5.2.1.2 Variation compaction water content and keeping compaction effort by compaction 
control parameter 

By keeping the compaction effort, the 100% of target dry density could not be reached by 

the limit of incompressibility of soil in the saturated state. Using the numerical investigation 

result, we could recommend that adding compaction water content is the way to increase the 

dry density and there is no bad effect of the compaction on the dry side of optimum. 

 
Figure 6-19 Implementation the effect of heterogeneity to the compaction quality control 

(Case A) 

 
Figure 6-20 Implementation the effect of heterogeneity to the compaction quality control 

(Case B) 
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6.6 CONCLUSION 

From the numerical investigations of 1-D static compaction considering effect of 

heterogeneity, the material heterogeneities at the initial state including dry density and degree 

of saturation affect the average dry density at any considering stage of compaction excluding 

in the saturated state. Specified the appropriate compaction control parameter, high compaction 

effort and wet side of compaction or optimum water content, the effect of heterogeneity after 

compaction to the strain localization behavior of compacted soil when subjected to loadings 

could be alleviated.  

 In addition, we could implement the effect of heterogeneity to the compaction quality 

control. Well preparing of the fill material for compaction test could reduce the risk of 1) 

strength reduction of compacted soil from the design planning; 2) increasing of cost and time 

in the compaction and 3) the increasing of collapse compression magnitude from the 

expectation in the design. This recommendation conforms with the specification in many 

standard methods of test for compaction, such as AASHTO T 180 and ASTM D 1557 for 

modified compaction test. In the testing standard, the well preparing of the fill material by 

filtering out of some large soil sample is also specified. In addition, from the numerical 

investigation, compaction on the wet side of optimum is recommend. 

Although the recommendations are provided, using the coupled FEM for unsaturated soil 

considering the effect of heterogeneity proposed in this study is still necessary to predict the 

strength of compacted soil with the effect of localization in the future study. In the future, using 

the coupled FEM for unsaturated soil, we are able to utilize the full strength and serviceability 

of the compacted soils that the on-site fill material could be provided by control the variation 

of soil density in laboratory to be similar to the variation of soil density in the field. The effects 

of heterogeneity on 1-D static compaction mechanism could be investigated. 



   

CHAPTER 7   

CONCLUDING REMARKS AND FUTURE RESEARCH 

7.1 SUMMARY OF CONCLUSION 

In this study, the critical state constitutive model for unsaturated compacted soil was 

proposed and validated. By the proposed model, the behaviors of soil structure were predicted 

from compaction through a series of simulation from the beginning of compaction process 

through its failure. The effect of compaction water content and compaction effort on the 

characteristic behavior of unsaturated compacted soil were investigated. Then, the responses of 

unsaturated compacted soil under the considered loads which rely on its characteristic after 

compaction were also interpreted.  

From the simulation result, we found that the proposed constitutive model for unsaturated 

soils could predict well the coupled hydro-mechanics behavior of compaction. The simulation 

results reveal that the compaction water content affects the behavior of compacted soil 

including characteristic of compaction curve, hydraulic collapse, shear strength and 

liquefaction resistance of compacted soil through the degree of saturation and dry density. 

Following typical behaviors of compacted soil could be properly generated by the proposed 

constitutive model for unsaturated soils. All the tendencies simulated by the proposed model 

are correspondence with the experimental results reported by many researchers. 

1) Regarding the mechanism of compaction, the convex-upward curves with maximum 

dry density and optimum water content for various soil types and their transition due 

to compaction stress were properly predicted.  

2) Regarding the shear behaviors under fully drained static monotonic shearing, 

compaction water content, compaction effort and remained confining pressure after 

compaction affect the peak strength of the compacted soil both before and after 

soakings. The difference between the strength of compacted soil before and after 

soaking of the compacted specimens along the compaction curve could be observed 

from the simulations. For the before soaking case, the peak strength of soils 

compacted dry of optimum is higher than the soils compacted wet of optimum. While 

at the same time, for the after soaking case, the peak strength of soils compacted dry 

of optimum is significantly decreased from the magnitude of before soaking. The 

tendency of the peak strength after soaking with the various compaction water 

content is similar to the tendency of compaction curve. At the optimum water 
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content, the maximum peak strength after soaking provides the small amount of 

volumetric change due to soaking.  

3) Regarding the liquefaction behavior of compacted soil, the liquefaction resistance is 

very high in the dry side of compaction curve which is dominantly affected by degree 

of saturation. When the water contents are approached the optimum water content or 

higher, combined effect of degree of saturation and dry density on liquefaction 

resistance could be seen. The tendency of liquefaction resistance is independent of 

the compaction effort. Lastly, the compaction effort significantly affects the 

liquefaction resistance at low water content and the effect gradually decreases when 

water content increases. 

In addition, the capability of the constitutive model was utilized for the soil-water-air 

three-phases seepage-deformation coupled FEM based on the assumptions of 2-D plain strain 
condition and passive air pressure for the unsaturated porous media. The in-house FEM 

program was used to investigate the behavior of soil structure from the compaction considering 

the non-uniformity of substance soil which certainly find in the real condition of geotechnical 

work.  

From the numerical investigations of 1-D static compaction considering effect of 

heterogeneity, the material heterogeneities at the initial state including dry density and degree 

of saturation affect the average dry density at any considering stage of compaction excluding 

in the saturated state. By the appropriate specification of compaction control parameter, high 

compaction effort or wet side of compaction or optimum water content, the effect of 

heterogeneity after compaction to the strain localization behavior of compacted soil when 

subjected to loadings could be alleviated. In addition, we could implement the effect of 

heterogeneity to the compaction quality control. Well preparing of the fill material for 

compaction test could reduce the risk of 1) strength reduction of compacted soil from the design 

planning; 2) increasing of cost and time in the compaction and 3) the increasing of collapse 

compression magnitude from the expectation in the design. This recommendation conforms 

with the specification in many standard methods about the soil preparation for the compaction 

test. 

All in all, we recommend that soil compacted at the optimum water content is suitable for 

the compacted soil confronted with the heavy rainfall and subjected to the static monotonic 

shearing. This is because the highest peak strength, the minimum volumetric changes and low 

coefficient of permeability after soaking are observed. In case of the optimum water content 

could not be reached in the compaction process, the soil shall be compacted on the wet side of 
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optimum to prevent the highly collapse compression due to soaking for the serviceability of the 

embankment. In addition, aiming to achieve the optimum water content is also the rational way 

to increase the liquefaction resistance of the unsaturated compacted soil. Moreover, 

specification of the appropriate compaction control parameter, selecting high compaction effort 

or compaction water content on the wet side or at the optimum, the effect of heterogeneity after 

compaction to the starin localization behavior of compacted soil when subjected to loadings 

could be alleviated. Importantly, engineer can specify the optimum compaction control 

parameters in the construction for the considered range by the simulation of the proposed model 

and the numerical analysis. 

7.2 FUTURE RESEARCH 

Although the recommendations for compaction are provided for alleviating the 

heterogeneity of compacted soil, using the coupled FEM for unsaturated soil considering the 

effect of heterogeneity proposed in this study is still necessary to predict the strength of 

compacted soil in order to improve the efficiency and quality of the construction of soil 

structures. Therefore, for the future research, the ideas of improvement are listed below; 

1) Using the coupled FEM for unsaturated soil together with the soil gradation that 

related to the heterogeneity of substance soil in the field, we could utilize the full 

strength and serviceability of the compacted soils in the field by control the variation 

of soil density in laboratory to be similar to the variation of soil density in the field.  

2) Prediction of the mechanical behaviors of compacted soil e.g., the shear behavior, 

the soaking behavior and the permeability of soil considering the effect of 

heterogeneity of soil from the initial state. 

3) Development of the soil-water-air three-phases seepage-deformation coupled FEM 
with the assumption of active air pressure, the behavior of fully undrained condition, 

liquefaction resistance, of the compacted soil is going to be achieved by the 

numerical simulation. 
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APPENDIX A  

RATE FORM OF STRESS – STRAIN RELATIONSHIP FOR CONDUCTING 
THE ELEMENTARY TEST 

A - 1 GENERAL FORM OF STRESS – STRAIN RELATIONSHIP FOR 

CONDUCTING THE ELEMENTARY TEST 

The elastoplastic effective stress – strain relationship for unsaturated soil Equation (2-55) 

which is generated by the yield function is utilized for conducting the elementary analysis under 

the specified drainage condition for each application. 

From Equation (2-4), the time derivative of Bishop’s effective stress !"	̇ can be written as: 

 !"	̇ = !!"#̇ + '$()̇ + )('$̇ 	 (A-1) 

where !!"#̇  and )̇  are the time derivatives of Cauchy’s net stress tensor and suction, 
respectively. 

Substituting Equation (A-1) into Equation (2-55) in order to incorporate the Bishop’s 

effective stress into the stress – strain relationship as written by: 

 !!"#̇ + '$()̇ + )('$̇ = *"%: ,̇ − *&!'$̇ 	 (A-2) 

From Equation (2-16), the time derivation of degree of saturation '$̇ derived from SWCC 
is rewritten by Equation (A-3), when .̇ = −.'(: ,̇. 

 
'$̇ =

(&r
() )̇ −

(&r
(* .'(: ,̇

1 − (&r
(+h

,+"
d&r

 
(A-3)  

Then, the variation of degree of saturation by suction, including effect of density and 

hysteresis, are also included in the stress – strain relationship by substituting the time derivation 

of degree of saturation '$̇ (Equation (A-3)) into Equation (A-2) as written by: 

 

!!"#̇ + '$()̇ + )('$̇ = *"%: ,̇ − *&!
(&r
() )̇ −

(&r
(* .'(: ,̇

1 − (&r
(+h

,+"
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	 (A-4)  

Then, Equation (A-4) can be rearranged as written by: 

 

!"#$̇ = '(#) + ((,. + -.)⨂
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From Equation (A-5), the net stress – strain relationship for unsaturated soil can be written 

in the compacted form as: 

 !!"#̇ = *!"# ∶ ,̇ − *))̇	 (A-6)   

Finally, substituting !"#$̇ = ! −̇ DĖ. and -̇ = DĖ − DḞ into Equation (A-6), the total stress 

– strain relationship for unsaturated soil for control the testing condition can be written in the 

compacted form by: 

 !̇ = *!"# ∶ ,̇ + (( − *))36̇ +*)37̇	 (A-7)   

where 36̇ and 37̇ are the time derivatives of pore air pressure and pore water pressure. 

A - 2 DRAINAGE CONDITION 

Drainage conditions of void air and void water need to be selected and applied properly 

for simulating compaction, soaking and shearing behavior of unsaturated soils as summarized 

in Table A-1. Pore air pressure rate 36̇ and pore water pressure rate 37̇ in the simulation shall 
be controlled for particular drainage condition. Finally, in the simulation, the combination of 

total stress (Equation (A-7)) and drainage conditions (Equations (A-8), (A-9), (A-13) and 

(A-21)) will be applied to constitutive equations of each testing condition. 

A - 2.1 Drained water condition 

The drained water condition is the condition that water is allowed to escape from the soil. 

By this, we keep the pore water pressure rate constant in the simulation as given by: 

 37̇ = 0 (A-8) 

A - 2.2 Exhausted air condition 

The exhausted air condition is the condition that air is allowed to escape from the soil. By 

this, we keep the pore air pressure rate constant in the simulation as given by: 

 36̇ = 0 (A-9) 

A - 2.3 Undrained water condition 

The undrained water condition is the condition that water is not allowed to escape from 

the soil. By this, the pore water pressure rate is always changed in the simulation as given by: 

 37̇ ≠ 0 (A-10) 

In other direction, for undrained water condition, we control the mass of water in the closed 

system instead of pore water pressure rate. Regarding the basic volume mass equation for 

unsaturated soil as given in Equation (4-2), the water content wn is kept constant as given by 
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6!̇ =

7'$̇ + '$7̇
8)

= 0 (A-11) 

so 
'$̇ =

−'$7̇
7  (A-12) 

where 7̇ = .̇ = −.'(: ,̇. 
By substituting Equation (A-12) into Equation (A-3), the equation of variation of degree 

of saturation by suction, including effect of density and hysteresis under the water mass constant 

condition can be written as: 
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36̇ +
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,&!

37̇ = 0 (A-13) 

A - 2.4 Unexhausted air condition 

The unexhausted air condition is the condition that air is not allowed to escape from the 

soil. By this, the pore air pressure rate is always changed in the simulation as given by: 

 36̇ ≠ 0 (A-14) 

In other direction, for unexhausted air condition, we control the mass of air in the closed 

system instead of pore air pressure rate. Regarding the ideal gas law which the empirical 

equation can be written as: 

 ;6<6 = =>?@6A (A-15) 

where ;6 is the pressure of ideal gas, <6 is the volume of ideal gas, =>? is air mole or amount 
of substance, @6  is gas constant and T is absolute temperature of gas. In this study, the 
temperature T is kept constant under the Boyle’s law, therefore the mass of air can be kept 

constant by control the variation of pore air pressure ua and air volume Va as given by: 

 ;6<6̇ = 36<6̇ = 0 (A-16) 

Volume of air is related to the degree of saturation Sr and density of soil (or void ratio e) 

by assume constant volume of soil Vs = 1 as given by: 

 <6 = 7(1 − '$) (A-17) 

So, the mass of air rate can be written in term of degree of saturation Sr, density of soil (or void 

ratio e) and pore air pressure as written by: 

 (36<6)̇ = ((367)(1 − '$))̇ = 0 (A-18) 



Appendix A 

 

141 

so 
36'$̇ = 36(1 − '$)

7̇
7 + (1 − '$)36̇ (A-19) 

where 7̇ = .̇ = −.'(: ,̇. 
By substituting Equation (A-19) into Equation (A-3), the equation of variation of degree 

of saturation by suction, including effect of density and hysteresis under the air mass constant 

condition can be written as:   

 

G
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I ḊF = 0	 (A-20) 

The form of air mass constant equation is reduced by multiply Equation (A-13) with ua 
and subtract it by Equation (A-20) as written by: 
 36

7 .'(: ,̇ + ('$ − 1)36̇ = 0 (A-21) 

A - 3 APPLICATIONS 

A - 3.1 Compaction mechanism 

Compaction mechanism is investigated through static loading condition. As compaction 

primality occurs by exhaustion of void air without any change in water content, this testing 

condition is applied under exhausted air, undrained water condition. The constitutive equations 

are the combination of Equations (A-7), (A-9) and (A-13) in the elementary simulation as 

summarized by: 
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37̇ = 0	 (A-22) 

A - 3.2 Monotonic static shearing 

Static shearing under fully drained condition is used in considering the long-term stability 

analysis of soil. In the elementary test, shearing load will be applied slowly and pore pressure 

is not allowed to build up. So, this testing condition allow the air and water to escape from the 

soil. In other words, both increment of pore air pressure and pore water pressure are always 

zero. The constitutive equations are the combination of Equations (A-7), (A-8) and (A-9) in the 

elementary simulation as summarized by: 

 !̇ = *!"#: ,̇	 (A-23) 
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A - 3.3 Soaking and adjusting water content  

Suction varying under constant mean net stress is applied in the simulation to focus only 

its effect for soaking mechanism and adjusting water content (or water absorption) before 

performing compaction simulation. The suction is controlled under the fully drained condition 

where void air and water are freely exhausted and drained, respectively. For this testing 

condition, the constitutive equations are the combination of Equations (A-7) with keeping the 

total stress and pore air pressure constant (Ḟ = 0 and 36̇ = 0) in order to keep ;!"#̇ = 0. While 
pore water pressure is controlled to be increased (37̇ > 0) for wetting in the elementary 
simulation as written by: 

 *!"#: ,̇ = −*)37̇	 (A-24) 

A - 3.4 Fully undrained static shearing 

Liquefaction during an earthquake is usually occurred by cyclic shearing within a very 

short time period. This condition is considered by cyclic shearing under the unexhausted air 

and undrained water drainage condition. It is applied by keeping the mass of air and that of 

water constant (H<636̇ I = 0; H7'$̇ I = 0), respectively. In this condition, both pore air pressure 
and pore water pressure can vary. The constitutive equations are the combination of Equations 

(A-7), (A-13) and (A-21) in the elementary simulation as summarized by: 

 
J
!̇ = *!"# ∶ ,̇ + (( − *))36̇ +*)37̇

36
7 .'(: ,̇ + ('$ − 1)36̇ = 0 	 (A-25) 

Table A-1 Drainage conditions and their applications 
Air Water Drainage conditions Applications 

Drained 
36̇ = 0 

Drained 
37̇ = 0 Fully drained 

A – 3.2 Monotonic 
static shearing 
A – 3.3 Soaking and 
adjusting water 
content  

Undrained 
6!̇ = 0 

Exhausted - Undrained 
A – 3.1 Compaction 
mechanism 

Undrained 
36<6̇ = 0 Fully undrained 

A – 3.4 Fully 
undrained static 
shearing 
(assume earthquake) 

 



   

 

APPENDIX B  

SUPPLEMENTARY INFORMATION FOR FEM FORMULATIONS 

For APPENDIX B, defining !	 = 	1, 2, …,	n and ( is the number of nodes in 2-D element, 

unless otherwise specified.  

B - 1 SHAPE FUNCTION AND ELEMENT NODE NUMBERING OF 2D 
ELEMENTS 

• Bilinear Quadrilateral (4 nodes) 

)! =
1
4
(1 − -)(1 − /) 

)" =
1
4
(1 + -)(1 − /) 

)# =
1
4
(1 + -)(1 + /) 

)$ =
1
4
(1 − -)(1 + /) 

• Serendipity Quadrilateral (8 nodes) 

)! =
1
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(1 − -)(1 − /)(−- − / − 1) 
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1
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(1 − -")(1 − /) 
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1
4
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1
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2
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B - 2 SPATIAL DISCRETIZATION 

B - 2.1 Details of vector and matrix forms for the discretization of displacement and 
strain  

Approximation solutions of the displacement in x-axis (1)̇) and y-axis (1*̇) for (-node 

element are written as Equations (B-1) and (B-2), respectively. 

 
1̇) = )+!3̇)! +)+"3̇)" +⋯+)+#$!3̇)#$! +)+#3̇)# 	 (B-1) 

 
1̇* = )+!3̇*! +)+"3̇*" +⋯+)+#$!3̇*#$! +)+#3̇*# 	 (B-2) 

We can express Equations (B-1) and (B-2) in the matrix from as: 

 

5
1̇)
1̇*
6
"×!

= 7
)+! 0 )+" 0 ……)+#$! 0 )+# 0
0 )+! 0 )+"…… 0 )+#$! 0 )+#

9
"×"-

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧
3̇)!
3̇*!
3̇)"
3̇*"
⋮
⋮

3̇)#$!
3̇*#$!
3̇)#
3̇* ⎭

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

"-×!

	 (B-3) 

or writing in the compacting form as 

 
{Ċ} = [F.]HİJ	 (B-4) 

where Ċ denotes the approximate displacement vector of the element, [F.] denotes the matrix 

of isoparametric interpolation function N and HİJ is the nodal derivative displacement with 

time vector. 

From Equations (B-1) and (B-2), strain vector in x-y plane for plain strain condition {K̇} 

can be written as following set of equation. 

 L1)̇
LM

=
L)+!
LM

	3̇)! +
L)+"
LM

	3̇)" +⋯+
L)+#$!
LM

	3̇)#$! +
L)+#
LM

	3̇)# 	

	
L1)̇
LN

=
L)+!
LN

	3̇)! +
L)+"
LN

	3̇)" +⋯+
L)+#$!
LN

	3̇)#$! +
L)+#
LN

	3̇)# 	

	
L1*̇
LN

=
L)+!
LN

	3̇*! +
L)+"
LN

	3̇*" +⋯+
L)+#$!
LN

	3̇*#$! +
L)+#
LN

	3̇*# 	

	
L1*̇
LM

=
L)+!
LM

	3̇*! +
L)+"
LM

	3̇*" +⋯+
L)+#$!
LM

	3̇*#$! +
L)+#
LM

	3̇*# 

(B-5) 
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Equation (B-5) can be written in the matrix form as: 

 

O
P))̇
P**̇
Q)*̇

R

#×!

=

⎩
⎪⎪
⎨

⎪⎪
⎧

L1)̇
LM
L1*̇
LN

L1)̇
LN

+
L1*̇
LM ⎭

⎪⎪
⎬

⎪⎪
⎫

#×!

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
L)+!
LM

0
L)+"
LM

0 …
L)+#$!
LM

0
L)+#
LM

0

0
L)+!
LN

0
L)+"
LN

… 0
L)+#$!
LN

0
L)+#
LN

L)+!
LN

L)+!
LM

L)+"
LN

L)+"
LM

…
L)+#$!
LN

L)+#$!
LM

L)+#
LN

L)+#
LM ⎦

⎥
⎥
⎥
⎥
⎥
⎤

#×"-

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧3)!

̇

3*!
3)"̇

3*"̇

⋮
⋮
3)-̇

3*-̇

̇

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

"-×!

 

(B-6) 

or it could be written in the compacting form as: 

 
{K̇} = [Y.]HİJ (B-7) 

where [Y.] denotes the element strain – displacement matrix. 

The differential operator [Z]  = 	

⎣
⎢
⎢
⎢
⎡
/

/)
0

0 /

/*

/

/*

/

/)⎦
⎥
⎥
⎥
⎤

	  is specified in this section and  [Z]0 = 

[

/

/)
0

/

/*

0
/

/*

/

/)

\ denotes the transpose matric of [Z]. Then, []F.] can be written as Equation 

(B-8) which is equal to [Y.]. 

	

	[ZF.] 		=	

⎣
⎢
⎢
⎢
⎡
/

/)
0

0 /

/*

/

/*

/

/)⎦
⎥
⎥
⎥
⎤

#×"

7
)+! 0 )+" 0 … )+#$! 0 )+# 0
0 )+! 0 )+" … 0 )+#$! 0 )+#

9
"×"-

	

	

[ZF.] =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
L)+!
LM

0
L)+"
LM

0 … …
L)+#$!
LM

0
L)+#
LM

0

0
L)+!
LN

0
L)+"
LN

… … 0
L)+#$!
LN

0
L)+#
LN

L)+!
LN

L)+!
LM

L)+"
LN

L)+"
LM

… …
L)+#$!
LN

L)+#$!
LM

L)+#
LN

L)+#
LM ⎦

⎥
⎥
⎥
⎥
⎥
⎤

#)"-

	

	
		[ZF.] = [Y.]	

(B-8) 
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In addition, [ZF.]1 denotes the transpose matric of  []F.] as shown below which is equal to 

[Y.]0. 

	

	[ZF.]0 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
/2%!
/)

0
/2%!
/*

0
/2%!
/*

/2%!
/)

/2%"
/)

0
/2%"
/*

0
/2%"
/*

/2%"
/)

⋮ ⋮ ⋮
⋮ ⋮ ⋮

/2%#$!
/)

0
/2%#$!
/*

0
/2%#$!
/*

/2%#$!
/)

/2%#
/)

0
/2%#
/*

0
/2%#
/*

/2%#
/) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

"-×#

=	 [Y.]0 	 (B-9) 

B - 2.2 Details of vector and matrix forms for the discretization of pore water pressure 
and distribution of pore water pressure 

The approximation of the pore water pressure 13 can be written as Equation (B-10) for (-

nodes element. 

 
1̇3 = )+&! 	3̇3! +)+&"3̇3" +⋯+)+&#$!3̇3#$! +)+&#3̇3# 	 (B-10) 

We can express Equation (B-10) in the matrix from as: 

 

1̇3 = ^)+&! 	 )+&" … )+&#$! )+&#_!)-

⎩
⎪
⎨

⎪
⎧
3̇3!
3̇3"
⋮

3̇3#$!
3̇3# ⎭

⎪
⎬

⎪
⎫

-)!

= ^F.'_Hİ5J	 (B-11) 

The approximation of the transient pore water pressure with time 13̇ can be written as 

Equation (B-12)  for (-nodes element. 

 13 = )+&! 	33! +)+&"33" +⋯+)+&#$!33#$! +)+&#33# 	 (B-12) 

We can express Equation (B-12) in the matrix from as: 

 

13 =	 ^)+&! 	 )+&" … )+&#$! )+&#_!)-

⎩
⎪
⎨

⎪
⎧
33!
33"
⋮

33#$!
33# ⎭

⎪
⎬

⎪
⎫

-)!

= ^F.'_{I5}	 (B-13) 
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where ^F.'_ is the matrix of isoparametric interpolation function N, Hİ5J is the nodal transient 

pore water pressure vector and {I5} is the nodal transient pore water pressure vector.  

From Equation (B-10), distribution of pore water pressure in x and y directions can be 

written as following set of equation. 

 
L13
LM

=
L)+&!
LM

	33! +
L)+&"
LM

33" +⋯+
L)+&#$!
LM

33#$! +
L)+&#
LM

33# 	

	
L13
LN

=
L)+&!
LN

	33! +
L)+&"
LN

33" +⋯+
L)+&#$!
LN

33#$! +
L)+&#
LN

33# 	

(B-14) 

Equation (B-14) can be written in the matrix form as 

 

⎩
⎨

⎧
L13
LM
L13
LN ⎭

⎬

⎫
=

⎣
⎢
⎢
⎢
⎡
L)+&!
LM

L)+&"
LM

…
L)+&#$!
LM

L)+&#
LM

L)+&!
LN

L)+&"
LN

…
L)+&#$!
LN

L)+&#
LN ⎦

⎥
⎥
⎥
⎤

"×- ⎩
⎪
⎨

⎪
⎧
33!
33"
⋮

33#$!
33# ⎭

⎪
⎬

⎪
⎫

-)!

 (B-15) 

or it could be written in the compacting form as 

 
{Z13} = ^Y.'_{I5} (B-16) 

where ^Y.5_ denotes the element pressure distribution – pressure matrix. 

The differential operator {]} is specified in this section as {]} =	O
/

/)
/

/*

R	and {]}0 denotes the 

transpose matric of {]} as {]}0 = 	` /
/)

/

/*
a. Then, ^]F.'_ can be written as Equation (B-17) 

which is equal to ^Y.'_. 

	
	^ZF.'_ = O

/

/)
/

/*

R

"×!

^)+&! 	 )+&" … )+&#$! )+&#_!×-	

	

^ZF.'_ =

⎣
⎢
⎢
⎢
⎡
L)+&!
LM

L)+&"
LM

…
L)+&#$!
LM

L)+&#
LM

L)+&!
LN

L)+&"
LN

…
L)+&#$!
LN

L)+&#
LN ⎦

⎥
⎥
⎥
⎤

"×-

	

	
																			^ZF.'_ = ^Y.'_	

(B-17) 
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In addition, ^ZF.'_
0 denotes the transpose matrix of ^]F.'_ as shown below which is equal 

to ^Y.'_
0. 

	

	^ZF.'_
0
=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
/2%&!
/)

/2%&!
/*

/2%&"
/)

/2%&"
/*

⋮ ⋮
/2%&#$!

/)

/2%&#$!
/*

/2%&#
/)

/2%&#
/* ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

-×"

=	 ^Y.'_
0
.	 (B-18) 

B - 3 CALCULATION DETAILS OF B - MATRIX  

B - 3.1 B - Matrix Calculation (Including Y. and Y.' for strain – displacement and rate 
of pressure change – pressure, respectively) 

From Equation (B-6), the approximate solution of internal strain is written in the matrix 

form in term of nodal derivative displacement with time vector and B - matrix (or strain-

displacement element matrix) which is established from the local derivative, ](M, N), of the 

shape function in natural coordinate F6(-, /) (isoparametric element). Therefore, the local 

derivative ](M, N) shall be replaced by the natural derivative ](-, /) using the chain rule. 

The normal strain (/+(̇
/)
,
/+)̇
/*
)	and deviatoric strain (/+(̇

/*
+

/+)̇
/)
) shall be written is the 

natural coordinates form as shown below: 

• The derivative of 1)̇ along the natural axis  

The derivative of 1)̇ along the natural axis can be written as: 

 L1)̇
L-

=
L1)̇
LM

LM
L-
+	
L1)̇
LN

LN
L-
		 

 
L1)̇
L/

=
L1)̇
LM

LM
L/

+	
L1)̇
LN

LN
L/
			

(B-19) 

or we can write in the matric form as: 

 

⎩
⎨

⎧
L1)̇
L-
L1)̇
L/ ⎭

⎬

⎫
=

⎣
⎢
⎢
⎢
⎡
LM
L-

LN
L-

LM
L/

LN
L/⎦
⎥
⎥
⎥
⎤

⎩
⎨

⎧
L1)̇
LM
L1)̇
LN ⎭

⎬

⎫
 (B-20) 
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where [
/)

/8

/*

/8

/)

/9

/*

/9

\ is the Jacobian matrix [c]. See Appendix B - 3.3 for the calculation details. 

Then, using Equation (B-20), the normal strain in x-axis /+(̇
/)
 and the deviatoric part along 

the y-axis /+(̇
/*
 can be expressed in the natural coordinates as: 

 

⎩
⎨

⎧
L1)̇
LM
L1̇
LN ⎭

⎬

⎫
=

⎣
⎢
⎢
⎢
⎡
LM
L-

LN
L-

LM
L/

LN
L/⎦
⎥
⎥
⎥
⎤
:!

⎩
⎨

⎧
L1)̇
L-
L1)̇
L/ ⎭

⎬

⎫
 (B-21) 

Finally, substitute the vector d/+(̇
/8
,
/+(̇
/9
e in Equation (B-21) with the general form of the 

distribution of approximate solution, we will get: 

 

⎩
⎨

⎧
L1)̇
LM
L1)̇
LN ⎭

⎬

⎫
=

⎣
⎢
⎢
⎢
⎡
LM
L-

LN
L-

LM
L/

LN
L/⎦
⎥
⎥
⎥
⎤
:!

⎣
⎢
⎢
⎢
⎡
L)!
L-

L)"
L-

…
L)-
L-

L)!
L/

L)"
L/

…
L)-
L/ ⎦

⎥
⎥
⎥
⎤

⎩
⎨

⎧3̇)!
3̇)"
⋮
3̇)-⎭

⎬

⎫
 (B-22) 

where the calculation details of  /2*
/8
 and /2*

/9
 are shown in Appendix B - 3.2. 

• The derivative of 1*̇ along the natural axis  

The derivative of 1*̇ along the natural axis can be written as: 

 L1*̇
L-

=
L1*̇
LM

LM
L-
+	
L1*̇
LN

LN
L-
			

	
L1*̇
L/

=
L1*̇
LM

LM
L/

+	
L1*̇
LN

LN
L/
		 

(B-23) 

or we can write in the matric form as: 

 

⎩
⎪
⎨

⎪
⎧L1*̇
L-
L1*̇
L/ ⎭

⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎡
LM
L-

LN
L-

LM
L/

LN
L/⎦
⎥
⎥
⎥
⎤

⎩
⎨

⎧
L1*̇
LM
L1*̇
LN ⎭

⎬

⎫
 (B-24) 

where [
/)

/8

/*

/8

/)

/9

/*

/9

\ is the Jacobian matrix [c]. See Appendix B - 3.3 for the calculation details. 

Then, using Equation (B-24) the normal strain in x-axis /+)̇
/)
 and the deviatoric part along 

the y-axis /+)̇
/*
 can be expressed in the natural coordinates as: 
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⎩
⎨

⎧
L1̇*
LM
L1̇*
LN ⎭

⎬

⎫
=

⎣
⎢
⎢
⎢
⎡
LM
L-

LN
L-

LM
L/

LN
L/⎦
⎥
⎥
⎥
⎤
:!

⎩
⎪
⎨

⎪
⎧L1*̇
L-
L1*̇
L/ ⎭

⎪
⎬

⎪
⎫

 (B-25) 

Finally, substitute the vector d
/+)̇
/8

/+)̇
/9
e in Equation (B-25) with the general form of the 

distribution of approximate solution, we will get 

 

⎩
⎨

⎧
L1*̇
LM
L1*̇
LN ⎭

⎬

⎫
=

⎣
⎢
⎢
⎢
⎡
LM
L-

LN
L-

LM
L/

LN
L/⎦
⎥
⎥
⎥
⎤
:!

⎣
⎢
⎢
⎢
⎡
L)!
L-

L)"
L-

…
L)-
L-

L)!
L/

L)"
L/

…
L)-
L/ ⎦

⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧3̇*!
3̇*"
⋮
3̇*-⎭

⎪
⎬

⎪
⎫

 (B-26) 

where the calculation details of  /2*
/8
 and /2*

/9
 are shown in Appendix B - 3.2. 

• Categorizing the derivative of 1)̇ and 1*̇ along the natural axis as the normal part 

and the deviatoric part  

From Equations (B-22) and (B-26), considering the part of the normal strain in x and y 

axis, we will get  

 

⎩
⎨

⎧
L1)̇
LM
L1*̇
LN ⎭

⎬

⎫
=

⎣
⎢
⎢
⎢
⎡
LM
L-

LN
L-

LM
L/

LN
L/⎦
⎥
⎥
⎥
⎤
:!

⎣
⎢
⎢
⎢
⎡
L)!
L-

0
L)"
L-

0 …
L)-
L-

0

0
L)!
L/

0
L)"
L/

… 0
L)-
L/ ⎦

⎥
⎥
⎥
⎤

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧3̇)!
3̇*!
3̇)"
3̇*"
⋮
⋮
3̇)-
3̇*-⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 (B-27) 

and the part of deviatoric strain in x and y axis, we will get 

 

⎩
⎨

⎧
L1*̇
LM
L1̇
LN ⎭

⎬

⎫
=

⎣
⎢
⎢
⎢
⎡
LM
L-

LN
L-

LM
L/

LN
L/⎦
⎥
⎥
⎥
⎤
:!

⎣
⎢
⎢
⎢
⎡ 0

L)!
L-

0
L)"
L-

… 0
L)-
L-

L)!
L/

0
L)"
L/

0 …
L)-
L/

0
⎦
⎥
⎥
⎥
⎤

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧3̇)!
3̇*!
3̇)"
3̇*"
⋮
⋮
3̇)-
3̇*-⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 (B-28) 

Therefore, the B-matrix for the calculation of normal part [Y;] and deviatoric part [Y<] 

can be simply determined by the natural coordination as shown in Equation (B-29) and (B-30), 

respectively. 
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[Y;] =

⎣
⎢
⎢
⎡
L)!
LM

0
L)"
LM

0 … …
L)-
LM

0

0
L)!
LN

0
L)"
LN

… … 0
L)-
LN ⎦

⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
LM
L-

LN
L-

LM
L/

LN
L/⎦
⎥
⎥
⎥
⎤
:!

⎣
⎢
⎢
⎢
⎡
L)!
L-

0
L)"
L-

0 … …
L)-
L-

0

0
L)!
L/

0
L)"
L/

… … 0
L)-
L/ ⎦

⎥
⎥
⎥
⎤
 

(B-29) 

   

 

[Y=] =

⎣
⎢
⎢
⎡ 0

L)!
LM

0
L)"
LM

… … 0
L)-
LM

L)!
LN

0
L)"
LN

0 … …
L)-
LN

0
⎦
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
LM
L-

LN
L-

LM
L/

LN
L/⎦
⎥
⎥
⎥
⎤
:!

⎣
⎢
⎢
⎢
⎡ 0

L)!
L-

0
L)"
L-

… … 0
L)-
L-

L)!
L/

0
L)"
L/

0 … …
L)-
L/

0
⎦
⎥
⎥
⎥
⎤
 

(B-30) 

By this calculation procedure, the element strain – displacement matrix Y+ as shown in 

Equation (B-6) can be determined by the simple calculation in term of natural coordination as: 

 

[Y.] = [
[Y;][1, : ]
[Y;][2, : ]

[Y=][1, : ] + [Y=][2, : ]
\ (B-31) 

In addition, using the same calculation procedure, the element pressure distribution – 

pressure matrix ^Y.5_  as shown in Equation (B-15) could be determined by the simple 

calculation in term of natural coordination as: 

 
^Y.'_ = 7

[Y;][1	, 2( − 1]
[Y;][2	, 2(]

9 (B-32) 
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B - 3.2 Determination of >?+
>@
 and >?+

>A
 for the shape function of 2-D elements in natural 

coordinates 

• Bilinear Quadrilateral (4 nodes) 

L)!
L-

= −
1
4
(1 − /) 

L)!
L/

= −
1
4
(1 − -) 

L)"
L-

= +
1
4
(1 − /) 

L)"
L/

= −
1
4
(1 + -) 

L)#
L-

= +
1
4
(1 + /) 

L)#
L/

= +
1
4
(1 + -) 

L)$
L-

= −
1
4
(1 + /) 

L)$
L/

= +
1
4
(1 − -) 

• Serendipity Quadrilateral (8 nodes) 

L)!
L-

= +
1
4
(1 − /)(2- + /) 

L)!
L/

= +
1
4
(1 − -)(2/ + -) 

L)"
L-

= +
1
2
(1 − /)(−2-) 

L)"
L/

= +
1
2
(1 − /")(−1) 

L)#
L-

= +
1
4
(1 − /)(2- − /) 

L)#
L/

= +
1
4
(1 + -)(2/ − -) 

L)$
L-

= +
1
2
(1)(1 − /") 

L)$
L/

= +
1
2
(1 + -)(−2/) 

L)%
L-

= +
1
4
(1 + /)(2- + /) 

L)%
L/

= +
1
4
(1 + -)(2/ + -) 

L)&
L-

= +
1
2
(1 + /)(−2-) 

L)&
L/

= +
1
2
(1 − -")(1) 

L)'
L-

= +
1
4
(1 + /)(2- − /) 

L)'
L/

= +
1
4
(1 − -)(2/ − -) 

L)(
L-

= +
1
2
(−1)(1 − /") 

L)(
L/

= +
1
2
(1 − -)(−2/) 

Remarks: Please refer to Appendix B - 1 for shape function and node numbering  

B - 3.3 Jacobian matrix [c] determination 

 

[c] =

⎣
⎢
⎢
⎢
⎡
LM
L-

LN
L-

LM
L/

LN
L/⎦
⎥
⎥
⎥
⎤
 (B-33) 

From Equation (B-33), Jacobian matrix [c]	shall be substituted by any x-y coordinates of 

the trapezium element (Equation (5-1)) which is written in the relation of local trapezium 

element node (xi, yi) and the shape function (or equivalent to interpolation function) in term of 
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natural coordinates, )(-B , /B). Therefore, each member in the	[c] matrix can be re-written in 

term of the summation equation as: 

 

[c] =

⎣
⎢
⎢
⎢
⎢
⎡g

L)B
L-

-

BC!

MB g
L)B
L-

-

BC!

NB

g
L)B
L/

-

BC!

MB g
L)B
L/

-

BC!

NB
⎦
⎥
⎥
⎥
⎥
⎤

 (B-34) 

Finally, the h matrix can be defined in the calculation code in this study as: 

 

[c] =

⎣
⎢
⎢
⎢
⎡
L)!
L-

L)"
L-

…
L)-
L-

L)!
L/

L)"
L/

…
L)-
L/ ⎦

⎥
⎥
⎥
⎤
i

M! N!
M" N"
⋮ ⋮
M- N-

j	 (B-35) 

where /2*
/8
 and /2*

/9
 of each shape function of 2-D elements are shown in Appendix B - 3.2 and 

MB and NB is the initial local coordinate of the elements. 

B - 4 GAUSS - LEGENDRE INTEGRATION FORMULAS 

Gauss - Legendre integration formulas are applicable to the numerical integration in order 

to generate the finite element matrix when the boundary of the element is in between -1 to 1 in 

each direction. The selecting shape function in the boundary of element is integrated over the 

element by the summation of weights and the function at the Gauss point locations for all 

specified Gauss points.  

Gauss-Legendre integration formulas in 1-D problem for function k(M) can be written as 

 
l k(M)mM ≅goBk(MB)

2D

BC!

!

:!

 (B-36) 

where 

)p   denotes number of Gauss points. 

!	     denotes the subscription index represents the Gauss point order in M coordinate. 

oB    denotes weights in M coordinates. 

MB     denotes Gauss point locations in M coordinates. 

k(M) denotes function in 1-D in the coordinate M that is required to do the integration. 

Gauss-Legendre integration formulas in 2-D problem for function k(-, /) can be written 

as follow by integrating using the integration formulas in 1-D problem for each direction. 
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l l k(-, /)m-m/
!

:!

!

:!

= l [goEk(-, /E)

2D

EC!

\ m- =
!

:!

ggoBoEk(-B , /E)

2D

EC!

2D

BC!

 (B-37) 

where 

)p       denotes number of Gauss points. 

!, q        denote the subscription index represents the Gauss point order in -, / coordinates, 

 respectively. 

oB , oE   denote weights in -, / coordinates, respectively. 

-B , /E    denote Gauss point locations in -, / coordinates, respectively. 

k(-, /)  denote the function in 2-D in the coordinate -, /  that is required to do the 

 integration. 

After selecting the shape function that can be properly predicted the considered behaviors, 

the number of Gauss points that appropriate with the characteristic of the shape function is also 

important in order to maintain the full rate of convergence of the exactly integrated formulation. 

In general, integrating the function which is the polynomial function order r, (r + 1)/2 is the 

proper number of Gauss points that results in the exact solution from the integration. Weights 

and Gauss point locations depends on number of gauss points in Table B-1shall be used. 

Table B-1 Weights and Gauss point locations for specific function and number of Gauss points 
Order of 
function 

Function 
characteristics 

Number of Gauss 
points, NG 

Gauss point 
locations, MB 

Weights, oB 

1 linear 1 0 2 
3 cubic 2 −1/√3	 1 

+1/√3 1 
5 5th order 3 0 8/9 

−√0.6 5/9 
+√0.6 5/9 

B - 5 DETERMINING THE ELEMENT MATRIX USING NUMERICAL 
INTEGRATION: EXPLANATION AND FORMULATION 

B - 5.1 Explanation of the calculation procedure of the element matrix 

Determining the coefficient matrix for uncoupled FEM deformation – only analysis for 

saturated soil, ^zFG_ (Table 5-2) is selected as an example in order to explain the procedure of 

calculation in detail as follows. Beginning with,  

 
^zFG

HIJ_ = l [Y.]0[{][Y.]m|
K

 (B-38) 

Considering Equation (B-38) in 2-D problem for local coordinate x-y, it can be written as 
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^zFG

HIJ_ = } [Y.(M, N)]0[{][Y.(M, N)]~m�
L

 

													= l l [Y.(M, N)]0[{][Y.(M, N)]~mMmN
)*

 
(B-39) 

where domain Ä is considered in the area � with the thickness ~ where Ä = ~m� = ~mMmN. 

To simplify the numerical integration on the trapezium element as stated before. The 

Equation (B-39) shall be transformed into the natural coordinate (x− h) square element with 

the distance from -1 to 1 in each direction as 

 
^zFG

HIJ_ = l l [Y.(-, /)]0[{][Y.(-, /)]~|[c(-, /)]|m-m/
!

:!

!

:!

 (B-40) 

where |[c(-, /)]|m-m/ = mMmN = � and [Y.(-, /)] can be calculated follow the calculation 

procedure in Appendix B - 3. 

Gauss-Legendre integration formulas (Appendix B - 4) shall be applied to the Equation 

(B-40) in order to do the numerical integration of the finite element matrix when the boundary 

of the element is in between -1 to 1 in each direction as shown the final equation used in the in-

house FEM program by 

 

^zFG
HIJ_ =ggoBoE^Y.Ç-B , /EÉ_

0
2D

EC!

2D

BC!

[{]^Y.Ç-B , /EÉ_~Ñ^c(-B , /E)_Ñ	 (B-41) 

B - 5.2 Summary of element matrix formulas 

B.5.2.1 Formulation of solid deformation uncoupled FEM for saturated soils  

 

^zFG
HIJ_ =ggoBoE^Y.Ç-B , /EÉ_

0
2D

EC!

2D

BC!

[{]^Y.Ç-B , /EÉ_~Ñ^c(-B , /E)_Ñ	 (B-42) 

Remarks: For nodal external load vector HÖFMJ̇ J shall be manually defined by the boundary 

condition which conform to each simulation problems for matrix solving.  

B.5.2.2 Formulation of transient state of water seepage uncoupled FEM for saturated soils 

 

[zN] =ggoBoE^Y.'Ç-B , /EÉ_
0

2D

EC!

2D

BC!

[z5]^Y.'Ç-B , /EÉ_~Ñ^c(-B , /E)_Ñ (B-43) 

 
[ÜO] =ggoBoE

2D

EC!

2D

BC!

^F.'Ç-B , /EÉ_
0
^F.'Ç-B , /EÉ_

0
~Ñ^c(-B , /E)_Ñ (B-44) 
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Remarks: The inflows or outflows nodal vector {á} shall be manually defined by the boundary 

condition which conform to each simulation problems for matrix solving.  

B.5.2.3 Formulation of soil – water two – phase seepage – deformation coupled FEM for 
saturated soils 

See Equation (B-42) and (B-43) for the calculation of ^zFG
HIJ_ and [zN], respectively. 

Addition coefficient matrix are shown as follow; 

 

[à] =ggoBoE

2D

EC!

2D

BC!

^Y.Ç-B , /EÉ_
0
{â}^F.'Ç-B , /EÉ_~Ñ^c(-B , /E)_Ñ (B-45) 

 

[àP] =ggoBoE

2D

EC!

2D

BC!

^F.'Ç-B , /EÉ_
0
{â}0^Y.Ç-B , /EÉ_~Ñ^c(-B , /E)_Ñ (B-46) 

Remarks: Nodal external load vector HÖFMJ̇ J and inflows or outflows nodal vector {á} shall be 

manually defined by the boundary condition which conform to each simulation problems for 

matrix solving.  

B.5.2.4 Formulation of soil – water – air three – phase seepage – deformation coupled FEM 
for unsaturated soils (constant air pressure) 

 

^zFG
.;HIJ_ =ggoBoE

2D

EC!

	^Y.Ç-B , /EÉ_
0
Ç[{]^Y.Ç-B , /EÉ_ 	

2D

BC!

− [{HQ]äR{â}0^Y.Ç-B , /EÉ_
− {â}(1S − 13)äR{â}0^Y.Ç-B , /EÉ_É ~Ñ^c(-B , /E)_Ñ 

(B-47) 

 
[ã] =ggoBoE

2D

EC!

	^Y.Ç-B , /EÉ_
0

2D

BC!

Ç−[{HQ]äT^F.'Ç-B , /EÉ_

+ {â}åU^F.'Ç-B , /EÉ_
− {â}(1S − 13)äT^F.'Ç-B , /EÉ_É~Ñ^c(-B , /E)_Ñ 

(B-48) 

 
[Ü] =ggoBoE

2D

EC!

	^F.'Ç-B , /EÉ_
0

2D

BC!

ÇåU{â}P^Y.Ç-B , /EÉ_

− (VäR{â}0^Y.Ç-B , /EÉ_É~Ñ^c(-B , /E)_Ñ 

(B-49) 

 

[ç] =ggoBoE

2D

EC!

	^F.'Ç-B , /EÉ_
0

2D

BC!

(VäT^F.'Ç-B , /EÉ_~Ñ^c(-B , /E)_Ñ (B-50) 

 

[é] =ggoBoE

2D

EC!

	^Y.'Ç-B , /EÉ_
0

2D

BC!

[z5]^Y.'Ç-B , /EÉ_~Ñ^c(-B , /E)_Ñ	 (B-51) 
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Remarks: Nodal external load vector HÖFMJ̇ J and inflows or outflows nodal vector {á} shall be 

manually defined by the boundary condition which conform to each simulation problems for 

matrix solving.  

B - 6 TIME DISCRETIZATION 

Considering the ordinary differential equation with the small increment of time ℎW and 

Euler’s method, we will get the approximation of pore pressure and displacement for nonlinear 

problem as following equations. 

For nodal pore water pressure and distribution of pore water pressure vectors: 

 
Hİ5J =

{êI5}
ℎW

=
HI5|JYN,J − HI5|JJ

ℎW
 (B-52) 

 
{I5} = ëHI5|JYN,J + (1 − ë)HI5|JJ	 (B-53) 

For nodal displacement and strain vectors: 

 
HİJ =

{êI}
ℎW

=
HI|JYN,J − HI|JJ

ℎW
 (B-54) 

 
{I} = ëHI|JYN,J + (1 − ë)HI|JJ	 (B-55) 

For nodal external force vector: 

 
HÖ̇FMJJ =

{êÖFMJ}
ℎW

	 (B-56) 

B - 6.1 Formulation of transient state of water seepage uncoupled FEM for saturated 
soils 

From Equation (5-75), in the matrix form, the element equation can be written as 

[zN]{I5} + [ÜO]HI5̇J = {á}	

Substituting Equation (B-52) and (B-53) into the element equation, we will get 

 
ë[z-]HI'|,/-JJ + (1 − ë)[z-]HI'|,J + [Ü0]

HI'|,/-JJ
ℎ1

+ [Ü0]
HI'|,J
ℎ1

= {á}	 (B-57) 

 
ëℎ1[z-]HI'|,/-JJ + (1 − ë)ℎ1[z-]HI'|,J + [Ü0]HI'|,/-JJ + [Ü0]HI'|,J = ℎ1{á}	 (B-58) 

Finally, arranging the Equation (B-58), we will get the time discretization of the global equation 

system as shown below. 

 
(ëℎW[zN] + [ÜO])HI5|JYN,J = ℎW{á} + ([ÜO] − (1 − ë)ℎW[zN])HI5|JJ	 (B-59) 
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B - 6.2 Formulation of soil – water two – phase seepage – deformation coupled FEM for 
saturated soils 

From Equation (5-82), in the matrix form, the element equation can be written as 

^zFG
HIJ_HİJ + [à]HI5̇J = HÖ̇FMJJ	

Substituting Equation (B-52) and (B-54) into the element equation, we will get 

 
^zFG

HIJ_
{êI}
ℎW

+ [à]
HI5|JYN,J − HI5|JJ

ℎW
=
{êÖFMJ}
ℎW

	 (B-60) 

 
^zFG

HIJ_{êI} + [à]HI5|JYN,J = {êÖFMJ} + [à]HI5|JJ	 (B-61) 

From Equation (5-94), in the matrix form, the element equation can be written as 

[àP]HİJ − [zN]{I5} = {á}	

Substituting Equation (B-53) and (B-54) into the element equation, we will get 

 
[àP]

{êI}
ℎW

− [zN](ëHI5|JYN,J + (1 − ë)HI5|JJ) = {á}	 (B-62) 

 
[àP]{êI} − ë[zN]ℎW^I5|JYN,_ = ℎW{á} + (1 − ë)ℎW[zN]HI5|JJ	 (B-63) 

Rewriting Equation (B-61) and (B-63) in the matrix form, coupled time discretization 

equation is shown below. 

 
í
zFG
HIJ à

à0 −ëzNℎW
ì 5

êI
I5|JYN,

6 = 5
êÖFMJ + àI5|J

ℎWá+ (1 − ë)ℎWzNI5|J
6	 (B-64) 

B - 6.3 Formulation of soil – water – Air Three – Phase Seepage – Deformation Coupled 
Finite Element Method (Constant air pressure) for Unsaturated Condition 

From Equation (5-107), in the matrix form, the element equation can be written as 

^zFG
.;HIJ_HİJ + [ã]HI5̇J = HÖ̇FMJJ	

Substituting Equation (B-52) and (B-54) into the element equation, we will get 

 
^zFG

.;HIJ_
{êI}
ℎW

+ [ã]
HI5|JYN,J − HI5|JJ

ℎW
=
{êÖFMJ}
ℎW

	 (B-65) 

 
^zFG

.;HIJ_{êI} + [ã]HI5|JYN,J = {êÖFMJ} + [ã]HI5|JJ	 (B-66) 

From Equation (5-123), in the matrix form, the element equation can be written as 

[Ü]HİJ − [ç]Hİ5J − [é]{I5} = {á}	
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["] {%&}ℎ)

− [+] ,&-|/01J2 − ,&-|/2ℎ)
− [3](5,&-|/01J2 + (1 − 5),&-|/2) = {:}	 (B-67) 

 ["]{%&} − ([+] + 5[3]ℎ)),&-|/01J2 = ℎ){:} + ((1 − 5)ℎ)[3] − [+]),&-|/2	 (B-68) 

Rewriting Equation (B-66) and (B-68) in the matrix form, coupled time discretization 

equation is shown below. 

 
í
zFG
.;HIJ ã
Ü −(ëéℎW + ç)

ì 5
êI

I5|JYN,
6 = 5

êÖFMJ + ãI5|J
ℎWá+ ((1 − ë)ℎWé − ç)I5|J

6	 (B-69) 

B - 7 DETERMINATIONS OF îZAND î[ 

From time derivation of degree of saturation åU̇ in Equation (A-3), äTand äR could be 

determined by substituting ï̇ = −13̇ based on the assumption of 1Ṡ = 0 as 

 

åU̇ =
−
/\r
/]
13̇ −

/\r
/^
ñ_P^̇

1 −
/\r
/`h

<`4
d\r

	 (B-70) 

Equation (B-70) can be written in the compacted form as shown in Equation (5-103) where 

 

äT =
−
/\r
/]

1 −
/\r
/`h

<`4
d\r

	 (B-71) 

 

äR =
−
/\r
/^
ñ_

1 −
/\r
/`h

<`4
d\r

	 (B-72) 

 



   

APPENDIX C  

FEM VALIDATION RESULTS 

C - 1 FEM VALIDATION RESULTS THROUGH THE TERZAGHI’S THEORY OF 

CONSOLIDATION 

 

 

 
Figure C-1 FEM validation: a) excess pore water pressure distribution and b) normalized 

excess pore water pressure of 1-D consolidation test  
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Figure C-2 FEM validation: vertical settlement at top of the sample of 1-D consolidation test 
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C - 2 FEM VALIDATION RESULTS THROUGH THE SIMULATION OF 

PROPOSED ELASTOPLASTIC CONSTITUTIVE MODEL FOR SATURATED SOIL  

 
Figure C-3 1-D compression test of saturated soil under water drained condition (Case 1DS) 

 

 
Figure C-4 1-D compression test of saturated soil under water drained condition (Case 1LS) 
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Figure C-5 Biaxial radial constant shearing test of saturated soil under water drained 

condition (Case 2LS) 

 

 
Figure C-6 Biaxial radial constant shearing test of saturated soil under water drained 

condition (Case 2DS) 
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C - 3 FEM VALIDATION RESULTS OF SOIL-WATER-AIR THREE-PHASE 

SEEPAGE-DEFORMATION COUPLED FEM FOR UNSATURATED SOILS 

C - 3.1 Stress – strain behaviors 

 

 
Figure C-7 Stress – strain behaviors of validation Case 1L for unsaturated soil  
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Figure C-8 Stress – strain behaviors of validation Case 2L for unsaturated soil 
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Figure C-9 Stress – strain behaviors of validation case 3L for unsaturated soil 
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Figure C-10 Stress – strain behaviors of validation Case 4L for unsaturated soil 
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Figure C-11 Stress – strain behaviors of validation Case 1D for unsaturated soil 
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Figure C-12 Stress – strain behaviors of validation Case 2D for unsaturated soil 
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Figure C-13 Stress – strain behaviors of validation Case 3D for unsaturated soil 
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Figure C-14 Stress – strain behaviors of validation Case 3D for unsaturated soil 
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C - 3.2 Degree of saturation variations 

 
Figure C-15 &! variation of valdation Case 1L for unsaturated soil  

 

 
Figure C-16 &! variation of validation Case 2L for unsaturated soil 
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Figure C-17 &! variation of validation Case 3L for unsaturated soil 

 

 
Figure C-18 &! variation of validation Case 4L for unsaturated soil 
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Figure C-19 &! variation of validation Case 1D for unsaturated soil 

 

 
Figure C-20 &! variation of validation Case 2D for unsaturated soil 
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Figure C-21 &! variation of validation Case 3D for unsaturated soil 

 

 
Figure C-22 &! variation of validation Case 4D for unsaturated soil 
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APPENDIX D  

SUPPLEMENTARY THEORIES 

D - 1 DARCY’S LAW 

Water flows under pressure condition through the soil element is explained by head. The 

total head is the summation of elevation head !!, velocity head !" and pressure head !# as 

show in the equation of total head !$ by 

 !$ = !! +!" +!#	 (D-1) 

In this study, the total head is dominant by the pressure head only. The elevation head is 

assumed to be zero since the datum is set at the reference level equal to zero and assuming that 

there is no effect of elevation. Besides, the velocity head will be ignored for simplicity in the 

study because flow in the soil is very slow. Therefore, the Equation (D-1) can be written as 

 
!$ = !# =

%%
&%
	 (D-2) 

where %% is the pore water pressure and  &% is the unit weight of water. By this reason, total 

head is always positive value in the saturated condition (%% is always positive). 

Darcy’s law is the empirical relationship. From the experiments, they found that “velocity 

of water flow (V) is proportional to the hydraulic gradient (i) as 

 ' = ()	 (D-3) 

In this study, due to the fact that water flows from high pressure to low pressure, the hydraulic 

gradient value )  is positive. Since, increasing of flow distance (*+(+))  while total head 

decrease (*!(−)) , therefore the negative sign is applied by 

 
) = −

*!
*+
	 (D-4) 

then  

 
' = −(

*!
*+
	 (D-5) 

D - 2 TERZAGHI’S THEORY OF CONSOLIDATION 

Terzaghi’s theory of consolidation is a one-dimensional consolidation theory based on the 

following assumptions; 

1) Soil is homogenous and isotropic. 
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2) Soil is fully saturated with water. 

3) Solid particles are incompressible. 

4) Water in the pores of the soil is incompressible. 

5) Compression and flow are one-dimensional. 

6) Strains in the soil are relatively small. 

7) Darcy’s law is valid for all hydraulic gradients.  

8) (" and /" are constant throughout the process. 

9) The soil skeleton is linear elastic and independent of time. 

The exact solution of the distribution of excess pore water pressure of the open layer, water 

is free to drain through both its upper and lower surfaces (Figure 5-8) can be written as  

 
0%% = 1

20%%&
3

'

()&
4)5 6

37
!*
8 9:;	(−3+<")	 (D-6) 

and vertical settlement S in the unit of [m] can be determined by 

 
= = > /"(0%%& − 0%%)*7

,

&
	 (D-7) 

where 

Δ%% denotes excess pore water pressure at time @ (sec) in the unit of [kPa] 

Δ%%&  denotes initial excess pore water pressure at t = 0 sec in the unit of [kPa] 

!* denotes maximum drainage height in the unit of [m] (open layer, !* = 0.5!) 

! denotes total height 

7  denotes any depth of sample in the unit of [m] 

<-  denotes time factor which is calculated by D"@/!*+ 

D"  denotes coefficient of consolidation; D" =
.!

(!/"
= ("//"&% 

("  denotes coefficient of vertical permeability [m/s] 

/"  denotes coefficient of volume compressibility [MPa-1] 

D - 3 UNSATURATED COEFFICIENT OF PERMEABILITY 

Considering the mixed Toyoura sand and Fujinomori clay 5:5 by weight in the simulation, 

calculation method of unsaturated coefficient of permeability of sand-clay mixture are 

described herein (Terzaghi et al., 1996). 

First, with clay to sand ratios of about 10%, the saturated coefficient of permeability of 

sand-clay mixture ((0() which is controlled by the coefficient permeability of clay can be 

calculated by;  
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(0( =

(01('23245 − '046*)
'23245

	 (D-8) 

where '23245 denotes the total volume of sand-clay mixture in the unit of [m3], '046* denotes 

the sand volume in the unit of [m3] and (01 denotes the saturated coefficient permeability of 

clay in the unit of [m/s]. Calculating (01, first, void ratio of clay 91 in an ideal saturated sand-

clay mixture depends on the amount of dry clay in the mixture and on the volume between sand 

particles can be determined by; 

	
91 =

F1 +
7
8#
HI1549&%

&*(
−

I1549
J(I046*

− 1	 (D-9) 

where J(  denotes the ratio of dry mass of clay and sand. I1549 , I046*  denotes the specific 

gravity of clay and sand, respectively and &*(denotes the dry unit weight of the mixture 

[kN/m3]. Then, (01  can be calculated by using the empirical relations for coefficient of 

permeability in clayey soils (Taylor, 1948) as written by; 

	 (01 = (01,& 9:;L(91 − 91,&M/N.)	 (D-10) 

where the initial saturated coefficient permeability of clay ((01,&) respects with the prescribed 

initial void ratio of clay 91,& are provide by the experimental result of the permeability test as 

shown in Figure D-1 and N. denotes the permeability change index. 

 

Figure D-1 Coefficient of permeability of clays (Mesri and Olson, 1971) 

Finally, the unsaturated coefficient of permeability (k) can be calculated by; 

	 ( = (8(01 	 (D-11) 
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where (8  denotes the relative coefficient of permeability which can be determined in the 

function of degree of saturation (van Genuchten, 1980) as; 

	
(8(=8) = =8

$
% O1 − O1 − =8

$
#P

(
P

+
;/ = 1 −

1
5
	R5*	0 < / < 1	 (D-12) 

where / and 5 is the parameter for the shape of main SWCC’s curve. 

 


