Connected subgraphs with certain properties in dense graphs

Shunichi Maezawa

Graduate School of Environment and Information Sciences
Yokohama National University
79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 JAPAN

Preface

Graph Theory is an area of mathematics whose origins lie as far back as in 18th century with the solution of the Köningsberg Bridge problem by the mathematician Leonhard Euler. Since then, the subject has developed into an area with numerous interesting problems and applications in many diverse fields.

In this doctor's thesis, we show some new results on spanning subgraphs having some specified properties. We mainly deal with the problems on spanning subgraphs which are generalizations of Hamilton path problems. A research of Hamilton cycles (resp. paths) is one of major topics in graph theory. A Hamilton cycle (resp. path) in a graph is a cycle (resp. path) passing through all the vertices of the graph. In 1960, Ore [48] gave sufficient conditions for graphs to have a Hamilton cycle and a Hamitlon path. This result is one of the cornerstones of graph theory. Since a Hamilton cycle and a Hamilton path can be regarded as a spanning subgraph with some specified properties, Ore's theorem has been generalized to those of spanning subgraphs with some properties.

This thesis consists of four chapters. In Chapter 1, we give basic definitions, notations and terminologies which are needed for reading this thesis. Moreover we introduce some results of a Hamilton cycle and a Hamilton path which motivate our results.

In Chapter 2, we show some results of the existence on spanning subgraphs with constrains on the degree.

In Chapter 3, we show some results of the existence on spanning trees with some specified properties, which are generalized concepts of Hamilton paths.

In Chapter 4, we show a Fan-type condition for bipartite graphs to have long paths. As a consequence of the result, we completely determine the bipartite Ramsey numbers with respect to a path and a bistar.

I am very grateful to many people who have contributed to this thesis.
First of all, I am very grateful to Professor Kenta Ozeki, my supervisor, who has taught me how to study mathematics, has led me to the problems discussed in most parts of this thesis, and worked with me. I am debted to Professors Haruhide Matsuda, Ryota Matsubara, Masao Tsugaki, Michitaka Furuya, Shoichi Tsuchiya, Takamasa Yashima for their encouragement and fruitful discussion.

Finally I am very thankful to all the members of Ozeki, Nakamoto, and Negami Laboratories for their helpful discussion and encouragements.

The author
Shunichi Maezawa
September 2020

Papers underlying the thesis

- M. Furuya, S. Maezawa, R. Matsubara, H. Matsuda, S. Tsuchiya, and T. Yashima, Degree sum conditions for the existence of spanning k-trees in star-free graphs, Discuss. Math. Graph Theory, to appear, (2019).
- S. Maezawa, R. Matsubara, and H. Matsuda, Degree conditions for graphs to have spanning trees with few branch vertices and leaves, Graphs Combin. 35, (2019) 231-238.
- M. Furuya, S. Maezawa, and K. Ozeki, Long paths in bipartite graphs and path-bistar bipartite ramsey number, Graphs Combin. 36, (2020) 167-176.
- S. Maezawa and K. Ozeki, A forbidden pair for connected graphs to have spanning k-trees, submitted to J. Graph Theory.
- S. Maezawa, M. Tsugaki, and T. Yashima, Closure and spanning trees with bounded total excess, submitted to Graphs Combin.
- S. Maezawa, R. Matsubara, and H. Matsuda, A Fan-type condition for graphs to be k-leaf-connected, submitted to Discrete Math.

Contents

Preface 3
Papers underlying the thesis 5
Introduction 9
1 Preliminary 17
1.1 Graphs 17
1.2 Subgraphs 19
1.3 Paths and cycles 22
1.4 Connectivity and distance 22
1.5 Trees 24
1.6 Hamiltonian properties 26
1.6.1 Degree conditions 26
1.6.2 Forbidden subgraph conditions 28
2 Connected degree factors 29
2.1 A spanning k-tree 29
2.2 Degree sum condition for the existence of spanning k-trees in star-free graphs 31
2.2.1 Sharpness of Theorem 2.3 32
2.2.2 Proof of Theorem 2.3 33
2.3 A forbidden pair for connected graphs to have spanning k-trees 37
2.3.1 Techniques for the proof of Theorem 2.7 38
2.3.2 Preliminary 39
2.3.3 Proof of Theorem 2.9 41
2.4 Closure and spanning trees with bounded total excess 45
2.4.1 Notation and Lemmas 48
2.4.2 Proof of Theorem 2.16 50
2.4.3 Proof of Theorem 2.18 54
3 Spanning trees with some specified properties 63
3.1 Degree conditions for graphs to have spanning trees with few branch vertices and leaves 63
3.1.1 Preliminary Lemmas 64
3.1.2 Sharpness of Theorem 3.1 66
3.1.3 Proof of Theorem 3.1 66
3.1.4 Counterexample of Problem 3.2 67
3.1.5 Proof of Theorem 3.3 67
3.2 A Fan-type condition for graphs to be k-leaf-connected 69
3.2.1 Related Results 70
3.2.2 Sharpness of Theorem 3.9 70
3.2.3 Proof of Theorem 3.9 71
4 Long paths in bipartite graphs 79
4.1 A Hamilton path in bipartite graphs 79
4.2 Long paths in bipartite graphs and path-bistar bipartite Ramsey numbers 79
4.2.1 Proof of Theorem 4.2 81
4.2.2 Proof of Theorem 4.3 82
References 87

Introduction

A graph G consists of a vertex set, denoted by $V(G)$ and an edge set, denoted by $E(G)$. Each edge joins two vertices, which are not necessarily distinct. For a graph G and $v \in V(G)$, the number of edges incident with v is called the degree of v in G and is denoted by $\operatorname{deg}_{G}(v)$. For two vertices x and y of a connected graph G, the distance between x and y in G is the length of a shortest path connecting x and y in G and is denoted by $\operatorname{dist}_{G}(x, y)$. For a nonempty vertex subset X of $V(G)$, the subgraph of G induced by X is defined as the subgraph of G whose vertex set is X and whose edge set consists of the edges of G joining vertices of X. The subgraph of G induced by X is denoted by $G[X]$. A subgraph H is called an induced subgraph of G if there exists a nonempty vertex subset X of $V(G)$ such that $H=G[X]$. For given graphs G and H, if there exists a bijection $f: V(G) \rightarrow V(H)$ such that $f(x)$ and $f(y)$ are adjacent in H if and only if x and y are adjacent in G, then G and H are isomorphic. For a given graph H, a graph G is said to be H-free if G contains no induced subgraph isomorphic to H.

A Hamilton cycle (resp. path) of a graph G is a cycle (resp. path) passing through all vertices of G. A graph G is called Hamilton-connected, if for any two vertices x and y of G, there is a Hamilton path of G connecting x and y. A research of the Hamiltonialy is one of major topics in graph theory. Since the problem of determining whether a given graph has a Hamilton cycle (resp. path) is NP-complete [28], we have studied a sufficient condition for graphs to have a Hamilton cycle (resp. path). The problem of determining whether a given graph is Hamilton-connected is also NP-complete [19]. We focus on degree conditions and forbidden subgraph conditions for graphs to have a Hamilton cycle (resp. path) and to be Hamilton-connected. A degree condition is to guarantee that each vertex has an enough large degree and a forbidden subgraph condition is to guarantee that a graph has no induced subgraph isomorphic to some given graphs. Let $\alpha(G)$ be the maximum cardinality of an independent set of a graph G. For a positive integer k, and a graph G, we define

$$
\sigma_{k}(G)=\min \left\{\sum_{x \in S} \operatorname{deg}_{G}(x): S \text { is an independent set of } G \text { with }|S|=k\right\}
$$

if $\alpha(G) \geq k$, and $\sigma_{k}(G)=\infty$ if $\alpha(G)<k$. In 1960, Ore gave a sufficient condition for graphs to have a Hamilton cycle (resp. path) [48] and to be Hamilton-connected [49]. These results are cornerstones of graph theory.

Theorem 0.1 (Ore [48, 49]) Let G be a graph with order at least three. Suppose that $\sigma_{2}(G) \geq|G|+s$ with $s \in\{-1,0,1\}$.
(i) If $s=-1$, then G has a Hamilton path.
(ii) If $s=0$, then G has a Hamilton cycle.
(iii) If $s=1$, then G is Hamilton-connected.

A degree sum condition on $\sigma_{2}(G)$ is so-called an Ore-type condition.
In 1984, Fan [25] gave a degree condition for graphs to have a Hamilton cycle (resp. path), which is weaker than the condition of Theorem 0.1. This degree condition is so-called a Fan-type degree condition. Benhocine and Wojda showed a Fan-type condition for graphs to be Hamilton-connected.

Theorem 0.2 (Fan [25], Benhocine and Wojda [5]) Let $s \in\{-1,0,1\}$ and let G be a graph. Suppose that

$$
\max \left\{\operatorname{deg}_{G}(x), \operatorname{deg}_{G}(y)\right\} \geq \frac{|G|+s}{2}
$$

for any two vertices $x, y \in V(G)$ with $\operatorname{dist}_{G}(x, y)=2$.
(i) If G is connected and $s=-1$, then G has a Hamilton path.
(ii) If G is 2-connected and $s=0$, then G has a Hamilton cycle.
(iii) If G is 3 -connected and $s=1$, then G is Hamilton-connected.

Liu, Tian, and Wu in 1986 and independently, Broersma in 1988, showed that we can relax the degree condition of Theorem 0.1 (i) by restricting graphs to be $K_{1,3}$-free, where $K_{n, m}$ is a complete bipartite graph with a size of one partite set n and the size of the other partite set m.

Theorem 0.3 (Liu, Tian, and Wu [38], Broersma [8]) Let G be a connected $K_{1,3}$-free graph. If

$$
\sigma_{3}(G) \geq|G|-2,
$$

then G has a Hamilton path.
Faudree and Gould characterized the forbidden pairs for connected graphs to have a Hamilton path. The graph $N(p, q, r)$ is one obtained from the triangle $x y z$ by joining p isolated vertices to x, q isolated vertices to y, r isolated vertices to z (Fig. 1). We denote a path with n vertices by P_{n}.

Theorem 0.4 (Faudree and Gould [26]) Let H_{1} and H_{2} be connected graphs with $H_{1}, H_{2} \neq P_{1}, P_{2}, P_{3}$. Then, every connected $\left\{H_{1}, H_{2}\right\}$-free graph has a Hamilton path if and only if H_{1} is $K_{1,3}$ and H_{2} is one of the graph $N(p, q, r)$ for $0 \leq p, q, r \leq 1$ or P_{4}.

Figure 1: The graph $N(p, q, r)$

In this thesis, we deal with some extended concepts of a Hamilton path. We can regard that a Hamilton path is a spanning subgraph with maximum degree at most two. In Chapter 2, we deal with some spanning subgraphs with bounded maximum degree. For an integer $k \geq 2$, a k-tree T is defined as a tree with maximum degree at most k. If a k-tree T spans a graph G, then T is called a spanning k-tree of G. Since a spanning 2-tree is a Hamilton path, a spanning k-tree is an extended concept of a Hamilton path.

Caro, Krasikov, and Roditty in 1985 and independently, Jackson and Wormald in 1990, obtained the following result, which guarantees the existence of a spanning k-tree in connected $K_{1, k}$-free graphs.

Theorem 0.5 (Caro, Krasikov, and Roditty [11], Jackson and Wormald [32])

 For an integer $k \geq 3$, every connected $K_{1, k}$-free graph contains a spanning k-tree.In Chapter 2.2, we focus on a sharp condition that guarantees the existence of a spanning k-tree in connected $K_{1, k+1}$-free graphs and give a degree sum condition as follows.

Theorem 0.6 Let k be an integer with $k \geq 2$. If a connected $K_{1, k+1}$-free graph G satisfies

$$
\sigma_{3 k-3}(G) \geq|G|-2,
$$

then G has a spanning k-tree.
The degree sum condition of Theorem 0.6 is sharp in the sense we cannot replace the lower bound of $\sigma_{3 k-3}(G)$ with $|G|-3$.

In 2010, Ota and Sugiyama gave a forbidden subgraph condition for a graph to have a spanning k-tree.

Theorem 0.7 (Ota and Sugiyama [50]) Let $k \geq 2$ be an integer. If G is a connected $\left\{K_{1, k+1}, N\left(k-1, k-1,\left\lfloor\frac{k-1}{2}\right\rfloor\right), N(k-1, k-2, k-2)\right\}$-free graph, then G has a spanning k-tree.

However, it was not known whether the conditions of being $N\left(k-1, k-1,\left\lfloor\frac{k-1}{2}\right\rfloor\right)$-free and $N(k-1, k-2, k-2)$-free in Theorem 0.7 are sharp. They posed the following conjecture.

Conjecture 0.8 (Ota and Sugiyama [50]) Let $k \geq 2$ be an integer. If G is a connected $\left\{K_{1, k+1}, N\left(k-1, k-1,\left\lceil\frac{k-1}{2}\right\rceil\right)\right\}$-free graph, then G has a spanning k-tree.

We show that Conjecture 0.8 is true in Chapter 2.3.
In 1976, Bondy and Chvátal introduced a closure concept in [7]. The following result is a stronger than Theorem 0.1 (ii).

Theorem 0.9 (Bondy and Chvátal [7]) Let G be a graph. If u and v are nonadjacent vertices with $\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v) \geq|G|$, then G has a Hamilton cycle if and only if $G+u v$ has a Hamilton cycle.

In [42], Matsubara et al. considered a closure concept for spanning k-trees. For a vertex subset S of a graph G, and a positive integer k with $k \leq|S|$, let

$$
\Delta_{k}(S ; G)=\max \left\{\sum_{x \in X} \operatorname{deg}_{G}(x): X \text { is a subset of } S \text { with }|X|=k\right\} .
$$

Theorem 0.10 (Matsubara, Tsugaki and Yamashita [42]) Let $k \geq 2$ be an integer, and let G be a connected graph. Let u and v be two nonadjacent vertices of G. If $\Delta_{k}(S ; G) \geq|G|-1$ for every independent set S in G of order $k+1$ such that $\{u, v\} \subseteq S$, then G has a spanning k-tree if and only if $G+u v$ has a spanning k-tree.

On the other hand, a tree is called a k-ended tree if the number of its leaves is at most k. In [9], Broersma and Tuinstra considered a closure concept for spanning k-ended trees.

Theorem 0.11 (Broersma and Tuinstra [9]) Let $k \geq 2$ be an integer, and let G be a connected graph. Let u and v be two nonadjacent vertices of G. If $\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v) \geq$ $|G|-1$, then G has a spanning k-ended tree if and only if $G+$ uv has a spanning k-ended tree.

Let $\alpha \geq 0$ and $k \geq 2$ be integers. For a graph G, the total k-excess of G is defined as te $(G ; k)=\sum_{v \in V(G)} \max \left\{\operatorname{deg}_{G}(v)-k, 0\right\}$. We propose a new closure concept for a spanning tree with bounded total k-excess. This concept was introduced by Enomoto, Onishi and Ota in [24], and we can see some results concerning it in [27, 47, 51]. Note that for a tree $T, \operatorname{te}(T ; k)=0$ if and only if T is a k-tree, and $\operatorname{te}(T ; 2) \leq k-2$ if and only if T is a k-ended tree. In this thesis, we generalize Theorems 0.10 and 0.11 as follows.

Theorem 0.12 Let $\alpha \geq 0$ and $k \geq 2$ be integers, and let G be a connected graph. Let u and v be two nonadjacent vertices of G. If $\Delta_{k}(S ; G) \geq|G|-1$ for every independent set S in G of order $k+1$ such that $\{u, v\} \subseteq S$, then G has a spanning tree T with $t e(T ; k) \leq \alpha$ if and only if $G+u v$ has a spanning tree T^{\prime} with $t e\left(T^{\prime} ; k\right) \leq \alpha$.

The lower bound of $\Delta_{k}(S ; G)$ in Theorem 0.12 is sharp. Let $\alpha \geq 0$ and $k \geq 2$ be integers, and let G be a connected graph. In [27], Fujisawa et al. showed that if $\alpha(G) \leq k+\alpha$, then G has a spanning tree T with $\operatorname{te}(T ; k) \leq \alpha$. Moreover, they showed the upper bound of $\alpha(G)$ is sharp. Therefore, it is natural to consider the following problem, which corresponds to an improvement of Theorem 0.12.

Problem 0.13 Let $\alpha \geq 0$ and $k \geq 2$ be integers, and let G be a connected graph. Let u and v be two nonadjacent vertices of G. If $\Delta_{k}(S ; G) \geq|G|-1$ for every independent set S in G of order $k+\alpha+1$ such that $\{u, v\} \subseteq S$, then G has a spanning tree T with te $(T ; k) \leq \alpha$ if and only if $G+$ uv has a spanning tree T^{\prime} with te $\left(T^{\prime} ; k\right) \leq \alpha$.

However, Problem 0.13 is not true for $\alpha>0$. Therefore, we change the condition on S so that S contains at least one of u and v, and prove the following theorem in Chapter 2.4.

Theorem 0.14 Let $\alpha \geq 0$ and $k \geq 2$ be integers, and let G be a connected graph. Let u and v be two non-adjacent vertices of G. If $\Delta_{k}(S ; G) \geq|G|-\alpha-1$ for every independent set S in G of order $k+\alpha+1$ such that $S \cap\{u, v\} \neq \emptyset$, then G has a spanning tree T with $t e(T ; k) \leq \alpha$ if and only if $G+$ uv has a spanning tree T^{\prime} with $t e\left(T^{\prime} ; k\right) \leq \alpha$.

The lower bound of $\Delta_{k}(S ; G)$ in Theorem 0.14 is sharp.
In Chapter 3, we deal with spanning trees with certain properties, which are extensions of properties of a Hamilton path.

A branch vertex of a tree is a vertex of degree strictly greater than two. For a tree T, let $L(T)$ denote the set of leaves of T and let $B(T)$ denote the set of branch vertices of T. The following two results motivate our results in Chapter 3.2. Theorem 0.15 gives an Ore-type condition for a graph to have a spanning k-ended tree.

Theorem 0.15 (Broersma and Tuinstra [8]) Let $k \geq 2$ be an integer and let G be a connected graph. If G satisfies $\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v) \geq|G|-k+1$ for every pair of two nonadjacent vertices $u, v \in V(G)$, then G has a spanning k-ended tree.

The following theorem is stronger than Theorem 0.15 although it assumes the same condition as Theorem 0.15.

Theorem 0.16 (Nikoghosyan [46], Saito and Sano [54]) Let $k \geq 2$ be an integer. If a connected graph G satisfies $\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y) \geq|G|-k+1$ for every two nonadjacent vertices $x, y \in V(G)$, then G has a spanning tree T with $|L(T)|+|B(T)| \leq k+1$.

We show two degree conditions for graphs to have spanning trees with bounded total number of branch vertices and leaves.

Theorem 0.17 Let $k \geq 2$ be an integer. Suppose that a connected graph G satisfies

$$
\max \left\{\operatorname{deg}_{G}(x), \operatorname{deg}_{G}(y)\right\} \geq \frac{|G|-k+1}{2}
$$

for every two nonadjacent vertices $x, y \in V(G)$. Then G has a spanning tree T with $|L(T)|+|B(T)| \leq k+1$.

Theorem 0.18 Let $k \geq 2$ be an integer. Let G be a 2 -connected graph. Suppose that

$$
\max \left\{\operatorname{deg}_{G}(x), \operatorname{deg}_{G}(y)\right\} \geq \frac{|G|-k+1}{2}
$$

for every two vertices $x, y \in V(G)$ with $\operatorname{dist}_{G}(x, y)=2$. Then G has a spanning tree T with $|L(T)|+|B(T)| \leq k+1$.

The lower bounds $(|G|-k+1) / 2$ in Theorems 0.17 and 0.18 are sharp. Moreover, we cannot replace the assumption of being 2-connected in Theorem 0.18 with that of being connected.

For $k \geq 2$, a graph G is said to be k-leaf-connected if $|G|>k$ and for each subset S of $V(G)$ with $|S|=k, G$ has a spanning tree T with precisely S as the set of leaves of T. By the definition, it is easy to see that the property of being "2-leaf-connected" is equivalent to the property of being "Hamilton-connected." Hence the property is a general concept of Hamilton-connected. The following result motivates our result in Chapter 3.3. Theorem 0.19 is a fundamental result, which gives an Ore-type condition for graphs to be k-leaf-connected.

Theorem 0.19 (Egawa, Matsuda, Yamashita, and Yoshimoto [23]) Let $k \geq 2$ be an integer and let G be a $(k+1)$-connected graph. Suppose that

$$
\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y) \geq|G|+1
$$

for any two nonajacent vertices $x, y \in V(G)$. Then G is k-leaf-connected.
Note that the condition of being $(k+1)$-connected is a necessary condition for graphs to be k-leaf-connected. In fact if G has a cut set with size at most k, then there is no spanning tree with precisely the cut set as the set of leaves of the tree. We give a Fan-type condition for graphs to be k-leaf-connected.

Theorem 0.20 Let $k \geq 2$ be an integer. Suppose that G is a $(k+1)$-connected graph and that

$$
\max \left\{\operatorname{deg}_{G}(u), \operatorname{deg}_{G}(v)\right\} \geq \frac{|G|+1}{2}
$$

for any vertices u and v in G with $\operatorname{dist}_{G}(u, v)=2$. Then G is k-leaf-connected.

The lower bound in Theorem 0.20 is sharp.
In 1963, Moon and Moser obtained a degree condition for bipartite graphs to have a Hamiton cycle (resp. path). For a bipartite graph G with bipartition (A, B), we define

$$
\sigma_{1,1}(G)=\min \left\{\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y): x \in A, y \in B, x y \notin E(G)\right\}
$$

if G is not a complete bipartite graph, and $\sigma_{1,1}(G)=\infty$ if G is a complete bipartite graph.
Theorem 0.21 (Moon and Moser [44]) Let G be a connected bipartite graph with bipartition (A, B).
(i) If $|A| \leq|B| \leq|A|+1$ and $\sigma_{2}(G) \geq|B|$, then G has a Hamilton path.
(ii) If $|A|=|B|=n \geq 2$ and $\sigma_{1,1}(G) \geq n+1$, then G has a Hamilton cycle.

Note that the conditions $|A| \leq|B| \leq|A|+1$ and $|A|=|B| \geq 2$ are necessary conditions for bipartite graphs to have a Hamilton path and a Hamilton cycle, respectively. To find a long path in graphs is one of generalizations of finding a Hamilton path. Inspired by Theorem 0.21 (i), we study a Fan-type condition for long paths in bipartite graphs. The following is one of our main results.

Theorem 0.22 Let m and n be positive integers with $n \geq m$. Let G be a bipartite graph having partite sets X_{1} and X_{2} with $\left|X_{1}\right|=\left|X_{2}\right|=n$. If
(D1) $\max \left\{\operatorname{deg}_{G}\left(x_{1}\right), \operatorname{deg}_{G}\left(x_{2}\right)\right\} \geq m$ or
(D2) $\min \left\{\operatorname{deg}_{G}\left(x_{1}\right), \operatorname{deg}_{G}\left(x_{2}\right)\right\} \geq \frac{n+1}{2}$
for all vertices $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ with $x_{1} x_{2} \notin E(G)$, then G contains a path P with $|V(P)| \geq 2 m$.

If all vertices $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ satisfy (D2), then G has a Hamilton path by Theorem 0.21 . Hence the condition (D1) is essential in Theorem 0.22 . The lower bound of (D1) is sharp. As a consequence of our main result, we completely determine the bipartite Ramsey numbers $b\left(P_{s}, B_{t_{1}, t_{2}}\right)$, where $B_{t_{1}, t_{2}}$ is the graph obtained from a t_{1}-star and a t_{2}-star by joining their centers.

Theorem 0.23 Let s, t_{1} and t_{2} be integers with $s \geq 2$ and $t_{1} \geq t_{2} \geq 0$. Then the following hold.
(i) If $t_{1}=t_{2}$, then $b\left(P_{s}, B_{t_{1}, t_{2}}\right)=\left\lfloor\frac{s-1}{2}\right\rfloor+t_{1}+1$.
(ii) Assume that $t_{1}>t_{2}$.
(ii-a) If $t_{1} \geq\left\lfloor\frac{s-1}{2}\right\rfloor$, then

$$
b\left(P_{s}, B_{t_{1}, t_{2}}\right)= \begin{cases}\left\lfloor\frac{s-1}{2}\right\rfloor+t_{1}+1 & \left(s \text { is even, or } s \text { is odd and } t_{1} \equiv 0\left(\bmod \frac{s-1}{2}\right)\right) \\ \left\lfloor\frac{s-1}{2}\right\rfloor+t_{1} & \text { (otherwise }) .\end{cases}
$$

(ii-b) If $t_{1}<\left\lfloor\frac{s-1}{2}\right\rfloor$, then

$$
b\left(P_{s}, B_{t_{1}, t_{2}}\right)= \begin{cases}2 t_{1}+1 & \left(2 t_{1}-t_{2} \geq\left\lfloor\frac{s-1}{2}\right\rfloor\right) \\ \left\lfloor\frac{s-1}{2}\right\rfloor+t_{2}+1 & (\text { otherwise })\end{cases}
$$

This thesis consists of four chapters as follows: In Chapter 1, we give basic definitions, notations, and terminologies which are needed for reading this thesis. Moreover we introduce some results of Hamiltonicity which motivate our results. In Chapter 2, we show some results of the existence of spanning subgraphs with constrains on the degree and prove Theorems $0.6,0.12,0.14$, and show that Conjecture 0.8 is true. In Chapter 3, we show some results of the existence of spanning trees with certain properties, which are extensions of properties of a Hamiton path and prove Theorems 0.17, 0.18, and 0.20. In Chapter 4, we show a Fan-type condition for bipartite graphs to have logn paths. As a consequence of the result, we completely determine the bipartite Ramsey numbers with respect to a path and a bistar. We prove Theorems 0.22 and 0.23 in Chapter 4.

Chapter 1

Preliminary

1.1 Graphs

A graph G consists of a vertex set, denoted by $V(G)$ and an edge set, denoted by $E(G)$. Each edge joins two vertices, which are not necessarily distinct. An edge joining two vertices x and y is denoted by $x y$ or $y x$. An edge joining a vertex to itself is called a loop. Two or more edges which join a same pair of distinct two vertices are called multiple edges.

A graph that may have loops and multiple edges is called a general graph. A graph G having neither loops nor multiple edges is called a simple graph. In this thesis, a simple graph is called simply a graph.

The number of vertices of a graph G is called the order of G and is denoted by $|G|$. The number of edges of a graph G is called the size of G.

Figure 1.1: A general graph G and a simple graph G^{\prime}

The graph in Fig.1.1 satisfies that $V(G)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, E(G)=$ $\left\{v_{1} v_{1}, v_{1} v_{2}, v_{1} v_{3}, v_{1} v_{4}, v_{2} v_{3}, v_{3} v_{4}, v_{3} v_{4}, v_{3} v_{4}\right\},|G|=4$, and the size of G is equal to 8 . For the graph G in Fig. 1.1, $v_{1} v_{1}$ is a loop and the edges joining v_{3} and v_{4} are multiple edges.

If $e=x y$ is an edge of G, then x and y are adjacent in G and e is incident with x
and y. For a graph G and $v \in V(G)$, the number of edges incident with v is called the degree of v in G and is denoted by $\operatorname{deg}_{G}(v)$. The largest degree among the vertices of G is called the maximum degree in G and is denoted by $\Delta(G)$. Similarly, the smallest degree among the vertices of G is called the minimum degree in G and is denoted by $\delta(G)$. For example, the graph G^{\prime} in Fig.1.1 satisfies $\Delta\left(G^{\prime}\right)=3$ and $\delta\left(G^{\prime}\right)=2$. For a graph G, the set of vertices adjacent to a vertex v in G is called the neighborhood of v and is denoted by $N_{G}(v)$.

A vertex with degree zero is called an isolated vertex. We denote by $i(G)$ the number of isolated vertices in G.

Theorem 1.1 (Handshaking lemma) Let G be a graph. The sum of degree of all the vertices in G is equal to twice the size of G, that is,

$$
\sum_{v \in V(G)} \operatorname{deg}_{G}(v)=2|E(G)|
$$

Proof. Since each edge is incident to exactly two vertices, summing the degrees of all the vertices of the graph G, each edge is counted twice. Hence this lemma holds.

A complete graph is a graph in which every pair of two distinct vertices are adjacent and it is denoted by K_{n}, where n is the order of the graph.

K_{3}

K_{4}

K_{5}

Figure 1.2: Complete graphs of order three, four, and five, respectively.

For an integer $n \geq 1$, a path P_{n} is a graph consisting of n vertices v_{1}, \ldots, v_{n} and $n-1$ edges $v_{i} v_{i+1}$ for each $1 \leq i \leq n-1$. A cycle C_{n} is obtained from P_{n} by joining the two vertices with degree one in P_{n}.

Figure 1.3: Paths

C_{4}

C_{5}

Figure 1.4: Cycles

A graph G is called a bipartite graph if $V(G)$ consists of two disjoint subsets A and B with $A \cup B=V(G)$ and every edge of G joins a vertex of A to a vertex of B. The two disjoint subsets A and B of $V(G)$ is called partite sets of G. A bipartite graph G with partite sets A and B is called a complete bipartite graph if any vertex of A is adjacent to all the vertices of B. If $|A|=m$ and $|B|=n$, then the complete bipartite graph G with partite sets A and B is denoted by $K_{m, n}$. For a positive integer n, the complete bipartite graph $K_{1, n}$ is called a star. In particular, $K_{1,3}$ is sometimes called a claw.

Figure 1.5: Complete bipartite graphs.

1.2 Subgraphs

A graph H is called a subgraph of a graph G if the vertex set of H is a subset of the vertex set of G and the edge set of H is a subset of the edge set of G. A spanning subgraph of G is a subgraph of G containing all the vertices of G.

Figure 1.6: H is a subgraph of G and H^{\prime} is a spanning subgraph of G.

For a nonempty vertex subset X of $V(G)$, the subgraph of G induced by X is defined as the subgraph of G whose vertex set is X and whose edge set consists of the edges of G joining vertices of X. The subgraph of G induced by X is denoted by $G[X]$. A subgraph H is called an induced subgraph of G if there exists a nonempty vertex subset X of $V(G)$ such that $H=G[X]$.

G

H

Figure 1.7: H is a subgraph of G induced by $X=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.

For a vertex v in a graph G, the subgraph $G-v$ is obtained by deleting v and the edges incident with v from G. In other words, $G-v$ is the induced subgraph $G[V(G) \backslash\{v\}]$. For an edge e in a graph G, the subgraph $G-e$ is obtained by deleting e from G. In other words, $G-e$ is the spanning subgraph of G with the edge set $E(G) \backslash\{e\}$. For a proper vertex subset X of $V(G)$, the subgraph $G-X$ is the induced subgraph $G[V(G) \backslash X]$. For an edge subset Y of $E(G)$, the subgraph $G-Y$ is a spanning subgraph with the edge set $E(G) \backslash Y$. For nonadjacent two vertices x and y in a graph G, the graph $G+x y$ is obtained from G by adding the edge $x y$.

Figure 1.8: Some subgraphs of G.

For given graphs G and H, if there exists a bijection $f: V(G) \rightarrow V(H)$ such that $f(x)$ and $f(y)$ are adjacent in H if and only if x and y are adjacent in G, then G and H are isomorphic. For a given graph H, a graph G is said to be H-free if G contains no induced subgraph isomorphic to H.

Figure 1.9: A $K_{1,3}$-free graph G and induced subgraphs H and H^{\prime} of G.

The graph G in Fig.1.9 is $K_{1,3}$ free. In fact, each induced subgraph of G with four vertices is not isomorphic to $K_{1,3}$. For example, H is the subgraph of G induced by $\left\{v_{2}, v_{3}, v_{4}, v_{6}\right\}$ and H^{\prime} is the subgraph of G induced by $\left\{v_{1}, v_{2}, v_{3}, v_{6}\right\}$. Then neither H nor H^{\prime} are isomorphic to $K_{1,3}$.

For two graphs G and H, the union $G \cup H$ is the graph with the vertex set $V(G) \cup V(H)$ and the edge set $E(G) \cup E(H)$. The join $G+H$ is the graph obtained from $G \cup H$ by adding all the edges joining a vertex of G to a vertex of H. Let $k \geq 2$ be an integer. For a graph G which consists of k disjoint copies of a graph H, we write $G=k H$.

Figure 1.10: The union $G \cup H$ and the join $G+H$. The thick edges in $G+H$ are the additional edges joining a vertex of G to a vertex of H.

1.3 Paths and cycles

A walk in a graph G is a sequence of vertices and edges

$$
v_{0}, e_{0}, v_{1}, \ldots, v_{i-1}, e_{i-1}, v_{i}, \ldots, v_{m-1}, e_{m-1}, v_{m}
$$

such that the edge e_{i-1} is incident with the two vertices v_{i-1} and v_{i} for each $1 \leq i \leq m$. For the above walk, the vertices v_{0} and v_{m} is called end-vertices of the walk. The length of a walk is the number of edges. A trail is a walk such that all edges are distinct. A path is a walk such that every vertex are distinct. For a path with end-vertices x and y in a graph G, we say that the path connects x and y in G. A walk whose end-vertices are the same is a closed walk. A closed walk with order at least four whose vertices are distinct except for the end-vertices is a cycle. A cycle of an even order is called an even cycle. A cycle of an odd order is called an odd cycle.

(1) A path

(2) A cycle

Figure 1.11: (1) A sequence $v_{1} v_{3} v_{9} v_{10} v_{5} v_{7} v_{8} v_{6}$ is a path. (2) A sequence $v_{1} v_{3} v_{5} v_{7} v_{8} v_{6} v_{4} v_{2} v_{1}$ is a cycle.

1.4 Connectivity and distance

A graph G is said to be connected if for any distinct two vertices are connected by a path in G. If a graph G is not connected, then G is said to be disconnected. For a connected
graph G, a vertex v in $V(G)$ is called a cut vertex if $G-v$ is disconnected and an edge e in $E(G)$ is called a cut edge or bridge if $G-e$ is disconnected.

Figure 1.12: For a connected graph G, a vertex v is a cut vertex in G.

Figure 1.13: For a connected graph G, an edge e is a cut edge in G.

A maximal connected subgraph of a graph G is called a component of G. The number of components of G is denoted by $\omega(G)$. For example, the graph G in Fig.1.12 satisfies $\omega(G-v)=3$ and the graph G in Fig.1.13 satisfies $\omega(G-e)=2$.

For an integer $k \geq 1$, a connected graph G is called k-connected if $|G|>k$ and $G-X$ is connected for every $X \subseteq V(G)$ with $|X| \leq k-1$. Note that if G is k-connected, then $\delta(G) \geq k$.

Figure 1.14: A 2-connected graph G.

In Fig.1.14, a graph G is 2-connected. In fact, for each vertex v of $G, G-v$ is connected. Fig.1.14 shows that $G-v_{3}$ and $G-v_{5}$ are connected.

For two vertices x and y of a connected graph G, the distance between x and y in G is the length of a shortest path connecting x and y in G and is denoted by $\operatorname{dist}_{G}(x, y)$. For example, the graph G in Fig.1.14 satisfies $\operatorname{dist}_{G}\left(v_{1}, v_{2}\right)=1$ and $\operatorname{dist}_{G}\left(v_{1}, v_{6}\right)=2$.

1.5 Trees

A connected graph having no cycle is called a tree. A spanning subgraph T of a graph G is called a spanning tree of G if T is a tree. A leaf of a tree is a vertex of degree one and a branch vertex of a tree is a vertex of degree strictly greater than two. For a tree T, let

$$
\begin{aligned}
L(T) & =\{x \in V(T) \mid x \text { is a leaf of } T\} \text { and } \\
B(T) & =\{x \in V(T) \mid x \text { is a branch vertex of } T\} .
\end{aligned}
$$

Figure 1.15: A graph T is a tree, black vertices are the leaves of T and square vertices are the branch vertices of T.

Figure 1.16: The subgraph of G consisting of all the vertices of G and thick edges is a spanning tree of G.

Theorem 1.2 The following properties are equivalent for a graph T :
(i) T is a tree,
(ii) T is connected and every edge of T is a cut edge,
(iii) any two vertices of T are connected by the unique path in T, and
(iv) T has no cycle and for any two vertices x, y of $T, T+x y$ has the unique cycle.

Proof. (i) \Rightarrow (ii) Let T be a tree. Suppose that there exists an edge $e=x y$ of T such that $T-e$ is connected. Then there exists a path P in $T-e$ connecting x and y. Then $P+e$ is a subgraph of T and $P+e$ contains a cycle. This is a contradiction.
(ii) \Rightarrow (iii) Let T be a connected graph such that every edge of T is a cut edge. Suppose that there exist two paths P and Q in T connecting two vertices x and y of T. Then $P \cup Q$ is a subgraph of T and $P \cup Q$ contains a cycle C. Any edge e contained in C is not a cut edge of T. This is a contradiction.
(iii) \Rightarrow (iv) Let T be a graph such that any two vertices of T are connected by the unique path in T. Since any two vertices x, y of T are connected by the unique path P in T, $T+x y$ contains the unique cycle $P+x y$. Suppose that T has a cycle. Then for two vertices x and y in a cycle of T, there are at least two paths in T connecting x and y. This is a contradiction
$($ iv $) \Rightarrow$ (i) Let T be a graph having no cycle. We prove the following statement: "if T is not connected, then $T+x y$ has no cycle for some two vertices x and y of T." Suppose that T is not a connected graph. Then T has at least two components. Let x be a vertex of T and let y be a vertex of T not contained in the component of T containing x. Then $T+x y$ contains no cycle.

Theorem 1.3 If T is a tree of order n and size m, then $m=n-1$.

Proof. We proceed by induction on the size of a tree. There is only one tree of size 0 and its order is 1 . Thus this theorem holds for a tree of size 0 . Assume that the order of every tree of size $m-1 \geq 0$ is m. Let T be a tree of order n and size m and let e be an edge of T. By Theorem 1.2 (ii), e is a cut edge of T. Hence $T-e$ has two components T_{1} and T_{2}. Then both T_{1} and T_{2} have no cycle, i.e. both T_{1} and T_{2} are trees. By the induction hypothesis, $\left|E\left(T_{1}\right)\right|=\left|V\left(T_{1}\right)\right|-1$ and $\left|E\left(T_{2}\right)\right|=\left|V\left(T_{2}\right)\right|-1$. Hence we obtain $m=\left|E\left(T_{1}\right)\right|+\left|E\left(T_{2}\right)\right|+|\{e\}|=\left|V\left(T_{1}\right)\right|+\left|V\left(T_{2}\right)\right|-1=n-1$.

For two distinct vertices x and y of a tree $T, P_{T}(x, y)$ denotes the unique path in T connecting x and y.

Given a tree T, we often regard T as a rooted tree in which all the edges are directed away from a specified vertex of T. Such a specified vertex of T is called a root of T. Let T be a rooted tree with root v. The out-neighborhood of x, denoted by $N_{T, v}^{+}(x)$, is the set of vertices adjacent from x in the rooted tree with respect to (T, v). The in-neighborhood vertex of x, denoted by $n_{T, v}^{-}(x)$, is a vertex such that $n_{T, v}^{-}(x) \in N_{T}(x) \backslash N_{T, v}^{+}(x)$. Note that if $x \neq r$, then $n_{T, v}^{-}(x)$ is unique. If there is no ambiguity, we write $N_{T}^{+}(x)$ for $N_{T, v}^{+}(x)$ and $n_{T}^{-}(x)$ for $n_{T, v}^{-}(x)$ and we use the following definitions. For a subset $X \subseteq V(T), X^{-}$ denotes the set of vertices adjacent to a vertex in X and for a vertex $v \in V(T), v^{-}$denotes
the unique vertex adjancet to v. For a subset $Y \subseteq V(T), Y^{+}$denotes the set of vertices adjacent from a vertex in Y.

$\{\mathbf{\square}\}=N_{T}^{+}(v) \quad\{\bullet\}=N_{T}^{+}(w)$

$\mathbf{0}=n_{T}^{-}(x)^{T} \quad \bullet=n_{T}^{-}(y)$

Figure 1.17: A rooted tree T.

1.6 Hamiltonian properties

In this section, we introduce some Hamitonian properties and results which give sufficient conditions for graphs to satisfy Hamiltonian properties. A cycle (resp. path) in a graph G is called a Hamilton cycle (resp. path) of G if it contains all the vertices of G. A graph G is called Hamilton-connected, if for any two vertices x and y of G, there is a Hamilton path of G connecting x and y. Since the problem of determining whether a given graph G has a Hamilton cycle (resp. path) is NP-complete [28], we have studied sufficient conditions for graphs to have a Hamilton cycle (resp. path). The problem of determining whether a given graph G is Hamilton-connected is also NP-complete [19]. In this section, we introduce degree conditions and forbidden subgraph conditions which motivate our results.

1.6.1 Degree conditions

For a graph G, a subset X of $V(G)$ is independent if no two vertices in X are adjacent in G. For a graph G, the independence number of G is the maximum number of vertices in an independent set of $V(G)$ and the independence number of G is denoted by $\alpha(G)$.

For a graph G, where k is an integer with $k \geq 2$, define

$$
\sigma_{k}(G)=\min _{S \subseteq V(G)}\left\{\sum_{x \in S} \operatorname{deg}_{G}(x) \mid S \text { is an independent set of } k \text { vertices }\right\}
$$

if $\alpha(G) \geq k$, and $\sigma_{k}(G):=\infty$ if $\alpha(G)<k$. In 1960, Ore gave a sufficient condition for graphs to have a Hamilton cycle (path) [48] and to be Hamilton-connected [49]. These results are cornerstones of graph theory.

Theorem 1.4 (Ore $[48,49]$) Let G be a connected graph with order at least three. Suppose that $\sigma_{2}(G) \geq|G|+s$ with $s \in\{-1,0,1\}$.
(i) If $s=-1$, then G has a Hamilton path.
(ii) If $s=0$, then G has a Hamilton cycle.
(iii) If $s=1$, then G is Hamilton-connected.

Note that the degree conditions of Theorem 1.4 are best possible in the sense we cannot replace $|G|+s$ by $|G|+s-1$.

In 1976, Bondy and Chvátal introduced a closure concept in [7]. An s-closure $C L_{s}(G)$ of a graph is recursively joining pairs of nonadjacent vertices such that the degree sum of these vertices is at least s, until no such pair remains.

Theorem 1.5 (Bondy and Chvátal [7]) Let G be a graph. If u and v are nonadjacent vertices with $\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v) \geq|G|$, then G has a Hamilton cycle if and only if $G+u v$ has a Hamilton cycle.

We can obtain Theorem 1.4 (ii) by Theorem 1.5 as follows. If a graph G satisfies the condition of Theorem 1.4 (ii), then $C L_{|G|}(G)$ is a complete graph. It is easy to see that a complete graph with order at least three has a Hamilton cycle. By Theorem 1.5, G has a Hamilton cycle.

In 1984, Fan [25] gave a degree condition for graphs to have a Hamilton cycle (resp. path) which is weaker than the condition of Theorem 1.4. This degree condition is so-called a Fan-type degree condition. Benhocine and Wojda gave a Fan-type condition for graphs to be Hamilton-connected.

Theorem 1.6 (Fan [25], Benhocine and Wojda [5]) Let $s \in\{-1,0,1\}$ and let G be a graph. Suppose that

$$
\max \left\{\operatorname{deg}_{G}(x), \operatorname{deg}_{G}(y)\right\} \geq \frac{|G|+s}{2}
$$

for any two vertices $x, y \in V(G)$ with $\operatorname{dist}_{G}(x, y)=2$.
(i) If G is connected and $s=-1$, then G has a Hamilton path.
(ii) If G is 2-connected and $s=0$, then G has a Hamilton cycle.
(iii) If G is 3-connected and $s=1$, then G is Hamilton-connected.

The conditions of Theorem 1.6 are best possible.
Liu, Tian, and Wu in 1986 and independently, Broersma in 1988, showed that we could relax the degree condition of Theorem 1.4 (i) by restricting graphs to be $K_{1,3}$-free.

Theorem 1.7 (Liu, Tian, and Wu [38], Broersma [8]) Let G be a connected $K_{1,3}-$ free graph. If

$$
\sigma_{3}(G) \geq|G|-2
$$

then G has a Hamilton path.

1.6.2 Forbidden subgraph conditions

Faudree and Gould characterized the forbidden pairs for connected graphs to have a Hamilton path. The graph $N(p, q, r)$ is one obtained from the triangle $x y z$ by joining p isolated vertices to x, q isolated vertices to y, r isolated vertices to z (Fig. 1.18).

Figure 1.18: The graph $N(p, q, r)$

Theorem 1.8 (Faudree and Gould [26]) Let H_{1} and H_{2} be connected graphs with $H_{1}, H_{2} \neq P_{1}, P_{2}, P_{3}$. Then, every connected $\left\{H_{1}, H_{2}\right\}$-free graph has a Hamilton path if and only if H_{1} is $K_{1,3}$ and H_{2} is one of the graph $N(p, q, r)$ for $0 \leq p, q, r \leq 1$ or P_{4}.

Note that the "if" part of Theorem 1.8 was obtained by Duffus, Jacobson, and Gould [21].

Chapter 2

Connected degree factors

In this chapter, we focus on a spanning subgraph with constrains on the degree. Such a spanning subgraph is called a connected degree factor.

2.1 A spanning k-tree

For an integer $k \geq 2, T$ is a k-tree if the maximum degree of T is at most k. For a graph G, T is a spanning k-tree of G if T is a k-tree with $V(T)=V(G)$. Note that a Hamiltonian path of a graph G with the maximum degree two. Hence a Hamiltonian path is a spanning 2 -tree. The following result is a natural extention of Theorem 1.4.

Theorem 2.1 (Win [56]) Let $k \geq 2$ be an integer and let G be a connected graph. If

$$
\sigma_{k}(G) \geq|G|-1,
$$

then G has a spanning k-tree.
Proof. Let G be a graph satisfying all the conditions of Theorem 2.1, but has no spanning k-tree. The case $k=2$ follows from Theorem 1.4. Thus we consider the case $k \geq 3$. Let T be a maximal k-tree of G. Since G is connected and T is not a spanning tree, there exists a vertex v not contained in T and adjacent to a vertex w in $V(T)$.

Claim 2.1.1 $\operatorname{deg}_{T}(w)=k$.
Proof. Suppose that $\operatorname{deg}_{T}(w) \neq k$. Since T is a k-tree, $\operatorname{deg}_{T}(w)<k$. Then $T^{\prime}:=$ $T+w v$ is a k-tree with $\left|V\left(T^{\prime}\right)\right|>|V(T)|$. This contradicts the maximality of T. Hence $\operatorname{deg}_{T}(w)=k$.

Let $D_{1}, D_{2}, \ldots, D_{k}$ denote the components of $T-\{w\}$. For each $i=1,2, \ldots, k$, let u_{i} be the vertex of D_{i} adjacent to w in T and let x_{i} be a leaf of T contained in D_{i}.

T

Fig. 2.1.1 A maximal k-tree T of G.
Claim 2.1.2 $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ has no vertex adjacent to a vertex not contained in T.
Proof. Suppose that x_{i} is adjacent to a vertex y not contained in T for some $i=$ $1,2, \ldots, k$. Then $T^{\prime}:=T+x_{i} y$ is a k-tree of G with $\left|V\left(T^{\prime}\right)\right|>|V(T)|$. This contradicts the maximality of T.

Claim 2.1.3 $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ is an independent set of G.
Proof. Suppose that there exist two distinct vertices x_{i} and x_{j} in $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ such that x_{i} and x_{j} are adjacent in G. Then $T^{\prime}:=T+x_{i} x_{j}+v w-u_{i} w$ is a k-tree of G with $\left|V\left(T^{\prime}\right)\right|>|V(T)|$. This contradicts the maximality of T.

Let t be an integer with $1 \leq t \leq k$. Choose a vertex x_{a} from $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \backslash\left\{x_{t}\right\}$ such that

$$
\left|N_{G}\left(x_{a}\right) \cap V\left(D_{t}\right)\right|=\max _{i \neq t}\left|N_{G}\left(x_{i}\right) \cap V\left(D_{t}\right)\right| .
$$

Claim 2.1.4 For every $z \in N_{G}\left(x_{a}\right) \cap V\left(D_{t}\right), \operatorname{deg}_{T}(z)=k$.
Proof. Suppose that there exists a vertex $z \in N_{G}\left(x_{a}\right) \cap V\left(D_{t}\right)$ such that $\operatorname{deg}_{T}(z) \neq k$. Since T is a k-tree, $\operatorname{deg}_{T}(z)<k$. Then $T^{\prime}:=T+x_{a} z+v w-u_{a} w$ is a k-tree of G with $\left|V\left(T^{\prime}\right)\right|>|V(T)|$. This contradicts the maximality of T.

We regard D_{t} as a rooted tree with root x_{t}.
Claim 2.1.5 For every $z \in N_{G}\left(x_{a}\right) \cap V\left(D_{t}\right), N_{D_{t}}^{+}(z) \cap N_{G}\left(x_{t}\right)=\emptyset$.
Proof. Suppose that there exists a vertex $z \in N_{G}\left(x_{a}\right) \cap V\left(D_{t}\right)$ such that there exists $z^{+} \in N_{D_{t}}^{+}(z) \cap N_{G}\left(x_{t}\right)$. Then $T^{\prime}:=T+x_{t} z^{+}+x_{a} z+v w-z z^{+}-u_{a} w$ is a k-tree of G with $\left|V\left(T^{\prime}\right)\right|>|V(T)|$. This contradicts the maximality of T.

Claim 2.1.6 The vertex u_{t} is not in $N_{G}\left(x_{a}\right)$.
Proof. Suppose that $u_{t} x_{a} \in E(G)$. Then $T^{\prime}:=T+u_{t} x_{a}+v w-w x_{t}$ is a k-tree of G with $\left|V\left(T^{\prime}\right)\right|>|V(T)|$, a contradiction.

By Claims 2.1.4, 2.1.5, 2.1.6, and the choice of x_{a}, we obtain

$$
\begin{aligned}
\left|V\left(D_{t}\right)\right| & \geq\left|N_{G}\left(x_{t}\right) \cap V\left(D_{t}\right)\right|+\sum_{z \in N_{G}\left(x_{a}\right) \cap V\left(D_{t}\right)}\left|N_{D_{t}}^{+}(z)\right|+\left|\left\{x_{t}\right\}\right| \\
& =\left|N_{G}\left(x_{t}\right) \cap V\left(D_{t}\right)\right|+(k-1)\left|N_{G}\left(x_{a}\right) \cap V\left(D_{t}\right)\right|+1 \\
& \geq\left|N_{G}\left(x_{t}\right) \cap V\left(D_{t}\right)\right|+\sum_{1 \leq i \neq t \leq k}\left|N_{G}\left(x_{i}\right) \cap V\left(D_{t}\right)\right|+1 \\
& =\sum_{i=1}^{k}\left|N_{G}\left(x_{i}\right) \cap V\left(D_{t}\right)\right|+1 .
\end{aligned}
$$

It follows from the above inequality that

$$
\begin{aligned}
\sum_{i=1}^{k} \operatorname{deg}_{G}\left(x_{i}\right) & \leq \sum_{i=1}^{k}\left(\sum_{j=1}^{k}\left|N_{G}\left(x_{i}\right) \cap V\left(D_{j}\right)\right|+|\{w\}|\right) \\
& =\sum_{i=1}^{k} \sum_{j=1}^{k}\left|N_{G}\left(x_{i}\right) \cap V\left(D_{j}\right)\right|+k \\
& =\sum_{j=1}^{k} \sum_{i=1}^{k}\left|N_{G}\left(x_{i}\right) \cap V\left(D_{j}\right)\right|+k \\
& \leq \sum_{j=1}^{k}\left(\left|D_{j}\right|-1\right)+k \\
& =|T|-1 \leq|G|-2 .
\end{aligned}
$$

On the other hand, $\sum_{i=1}^{k} \operatorname{deg}_{G}\left(x_{i}\right) \geq \sigma_{k}(G)=|G|-1$. This is a contradiction.
By restricting graphs to be star-free, Caro, Krasikov, and Roditty in 1985 and independently, Jackson and Wormald in 1990, obtained the following result, which guarantees the existence of a spanning k-tree.

Theorem 2.2 (Caro, Krasikov, and Roditty [11], Jackson and Wormald [32]) For an integer $k \geq 2$, every connected $K_{1, k}$-free graph contains a spanning k-tree.

2.2 Degree sum condition for the existence of spanning k-trees in star-free graphs

In this section, we show the degree sum condition for graphs having no $K_{1, k+1}$ as an induced subgraph to have a spanning k-tree.

Theorem 2.2 is best possible in the sense that there exist infinitely many connected $K_{1, k+1}$-free graphs which have no spanning k-tree. Thus some additional conditions are needed for connected $K_{1, k+1}$-free graphs to have a spanning k-tree. The purpose of this section is to give a degree sum condition for connected $K_{1, k+1}$-free graphs to have a spanning k-tree. Our main result is the following.

Theorem 2.3 Let k be an integer with $k \geq 2$. If a connected $K_{1, k+1}$-free graph G satisfies

$$
\sigma_{3 k-3}(G) \geq|G|-2,
$$

then G has a spanning k-tree.
Theorem 2.3 gives a generalization of Theorem 1.7. By Theorem 2.3, we also obtain an upper bound on the independence number $\alpha(G)$ for $K_{1, k+1}$-free graphs to have a spanning k-tree.

Corollary 2.4 Let k be an integer with $k \geq 2$. If a connected $K_{1, k+1}$-free graph G satisfies

$$
\alpha(G) \leq 3 k-4,
$$

then G has a spanning k-tree.
The degree sum condition of Theorem 2.3 is sharp as shown in the next subsection and the example also shows the sharpness of the independence number in Corollary 2.4.

2.2.1 Sharpness of Theorem 2.3

We show that the lower bounds of $\sigma_{3 k-3}(G)$ in Theorem 2.3 and the independence number in Corollary 2.4 are best possible. In fact, we give the following example:

Figure 2.1: An infinite family of connected $K_{1, k+1}$-free graphs G having no spanning k-tree and satisfying $\sigma_{3 k-3}(G)=|G|-3$

Let $k \geq 2$ and $m \geq 1$ be integers. Let T be a triangle with $V(T)=\left\{x_{1}, x_{2}, x_{3}\right\}$. For each $i=1,2,3$, define a graph H_{i} as $k-1$ disjoint copies of K_{m}. The graph G is obtained by joining x_{i} and all the vertices in $V\left(H_{i}\right)$ for each $i=1,2,3$. Then G has no induced
subgraph isomorphic to $K_{1, k+1}$ and $|G|=3 m(k-1)+3$. Since $\alpha\left(H_{1} \cup H_{2} \cup H_{3}\right)=3 k-3$, we can choose $3 k-3$ independent vertices one by one from each complete graph K_{m}. Then $\sigma_{3 k-3}(G)=3 m(k-1)=|G|-3$. For any spanning tree T of G, one of the three vertices x_{1}, x_{2} and x_{3} must have degree more than k in T. Hence G has no spanning k-tree, and thus the lower bounds of $\sigma_{3 k-3}(G)$ in Theorem 2.3 and the independence number in Corollary 2.4 are sharp.

Note that the graphs in Figure 2.1 show that $K_{1, k}$-freeness in Theorem 2.2 cannot be replaced by $K_{1, k+1}$-freeness.

2.2.2 Proof of Theorem 2.3

Let k be an integer with $k \geq 2$, and let G be a connected $K_{1, k+1}$-free graph satisfying $\sigma_{3 k-3}(G) \geq|G|-2$. The case $k=2$ follows from Theorem 1.7. Thus we consider the case when $k \geq 3$. Let T be a maximal k-tree of G. Suppose that T is not a spanning tree of G. Then G has a vertex u_{0} not contained in T which is adjacent to a vertex v in $V(T)$.

Claim 2.2.1 $\operatorname{deg}_{T}(v)=k$.
Proof. Suppose that $\operatorname{deg}_{T}(v) \neq k$. Since T is a k-tree, $\operatorname{deg}_{T}(v)<k$. Then $T+v u_{0}$ is a k-tree of order $|V(T)|+1$. This contradicts the maximality of T. Hence $\operatorname{deg}_{T}(v)=k$.

Let $S_{1}, S_{2}, \ldots, S_{k}$ denote the components of $T-v$. For each $1 \leq i \leq k$, let s_{i} be the vertex of S_{i} which is adjacent to v in T. Note that $\operatorname{deg}_{S_{i}}\left(s_{i}\right) \leq k-1$ for each i.

Claim 2.2.2 For each $1 \leq i \leq k, u_{0}$ is nonadjacent to s_{i} in G.
Proof. Suppose that $u_{0} s_{i} \in E(G)$ for some $1 \leq i \leq k$. Then $T+v u_{0}+u_{0} s_{i}-v s_{i}$ is a k-tree of order $|V(T)|+1$, which contradicts the maximality of T.

Since v is a common neighbor of $u_{0}, s_{1}, s_{2}, \ldots, s_{k}$ in G, by the $K_{1, k+1}$-freeness of G and Claim 2.2.2, s_{i} and s_{j} are adjacent in G for some $1 \leq i<j \leq k$. Without loss of generality, we may assume that $s_{k-1} s_{k} \in E(G) \backslash E(T)$.

Claim 2.2.3 $\operatorname{deg}_{T}\left(s_{k-1}\right)=\operatorname{deg}_{T}\left(s_{k}\right)=k$.
Proof. By symmetry, it suffices to show that $\operatorname{deg}_{T}\left(s_{k}\right)=k$. If $\operatorname{deg}_{T}\left(s_{k}\right) \neq k$, then $\operatorname{deg}_{T}\left(s_{k}\right)<k$ since T is a k-tree, and hence $T+s_{k-1} s_{k}+u_{0} v-v s_{k}$ is a k-tree of order $|V(T)|+1$. This contradicts the maximality of T.

As seen in Figure 2.2, we redefine $T_{i}=S_{i}$ and $t_{i}=s_{i}$ for each $1 \leq i \leq k-2$ and let $T_{k-1}, \ldots, T_{2 k-3}$ and $T_{2 k-2}, \ldots, T_{3 k-4}$ be the components of $S_{k-1}-s_{k-1}$ and $S_{k}-s_{k}$, respectively. Let $t_{k-1}, \ldots, t_{2 k-3}$ (resp. $t_{2 k-2}, \ldots, t_{3 k-4}$) denote the vertices of $T_{k-1}, \ldots, T_{2 k-3}$ (resp. $T_{2 k-2}, \ldots, T_{3 k-4}$) which are adjacent to s_{k-1} (resp. s_{k}) in T.

Since $T_{1}, T_{2}, \ldots, T_{3 k-4}$ are vertex-disjoint k-trees, we can choose a leaf $u_{i} \in V\left(T_{i}\right)$ of T for each $1 \leq i \leq 3 k-4$. By the maximality of T and $\operatorname{deg}_{T}\left(u_{i}\right)=1, N_{G}\left(u_{i}\right) \subseteq V(T)$ for each $1 \leq i \leq 3 k-4$.

Figure 2.2: A maximal k-tree T
Claim 2.2.4 The set $\left\{u_{0}, u_{1}, \ldots, u_{3 k-4}\right\}$ is an independent set of G.
Proof. For $1 \leq i \leq 3 k-4$, since $N_{G}\left(u_{i}\right) \subseteq V(T)$, we have $u_{0} u_{i} \notin E(G)$. Suppose that $u_{i} u_{j} \in E(G)$ for some $1 \leq i<j \leq 3 k-4$. Consider the following tree T_{A};

$$
T_{A}:= \begin{cases}T+u_{i} u_{j}+u_{0} v-v t_{i} & \text { if } 1 \leq i \leq k-2 \\ T+u_{i} u_{j}+u_{0} v+s_{k-1} s_{k}-v s_{k}-s_{k-1} t_{i} & \text { if } k-1 \leq i \leq 2 k-3 \\ T+u_{i} u_{j}+u_{0} v+s_{k-1} s_{k}-v s_{k-1}-s_{k} t_{i} & \text { if } 2 k-2 \leq i \leq 3 k-4\end{cases}
$$

Then T_{A} is a k-tree of order $|V(T)|+1$, which contradicts the maximality of T. Hence the claim holds.

For each $1 \leq i \leq 3 k-4$, define

$$
W_{i}=\left(\bigcup_{0 \leq j \leq 3 k-4, j \neq i} N_{G}\left(u_{j}\right)\right) \cap V\left(T_{i}\right) .
$$

Claim 2.2.5 For each $1 \leq i \leq 3 k-4, t_{i} \notin W_{i}$.

Proof. If $t_{i} \in W_{i}$ for some $1 \leq i \leq 3 k-4$, then t_{i} is adjacent to a leaf u_{j} of T_{j} with $j \neq i$ or to the vertex u_{0}. Consider the following tree T_{B};

$$
T_{B}:= \begin{cases}T+t_{i} u_{j}+u_{0} v-v t_{i} & \text { if } 1 \leq i \leq k-2 \\ T+t_{i} u_{j}+s_{k-1} s_{k}+u_{0} v-s_{k-1} t_{i}-v s_{k} & \text { if } k-1 \leq i \leq 2 k-3 \\ T+t_{i} u_{j}+s_{k-1} s_{k}+u_{0} v-s_{k} t_{i}-v s_{k-1} & \text { if } 2 k-2 \leq i \leq 3 k-4\end{cases}
$$

Then T_{B} is a k-tree of order $|V(T)|+1$, which contradicts the maximality of T. Consequently, $t_{i} \notin W_{i}$ for each $1 \leq i \leq 3 k-4$.

Claim 2.2.6 For each $1 \leq i \leq 3 k-4$, any vertex $w \in W_{i}$ satisfies the following three statements:
(i) $\operatorname{deg}_{T}(w)=k$;
(ii) no vertex u_{j} with $1 \leq j \leq 3 k-4$ is adjacent to any vertex of $N_{T_{i}, u_{i}}^{+}(w)$ in G; and (iii) $\left|\left(N_{G}(w) \cap\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{3 k-4}\right\}\right) \backslash\left\{u_{i}\right\}\right| \leq k-1$.

Proof. (i) Suppose that $\operatorname{deg}_{T}(w) \neq k$ for some $w \in W_{i}$ with $1 \leq i \leq 3 k-4$. Since T is a k-tree, $\operatorname{deg}_{T}(w)<k$. By the definition of W_{i}, w is adjacent to a vertex u_{j} with $j \neq i$ in G (possibly, $j=0$). Consider the following tree T_{C};

$$
T_{C}:= \begin{cases}T+u_{j} w+u_{0} v-v t_{i} & \text { if } 1 \leq i \leq k-2 \\ T+u_{j} w+s_{k-1} s_{k}+u_{0} v-s_{k-1} t_{i}-v s_{k} & \text { if } k-1 \leq i \leq 2 k-3 \\ T+u_{j} w+s_{k-1} s_{k}+u_{0} v-s_{k} t_{i}-v s_{k-1} & \text { if } 2 k-2 \leq i \leq 3 k-4\end{cases}
$$

Then T_{C} is a k-tree of order $|V(T)|+1$, which contradicts the maximality of T. Hence $\operatorname{deg}_{T}(w)=k$ as desired.
(ii) Suppose that for some $1 \leq j \leq 3 k-4, u_{j}$ is adjacent to a vertex $w^{+} \in N_{T_{i}, u_{i}}^{+}(w)$ in G. By the definition of W_{i}, w is adjacent to a leaf u_{ℓ} with $\ell \neq i$ or to the vertex u_{0}. Note that $w \neq t_{i}$ by Claim 2.2.5. Consider the following k-tree T_{D};

$$
T_{D}:= \begin{cases}T+u_{\ell} w+u_{j} w^{+}+u_{0} v-v t_{i}-w w^{+} & \text {if } 1 \leq i \leq k-2 \\ T+u_{\ell} w+u_{j} w^{+}+s_{k-1} s_{k}+u_{0} v-v s_{k}-s_{k-1} t_{i}-w w^{+} & \text {if } k-1 \leq i \leq 2 k-3 \\ T+u_{\ell} w+u_{j} w^{+}+s_{k-1} s_{k}+u_{0} v-v s_{k-1}-s_{k} t_{i}-w w^{+} & \text {if } 2 k-2 \leq i \leq 3 k-4\end{cases}
$$

Then T_{D} is a k-tree of order $|V(T)|+1$. This contradicts the maximality of T.
(iii) To the contrary, assume that $\left|\left(N_{G}(w) \cap\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{3 k-4}\right\}\right) \backslash\left\{u_{i}\right\}\right| \geq k$. Since $\operatorname{deg}_{T}(w)=k \geq 3$ by Claim 2.2.6 (i), a vertex $w_{1} \in N_{T_{i}, u_{i}}^{+}(w)$ exists. Note that w_{1} is different from any u_{j} with $j \neq i$ because $w_{1} \in V\left(T_{i}\right)$ and $\left(\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{3 k-4}\right\} \backslash\left\{u_{i}\right\}\right) \cap$ $V\left(T_{i}\right)=\emptyset$. Then w_{1} and k vertices in $\left(N_{G}(w) \cap\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{3 k-4}\right\}\right) \backslash\left\{u_{i}\right\}$ are all neighbors of w in G. Moreover, Claims 2.2.4 and 2.2.6 (ii) assart that w_{1} and k vertices in $\left(N_{G}(w) \cap\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{3 k-4}\right\}\right) \backslash\left\{u_{i}\right\}$ are independent in G. This contradicts the assumption that G is $K_{1, k+1}$-free. Hence $\left|\left(N_{G}(w) \cap\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{3 k-4}\right\}\right) \backslash\left\{u_{i}\right\}\right| \leq k-1$.

Claim 2.2.7 We have $\left|N_{G}\left(s_{i}\right) \cap\left\{u_{0}, u_{1}, \ldots, u_{3 k-4}\right\}\right| \leq k-1$ for each $i=k-1$ and k.

Proof. We first prove that

$$
N_{G}\left(s_{k}\right) \cap\left\{u_{0}, u_{1}, \ldots, u_{3 k-4}\right\} \subseteq\left\{u_{2 k-2}, \ldots, u_{3 k-4}\right\}
$$

By Claim 2.2.2, $s_{k} u_{0} \notin E(G)$. If $s_{k} u_{i} \in E(G)$ for some $i=1,2, \ldots, 2 k-3$, then $T+$ $s_{k} u_{i}+u_{0} v-v s_{k}$ is a k-tree of order $|V(T)|+1$. This contradicts the maximality of T. Hence $N_{G}\left(s_{k}\right) \cap\left\{u_{0}, u_{1}, \ldots, u_{3 k-4}\right\} \subseteq\left\{u_{2 k-2}, \ldots, u_{3 k-4}\right\}$ as desired. This implies that $\left|N_{G}\left(s_{k}\right) \cap\left\{u_{0}, u_{1}, \ldots, u_{3 k-4}\right\}\right| \leq k-1$. By symmetry, applying the preceding argument, we obtain the claim for the case when $i=k-1$.

Claim 2.2.8 $\left|N_{G}(v) \cap\left\{u_{0}, u_{1}, \ldots, u_{3 k-4}\right\}\right| \leq k-1$.
Proof. We show that $N_{G}(v) \cap\left\{u_{0}, u_{1}, \ldots, u_{3 k-4}\right\} \subseteq\left\{u_{0}, \ldots, u_{k-2}\right\}$. Suppose that $v u_{i} \in E(G)$ for some $k-1 \leq i \leq 3 k-4$. Then $T+u_{i} v+s_{k-1} s_{k}+u_{0} v-s_{k-1} v-s_{k} v$ is a k-tree of order $|V(T)|+1$. This contradicts the maximality of T. Hence $N_{G}(v) \cap$ $\left\{u_{0}, u_{1}, \ldots, u_{3 k-4}\right\} \subseteq\left\{u_{0}, \ldots, u_{k-2}\right\}$. Thus $\left|N_{G}(v) \cap\left\{u_{0}, u_{1}, \ldots, u_{3 k-4}\right\}\right| \leq k-1$.

By Claim 2.2.6 (i), $\left|N_{T_{i}, u_{i}}^{+}(w)\right|=k-1$ for any $w \in W_{i}$ with $1 \leq i \leq 3 k-4$. It follows from Claim 2.2.6 (ii) that

$$
\begin{align*}
\left|N_{G}\left(u_{i}\right) \cap V\left(T_{i}\right)\right| & \leq\left|V\left(T_{i}\right)\right|-(k-1)\left|W_{i}\right|-\left|\left\{u_{i}\right\}\right| \\
& =\left|V\left(T_{i}\right)\right|-(k-1)\left|W_{i}\right|-1 . \tag{2.1}
\end{align*}
$$

For each $0 \leq j \leq 3 k-4$ with $j \neq i$, Claim 2.2 .6 (iii) asserts that

$$
\begin{equation*}
\sum_{\substack{0 \leq j \leq 3 k-4 \\ j \neq i}}\left|N_{G}\left(u_{j}\right) \cap V\left(T_{i}\right)\right| \leq(k-1)\left|W_{i}\right| . \tag{2.2}
\end{equation*}
$$

By (2.1) and (2.2), we obtain

$$
\sum_{0 \leq j \leq 3 k-4}\left|N_{G}\left(u_{j}\right) \cap V\left(T_{i}\right)\right| \leq\left|V\left(T_{i}\right)\right|-1
$$

Hence we obtain

$$
\begin{align*}
\sum_{1 \leq i \leq 3 k-4} \sum_{0 \leq j \leq 3 k-4}\left|N_{G}\left(u_{j}\right) \cap V\left(T_{i}\right)\right| & \leq \sum_{1 \leq i \leq 3 k-4}\left(\left|V\left(T_{i}\right)\right|-1\right) \\
& \leq|T|-\left|\left\{s_{k-1}, s_{k}, v\right\}\right|-(3 k-4)=|T|-3 k+1 . \tag{2.3}
\end{align*}
$$

By (2.3), Claims 2.2.7 and 2.2.8,

$$
\begin{aligned}
\sum_{0 \leq i \leq 3 k-4} \operatorname{deg}_{G}\left(u_{i}\right) & \leq|T|-3 k+1+(k-1)\left|\left\{s_{k-1}, s_{k}, v\right\}\right|+\left|N_{G-V(T)}\left(u_{0}\right)\right| \\
& \leq|T|-2+|G|-|T|-\left|\left\{u_{0}\right\}\right|=|G|-3
\end{aligned}
$$

This contradicts the degree sum condition of Theorem 2.3 and hence the proof of Theorem 2.3 is completed.

Figure 2.3: The graph G (k is an odd integer.)

2.3 A forbidden pair for connected graphs to have spanning k-trees

In this section, we show the forbidden pair for connected graphs to have a spanning k-tree. The result gives a positive answer to the conjecture posed by Ota and Sugiyama in 2010.

If a graph G has a vertex v such that $G-v$ has at least $k+1$ components, then G does not have a spanning k-tree. In order to forbid such a situation, it is natural to consider connected $K_{1, k+1}$-free graphs for the existence of a spanning k-tree. Ota and Sugiyama obtained a forbidden subgraph condition for a graph to have a spanning k-tree.

Theorem 2.5 (Ota and Sugiyama [50]) Let $k \geq 2$ be an integer. If G is a connected $\left\{K_{1, k+1}, N\left(k-1, k-1,\left\lfloor\frac{k-1}{2}\right\rfloor\right), N(k-1, k-2, k-2)\right\}$-free graph, then G has a spanning k-tree.

However, it was not known whether the conditions of being $N\left(k-1, k-1,\left\lfloor\frac{k-1}{2}\right\rfloor\right)$-free and $N(k-1, k-2, k-2)$-free in Theorem 2.5 are sharp. They posed the following conjecture.

Conjecture 2.6 (Ota and Sugiyama [50]) Let $k \geq 2$ be an integer. If G is a connected $\left\{K_{1, k+1}, N\left(k-1, k-1,\left\lceil\frac{k-1}{2}\right\rceil\right)\right\}$-free graph, then G has a spanning k-tree.

They showed that if Conjecture 2.6 is true, then it is stronger than Theorem 2.5 and the condition is sharp in the sense that we cannot replace $N\left(k-1, k-1,\left\lceil\frac{k-1}{2}\right\rceil\right)$-free by $N\left(k-1, k-1,\left\lceil\frac{k+1}{2}\right\rceil\right)$-free. The graphs G and G^{\prime} in Fig. 2.3 and 2.4, respectively, are not $N\left(k-1, k-1,\left\lceil\frac{k-1}{2}\right\rceil\right)$-free and are $N\left(k-1, k-1,\left\lceil\frac{k+1}{2}\right\rceil\right)$-free but these graphs have no spanning k-tree. Hence the conditions of Conjecture 2.6 are sharp. In this thesis, we prove Conjecture 2.6.

Theorem 2.7 Let $k \geq 2$ be an integer. If G is a connected $\left\{K_{1, k+1}, N\left(k-1, k-1,\left\lceil\frac{k-1}{2}\right\rceil\right)\right\}$-free graph, then G has a spanning k-tree.

In order to show Theorem 2.7, we prove a technical but stronger result. We will explain that in the next section.

Figure 2.4: The graph G^{\prime} (k is an even integer.)

2.3.1 Techniques for the proof of Theorem 2.7

In order to show Theorem 2.5, Ota and Sugiyama proved the following stronger statement for the inductive argument.

Theorem 2.8 (Ota and Sugiyama [50]) Let $k \geq 2$ be an integer. Suppose that G is a connected $\left\{K_{1, k+1}, N\left(k-1, k-1,\left\lfloor\frac{k-1}{2}\right\rfloor\right), N(k-1, k-2, k-2)\right\}$-free graph and u is a vertex of G such that the number of components in $G-u$ is at most $k-1$. Then G has a spanning k-tree T such that $\operatorname{deg}_{T}(u) \leq k-1$.

Since every graph has a vertex that is not a cut-vertex, Theorem 2.8 implies Theorem 2.5. They showed that each of the conditions of being $K_{1, k+1}$-free, $N\left(k-1, k-1,\left\lfloor\frac{k-1}{2}\right\rfloor\right)$-free, and $\left.N(k-1, k-1, k-2)\right)$-free are necessary for the conclusion of Theorem 2.8. So, in order to show Conjecture 2.6, it is impossible to replace the condition of Theorem 2.8 with $\left\{K_{1, k+1}, N\left(k-1, k-1,\left\lceil\frac{k-1}{2}\right\rceil\right)\right\}$-free graphs.

We introduce some definitions and show our result that is stronger than Theorems 2.7 and 2.8. Let $k \geq 2$ be an integer. Let G be a graph. For a vertex u of G, a u-bridge of G is a subgraph of G induced by the edges in a component of $G-u$ and all edges from that component to u. Let $\mathcal{H}(G, u)$ be the set of u-bridges of G. Note that for each u-bridge H of G, H is connected and u is not a cut-vertex of H. We recursively define functions g^{k} : $\{(G, v): G$ is a connected graph and $v \in V(G)$ such that $G-v$ is connected $\} \rightarrow\{1,2\}$ and $f_{G}^{k}: V(G) \rightarrow\{0,1,2, \ldots\}$ as follows.

$$
\begin{aligned}
& g^{k}(G, v)= \begin{cases}1 & \text { if either } f_{G-v}(x) \leq k-1 \text { for some } x \in N_{G}(v) \text { or }\left|N_{G}(v)\right|=1, \\
2 & \text { otherwise. }\end{cases} \\
& f_{G}^{k}(u)= \begin{cases}0 & \text { if } G \text { consists of only } u \\
\sum_{H \in \mathcal{H}(G, u)} g^{k}(H, u) & \text { otherwise. }\end{cases}
\end{aligned}
$$

Now, we are ready to state our technical theorem.
Theorem 2.9 Let $k \geq 3$ be an integer, G a connected $\left\{K_{1, k+1}, N\left(k-1, k-1,\left\lceil\frac{k-1}{2}\right\rceil\right)\right\}$-free graph, and let u be a vertex of G. Then G has a spanning k-tree T such that $\operatorname{deg}_{T}(u) \leq f_{G}^{k}(u)$.

Theorem 2.7 is a direct corollary of Theorem 2.9. We prove Theorem 2.9 by the induction on $|V(G)|$. Since we never change the value of k as in Theorem 2.9 in the rest of Section 2.3, for convenience, we will write $g(\cdot)$ and $f_{G}(\cdot)$ instead of $g^{k}(\cdot)$ and $f_{G}^{k}(\cdot)$.

We briefly explain our idea to improve the argument by Ota and Sugiyama [50]. As in Theorem 2.8, they considered the number of components in $G-u$ for a specified vertex u in a graph G and the existence of a spanning k-tree T with $\operatorname{deg}_{T}(u) \leq k-1$. This was succeeded to show Theorem 2.5. However, counting the number of components in $G-u$ was not enough to reach a proof of Conjecture 2.6. In this paper, we focus on not only counting the number of components in $G-u$ but also the detailed structure of each component by the functions g and f_{G}. In fact, if a u-bridge H of G, which is obtained by a component of $G-u$ together with u, has certain conditions, then H is counted as 2 in $g(H, u)$, and requires two edges from $H-u$ to u in the desired spanning k-tree in Theorem 2.9.

This idea appears also in the proof of Theorem 2.9. We show by induction several properties of a vertex v and a v-bridge C distinguishing the following three types;

- $g(C, v)=2$ and $\alpha\left(C\left[N_{C}(v)\right]\right)=1, \quad$ see Lemma 2.13 and Claims 2.3.2 and 2.3.8,
- $g(C, v)=2$ and $\alpha\left(C\left[N_{C}(v)\right]\right) \geq 2, \quad$ see Claim 2.3.7,
- $g(C, v)=1 \quad$ see Claims 2.3.4 and 2.3.6.

Those are crucial ideas to prove Theorem 2.7.

2.3.2 Preliminary

In this section, we show some lemmas which are used in the proof of Theorem 2.9. In 1972, Chvátal and Erdős obtained the following result, which gives a sufficient condition for graphs to have a Hamilton cycle.

Theorem 2.10 (Chvátal and Erdős [18]) Let G be a k-connected graph. If $\alpha(G) \leq k$, then G has a Hamilton cycle.

Using Theorem 2.10, we show the first lemma.
Lemma 2.11 Let G be a connected graph. If $\alpha(G)=2$, then there exist nonadjacent vertices v_{1} and v_{2} such that there exists a Hamilton path P_{i} with end v_{i} for each $i=1,2$.

Proof. If G is 2-connected, then G has a Hamilton cycle by Theorem 2.10 and so this lemma holds. We may assume that G has a cut-vertex w. Let H_{1} and H_{2} be components of $G-w$. Since $\alpha(G)=2, H_{1}$ and H_{2} are complete graphs. If w is adjacent to all vertices of H_{1} and H_{2}, then there exists a Hamilton path connecting a vertex in H_{1} and a vertex in H_{2}, and this lemma holds. We may assume that there exists a vertex x of H_{2} not adjacent to w. Since $\alpha(G)=2,\left|V\left(H_{2}\right)\right| \geq 2$ and w is adjacent to all vertices of H_{1}. Then
there exists a Hamilton path connecting x and a vertex of H_{1} and this lemma holds.

Next, we show some properties of the functions g and f in a connected $\left\{K_{1, k+1}, N(k-\right.$ $\left.\left.1, k-1,\left\lceil\frac{k-1}{2}\right\rceil\right)\right\}$-free graphs.

Lemma 2.12 Let v be a vertex of a $K_{1, k+1}$-free graph G. Suppose that $\alpha\left(C\left[N_{C}(v)\right]\right) \geq 2$ for each v-bridge C of G with $g(C, v)=2$. There exists an independent set S of $N_{G}(v)$ such that $|S|=f_{G}(v)$ and $\left|S \cap V\left(C^{\prime}\right)\right|=g\left(C^{\prime}, v\right)$ for each v-bridge C^{\prime} of G. Moreover, $f_{G}(v) \leq k$.

Proof. We take a vertex adjacent to v from each v-bridge C of G with $g(C, v)=1$. Since $\alpha\left(C^{\prime}\left[N_{C^{\prime}}(v)\right]\right) \geq 2$ for each v-bridge C^{\prime} of G with $g\left(C^{\prime}, v\right)=2$, we can take nonadjacent two vertices from $N_{C^{\prime}}(v)$. The set of taken vertices is an independent set with desired property. Since G is $K_{1, k+1}$-free, $f_{G}(v) \leq k$.

We often use the following fact, which is obtained in a similar way to the proof of Lemma 2.12. For a vertex v of a graph G, if $f_{G}(v)=\ell$, then the number of v-bridges of G is at least $\left\lceil\frac{\ell}{2}\right\rceil$, since $g(C, v) \leq 2$ for each v-bridge C of G.

Lemma 2.13 Let $k \geq 3$ be an integer. Let v be a vertex of a connected $\left\{K_{1, k+1}, N\left(k-1, k-1,\left\lceil\frac{k-1}{2}\right\rceil\right)\right\}$-free graph G such that $G-v$ is connected. If $g(G, v)=2$ and $\alpha\left(G\left[N_{G}(v)\right]\right)=1$, then there exist two vertices w_{1} and w_{2} in $N_{G}(v)$ such that there exists an independent set of $N_{G-v}\left(w_{i}\right) \backslash V\left(C_{i}\right)$ with size $k-1$ for each $i=1,2$, where C_{i} is the unique w_{i}-bridge of $G-v$ containing $N_{G}(v)$. In particular, G has an induced subgraph N isomorphic to $N(k-1, k-1,0)$ such that $\operatorname{deg}_{N}(v)=2$.

Proof. We prove this lemma by induction on $|V(G)|$. Since $\alpha\left(G\left[N_{G}(v)\right]\right)=1$, for each vertex w in $N_{G}(v)$, there is exactly one w-bridge of $G-v$ containing $N_{G}(v)$. Moreover, $f_{G-v}(w) \geq k$ for each vertex w in $N_{G}(v)$ since $g(G, v)=2$.

Claim 2.3.1 Let w be a vertex in $N_{G}(v)$ and let C_{w} be the w-bridge of $G-v$ containing $N_{G}(v)$. Suppose that $g\left(C_{w}, w\right)=1$. Then there exists an independent set of $N_{G-v}(w) \backslash$ $V\left(C_{w}\right)$ with size $k-1$.

Proof. Suppose that $\alpha\left(C_{w}^{\prime}\left[N_{C_{w}^{\prime}}(w)\right]\right) \geq 2$ for each w-bridge C_{w}^{\prime} of $G-v$ with $g\left(C_{w}^{\prime}, w\right)=$ 2. It follows from Lemma 2.12 that there exists an independent set of $N_{G-v}(w) \backslash V\left(C_{w}\right)$ with size $f_{G-v}(w)-g\left(C_{w}, w\right) \geq k-1$. Hence we may assume that there exists a w-bridge C_{w}^{\prime} of $G-v$ with $g\left(C_{w}^{\prime}, w\right)=2$ and $\alpha\left(C_{w}^{\prime}\left[N_{C_{w}^{\prime}}(w)\right]\right)=1$. By the induction hypothesis, C_{w}^{\prime} contains an induced subgraph N_{w} isomorphic to $N(k-1, k-1,0)$ such that $\operatorname{deg}_{N_{w}}(w)=$ 2. Since $g\left(C_{w}, w\right)=1$, the number of w-bridges of $G-v$ except for C_{w} is at least $\lceil(k-1) / 2\rceil$ and so there exists an independent set S_{w} of $N_{G-v}(w) \backslash\left(V\left(C_{w}\right) \cup V\left(C_{w}^{\prime}\right)\right)$ with size $\lceil(k-3) / 2\rceil$. Then $G\left[V\left(N_{w}\right) \cup S_{w} \cup\{v\}\right]$ is isomorphic to $N\left(k-1, k-1,\left\lceil\frac{k-1}{2}\right\rceil\right)$. This
is a contradiction.

Then we are ready to prove Lemma 2.13. Suppose first that $\left|N_{G}(v)\right|=2$. Let w_{1} and w_{2} be two vertices in $N_{G}(v)$. Since $g(G, v)=2$, we have $f_{G-v}\left(w_{i}\right) \geq k$ for each $i=1,2$. For each $i=1,2$, let C_{i} be the w_{i}-bridge of $G-v$ containing $N_{G}(v)$. Suppose that $g\left(C_{1}, w_{1}\right)=2$. Then $f_{C_{1}-w_{1}}\left(w_{2}\right) \geq k$. Suppose that there exists no w_{2}-bridge C_{2}^{\prime} of $C_{1}-w_{1}$ such that $g\left(C_{2}^{\prime}, w_{2}\right)=2$ and $\alpha\left(C_{2}^{\prime}\left[N_{C_{2}^{\prime}}\left(w_{2}\right)\right]\right)=1$. By Lemma 2.12, there exists an independent set S of $N_{C_{1}-w_{1}}\left(w_{2}\right)$ with size k. Then $G\left[S \cup\left\{v, w_{2}\right\}\right]$ is isomorphic to $K_{1, k+1}$. This is a contradiction. Hence there exists a w_{2}-bridge C_{2}^{\prime} of $C_{1}-w_{1}$ with $g\left(C_{2}^{\prime}, w_{2}\right)=2$ such that $\alpha\left(C_{2}^{\prime}\left[N_{C_{2}^{\prime}}\left(w_{2}\right)\right]\right)=1$. By the induction hypothesis, C_{2}^{\prime} contains an induced subgraph N isomorphic to $N(k-1, k-1,0)$ such that $\operatorname{deg}_{N}\left(w_{2}\right)=2$. Since $f_{C_{1}-w_{1}}\left(w_{2}\right)-g\left(C_{2}^{\prime}, w_{2}\right) \geq k-2$, the number of w_{2}-bridges of $C_{1}-w_{1}$ except for C_{2}^{\prime} is at least $\lceil(k-2) / 2\rceil$ and so there exists an independent set S^{\prime} of $N_{C_{1}-w_{1}}\left(w_{2}\right) \backslash V\left(C_{2}^{\prime}\right)$ with size $\lceil(k-2) / 2\rceil$. Then $G\left[V(N) \cup S^{\prime} \cup\{v\}\right]$ is isomorphic to $N\left(k-1, k-1,\left\lceil\frac{k}{2}\right\rceil\right)$. This is a contradiction. Hence $g\left(C_{1}, w_{1}\right)=g\left(C_{2}, w_{2}\right)=1$ by the symmetry. By Claim 2.3.1, there exists an independent set of $N_{G-v}\left(w_{i}\right) \backslash V\left(C_{i}\right)$ with size $k-1$ for each $i=1,2$, and we are done.

Suppose next that $\left|N_{G}(v)\right| \geq 3$. Let x_{1}, x_{2}, x_{3} be three vertices in $N_{G}(v)$. Let C_{i} be the x_{i}-bridge of $G-v$ containing $N_{C}(v)$. Suppose that $g\left(C_{i}, x_{i}\right)=1$ for each $i=1,2,3$. By Claim 2.3.1, there exists an independent set S_{i} of $N_{G-v}\left(x_{i}\right) \backslash V\left(C_{i}\right)$ with size $k-1$. Then $G\left[S_{1} \cup S_{2} \cup S_{2} \cup\left\{x_{1}, x_{2}, x_{3}\right\}\right]$ is isomorphic to $N(k-1, k-1, k-1)$. This is a contradiction. Hence $g\left(C_{i}, x_{i}\right)=2$ for some $i=1,2,3$. Without loss of generality, we may assume that $g\left(C_{1}, x_{1}\right)=2$. Since $N_{G}(v) \cap V\left(C_{1}-x_{1}\right) \subseteq N_{C_{1}}\left(x_{1}\right)$, we have $f_{C_{1}-x_{1}}(y) \geq k$ for each vertex y in $N_{G}(v) \cap V\left(C_{1}-x_{1}\right)$. Moreover, $\left|N_{G}(v) \cap V\left(C_{1}-x_{1}\right)\right| \geq 2$. Hence $g\left(G\left[V\left(C_{1}-x_{1}\right) \cup\{v\}\right], v\right)=2$. Then $\left|V\left(G\left[V\left(C_{1}-x_{1}\right) \cup\{v\}\right]\right)\right|<|V(G)|$. By the induction hypothesis, $G\left[V\left(C_{1}-x_{1}\right) \cup\{v\}\right]$ has desired two vertices and this lemma holds.

2.3.3 Proof of Theorem 2.9

We prove Theorem 2.9 by induction on $|V(G)|$.

Claim 2.3.2 Let C be a connected induced subgraph of G and v be a vertex of C. Suppose that there exists a v-bridge D of C such that $g(D, v)=2$ and $\alpha\left(D\left[N_{D}(v)\right]\right)=1$. Then k is an even integer and each v-bridge D^{\prime} of C satisfies $g\left(D^{\prime}, v\right)=2$ and $\alpha\left(D^{\prime}\left[N_{D^{\prime}}(v)\right]\right)=1$. Moreover, $f_{C}(v)=k$.

Proof. By Lemma 2.13, C has an induced subgraph N isomorphic to $N(k-1, k-1,0)$ such that $\operatorname{deg}_{N}(v)=2$. Suppose that there exists a v-bridge D of C with $g(D, v)=1$. Then the number of v-bridges of C except for D is at least $\lceil(k-3) / 2\rceil+1=\lceil(k-1) / 2\rceil$. Hence there exists an independent set S contained in $N_{C}(v) \backslash V(D)$ with size $\lceil(k-1) / 2\rceil$.

Then $C[V(N) \cup S]$ is isomorphic to $\left(k-1, k-1,\left\lceil\frac{k-1}{2}\right\rceil\right)$. This is a contradiction. Hence for each v-bridge D of C, we have $g(D, v)=2$.

Suppose that there exists a v-bridge D^{\prime} of C such that $\alpha\left(D^{\prime}\left[N_{D^{\prime}}(v)\right]\right) \geq 2$. Then there exists an independent set S^{\prime} of $N_{C}(v) \backslash V(D)$ with size $\lceil(k-4) / 2\rceil+2=\lceil k / 2\rceil$. Then $C\left[V(N) \cup S^{\prime}\right]$ is isomorphic to $N\left(k-1, k-1,\left\lceil\frac{k}{2}\right\rceil\right)$. This is a contradiction and hence $\alpha\left(D^{\prime}\left[N_{D^{\prime}}(v)\right]\right)=1$ for each v-bridge D^{\prime} of C.

Suppose that $f_{C}(v) \geq k+1$. Then there exists an independent set $S^{\prime \prime}$ of $N_{C}(v) \backslash V(D)$ with size $\lceil k-1 / 2\rceil$. Then $C\left[V(N) \cup S^{\prime \prime}\right\rceil$ is isomorphic to $N\left(k-1, k-1,\left\lceil\frac{k-1}{2}\right\rceil\right)$, a contradiction. Hence $f_{C}(v)=k$. Since $f_{C}(v)=k$ and $g(D, v)=2$ for each v-bridge D of G, we have k is an even integer.

For a connected induced subgraph C of G, a vertex $w \in V(C)$ with $f_{C}(w) \geq k$ is called a clique-vertex in C, if $\alpha\left(C_{w}\left[N_{C_{w}}(w)\right]\right)=1$ and $g\left(C_{w}, w\right)=2$ for each w-bridge C_{w} of C.

Claim 2.3.3 Let v be a vertex of G with $f_{C}(v) \geq k$ for a connected induced subgraph C of G. Then either one of the following holds and $f_{C}(v)=k$.
(i) k is an even integer and v is a clique-vertex in C.
(ii) There exists a maximum independent set S of $N_{C}(v)$ such that $|S \cap V(D)|=g(D, v)$ for each v-bridge D of C. This implies that there exists no v-bridge D^{\prime} of C such that $\left|S \cap V\left(D^{\prime}\right)\right|>g\left(D^{\prime}, v\right)$.

Proof. if there exists a v-bridge D of C such that $g(D, v)=2$ and $\alpha\left(D\left[N_{D}(v)\right]\right)=1$, then it follows from Claim 2.3.2 that k is an even integer, v is a clique-vertex in C, and $f_{C}(v)=k$. Thus, (i) holds. On the other hand, if there exists no v-bridge D of C such that $g(D, v)=2$ and $\alpha\left(D\left[N_{D}(v)\right]\right)=1$, then it follows from Lemma 2.12 that there exists an independent set S of $N_{C}(v)$ such that $|S \cap V(D)|=g(D, v)$ for each v-bridge D of C and $f_{C}(v)=k$. Since G is $K_{1, k+1}$-free, S is maximum, and (ii) holds.

Claim 2.3.4 Let C be a connected induced subgraph of G and v be a vertex of C. If D is a v-bridge of C such that $g(D, v)=1$, then there exists a vertex w in $N_{D}(v)$ such that $f_{D-v}(w) \leq k-1$.

Proof. If $\left|N_{D}(v)\right| \geq 2$, then this claim holds by the definition of g. We assume that $\left|N_{D}(v)\right|=1$. Let w be the unique vertex in $N_{D}(v)$. Suppose that $f_{D-v}(w) \geq k$. If w satisfies Claim 2.3.3 (ii), then $G[S \cup\{v, w\}]$ contains an induced subgraph isomorphic to $K_{1, k+1}$, a contradiction, where S is an independent set of $N_{D-v}(w)$ satisfying the condition of Claim 2.3.3 (ii). Thus, we may assume that w satisfies Claim 2.3.3 (i). Let D^{\prime} be a w-bridge of $D-v$. By Lemma 2.13, D^{\prime} has an induced subgraph N isomorphic to $N(k-1, k-1,0)$ such that $\operatorname{deg}_{N}(w)=2$. Since the number of w-bridges of $D-v$
except for D^{\prime} is $(k-2) / 2$, there exists an independent set S of $N_{D-v}(w) \backslash V\left(D^{\prime}\right)$ with size $(k-2) / 2$. Then $G[V(N) \cup S \cup\{v\}]$ is isomorphic to $N\left(k-1, k-1, \frac{k}{2}\right)$. This is a contradiction.

Claim 2.3.5 Let C be a connected induced subgraph of G and let v be a vertex of C such that $C-v$ is connected and $g(C, v)=2$. Let w be a vertex in $N_{C}(v)$ such that only one w-bridge of $C-v$ contains $N_{C}(v)$, and let H_{w} be the union of w-bridges of $C-v$ not containing $N_{C}(v) \backslash\{w\}$. If $g\left(C-V\left(H_{w}\right), v\right)=2$, then $f_{H_{w}}(w) \leq k-2$.

Proof. Since $g(C, v)=2$, we have $f_{C-v}(w)=k$. Let C_{w} be the w-bridge of $C-v$ containing $N_{C}(v)$. Note that $C_{w}-w=C-V\left(H_{w}\right)-v$. If $g\left(C_{w}, w\right)=2$, then $f_{H_{w}}(w)=$ $f_{C-v}(w)-g\left(C_{w}, w\right)=k-2$. We may assume that $g\left(C_{w}, w\right)=1$. Then w is not a clique-vertex in $C-v$ by the definition of a clique-vertex. By Claim 2.3.3, there exists an independent set of $N_{H_{w}}(w)$ with size $k-1$. Since G is $K_{1, k+1}$ free, $N_{C_{w}}(w) \subseteq N_{C-V\left(H_{w}\right)}(v)$. By Claim 2.3.4, there exists a vertex $x \in N_{C_{w}}(w)$ with $f_{C_{w}-w}(x) \leq k-1$. Since $N_{C_{w}}(w) \subseteq$ $N_{C-V\left(H_{w}\right)}(v)$, we have $g\left(C-V\left(H_{w}\right), v\right)=1$. This contradicts the assumption of this claim.

Claim 2.3.6 Let C be a u-bridge of G such that $g(C, u)=1$. Then C has a spanning k-tree T such that $\operatorname{deg}_{T}(u)=1$.

Proof. By Claim 2.3.4, there exists a vertex v in $N_{C}(u)$ such that $f_{C-u}(v) \leq k-1$. By the induction hypothesis, $C-u$ has a spanning k-tree T such that $\operatorname{deg}_{T}(v) \leq k-1$. Then $T+u v$ is a desired spanning k-tree.

Claim 2.3.7 Let C be a u-bridge of G such that $g(C, u)=2$ and $\alpha\left(C\left[N_{C}(u)\right]\right)=2$. Then C has a spanning k-tree T such that $\operatorname{deg}_{T}(u) \leq 2$.

Proof. Let v be a vertex in $N_{C}(u)$ such that only one v-bridge of $C-u$ contains $N_{C}(u)$, and let D be such a v-bridge. The vertex v satisfies either (i) or (ii) in Claim 2.3.3 for $C-u$ and we prove this claim dividing into two cases.

Case 2.3.1 The vertex v satisfies (i) in Claim 2.3.3.
Note that k is an even integer and v is a clique-vertex in $C-u$. It follows from the definition of a clique-vertex that each v-bridge C_{v} of $C-u$ satisfies $g\left(C_{v}, v\right)=2$ and $\alpha\left(C_{v}\left[N_{C_{v}}(v)\right]\right)=1$ and so v and C_{v} satisfy the assumption of Lemma 2.13. We show that $N_{D}(v) \subseteq N_{G}(u)$. Suppose that there exists a vertex v^{\prime} in $N_{D}(v)$ not adjacent to u. Since $k \geq 4$, there exists a v-bridge D^{\prime} of $C-u$ except for D. By Lemma 2.13, D^{\prime} has an induced subgraph N isomorphic to $N(k-1, k-1,0)$ such that $\operatorname{deg}_{N}(v)=2$. Since the
number of v-bridges of $C-u$ except for D and D^{\prime} is $(k-4) / 2$, there exists an independent set S of $N_{C-u}(v) \backslash\left(V(D) \cup V\left(D^{\prime}\right)\right)$ with size $(k-4) / 2$. Then $G\left[V(N) \cup S \cup\left\{v^{\prime}, u\right\}\right]$ is isomorphic to $N\left(k-1, k-1, \frac{k}{2}\right)$. This is a contradiction. Hence $N_{D}(v) \subseteq N_{G}(u)$.

By the induction hypothesis, $C-u$ has a spanning k-tree T_{v}. Let w be a vertex in $V(D)$ such that $v w \in E\left(T_{v}\right)$. Then $T_{v}+u v+u w-v w$ is a desired spanning k-tree.

Case 2.3.2 The vertex v satisfies (ii) in Claim 2.3.3.
Suppose that $g(D, v)=1$. By Claim 2.3.3 (ii), there exists an independent set of $N_{C-u}(v) \backslash V(D)$ with size $k-1$. Since G is $K_{1, k+1}$ free, $N_{D}(v) \subseteq N_{G}(u)$. By the induction hypothesis, $C-u$ has a spanning k-tree T_{v}. Let w be a vertex in $V(D)$ such that $v w \in E\left(T_{v}\right)$. Then $T_{v}+u v+u w-v w$ is a desired spanning k-tree.

Hence we assume that $g(D, v)=2$. By Claim 2.3.3 (ii), $\alpha\left(D\left[N_{D}(v)\right]\right)=2$. Since G is $K_{1, k+1}$ free, for any nonadjacent two vertices in $N_{D}(v), u$ is adjacent to one of the two vertices. Let $P=w_{1} w_{2} \ldots w_{m}$ be a path in $D\left[N_{D}(v)\right]$ such that

- w_{1} is adjacent to u,
- if $D\left[N_{D}(v)\right]$ is connected, then P is a Hamilton path of $D\left[N_{D}(v)\right]$, and
- if $D\left[N_{D}(v)\right]$ is not connected, then P is a Hamilton path of one of the components of $D\left[N_{D}(v)\right]$ such that all vertices in $N_{D}(v)-\left\{w_{1}, \ldots, w_{i}\right\}$ are contained in a same component of $D-\left\{v, w_{1}, \ldots, w_{i}\right\}$ for each $1 \leq i \leq m$.

By Lemma 2.11, such a path P exists in the case that $D\left[N_{D}(v)\right]$ is connected. Suppose that $D\left[N_{D}(v)\right]$ is not connected. Since $\alpha\left(D\left[N_{D}(v)\right]\right)=2, D\left[N_{D}(v)\right]$ consists of two components both of which are cliques. Since u is adjacent to at least one of any nonadjacent two vertices, all vertices in one component of $D\left[N_{D}(v)\right]$ are neighbors of u and let A be such a component. Since $D-v$ is connected, there exists a vertex w in A with a path from w to $N_{D}(v)-A$ in $D-v$ disjoint from $A-\{w\}$. Then, any path in A ending w satisfies the desired condition for P. In this case, we have $w_{m}=w$.

Let $D_{0}=D$. For each $1 \leq i \leq m$, we define the graphs H_{i} and D_{i} such that

- H_{i} is the union of w_{i}-bridges of D_{i-1} not containing $\left\{v, w_{i+1}, \ldots, w_{m}\right\}$ and
- $D_{i}=D_{i-1}-V\left(H_{i}\right)$.

Note that if $D\left[N_{D}(v)\right]$ is connected, then $V\left(D_{m}\right)=\{v\}$ otherwise, $D_{m}\left[N_{D_{m}}(v)\right]$ is a clique. By the choice of $P, D_{i}-v$ is connected for each $1 \leq i \leq m$.

We claim that there exists an integer i such that $g\left(D_{i}, v\right)=1$. If $D\left[N_{D}(v)\right]$ is connected, then since $\left|N_{D_{m-1}}(v)\right|=\left|\left\{w_{m}\right\}\right|=1$, it follows from the definition of g that $g\left(D_{m-1}, v\right)=1$. We assume that $D\left[N_{D}(v)\right]$ is not connected, and claim that $g\left(D_{m}, v\right)=1$. Suppose that $g\left(D_{m}, v\right)=2$. Since $\alpha\left(D_{m}\left[N_{D_{m}}(v)\right]\right)=1$, it follows from Lemma 2.13 that D_{m} has an induced subgraph N isomorphic to $N(k-1, k-1,0)$ such that $\operatorname{deg}_{N}(v)=2$.

Since Claim 2.3.3 (ii) holds, there exists an independent set S of $N_{C-u}(v) \backslash V(D)$ with size $k-2$. Then $G[V(N) \cup S]$ is isomorphic to $N(k-1, k-1, k-2)$, a contradiction. Thus, in either case, there exists an integer i such that $g\left(D_{i}, v\right)=1$.

Let

$$
t=\min _{1 \leq i \leq m}\left\{i: g\left(D_{i}, v\right)=1\right\} .
$$

By Claim 2.3.5, replacing C, w, and H_{w} with D_{i}, w_{i}, and H_{i}, respectively for $1 \leq i \leq t-1$, we have $f_{H_{i}}\left(w_{i}\right) \leq k-2$. By the induction hypothesis, H_{i} has a spanning k-tree T_{i} such that $\operatorname{deg}_{T_{i}}\left(w_{i}\right) \leq k-2$ for each $1 \leq i \leq t-1$ and H_{t} has a spanning k-tree T_{t} such that $\operatorname{deg}_{T_{t}}\left(w_{t}\right) \leq k-1$. Since $g\left(D_{t}, v\right)=1$, it follows from the induction hypothesis that D_{t} has a spanning k-tree T_{v} such that $\operatorname{deg}_{T_{v}}(v)=1$. Let H_{v} be the union of v-bridges of $C-u$ except for D. Since $f_{H_{v}}(v)=f_{C-u}(v)-g(D, v)=k-2$, it follows from the induction hypothesis that H_{v} has a spanning k-tree T_{v}^{\prime} such that $\operatorname{deg}_{T_{v}^{\prime}}(v) \leq k-2$. Then $T_{1} \cup T_{2} \cup \cdots \cup T_{t} \cup T_{v} \cup T_{v}^{\prime} \cup w_{1} P w_{t}+u w_{1}+u v$ is a desired spanning k-tree, where $w_{1} P w_{t}$ is the path in P from w_{1} to w_{t}.

Claim 2.3.8 Let C be a u-bridge of G such that $g(C, u)=2$ and $\alpha\left(C\left[N_{C}(u)\right]\right)=1$. Then C has a spanning k-tree T such that $\operatorname{deg}_{T}(u)=2$.

Proof. By Lemma 2.13, there exists a vertex v in $N_{C}(u)$ such that there exists an independent set of $N_{C-u}(v) \backslash V\left(C_{v}\right)$ with size $k-1$, where C_{v} is the v-bridge of $C-u$ containing $N_{C}(u)$. Since G is $K_{1, k+1}$-free, $N_{C_{v}}(v) \subseteq N_{G}(u)$. By the induction hypothesis, $C-u$ has a spanning k-tree T_{v}. Let w be a vertex in $V\left(C_{v}\right)$ such that $v w \in E\left(T_{v}\right)$. Then $T_{v}+u v+u w-v w$ is desired spanning k-tree.

By Claims 2.3.6, 2.3.7, and 2.3.8, each u-bridge C of G has a spanning tree T_{C} such that $\operatorname{deg}_{T_{C}}(u) \leq g(C, u)$. Let $T=\bigcup_{C \in \mathcal{H}(G, u)} T_{C}$. Then T is a spanning tree of G such that $\operatorname{deg}_{T}(u) \leq f_{G}(u)$. Therefore this theorem holds.

2.4 Closure and spanning trees with bounded total excess

For a vertex subset S of G, and a positive integer k with $k \leq|S|$, let

$$
\Delta_{k}(S ; G)=\max \left\{\sum_{x \in X} \operatorname{deg}_{G}(x): X \text { is a subset of } S \text { with }|X|=k\right\} .
$$

Bondy and Chvátal introduced a closure concept in [7]. They showed that it plays an important role for the existence of cycles, and some other subgraphs in graphs. We refer the reader to the survey [10] on several closure concepts. In [42], Matsubara et al. considered a closure concept for spanning k-trees.

Theorem 2.14 (Matsubara, Tsugaki and Yamashita [42]) Let $k \geq 2$ be an integer, and let G be a connected graph. Let u and v be two non-adjacent vertices of G. If $\Delta_{k}(S ; G) \geq|G|-1$ for every independent set S in G of order $k+1$ such that $\{u, v\} \subseteq S$, then G has a spanning k-tree if and only if $G+u v$ has a spanning k-tree.

On the other hand, a tree is called a k-ended tree if the number of its leaves is at most k. In [9], Broersma and Tuinstra considered a closure concept for spanning k-ended trees.

Theorem 2.15 (Broersma and Tuinstra [9]) Let $k \geq 2$ be an integer, and let G be a connected graph. Let u and v be two nonadjacent vertices of G. If $\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v) \geq$ $|G|-1$, then G has a spanning k-ended tree if and only if $G+$ uv has a spanning k-ended tree.

Let G be a graph. The total k-excess of G is defined as

$$
\operatorname{te}(G ; k)=\sum_{v \in V(G)} \max \left\{\operatorname{deg}_{G}(v)-k, 0\right\}
$$

This concept was introduced by Enomoto, Onishi and Ota in [24], and we can see some of results concerning it in [27], [47] and [51]. Note that for a tree $T, \operatorname{te}(T ; k)=0$ if and only if T is a k-tree, and te $(T ; 2) \leq k-2$ if and only if T is a k-ended tree. We generalize Theorems 2.14 and 2.15 as follows.

Theorem 2.16 Let $\alpha \geq 0$ and $k \geq 2$ be integers, and let G be a connected graph. Let u and v be two nonadjacent vertices of G. If $\Delta_{k}(S ; G) \geq|G|-1$ for every independent set S in G of order $k+1$ such that $\{u, v\} \subseteq S$, then G has a spanning tree T such that $t e(T ; k) \leq \alpha$ if and only if $G+$ uv has a spanning tree T^{\prime} such that $t e\left(T^{\prime} ; k\right) \leq \alpha$.

The degree sum condition of Theorem 2.16 is best possible. Let $\alpha \geq 0$ and $k \geq 2$ be integers, and let V_{1} and V_{2} be disjoint vertex sets such that $\left|V_{1}\right|=k+\alpha-1,\left|V_{2}\right|=k-1$. Let u, v and w be distinct vertices not contained in $V_{1} \cup V_{2}$. Let G_{1} be a graph such that $V\left(G_{1}\right)=\{u, v, w\} \cup V_{1} \cup V_{2}, E\left(G_{1}\right)=\left\{u x: x \in V_{1}\right\} \cup\left\{w x: x \in V_{2}\right\} \cup\{u w, v w\}$ (see the left of Figure 1). Then G_{1} is a connected graph and $u v \notin E\left(G_{1}\right)$. Note that G_{1} is a tree such that $\operatorname{te}\left(G_{1} ; k\right)=\alpha+1$. On the other hand, $G_{1}+u v$ has a spanning tree $\left(G_{1}+u v\right)-u w$ such that $\operatorname{te}\left(\left(G_{1}+u v\right)-u w ; k\right)=\alpha$. Let $S=V_{2} \cup\{u, v\}$. Then we can see that $|S|=k+1$ and $\Delta_{k}\left(S ; G_{1}\right)=\left|G_{1}\right|-2$. These imply that the degree sum condition of Theorem 2.16 is best possible ${ }^{1}$.

Let $\alpha \geq 0$ and $k \geq 2$ be integers, and let G be a connected graph. In [27], Fujisawa et al. showed that if $\alpha(G) \leq k+\alpha$, then G has a spanning tree T with te $(T ; k) \leq \alpha$. Therefore, it is natural to consider the following problem, which corresponds to an improvement of Theorem 2.16.

[^0]

Figure 2.5: A sharpness example G_{1} for Theorem 4.

Problem 2.17 Let $\alpha \geq 0$ and $k \geq 2$ be integers, and let G be a connected graph. Let u and v be two nonadjacent vertices of G. If $\Delta_{k}(S ; G) \geq|G|-1$ for every independent set S in G of order $k+\alpha+1$ such that $\{u, v\} \subseteq S$, then G has a spanning tree T such that $t e(T ; k) \leq \alpha$ if and only if $G+u v$ has a spanning tree T^{\prime} such that $t e\left(T^{\prime} ; k\right) \leq \alpha$.

However, Problem 2.17 is not true for $\alpha>0$. Let $\alpha>0$ and $k \geq 2$ be integers, and let S be an independent set of the graph G_{1} containing both u and v. Then we can see that $|S| \leq\left|V_{2} \cup\{u, v\}\right|=k+1<k+\alpha+1$. These imply that G_{1} is a counterexample of Problem 2.17 ${ }^{1}$. Therefore, we change the condition on S so that S contains at least one of u and v, and prove the following theorem, which is the second main theorem of this paper.

Theorem 2.18 Let $\alpha \geq 0$ and $k \geq 2$ be integers, and let G be a connected graph. Let u and v be two nonadjacent vertices of G. If $\Delta_{k}(S ; G) \geq|G|-\alpha-1$ for every independent set S in G of order $k+\alpha+1$ such that $S \cap\{u, v\} \neq \emptyset$, then G has a spanning tree T such that $t e(T ; k) \leq \alpha$ if and only if $G+u v$ has a spanning tree T^{\prime} such that $t e\left(T^{\prime} ; k\right) \leq \alpha$.

The degree sum condition of Theorem 2.18 is best possible. Let $k \geq 2$ and $m \geq 1$ be integers, and let G_{2} be a complete bipartite graph with bipartite sets A and B such that $|A|=m$ and $|B|=m(k-1)+\alpha+2$. Let u and v be distinct vertices contained in B. Then G_{2} is a connected graph and $u v \notin E\left(G_{2}\right)$. Let S be an independent set in G_{2} of order $k+\alpha+1$ such that $S \cap\{u, v\} \neq \emptyset$. Then $S \subseteq B$, and hence $\Delta_{k}\left(S ; G_{2}\right)=k m=\left|G_{2}\right|-\alpha-2$. We can easily see that G_{2} has a spanning tree T such that $\operatorname{te}(T ; k) \leq \alpha$, but $G_{2}+u v$ does not have a spanning tree T^{\prime} such that $\operatorname{te}\left(T^{\prime} ; k\right) \leq \alpha$. These imply that the degree sum condition of Theorem 2.18 is best possible.

Moreover, the closure obtained from Theorems 2.16 or 2.18 is well-defined by the similar way to the proof in [42]. We leave checking this to the reader.

Theorem 2.18 is a closure version of the following theorem (in fact, Fujisawa et al. showed a stronger result than Theorem 2.19).

Theorem 2.19 (Fujisawa, Matsumura and Yamashita [27]) Let $\alpha \geq 0$ and $k \geq 2$ be integers, and let G be a connected graph. If $\Delta_{k}(S ; G) \geq|G|-\alpha-1$ for every independent set S in G of order $k+\alpha+1$, then G has a spanning tree T such that te $(T ; k) \leq \alpha$.

Finally, we introduce another result, a corollary of Theorem 2.18. In the workshop on Discrete Mathematics and Its Applications 2018, Hiroshima, Japan, August 20-22, 2018, Matsuda gave a talk on the degree conditions for the existence of spanning k-trees in graphs. In his talk, he mentioned that by using Theorem 2.14, we can easily obtain the following theorem.

Theorem 2.20 (Aung and Kyaw [4]) Let $k \geq 2$ be an integer, and let G be a connected graph. Let $L=\left\{v \in V(G): \operatorname{deg}_{G}(v)<(|G|-1) / k\right\}$. If $L=\emptyset$ or $G[L]$ is complete, then G has a spanning k-tree.

By the same way as the strategy due to Matsuda, we obtain the following corollary from Theorem 2.18. Note that Corollary 2.21 is a generalization of Theorem 2.20.

Corollary 2.21 Let $\alpha \geq 0$ and $k \geq 2$ be integers, and let G be a connected graph. Let $L=\left\{v \in V(G): \operatorname{deg}_{G}(v)<(|G|-\alpha-1) / k\right\}$. If $L=\emptyset$ or $\alpha(G[L]) \leq \alpha+1$, then G has a spanning tree T such that te $(T ; k) \leq \alpha$.

Proof. Suppose not. Let G be an edge-maximal counterexample of Corollary 2.21. Let $u, v \in V(G)$ be two non-adjacent vertices of G. Since G is a counterexample of Corollary 2.21 , it follows from Theorem 2.18 that there exists an independent set S in G of order $k+\alpha+1$ such that $S \cap\{u, v\} \neq \emptyset$. Since G is an edge-maximal counterexample of Corollary 2.21, $G+u v$ has a spanning tree T^{\prime} such that te $\left(T^{\prime} ; k\right) \leq \alpha$. Since $L=\emptyset$ or $\alpha(G[L]) \leq \alpha+1$, we have $|S \backslash L| \geq k$. This implies that $\Delta_{k}(S ; G) \geq|G|-\alpha-1$. Since $G+u v$ has a spanning tree T^{\prime} such that te $\left(T^{\prime} ; k\right) \leq \alpha$, it follows from Theorem 2.18 that G has a spanning tree T such that te $(T ; k) \leq \alpha$. This contradicts that G is a counterexample of Corollary 2.21.

2.4.1 Notation and Lemmas

Let $i \geq 0, \alpha \geq 0$ and $k \geq 2$ be integers, and let G be a graph. Let $V_{\geq i}(G)=\{x \in$ $\left.V(G): \operatorname{deg}_{G}(x) \geq i\right\}$, and let $\mathcal{S}(G ; k, \alpha)$ be a set of spanning trees T in G such that $\operatorname{te}(T ; k) \leq \alpha$. We can easily verify that if $T \in \mathcal{S}(G ; k, \alpha)$, then $T \in \mathcal{S}(G+u v ; k, \alpha)$ for any two nonadjacent vertices $u, v \in V(G)$. Therefore in our proof of Theorems 2.16 and 2.18, we show only the opposite directions.

In the rest of this section, we prepare lemmas used in the proofs of Theorems 2.16 and 2.18. Let $\alpha \geq 0$ and $k \geq 2$ be integers, and let G be a connected graph. Let u and v be two non-adjacent vertices of G. Suppose that $\mathcal{S}(G+u v ; k, \alpha) \neq \emptyset$ but $\mathcal{S}(G ; k, \alpha)=\emptyset$. Let

$$
\mathcal{T}=\left\{\left(T_{1}, T_{2}\right): T_{1} \cup T_{2}+u v \in \mathcal{S}(G+u v ; k, \alpha), u \in V\left(T_{1}\right), v \in V\left(T_{2}\right)\right\}
$$

For any $\left(T_{1}, T_{2}\right) \in \mathcal{T}$, there exist $w_{1} \in V\left(T_{1}\right)$ and $w_{2} \in V\left(T_{2}\right)$ such that $w_{1} w_{2} \in E(G)$ because G is connected. Let $T_{3}=T_{1} \cup T_{2}+w_{1} w_{2}$. Choose such $\left(T_{1}, T_{2}\right) \in \mathcal{T}, w_{1} \in V\left(T_{1}\right)$ and $w_{2} \in V\left(T_{2}\right)$ so that
(T1) $\mathrm{te}\left(T_{3} ; k\right)$ is as small as possible.
Note that $\alpha-1 \leq \operatorname{te}\left(T_{1} ; k\right)+\operatorname{te}\left(T_{2} ; k\right) \leq \alpha$ because $\mathcal{S}(G ; k, \alpha)=\emptyset$ and $T_{1} \cup T_{2}+u v \in$ $\mathcal{S}(G+u v ; k, \alpha)$.

Lemma 2.22 (i) If $\operatorname{deg}_{T_{1}}(u) \geq k$, then $\operatorname{deg}_{T_{2}}(v) \leq k-1$ and $t e\left(T_{1} ; k\right)+t e\left(T_{2} ; k\right)=\alpha-1$.
(ii) If $\operatorname{deg}_{T_{2}}(v) \geq k$, then $\operatorname{deg}_{T_{1}}(u) \leq k-1$ and $t e\left(T_{1} ; k\right)+t e\left(T_{2} ; k\right)=\alpha-1$.

Proof. If $\operatorname{deg}_{T_{1}}(u) \geq k$ and $\operatorname{deg}_{T_{2}}(v) \geq k$, then $\operatorname{te}\left(T_{1} \cup T_{2}+u v ; k\right)=\operatorname{te}\left(T_{1} ; k\right)+\operatorname{te}\left(T_{2}, k\right)+$ $2 \geq \alpha+1$, a contradiction. Hence $\operatorname{deg}_{T_{1}}(u) \leq k-1$ or $\operatorname{deg}_{T_{2}}(v) \leq k-1$. This implies that if $\operatorname{deg}_{T_{1}}(u) \geq k$ or $\operatorname{deg}_{T_{2}}(v) \geq k$, then $\alpha \leq \operatorname{te}\left(T_{1} ; k\right)+\operatorname{te}\left(T_{2} ; k\right)+1=\operatorname{te}\left(T_{1} \cup T_{2}+u v ; k\right) \leq \alpha$, that is, $\mathrm{te}\left(T_{1} ; k\right)+\operatorname{te}\left(T_{2} ; k\right)=\alpha-1$.

Lemma 2.23 If te $\left(T_{1} ; k\right)+t e\left(T_{2} ; k\right)=\alpha-1$, then $d_{T_{i}}\left(w_{i}\right) \geq k$ for each $i \in\{1,2\}$.
Proof. If $\operatorname{deg}_{T_{i}}\left(w_{i}\right) \leq k-1$ for some $i \in\{1,2\}$, then $\operatorname{te}\left(T_{3} ; k\right) \leq \operatorname{te}\left(T_{1} ; k\right)+\operatorname{te}\left(T_{2} ; k\right)+1=$ α, and hence $\mathcal{S}(G ; k, \alpha) \neq \emptyset$, a contradiction.

Lemma 2.24 For some $i \in\{1,2\}, \operatorname{deg}_{T_{i}}\left(w_{i}\right) \geq k$.
Proof. If $\operatorname{deg}_{T_{i}}\left(w_{i}\right) \leq k-1$ for each $i \in\{1,2\}$, then $\operatorname{te}\left(T_{3} ; k\right)=\operatorname{te}\left(T_{1} ; k\right)+\operatorname{te}\left(T_{2} ; k\right) \leq \alpha$, and hence $\mathcal{S}(G ; k, \alpha) \neq \emptyset$, a contradiction.

Lemma 2.25 For some $i \in\{1,2\}$, the following statements hold.
(i) $\operatorname{deg}_{T_{i}}\left(w_{i}\right) \geq k$ and $\operatorname{deg}_{T_{3}}(w) \leq k-1$, where $w \in V\left(T_{i}\right) \cap\{u, v\}$.
(ii) There exists no tree S_{i} such that $V\left(S_{i}\right)=V\left(T_{i}\right)$, te $\left(T_{i} ; k\right)=t e\left(S_{i} ; k\right)$ and $\operatorname{deg}_{S_{i}}\left(w_{i}\right)=$ $k-1$.

Proof. By Lemma 2.24 and by the symmetry of T_{1} and T_{2}, we may assume that $d_{T_{1}}\left(w_{1}\right) \geq k$.

First, suppose that $\operatorname{deg}_{T_{1}}(u) \geq k$. Then $\operatorname{deg}_{T_{2}}(v) \leq k-1$ and $\operatorname{te}\left(T_{1} ; k\right)+\operatorname{te}\left(T_{2} ; k\right)=\alpha-$ 1 hold by Lemma 2.22 (i). By Lemma 2.23, this implies that $\operatorname{deg}_{T_{2}}\left(w_{2}\right) \geq k$. Then $v \neq w_{2}$, and so $\operatorname{deg}_{T_{3}}(v) \leq k-1$. Suppose that there exists a tree S_{2} such that $V\left(S_{2}\right)=V\left(T_{2}\right)$, $\operatorname{te}\left(T_{2} ; k\right)=\operatorname{te}\left(S_{2} ; k\right)$ and $\operatorname{deg}_{S_{2}}\left(w_{2}\right)=k-1$. Then $\operatorname{te}\left(T_{1} ; k\right)+\operatorname{te}\left(S_{2} ; k\right)=\operatorname{te}\left(T_{1} ; k\right)+$ $\operatorname{te}\left(T_{2} ; k\right)=\alpha-1$. Since $\operatorname{deg}_{S_{2}}\left(w_{2}\right)=k-1$, this implies that $T_{1} \cup S_{2}+w_{1} w_{2} \in \mathcal{S}(G ; k, \alpha)$, a contradiction. Hence the statements (i) and (ii) hold for $i=2$.

Next, suppose that $\operatorname{deg}_{T_{1}}(u) \leq k-1$. Then $u \neq w_{1}$, and so $\operatorname{deg}_{T_{3}}(u) \leq k-1$. Suppose that there exists a tree S_{1} such that $V\left(S_{1}\right)=V\left(T_{1}\right)$, te $\left(T_{1} ; k\right)=\operatorname{te}\left(S_{1} ; k\right)$ and $\operatorname{deg}_{S_{1}}\left(w_{1}\right)=$ $k-1$. Then $\operatorname{deg}_{T_{2}}\left(w_{2}\right) \geq k$ and $\operatorname{te}\left(T_{1} ; k\right)+\operatorname{te}\left(T_{2} ; k\right)=\alpha$ because $S_{1} \cup T_{2}+w_{1} w_{2} \notin$
$\mathcal{S}(G ; k, \alpha)$. By Lemma 2.22 (i), this implies that $\operatorname{deg}_{T_{2}}(v) \leq k-1$. Then $v \neq w_{2}$, and so $\operatorname{deg}_{T_{3}}(v) \leq k-1$. If there exists a tree S_{2} such that $V\left(S_{2}\right)=V\left(T_{2}\right)$, $\operatorname{te}\left(T_{2} ; k\right)=\operatorname{te}\left(S_{2} ; k\right)$ and $\operatorname{deg}_{S_{2}}\left(w_{2}\right)=k-1$, then $S_{1} \cup S_{2}+w_{1} w_{2} \in \mathcal{S}(G ; k, \alpha)$, a contradiction. Hence, the statements (i) and (ii) hold for $i=2$.

Lemma 2.26 For each $i \in\{1,2\}$, there exists no tree S_{i} such that $V\left(S_{i}\right)=V\left(T_{i}\right)$, $t e\left(S_{i} ; k\right)<t e\left(T_{i} ; k\right)$ and $t e\left(S_{i} \cup T_{3-i}+w_{1} w_{2} ; k\right)<t e\left(T_{3} ; k\right)$.

Proof. By the symmetry of T_{1} and T_{2}, we have only to prove the case $i=1$. Suppose that there exists a tree S_{1} such that $V\left(S_{1}\right)=V\left(T_{1}\right), \operatorname{te}\left(S_{1} ; k\right)<\operatorname{te}\left(T_{1} ; k\right)$ and $\operatorname{te}\left(S_{1} \cup T_{2}+\right.$ $\left.w_{1} w_{2} ; k\right)<\operatorname{te}\left(T_{3} ; k\right)$. Then $S_{1} \cup T_{2}+u v \in \mathcal{S}(G+u v ; k, \alpha)$ because $\operatorname{te}\left(S_{1} ; k\right)<\operatorname{te}\left(T_{1} ; k\right)$. By (T1), this implies that te $\left(S_{1} \cup T_{2}+w_{1} w_{2} ; k\right) \geq \operatorname{te}\left(T_{3} ; k\right)$, a contradiction.

2.4.2 Proof of Theorem 2.16

Let G be a graph which satisfies the assumption of Theorem 2.16. Suppose that $\mathcal{S}(G+$ $u v ; k, \alpha) \neq \emptyset$ but $\mathcal{S}(G ; k, \alpha)=\emptyset$. We define \mathcal{T} as in Section 2.4.1. Choose $\left(T_{1}, T_{2}\right) \in \mathcal{T}$, $w_{1} \in V\left(T_{1}\right)$ and $w_{2} \in V\left(T_{2}\right)$ so that (where we let $T_{3}=T_{1} \cup T_{2}+w_{1} w_{2}$)
(T1) te $\left(T_{3} ; k\right)$ is as small as possible.
By the symmetry of T_{1} and T_{2}, we may assume that
Lemma 2.25 holds for $i=1$.
Among all $\left(T_{1}, T_{2}\right) \in \mathcal{T}, w_{1} \in V\left(T_{1}\right)$ and $w_{2} \in V\left(T_{2}\right)$ satisfying (T1) and (2.4), we choose w_{1} so that
(T2) $\operatorname{dist}_{T_{1}}\left(w_{1}, u\right)$ is as large as possible.
Claim 2.4.1 If there exists a tree S_{1} which satisfies the following three properties, then $t e\left(S_{1} ; k\right)=t e\left(T_{1} ; k\right)$ and $\operatorname{deg}_{T_{1}}\left(w_{1}\right) \geq k+1$ hold:
(i) $V\left(S_{1}\right)=V\left(T_{1}\right)$;
(ii) $\operatorname{deg}_{S_{1}}\left(w_{1}\right)=\operatorname{deg}_{T_{1}}\left(w_{1}\right)-1$; and
(iii) $t e\left(S_{1} ; k\right) \leq t e\left(T_{1} ; k\right)$.

Proof. By (2.4), $\operatorname{deg}_{T_{1}}\left(w_{1}\right) \geq k$. Let S_{1} be a tree which satisfies the properties (i), (ii) and (iii). Suppose that $\operatorname{te}\left(S_{1} ; k\right)<\operatorname{te}\left(T_{1} ; k\right)$. Then $\operatorname{te}\left(S_{1} \cup T_{2}+w_{1} w_{2} ; k\right) \geq \operatorname{te}\left(T_{3} ; k\right)$ by Lemma 2.26. On the other hand, since $\operatorname{deg}_{T_{1}}\left(w_{1}\right) \geq k$, it follows from the property (ii) that $\operatorname{te}\left(S_{1} \cup T_{2}+w_{1} w_{2} ; k\right)<\operatorname{te}\left(T_{3} ; k\right)$, a contradiction. Hence by the property (iii),
$\operatorname{te}\left(S_{1} ; k\right)=\operatorname{te}\left(T_{1} ; k\right)$. If $d_{T_{1}}\left(w_{1}\right)=k$, then by the property $(\mathrm{ii}), \operatorname{deg}_{S_{1}}\left(w_{1}\right)=k-1$, which contradicts (2.4).

Here we take the outdirected tree with respect to $\left(T_{3}, w_{1}\right)$. Let D_{1}, \ldots, D_{l} be the components of $T_{3}-w_{1}$. Note that $l \geq k+1 \operatorname{because} \operatorname{deg}_{T_{3}}\left(w_{1}\right) \geq k+1$. Without loss of generality, we may assume that $u, v \in \bigcup_{1 \leq i \leq k+1} V\left(D_{i}\right)$. For each $i(1 \leq i \leq k+1)$, if $u, v \notin V\left(D_{i}\right)$, then take $x_{i} \in V\left(D_{i}\right)$ such that $\operatorname{deg}_{T_{3}}\left(x_{i}\right) \leq k-1$ (since D_{i} has a leaf of T_{3}, we can take such a vertex $\left.x_{i}\right)$; otherwise, let $\left\{x_{i}\right\}=\{u, v\} \cap V\left(D_{i}\right)$. For each $j(1 \leq j \leq l)$, take $z_{j} \in V\left(D_{j}\right) \cap N_{T_{3}}\left(w_{1}\right)$. Let $X=\left\{x_{1}, \ldots, x_{k+1}\right\}$ and $X_{k}=\left\{x_{1}, \ldots, x_{k}\right\}$, where $\operatorname{deg}_{G}\left(x_{k+1}\right)=\min \left\{\operatorname{deg}_{G}\left(x_{i}\right): 1 \leq i \leq k+1\right\}$ (it is possible by changing the indices of D_{i}, x_{i}, and $\left.z_{i}\right)$. Then $\Delta_{k}(X ; G)=\sum_{x \in X_{k}} \operatorname{deg}_{G}(x)$. Suppose that $k=2$ and $X_{2}=\{u, v\}$. Then $\Delta_{k}(X ; G)=\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v) \geq|G|-1$. By Theorem 2.15, this implies that $\mathcal{S}(G ; k, \alpha) \neq \emptyset$, a contradiction. Hence $X_{2} \neq\{u, v\}$ if $k=2$. This implies that, for $k \geq 2$, we may assume that $x_{k} \notin\{u, v\}$.

Claim 2.4.2 For each $i, j(1 \leq i \leq k+1,1 \leq j \leq l, i \neq j)$, $\operatorname{deg}_{T_{3}}(x) \geq k$ for all $x \in N_{G}\left(x_{i}\right) \cap V\left(D_{j}\right)$.

Proof. Suppose that $\operatorname{deg}_{T_{3}}(x) \leq k-1$ for some $i, j(1 \leq i \leq k+1,1 \leq j \leq l, i \neq j)$ and $x \in N_{G}\left(x_{i}\right) \cap V\left(D_{j}\right)$. If $V\left(D_{i}\right) \subseteq V\left(T_{p}\right)$ and $V\left(D_{j}\right) \subseteq V\left(T_{3-p}\right)$ hold for some $p \in\{1,2\}$, then $T_{1} \cup T_{2}+x_{i} x \in \mathcal{S}(G ; k, \alpha)$, a contradiction (noting that if $x_{i}=v$ and $\operatorname{deg}_{T_{2}}(v) \geq k$, then $\operatorname{te}\left(T_{1} ; k\right)+\operatorname{te}\left(T_{2} ; k\right)=\alpha-1$ holds by Lemma 2.22 (ii)). Hence $V\left(D_{i}\right) \cup V\left(D_{j}\right) \subseteq V\left(T_{1}\right)$. Then $S_{1}=T_{1}+x_{i} x-w_{1} z_{j}$ satisfies the assumption of Claim 2.4.1. Hence te $\left(S_{1} ; k\right)=$ $\operatorname{te}\left(T_{1} ; k\right)$ and $\operatorname{deg}_{T_{1}}\left(w_{1}\right) \geq k+1$. These imply that $\operatorname{deg}_{T_{3}}\left(x_{i}\right) \geq \operatorname{deg}_{T_{1}}\left(x_{i}\right) \geq k$ (since otherwise $\operatorname{te}\left(S_{1} ; k\right)<\operatorname{te}\left(T_{1} ; k\right)$, which contradicts the choice of x_{i}.

By Claim 2.4.2 and the definition of X, X is an independent set of G. Here we define

$$
Y_{j}= \begin{cases}\bigcup_{1 \leq i \leq k, i \neq j}\left(N_{G}\left(x_{i}\right) \cap V\left(D_{j}\right)\right) & (1 \leq j \leq k) \\ \bigcup_{1 \leq i \leq k-1}\left(N_{G}\left(x_{i}\right) \cap V\left(D_{j}\right)\right) & (k+1 \leq j \leq l),\end{cases}
$$

and

$$
Y_{j}^{+}= \begin{cases}\bigcup_{y \in Y_{j}}\left(N_{T_{3}, x_{j}}^{+}(y) \cap V\left(D_{j}\right)\right) & (1 \leq j \leq k) \\ \bigcup_{y \in Y_{j}}\left(N_{T_{3}, z_{j}}^{+}(y) \cap V\left(D_{j}\right)\right) & (k+1 \leq j \leq l)\end{cases}
$$

Claim 2.4.3 (i) For each $j(1 \leq j \leq k), Y_{j}^{+} \cap N_{G}\left(x_{j}\right)=\emptyset$.
(ii) For each $j(k+1 \leq j \leq l), Y_{j}^{+} \cap N_{G}\left(x_{k}\right)=\emptyset$.

Proof. (i) Suppose that there exists $y_{j}^{+} \in Y_{j}^{+} \cap N_{G}\left(x_{j}\right)$ for some $j(1 \leq j \leq k)$. For convenience, let $y_{j}=n_{T_{3}, x_{j}}^{-}\left(y_{j}^{+}\right)$. By the definition of Y_{j}, there exists $i(1 \leq i \leq k, i \neq j)$
such that $y_{j} \in N_{G}\left(x_{i}\right) \cap V\left(D_{j}\right)$. If $V\left(D_{j}\right) \subseteq V\left(T_{p}\right)$ and $V\left(D_{i}\right) \subseteq V\left(T_{3-p}\right)$ hold for some $p \in\{1,2\}$, then $T_{1} \cup T_{2}+x_{i} y_{j}+x_{j} y_{j}^{+}-y_{j} y_{j}^{+} \in \mathcal{S}(G ; k, \alpha)$, a contradiction (noting that if $v \in\left\{x_{j}, x_{i}\right\}$ and $\operatorname{deg}_{T_{2}}(v) \geq k$, then $\operatorname{te}\left(T_{1} ; k\right)+\operatorname{te}\left(T_{2} ; k\right)=\alpha-1$ holds by Lemma 2.22 (ii)). Hence $V\left(D_{j}\right) \cup V\left(D_{i}\right) \subseteq V\left(T_{1}\right)$. Then $S_{1}=T_{1}+x_{i} y_{j}+x_{j} y_{j}^{+}-y_{j} y_{j}^{+}-w_{1} z_{j}$ satisfies the assumption of Claim 2.4.1. Hence $\operatorname{te}\left(S_{1} ; k\right)=\operatorname{te}\left(T_{1} ; k\right)$ and $\operatorname{deg}_{T_{1}}\left(w_{1}\right) \geq k+1$. These imply that $\operatorname{deg}_{T_{3}}\left(x_{i}\right) \geq k$ or $\operatorname{deg}_{T_{3}}\left(x_{j}\right) \geq k$, which contradicts the choice of x_{i} and x_{j}.
(ii) Suppose that there exists $y_{j}^{+} \in Y_{j}^{+} \cap N_{G}\left(x_{k}\right)$ for some $j(k+1 \leq j \leq l)$. Let $y_{j}=n_{T_{3}, z_{j}}^{-}\left(y_{j}^{+}\right)$. By the definition of Y_{j}, there exists $i(1 \leq i \leq k-1)$ such that $y_{j} \in$ $N_{G}\left(x_{i}\right) \cap V\left(D_{j}\right)$. Since $x_{k} \notin\{u, v\}, V\left(D_{k}\right) \subseteq V\left(T_{1}\right)$. If $V\left(D_{i}\right) \subseteq V\left(T_{2}\right)$, then $x_{i}=v$ and $V\left(D_{j}\right) \subseteq V\left(T_{1}\right)$, and so $T_{1} \cup T_{2}+x_{i} y_{j}+x_{k} y_{j}^{+}-y_{j} y_{j}^{+} \in \mathcal{S}(G ; k, \alpha)$, a contradiction. Hence $V\left(D_{i}\right) \subseteq V\left(T_{1}\right)$. Suppose that $V\left(D_{j}\right) \subseteq V\left(T_{1}\right)$. Then $S_{1}=T_{1}+x_{i} y_{j}+x_{k} y_{j}^{+}-y_{j} y_{j}^{+}-w_{1} z_{j}$ satisfies the assumption of Claim 2.4.1. Hence $\operatorname{te}\left(S_{1} ; k\right)=\operatorname{te}\left(T_{1} ; k\right)$ and $\operatorname{deg}_{T_{1}}\left(w_{1}\right) \geq k+1$. These imply that $\operatorname{deg}_{T_{3}}\left(x_{i}\right) \geq k$ or $\operatorname{deg}_{T_{3}}\left(x_{k}\right) \geq k$, a contradiction. Hence $V\left(D_{j}\right) \subseteq V\left(T_{2}\right)$. Then $\operatorname{te}\left(T_{1} \cup T_{2}+x_{i} y_{j}+x_{k} y_{j}^{+}-y_{j} y_{j}^{+} ; k\right)=\operatorname{te}\left(T_{1} ; k\right)+\operatorname{te}\left(T_{2} ; k\right) \leq \alpha$. This implies that $\mathcal{S}(G ; k, \alpha) \neq \emptyset$, a contradiction.

Claim 2.4.4 For each $i, j(1 \leq i \leq k, 1 \leq j \leq l, i \neq j), z_{j} \notin N_{G}\left(x_{i}\right)$ except for the case $x_{i}=v$ and $x_{j}=u$.

Proof. Suppose that $z_{j} \in \quad N_{G}\left(x_{i}\right)$ for some $i, j\left(1 \leq i \leq k, 1 \leq j \leq l, i \neq j\right.$ and $\left.\left(x_{i}, x_{j}\right) \neq(v, u)\right)$. Suppose that $V\left(D_{i}\right) \cup V\left(D_{j}\right) \subseteq$ $V\left(T_{1}\right)$. Then $S_{1}=T_{1}+x_{i} z_{j}-w_{1} z_{j}$ satisfies the assumption of Claim 2.4.1. Hence $\operatorname{te}\left(S_{1} ; k\right)=\operatorname{te}\left(T_{1} ; k\right)$ and $\operatorname{deg}_{T_{1}}\left(w_{1}\right) \geq k+1$. These imply that $\operatorname{deg}_{T_{1}}\left(x_{i}\right) \geq k$, a contradiction. Thus $V\left(D_{i}\right) \subseteq V\left(T_{p}\right)$ and $V\left(D_{j}\right) \subseteq V\left(T_{3-p}\right)$ hold for some $p \in\{1,2\}$. If $p=1$, then $w_{2}=z_{j}$ and $\operatorname{te}\left(T_{1} \cup T_{2}+x_{i} w_{2} ; k\right)<\operatorname{te}\left(T_{3} ; k\right)$ because $\operatorname{deg}_{T_{1}}\left(x_{i}\right) \leq k-1$ and $\operatorname{deg}_{T_{1}}\left(w_{1}\right) \geq k$, which contradicts (T1). Hence $p=2$. Note that $x_{i}=v$ and $x_{j} \neq u$. Suppose that $\operatorname{deg}_{T_{2}}(v) \leq k-1$. Suppose further that either $v \neq w_{2}$ or $\operatorname{deg}_{T_{2}}(v) \leq k-2$. By (T1), $\operatorname{te}\left(T_{3} ; k\right) \leq \operatorname{te}\left(T_{1} \cup T_{2}+x_{i} z_{j} ; k\right)$. This implies that $\operatorname{deg}_{T_{2}}\left(w_{2}\right) \leq k-1$ because $\operatorname{deg}_{T_{1}}\left(w_{1}\right) \geq k$ and $\operatorname{deg}_{T_{2}}(v) \leq k-1$. Hence, we have $\operatorname{te}\left(T_{3}+x_{i} z_{j}-w_{1} z_{j} ; k\right) \leq \operatorname{te}\left(T_{3} ; k\right)-1 \leq(\alpha+1)-1=\alpha$, a contradiction. Hence $v=w_{2}$ and $\operatorname{deg}_{T_{2}}(v)=k-1$. Let $T_{3}^{\prime}=T_{1} \cup T_{2}+v z_{j}$ and let $w_{1}^{\prime}=z_{j}$ and $w_{2}^{\prime}=w_{2}$. Then $\operatorname{te}\left(T_{3} ; k\right)=\operatorname{te}\left(T_{3}^{\prime} ; k\right)$ and so the choice of $T_{1}, T_{2}, w_{1}^{\prime}$, and w_{2}^{\prime} satisfies the condition (T1). Since $w_{2}^{\prime}=v$, Lemma 2.25 holds for $i=1$ (we regard w_{1}^{\prime} and w_{2}^{\prime} as w_{1} and w_{2} in Lemma 2.25 respectively). Then $\operatorname{dist}_{T_{1}}\left(w_{1}, u\right)<\operatorname{dist}_{T_{1}}\left(w_{1}^{\prime}, u\right)$, which contradicts (T2). Hence $d_{T_{2}}(v) \geq k$. Let $w_{1}^{\prime \prime}=z_{j}, w_{2}^{\prime \prime}=v$ and $T_{3}^{\prime \prime}=T_{1} \cup T_{2}+w_{1}^{\prime \prime} w_{2}^{\prime \prime}$. Then $\operatorname{te}\left(T_{3}^{\prime \prime} ; k\right) \leq \operatorname{te}\left(T_{3} ; k\right)$. By the condition (T1), this implies that $\operatorname{te}\left(T_{3}^{\prime \prime} ; k\right)=\operatorname{te}\left(T_{3} ; k\right)$. Since $\operatorname{deg}_{T_{2}}(v) \geq k$, Lemma 2.25 holds for $i=1$ (we regard $w_{1}^{\prime \prime}$ and $w_{2}^{\prime \prime}$ as w_{1} and w_{2} in Lemma 2.25 respectively). Since $x_{j} \neq u$, we have $\operatorname{dist}_{T_{1}}\left(w_{1}^{\prime \prime}, u\right)>\operatorname{dist}_{T_{1}}\left(w_{1}, u\right)$, which contradicts (T2).

If $\{u, v\} \subseteq X_{k}$ and $z_{j} \in N_{G}(v)$ hold for some $j(1 \leq j \leq k)$, then we say that $\{u, v\}$ is bad. Recall that $X_{2} \neq\{u, v\}$. This implies that if $\{u, v\}$ is bad, then $k \geq 3$ holds.

Recall that $Y_{j}^{+} \subseteq V\left(D_{j}\right)$ for $1 \leq j \leq l$. By Claims 2.4.2 and 2.4.4, we obtain the following claim.

Claim 2.4.5 (i) For each $j(1 \leq j \leq k)$,

$$
\left|Y_{j}^{+}\right| \geq \begin{cases}(k-1)\left|Y_{j}\right|-1 & \left(\{u, v\} \text { is bad, and } x_{j}=u\right) \\ (k-1)\left|Y_{j}\right| & (\text { otherwise }) .\end{cases}
$$

(ii) For each $j(k+1 \leq j \leq l),\left|Y_{j}^{+}\right| \geq(k-1)\left|Y_{j}\right|$.

For each $j(1 \leq j \leq k)$, by Claims 2.4.3 (i) and 2.4.5 (i),

$$
\begin{align*}
\left|N_{G}\left(x_{j}\right) \cap V\left(D_{j}\right)\right| & \leq\left|D_{j}\right|-\left|\left\{x_{j}\right\}\right|-\left|Y_{j}^{+}\right| \\
& \leq \begin{cases}\left|D_{j}\right|-(k-1)\left|Y_{j}\right| & \left(\{u, v\} \text { is bad, and } x_{j}=u\right) \\
\left|D_{j}\right|-1-(k-1)\left|Y_{j}\right| & \text { (otherwise). }\end{cases} \tag{2.5}
\end{align*}
$$

For each $j(1 \leq j \leq k)$, if $\{u, v\}$ is bad, and $x_{j}=u$, then by Claim 2.4.4 and $k \geq 3$,

$$
\begin{align*}
\sum_{1 \leq i \leq k, i \neq j}\left|N_{G}\left(x_{i}\right) \cap V\left(D_{j}\right)\right| & =\sum_{1 \leq i \leq k, i \neq j}\left|N_{G}\left(x_{i}\right) \cap\left(V\left(D_{j}\right) \backslash\left\{z_{j}\right\}\right)\right|+\sum_{1 \leq i \leq k, i \neq j}\left|N_{G}\left(x_{i}\right) \cap\left\{z_{j}\right\}\right| \\
& \leq(k-1)\left|Y_{j} \backslash\left\{z_{j}\right\}\right|+1 \\
& \leq(k-1)\left|Y_{j}\right|-1 . \tag{2.6}
\end{align*}
$$

For each $j(1 \leq j \leq k)$, if $\{u, v\}$ is not bad, or $x_{j} \neq u$, then by Claim 2.4.4,

$$
\begin{equation*}
\sum_{1 \leq i \leq k, i \neq j}\left|N_{G}\left(x_{i}\right) \cap V\left(D_{j}\right)\right| \leq(k-1)\left|Y_{j}\right| . \tag{2.7}
\end{equation*}
$$

Hence, it follows from (2.5), (2.6) and (2.7) that for each $j(1 \leq j \leq k)$,

$$
\begin{equation*}
\sum_{1 \leq i \leq k}\left|N_{G}\left(x_{i}\right) \cap V\left(D_{j}\right)\right| \leq\left|D_{j}\right|-1 \tag{2.8}
\end{equation*}
$$

On the other hand, for each $j(k+1 \leq j \leq l)$, by Claims 2.4.3 (ii), 2.4.4 and 2.4.5 (ii),

$$
\begin{align*}
\left|N_{G}\left(x_{k}\right) \cap V\left(D_{j}\right)\right| & \leq\left|D_{j}\right|-\left|\left\{z_{j}\right\}\right|-\left|Y_{j}^{+}\right| \\
& \leq\left|D_{j}\right|-1-(k-1)\left|Y_{j}\right|, \tag{2.9}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{1 \leq i \leq k-1}\left|N_{G}\left(x_{i}\right) \cap V\left(D_{j}\right)\right| \leq(k-1)\left|Y_{j}\right| . \tag{2.10}
\end{equation*}
$$

Hence it follows from (2.9) and (2.10) that for each $j(k+1 \leq j \leq l)$,

$$
\begin{equation*}
\sum_{1 \leq i \leq k}\left|N_{G}\left(x_{i}\right) \cap V\left(D_{j}\right)\right| \leq\left|D_{j}\right|-1 \tag{2.11}
\end{equation*}
$$

Consequently, it follows from (2.8), (2.11) and $l \geq k+1$ that

$$
\begin{aligned}
\Delta_{k}(X ; G) & =\sum_{x \in X_{k}} \operatorname{deg}_{G}(x) \\
& \leq \sum_{1 \leq i \leq k}\left(\left|N_{G}\left(x_{i}\right) \cap\left\{w_{1}\right\}\right|+\sum_{1 \leq j \leq l}\left|N_{G}\left(x_{i}\right) \cap V\left(D_{j}\right)\right|\right) \\
& \leq k+\left(\left|T_{3}\right|-\left|\left\{w_{1}\right\}\right|-l\right) \\
& \leq|G|-2,
\end{aligned}
$$

a contradiction. This completes the proof of Theorem 2.16.

2.4.3 Proof of Theorem 2.18

Let G be a graph which satisfies the assumption of Theorem 2.18. Suppose that $\mathcal{S}(G+$ $u v ; k, \alpha) \neq \emptyset$ but $\mathcal{S}(G ; k, \alpha)=\emptyset$. We define \mathcal{T} as in Section 2. Choose $\left(T_{1}, T_{2}\right) \in \mathcal{T}$, $w_{1} \in V\left(T_{1}\right)$ and $w_{2} \in V\left(T_{2}\right)$ so that (where we let $T_{3}=T_{1} \cup T_{2}+w_{1} w_{2}$)
(T1) te $\left(T_{3} ; k\right)$ is as small as possible, and
(T2) $\mathrm{te}\left(T_{1} ; k\right)+\mathrm{te}\left(T_{2} ; k\right)$ is as small as possible, subject to (T1).
Claim 2.4.6 For each $i \in\{1,2\}$, there exists no tree S_{i} such that $V\left(S_{i}\right)=V\left(T_{i}\right)$ and $t e\left(S_{i} ; k\right)<t e\left(T_{i} ; k\right)$.

Proof. Suppose that there exists a tree S_{i} such that $V\left(S_{i}\right)=V\left(T_{i}\right)$ and $\operatorname{te}\left(S_{i} ; k\right)<$ $\operatorname{te}\left(T_{i} ; k\right)$ for some $i \in\{1,2\}$. Then $\operatorname{te}\left(S_{i} \cup T_{3-i}+u v ; k\right) \leq \operatorname{te}\left(T_{1} \cup T_{2}+u v ; k\right) \leq \alpha$, and so $\left(S_{i}, T_{3-i}\right) \in \mathcal{T}$. Moreover, $\operatorname{te}\left(S_{i} \cup T_{3-i}+w_{1} w_{2} ; k\right) \leq \operatorname{te}\left(T_{3} ; k\right)$ and $\operatorname{te}\left(S_{i} ; k\right)+\operatorname{te}\left(T_{3-i} ; k\right)<$ $\mathrm{te}\left(T_{1} ; k\right)+\mathrm{te}\left(T_{2} ; k\right)$, which contradicts (T1) or (T2).

Let $V\left(T_{3}\right)=\left\{y_{1}, y_{2}, \ldots, y_{|G|}\right\}$. Moreover, for each $i(1 \leq i \leq|G|)$, let $d_{i}=$ $\operatorname{dist}_{T_{3}}\left(w_{1} w_{2}, y_{i}\right)$, which means the distance between the edge $w_{1} w_{2}$ and a vertex y_{i} in T_{3}, i.e.,

$$
d_{i}=\min \left\{\operatorname{dist}_{T_{3}}\left(w_{1}, y_{i}\right), \operatorname{dist}_{T_{3}}\left(w_{2}, y_{i}\right)\right\} .
$$

Without loss of generality, we may assume that $d_{1} \leq \cdots \leq d_{|G|}$. We define a sequence $W\left(T_{3}\right)$ as follows:

$$
W\left(T_{3}\right)=\left(d_{T_{3}}\left(y_{1}\right), d_{T_{3}}\left(y_{2}\right), \ldots, d_{T_{3}}\left(y_{|G|}\right)\right) .
$$

Furthermore, we choose $\left(T_{1}, T_{2}\right) \in \mathcal{T}, w_{1} \in V\left(T_{1}\right)$ and $w_{2} \in V\left(T_{2}\right)$ so that
(T3) $W\left(T_{3}\right)$ is as large as possible in lexicographic order, subject to (T1) and (T2).
By the symmetry of T_{1} and T_{2}, we may assume that
Lemma 2.25 holds for $i=1$.
Here we take the outdirected tree with respect to $\left(T_{3}, w_{1}\right)$. Note that $\alpha+1 \leq$ $\operatorname{te}\left(T_{3} ; k\right) \leq \alpha+2$. For each $y \in V_{\geq k+1}\left(T_{3}\right) \backslash\left\{w_{1}\right\}$, we choose $C(y) \subseteq N_{T_{3}, w_{1}}^{+}(y)$ such that
(I) if $y \neq w_{2}$ or $\operatorname{te}\left(T_{3} ; k\right)=\alpha+1$, then $|C(y)|=\operatorname{deg}_{T_{3}}(y)-k$,
(II) if $y=w_{2}$ and $\operatorname{te}\left(T_{3} ; k\right)=\alpha+2$, then $|C(y)|=\operatorname{deg}_{T_{3}}(y)-k-1$, and
(III) there exist two paths from w_{1} to u and v in $T_{3}-\bigcup_{y \in V_{\geq k+1}\left(T_{3}\right) \backslash\left\{w_{1}\right\}}\{x y: x \in C(y)\}$.

Note that we can choose such $C(y)$ for each $y \in V_{\geq k+1}\left(T_{3}\right) \backslash\left\{w_{1}\right\}$ because $\mid V\left(P_{T_{3}}\left(w_{1}, u\right)\right) \cap$ $N_{T_{3}, w_{1}}^{+}(y)\left|\leq 1,\left|V\left(P_{T_{3}}\left(w_{1}, v\right)\right) \cap N_{T_{3}, w_{1}}^{+}(y)\right| \leq 1\right.$ and $| N_{T_{3}, w_{1}}^{+}(y) \mid-1 \geq \operatorname{deg}_{T_{3}}(y)-2 \geq$ $\operatorname{deg}_{T_{3}}(y)-k$ hold. If te $\left(T_{3} ; k\right)=\alpha+2$, then $w_{2} \in V_{\geq k+1}\left(T_{3}\right)$ and $\left|C\left(w_{2}\right)\right|=\operatorname{deg}_{T_{3}}\left(w_{2}\right)-k-1$. Hence in any case on $\alpha+1 \leq \operatorname{te}\left(T_{3} ; k\right) \leq \alpha+2$, there exist $k+\alpha+1$ components in $T_{3}-w_{1}-\bigcup_{y \in V_{\geq k+1}\left(T_{3}\right) \backslash\left\{w_{1}\right\}}\{x y: x \in C(y)\}$. Let $D_{1}, \ldots, D_{k+\alpha+1}$ be the components of $T_{3}-w_{1}-\bigcup_{y \in V_{\geq k+1}\left(T_{3}\right) \backslash\left\{w_{1}\right\}}\{x y: x \in C(y)\}$. Note that $\operatorname{deg}_{D_{j}}(x) \leq k$ for each j ($1 \leq$ $j \leq k+\alpha+1)$ and each $x \in V\left(D_{j}\right)$. Without loss of generality, we may assume that $u \in V\left(D_{1}\right)$. Let $x_{1}=u$. For each $i(2 \leq i \leq k+\alpha+1)$, take $x_{i} \in V\left(D_{i}\right)$ such that $\operatorname{deg}_{T_{3}}\left(x_{i}\right) \leq k-1$ (since each D_{i} has a leaf of T_{3}, we can take such a vertex x_{i}) and if te $\left(T_{3} ; k\right)=\alpha+2$, then we do not choose v as one of $x_{2}, \ldots, x_{k+\alpha+1}$ (we can choose such $\left\{x_{2}, \ldots, x_{k+\alpha+1}\right\}$ not containing v because if $\operatorname{te}\left(T_{3} ; k\right)=\alpha+2$, then the component of $T_{3}-w_{1}-\bigcup_{y \in V_{\geq k+1}\left(T_{3}\right) \backslash\left\{w_{1}\right\}}\{x y: x \in C(y)\}$ containing w_{2} has at least $k \geq 2$ leaves of $\left.T_{3}\right)$. For each $j(1 \leq j \leq k+\alpha+1)$, take $z_{j} \in V\left(D_{j}\right)$ so that $\left|P_{T_{3}}\left(w_{1}, z_{j}\right)\right|$ is as small as possible. Note that $n_{T_{3}, w_{1}}^{-}\left(z_{j}\right) \in V_{\geq k+1}\left(T_{3}\right)$ for each $j(1 \leq j \leq k+\alpha+1)$. Among all the vertices in $\left\{x_{1}, x_{2}, \ldots, x_{k+\alpha+1}\right\}$ and for each $i(1 \leq i \leq k+\alpha+1)$, we change the indices of D_{i}, x_{i}, z_{i} so that $\sum_{1 \leq i \leq k} \operatorname{deg}_{G}\left(x_{i}\right)$ is as large as possible. Let $X=\left\{x_{1}, \ldots, x_{k+\alpha+1}\right\}$ and $X_{k}=\left\{x_{1}, \ldots, x_{k}\right\}$.

Claim 2.4.7 Suppose that $\operatorname{deg}_{T_{2}}\left(w_{2}\right)=k$. Then the following statements hold:
(i) If $C\left(w_{2}\right) \neq \emptyset$, then te $\left(T_{3} ; k\right)=\alpha+1$; and
(ii) There exists no tree S_{2} such that $V\left(S_{2}\right)=V\left(T_{2}\right)$, te $\left(S_{2} ; k\right) \leq t e\left(T_{2} ; k\right), \operatorname{deg}_{S_{2}}\left(w_{2}\right)=$ $k-1$, and $\operatorname{deg}_{S_{2}}(x) \leq \operatorname{deg}_{T_{2}}(x)$ for each $x \in V\left(T_{2}\right) \backslash X$.

Proof. (i) Note that $\operatorname{deg}_{T_{3}}\left(w_{2}\right)=k+1$. Since $C\left(w_{2}\right) \neq \emptyset$, it follows from the definitions (I) and (II) of $C\left(w_{2}\right)$ that te $\left(T_{3} ; k\right)=\alpha+1$.
(ii) Suppose that there exists a tree S_{2} such that $V\left(S_{2}\right)=V\left(T_{2}\right)$, te $\left(S_{2} ; k\right) \leq \operatorname{te}\left(T_{2} ; k\right)$, $\operatorname{deg}_{S_{2}}\left(w_{2}\right)=k-1$, and $\operatorname{deg}_{S_{2}}(x) \leq d_{T_{2}}(x)$ for each $x \in V\left(T_{2}\right) \backslash X$. Since $w_{2} \in V_{\geq k+1}\left(T_{3}\right)$ by
the assumption of this claim, $\operatorname{te}\left(T_{1} \cup S_{2}+w_{1} w_{2} ; k\right) \leq \operatorname{te}\left(T_{3} ; k\right)-1$. If $\operatorname{te}\left(T_{3} ; k\right)=\alpha+1$, then $\operatorname{te}\left(T_{1} \cup S_{2}+w_{1} w_{2} ; k\right) \leq \alpha$, which contradicts $\mathcal{S}(G ; k, \alpha)=\emptyset$. Thus te $\left(T_{3} ; k\right)=\alpha+2$. Then $v \notin X$ by the choice of $x_{1}, \ldots, x_{k+\alpha+1}$. Since $\operatorname{deg}_{S_{2}}(x) \leq \operatorname{deg}_{T_{2}}(x)$ for each $x \in V\left(T_{2}\right) \backslash X$, $\operatorname{deg}_{S_{2}}(v) \leq \operatorname{deg}_{T_{2}}(v)$, and so $\left(T_{1}, S_{2}\right) \in \mathcal{T}$. Therefore $\operatorname{te}\left(T_{1} \cup S_{2}+w_{1} w_{2} ; k\right)<\operatorname{te}\left(T_{3} ; k\right)$, which contradicts (T1).

Claim 2.4.8 For each $i, j(1 \leq i, j \leq k+\alpha+1, i \neq j), \operatorname{deg}_{T_{3}}(x) \geq k$ for all $x \in$ $N_{G}\left(x_{i}\right) \cap V\left(D_{j}\right)$.

Proof. Suppose that $\operatorname{deg}_{T_{3}}(x) \leq k-1$ for some $i, j(1 \leq i, j \leq k+\alpha+1, i \neq j)$ and $x \in N_{G}\left(x_{i}\right) \cap V\left(D_{j}\right)$. If $V\left(D_{i}\right)$ and $V\left(D_{j}\right)$ are contained in different components T_{1} and T_{2}, then $\operatorname{te}\left(T_{1} \cup T_{2}+x_{i} x ; k\right)<\operatorname{te}\left(T_{3} ; k\right)$, which contradicts (T1). Thus $V\left(D_{i}\right) \cup V\left(D_{j}\right) \subseteq V\left(T_{s}\right)$ holds for some $s \in\{1,2\}$. Then the unique cycle of $T_{s}+x_{i} x$ contains an edge e that is either $z_{i} n_{T_{3}, w_{1}}^{-}\left(z_{i}\right)$ or $z_{j} n_{T_{3}, w_{1}}^{-}\left(z_{j}\right)$. Let $T_{s}^{\prime}=T_{s}+x_{i} x-e$. If either $d_{T_{s}}\left(w_{s}\right) \geq k+1$ or w_{s} is an end-vertex of e, then $V\left(T_{s}^{\prime}\right)=V\left(T_{s}\right)$ and $\operatorname{te}\left(T_{s}^{\prime} ; k\right)<\operatorname{te}\left(T_{s} ; k\right)$, which contradicts Claim 2.4.6. Thus $\operatorname{deg}_{T_{s}}\left(w_{s}\right) \leq k$ and w_{s} is an end-vertex of e. Since w_{s} is an end-vertex of e, we have $C\left(w_{s}\right) \neq \emptyset$, which implies that $\operatorname{deg}_{T_{s}}\left(w_{s}\right)=k$. Suppose that $s=2$. Since $\operatorname{deg}_{T_{2}}\left(w_{2}\right)=k$ and $C\left(w_{2}\right) \neq \emptyset$, it follows from Claim 2.4.7 (i) that te $\left(T_{3} ; k\right)=\alpha+1$. Note that $\operatorname{deg}_{T_{2}^{\prime}}\left(w_{2}\right)=k-1$ and $\operatorname{te}\left(T_{2}^{\prime} ; k\right)=\operatorname{te}\left(T_{2} ; k\right)$. These imply that te $\left(T_{1} \cup T_{2}^{\prime}+w_{1} w_{2} ; k\right)=$ α, which contradicts $\mathcal{S}(G ; k, \alpha)=\emptyset$. Hence $s=1, \operatorname{deg}_{T_{1}}\left(w_{1}\right)=k$ and $\operatorname{deg}_{T_{1}^{\prime}}\left(w_{1}\right)=k-1$. Then $V\left(T_{1}^{\prime}\right)=V\left(T_{1}\right)$, te $\left(T_{1}^{\prime} ; k\right)=\operatorname{te}\left(T_{1} ; k\right)$ and $\operatorname{deg}_{T_{1}^{\prime}}\left(w_{1}\right)=k-1$, which contradicts (2.12).

By Claim 2.4.8 and the definitions of X and X_{k}, we obtain the following.
Claim 2.4.9 The set X is an independent set of G, and $\Delta_{k}(X ; G)=\sum_{x \in X_{k}} \operatorname{deg}_{G}(x)$.
Here we define

$$
Y_{j}= \begin{cases}\bigcup_{1 \leq i \leq k, i \neq j}\left(N_{G}\left(x_{i}\right) \cap V\left(D_{j}\right)\right) & (1 \leq j \leq k) \\ \bigcup_{1 \leq i \leq k-1}\left(N_{G}\left(x_{i}\right) \cap V\left(D_{j}\right)\right) & (k+1 \leq j \leq k+\alpha+1),\end{cases}
$$

and

$$
Y_{j}^{+}= \begin{cases}\bigcup_{x \in Y_{j}}\left(N_{T_{3}, x_{j}}^{+}(x) \cap V\left(D_{j}\right)\right) & (1 \leq j \leq k) \\ \bigcup_{x \in Y_{j}}\left(N_{T_{3}, x_{k}}^{+}(x) \cap V\left(D_{j}\right)\right) & (k+1 \leq j \leq k+\alpha+1) .\end{cases}
$$

Claim 2.4.10 (i) For each $j(1 \leq j \leq k), Y_{j}^{+} \cap N_{G}\left(x_{j}\right)=\emptyset$.
(ii) For each $j(k+1 \leq j \leq k+\alpha+1), Y_{j}^{+} \cap N_{G}\left(x_{k}\right)=\emptyset$.

Proof. (i) Suppose that there exists $y_{j}^{+} \in Y_{j}^{+} \cap N_{G}\left(x_{j}\right)$ for some $j(1 \leq j \leq k)$. For convenience, let $y_{j}=n_{T_{3}, x_{j}}^{-}\left(y_{j}^{+}\right)$. By the definition of Y_{j}, y_{j} is adjacent to some vertex x_{m} with $1 \leq m \leq k$ and $m \neq j$ in G. If y_{j} and x_{m} are contained in different components T_{1} and T_{2}, then $T_{1} \cup T_{2}+x_{j} y_{j}^{+}+x_{m} y_{j}-y_{j} y_{j}^{+} \in \mathcal{S}(G ; k, \alpha)$, a contradiction. Thus $\left\{y_{j}, x_{m}\right\} \subseteq V\left(T_{s}\right)$ holds for some $s \in\{1,2\}$. Then the unique cycle of $T_{s}+x_{j} y_{j}^{+}+x_{m} y_{j}-y_{j} y_{j}^{+}$contains an edge e that is either $z_{j} n_{T_{3}, w_{1}}^{-}\left(z_{j}\right)$ or $z_{m} n_{T_{3}, w_{1}}^{-}\left(z_{m}\right)$. Let $T_{s}^{\prime}=T_{s}+x_{j} y_{j}^{+}+x_{m} y_{j}-y_{j} y_{j}^{+}-e$. If either $\operatorname{deg}_{T_{s}}\left(w_{s}\right) \geq k+1$ or w_{s} is not an end-vertex of e in T_{s}, then $V\left(T_{s}^{\prime}\right)=V\left(T_{s}\right)$ and $\operatorname{te}\left(T_{s}^{\prime} ; k\right)<\operatorname{te}\left(T_{s} ; k\right)$, which contradicts Claim 2.4.6. Thus $\operatorname{deg}_{T_{s}}\left(w_{s}\right) \leq k$ and w_{s} is an end-vertex of e. Then $w_{s} \in V_{\geq k+1}\left(T_{3}\right)$, which implies that $\operatorname{deg}_{T_{s}}\left(w_{s}\right)=k$ and $\operatorname{deg}_{T_{s}^{\prime}}\left(w_{s}\right)=k-1$. Note that $V\left(T_{s}^{\prime}\right)=V\left(T_{s}\right), \operatorname{te}\left(T_{s}^{\prime} ; k\right)=\left(T_{s} ; k\right)$, and $\operatorname{deg}_{T_{s}^{\prime}}(x) \leq \operatorname{deg}_{T_{s}}(x)$ for each $x \in V\left(T_{s}\right) \backslash X$. By Claim 2.4.7 (ii), we can see that $s=1$. But, then we obtain a contradiction to (2.12).
(ii) Suppose that there exists $y_{j}^{+} \in Y_{j}^{+} \cap N_{G}\left(x_{k}\right)$ for some $j(k+1 \leq j \leq k+\alpha+1)$. Let $y_{j}=n_{T_{3}, x_{j}}^{-}\left(y_{j}^{+}\right)$. By the definition of Y_{j}, y_{j} is adjacent to some vertex $x_{m^{\prime}}$ with $1 \leq m^{\prime} \leq k-1$ in G. Suppose that y_{j} and $x_{m^{\prime}}$ are contained in different components T_{1} and T_{2}. Then $T_{1} \cup T_{2}+x_{k} y_{j}^{+}+x_{m^{\prime}} y_{j}-y_{j} y_{j}^{+} \in \mathcal{S}(G ; k, \alpha)$, which contracits $\mathcal{S}(G ; k, \alpha)=\emptyset$. Hence $\left\{y_{j}, x_{m^{\prime}}\right\} \subseteq V\left(T_{s}\right)$ holds for some $s \in\{1,2\}$. Then the unique cycle of $T_{3}+x_{k} y_{j}^{+}+$ $x_{m^{\prime}} y_{j}-y_{j} y_{j}^{+}$contains an edge e that is $z_{\ell} n_{T_{3}, w_{1}}^{-}\left(z_{\ell}\right)$ for some $\ell(1 \leq \ell \leq k+\alpha+1)$. If $\operatorname{te}\left(T_{3} ; k\right)=\alpha+1$, then $\operatorname{te}\left(T_{3}+x_{k} y_{j}^{+}+x_{m^{\prime}} y_{j}-y_{j} y_{j}^{+}-e ; k\right)=\alpha$ because $n_{T_{3}, w_{1}}^{-}\left(z_{\ell}\right) \in$ $V_{k+1}\left(T_{3}\right)$ and the degree of $n_{T_{3}, w_{1}}^{-}\left(z_{\ell}\right)$ in $T_{3}+x_{k} y_{j}^{+}+x_{m^{\prime}} y_{j}-y_{j} y_{j}^{+}-e$ is strictly less than $\operatorname{deg}_{T_{3}}\left(n_{T_{3}, w_{1}}^{-}\left(z_{\ell}\right)\right)$. This contradicts $\mathcal{S}(G ; k, \alpha)=\emptyset$. Hence te $\left(T_{3} ; k\right)=\alpha+2$. Since $\operatorname{te}\left(T_{1} ; k\right)+\operatorname{te}\left(T_{2} ; k\right) \leq \alpha$, we have $w_{1}, w_{2} \in V_{\geq k+1}\left(T_{3}\right)$. Suppose that $x_{k} \notin V\left(T_{s}\right)$, and let $T_{3}^{\prime}=T_{1} \cup T_{2}+x_{k} y_{j}^{+}$. Then $\operatorname{te}\left(T_{3}^{\prime} ; k\right)<\operatorname{te}\left(T_{3} ; k\right)$ because $\operatorname{deg}_{T_{3}}\left(x_{k}\right) \leq k-1$, which contradicts (T1). Thus $\left\{y_{j}, x_{m^{\prime}}, x_{k}\right\} \subseteq V\left(T_{s}\right)$. Let $T_{s}^{\prime}=T_{s}+x_{k} y_{j}^{+}+x_{m^{\prime}} y_{j}-y_{j} y_{j}^{+}-e$. If either $\operatorname{deg}_{T_{s}}\left(w_{s}\right) \geq k+1$ or w_{s} is not an end-vertex of e, then $V\left(T_{s}^{\prime}\right)=V\left(T_{s}\right)$ and $\operatorname{te}\left(T_{s}^{\prime} ; k\right)<\operatorname{te}\left(T_{s} ; k\right)$, which contradicts Claim 2.4.6. Thus $\operatorname{deg}_{T_{s}}\left(w_{s}\right) \leq k$ and w_{s} is an end-vertex of e. Then $w_{s} \in V_{\geq k+1}\left(T_{3}\right)$, which implies that $\operatorname{deg}_{T_{s}}\left(w_{s}\right)=k$ and $\operatorname{deg}_{T_{s}^{\prime}}\left(w_{s}\right)=$ $k-1$. Note that $V\left(T_{s}^{\prime}\right)=V\left(T_{s}\right)$, te $\left(T_{s}^{\prime} ; k\right)=\left(T_{s} ; k\right)$, and $\operatorname{deg}_{T_{s}^{\prime}}(x) \leq \operatorname{deg}_{T_{s}}(x)$ for each $x \in V\left(T_{s}\right) \backslash X$. By Claim 2.4.7 (ii), we can see that $s=1$. But, then we obtain a contradiction to (2.12).

Claim 2.4.11 For each $i, j(1 \leq i \leq k, 1 \leq j \leq k+\alpha+1, i \neq j)$, $z_{j} \notin N_{G}\left(x_{i}\right)$ if $n_{T_{3}, w_{1}}^{-}\left(z_{i}\right) \neq z_{j}$.

Proof. Suppose that $z_{j} \in N_{G}\left(x_{i}\right)$ and $n_{T_{3}, w_{1}}^{-}\left(z_{i}\right) \neq z_{j}$ for some $i, j(1 \leq i \leq k, 1 \leq j \leq$ $k+\alpha+1, i \neq j)$. Then $d_{T_{3}}\left(z_{j}\right) \geq k$ by Claim 2.4.8.

First suppose that $\left\{x_{i}, z_{j}\right\} \subseteq V\left(T_{s}\right)$ holds for some $s \in\{1,2\}$. Suppose further that $z_{j} \notin V\left(P_{T_{3}}\left(w_{1}, x_{i}\right)\right)$. Let $T_{s}^{\prime}=T_{s}+x_{i} z_{j}-z_{j} n_{T_{3}, w_{1}}^{-}\left(z_{j}\right)$. If either $\operatorname{deg}_{T_{s}}\left(w_{s}\right) \geq k+1$ or $n_{T_{3}, w_{1}}^{-}\left(z_{j}\right) \neq w_{s}$, then $V\left(T_{s}^{\prime}\right)=V\left(T_{s}\right)$ and te $\left(T_{s}^{\prime} ; k\right)<\operatorname{te}\left(T_{s} ; k\right)$, which contradicts Claim 2.4.6. Thus $\operatorname{deg}_{T_{s}}\left(w_{s}\right) \leq k$ and $n_{T_{3}, w_{1}}^{-}\left(z_{j}\right)=w_{s}$. This implies that $\operatorname{deg}_{T_{s}}\left(w_{s}\right)=k$ and $\operatorname{deg}_{T_{s}^{\prime}}\left(w_{s}\right)=k-1$. Note that $V\left(T_{s}^{\prime}\right)=V\left(T_{s}\right)$, te $\left(T_{s}^{\prime} ; k\right) \leq \operatorname{te}\left(T_{s} ; k\right)$, and $\operatorname{deg}_{T_{s}^{\prime}}(x) \leq$
$\operatorname{deg}_{T_{s}}(x)$ for each $x \in V\left(T_{s}\right) \backslash X$. If $s=1$, then we obtain a contradiction to (2.12); if $s=2$, then we obtain a contradiction to Claim 2.4.7 (ii). Thus $z_{j} \in V\left(P_{T_{3}}\left(w_{1}, x_{i}\right)\right)$. Then $x_{i} \neq u$ and $x_{i} \neq v$ by the definition (III) of $C(*)$. The unique cycle of $T_{s}+x_{i} z_{j}$ contains an edge $e=z_{i} n_{T_{3}, w_{1}}^{-}\left(z_{i}\right)$. Since $n_{T_{3}, w_{1}}^{-}\left(z_{i}\right) \neq z_{j}, z_{j}$ is not an end-vertex of e. Let $T_{s}^{\prime \prime}=T_{s}+x_{i} z_{j}-e$ (see Fig. 2.6). Then $V\left(T_{s}^{\prime \prime}\right)=V\left(T_{s}\right)$ and $\operatorname{te}\left(T_{s}^{\prime \prime} ; k\right) \leq \operatorname{te}\left(T_{s} ; k\right)$. Note that $z_{j} \in V_{\geq k}\left(T_{s}\right)$ by Claim 2.4.8. Since $x_{i} \neq u$ and $x_{i} \neq v$, this implies that $\left(T_{s}^{\prime \prime}, T_{3-s}\right) \in \mathcal{T}$ even if $z_{j} \in\{u, v\}$. Let $T_{3}^{\prime}=T_{s}^{\prime \prime} \cup T_{3-s}+w_{1} w_{2}$. Note that $\operatorname{dist}_{T_{3}}\left(w_{1} w_{2}, y\right)=\operatorname{dist}_{T_{3}^{\prime}}\left(w_{1} w_{2}, y\right)$ holds for any $y \in V(G)$ with $\operatorname{dist}_{T_{3}}\left(w_{1} w_{2}, y\right) \leq \operatorname{dist}_{T_{3}}\left(w_{1} w_{2}, z_{j}\right)$ or $\operatorname{dist}_{T_{3}^{\prime}}\left(w_{1} w_{2}, y\right) \leq \operatorname{dist}_{T_{3}^{\prime}}\left(w_{1} w_{2}, z_{j}\right)$. Note that $d_{T_{3}^{\prime}}\left(z_{j}\right)>d_{T_{3}}\left(z_{j}\right)$ because z_{j} is not an end-vertex of e. These contradicts (T3).

Next suppose that x_{i} and z_{j} are contained in different components T_{1} and T_{2}. Since $\operatorname{te}\left(T_{3}+x_{i} z_{j}-z_{j} n_{T_{3}, w_{1}}^{-}\left(z_{j}\right) ; k\right)<\operatorname{te}\left(T_{3} ; k\right)$ and $\mathcal{S}(G ; k, \alpha)=\emptyset$, we have te $\left(T_{3} ; k\right)=\alpha+2$, and hence $w_{1}, w_{2} \in V_{\geq k+1}\left(T_{3}\right)$. Let $S_{3}=T_{3}+x_{i} z_{j}-w_{1} w_{2}$. Let S_{1} and S_{2} be the components of $S_{3}-x_{i} z_{j}$. Then $\left(S_{1}, S_{2}\right) \in \mathcal{T}$ and $\operatorname{te}\left(S_{3} ; k\right)<\operatorname{te}\left(T_{3} ; k\right)$. This contradicts (T1).

Figure 2.6: Claim 2.4.11 (possibly $\left.n_{T_{3}, w_{1}}^{-}\left(z_{i}\right) \in V\left(D_{j}\right)\right)$

For each $j(k+1 \leq j \leq k+\alpha+1)$, take $z_{j}^{\prime} \in V\left(D_{j}\right)$ so that $\left|P_{T_{3}}\left(x_{k}, z_{j}^{\prime}\right)\right|$ is as small as possible.

Claim 2.4.12 For each $j(k+1 \leq j \leq k+\alpha+1)$, $z_{j}^{\prime} \notin N_{G}\left(x_{k}\right)$ if $n_{T_{3}, w_{1}}^{-}\left(z_{k}\right) \neq z_{j}^{\prime}$.
Proof. Suppose that $n_{T_{3}, w_{1}}^{-}\left(z_{k}\right) \neq z_{j}^{\prime}$ and $z_{j}^{\prime} \in N_{G}\left(x_{k}\right)$ hold for some $j(k+1 \leq j \leq$ $k+\alpha+1$). By Claim 2.4.11, we have only to prove the case $z_{j}^{\prime} \neq z_{j}$. This implies that $z_{j}, z_{j}^{\prime} \in V\left(P_{T_{3}}\left(w_{1}, x_{k}\right)\right)$. Hence $\left\{x_{k}, z_{j}^{\prime}\right\} \subseteq V\left(T_{s}\right)$ holds for some $s \in\{1,2\}$. By the definition (III) of $C(*), x_{k} \neq u$ and $x_{k} \neq v$. The unique cycle of $T_{s}+x_{k} z_{j}^{\prime}$ contains an edge $e=z_{k} n_{T_{3}, w_{1}}^{-}\left(z_{k}\right)$ and z_{j}^{\prime} is an end-vertex of e because $n_{T_{3}, w_{1}}^{-}\left(z_{k}\right) \neq z_{j}^{\prime}$. Let $T_{s}^{\prime}=T_{s}+x_{k} z_{j}^{\prime}-e$ (see Fig. 2.7). Then $V\left(T_{s}^{\prime}\right)=V\left(T_{s}\right)$ and $\operatorname{te}\left(T_{s}^{\prime} ; k\right) \leq \operatorname{te}\left(T_{s} ; k\right)$. Note that $z_{j}^{\prime} \in V_{\geq k}\left(T_{s}\right)$ by Claim 2.4.8. Since $x_{i} \neq u$ and $x_{i} \neq v$, this implies that $\left(T_{s}^{\prime}, T_{3-s}\right) \in \mathcal{T}$ even if $z_{j}^{\prime} \in\{u, v\}$. Let $T_{3}^{\prime}=T_{s}^{\prime} \cup T_{3-s}+w_{1} w_{2}$. Note that $\operatorname{dist}_{T_{3}}\left(w_{1} w_{2}, y\right)=\operatorname{dist}_{T_{3}^{\prime}}\left(w_{1} w_{2}, y\right)$ holds for any $y \in V(G)$ with $\operatorname{dist}_{T_{3}}\left(w_{1} w_{2}, y\right) \leq \operatorname{dist}_{T_{3}}\left(w_{1} w_{2}, z_{j}^{\prime}\right)$ or $\operatorname{dist}_{T_{3}^{\prime}}\left(w_{1} w_{2}, y\right) \leq \operatorname{dist}_{T_{3}^{\prime}}\left(w_{1} w_{2}, z_{j}^{\prime}\right)$. Note that $d_{T_{3}^{\prime}}\left(z_{j}\right)>d_{T_{3}}\left(z_{j}^{\prime}\right)$ because z_{j}^{\prime} is not an end-vertex of e. These contradicts (T3).

Figure 2.7: Claim 2.4.12 (possibly $\left.n_{T_{3}, w_{1}}^{-}\left(z_{k}\right) \in V\left(D_{j}\right)\right)$

Claim 2.4.13 If there exists $j(k+1 \leq j \leq k+\alpha+1)$ such that $z_{j}^{\prime}=n_{T_{3}, w_{1}}^{-}\left(z_{k}\right)$, then $w_{1} \notin N_{G}\left(x_{k}\right)$.

Proof. Suppose that $w_{1} \in N_{G}\left(x_{k}\right)$ and $z_{j}^{\prime}=n_{T_{3}, w_{1}}^{-}\left(z_{k}\right)$ hold for some $j(k+1 \leq j \leq$ $k+\alpha+1)$. Then $z_{j}^{\prime} \in V_{\geq k+1}\left(T_{3}\right)$ because $z_{j}^{\prime}=n_{T_{3}, w_{1}}^{-}\left(z_{k}\right)$. By the definition (III) of $C(*)$, $x_{k} \neq u$ and $x_{k} \neq v$. Let $T_{3}^{\prime}=T_{3}+x_{k} w_{1}-z_{j}^{\prime} z_{k}$. Let T_{1}^{\prime} and T_{2}^{\prime} be the components of $T_{3}^{\prime}-w_{1} w_{2}$ such that $w_{1} \in V\left(T_{1}^{\prime}\right)$ and $w_{2} \in V\left(T_{2}^{\prime}\right)$ (see Fig. 2.8 and 2.9). By the definition (III) of $C(*)$, the component D of $T_{3}-z_{j}^{\prime} z_{k}$ containing z_{k} does not contain u and v. Hence $u \in V\left(T_{1}^{\prime}\right)$ and $v \in V\left(T_{2}^{\prime}\right)$. Since $x_{k} \neq u$ and $x_{k} \neq v,\left(T_{1}^{\prime}, T_{2}^{\prime}\right) \in \mathcal{T}$. Moreover note that te $\left(T_{3}^{\prime} ; k\right) \leq \operatorname{te}\left(T_{3} ; k\right)$ and $\operatorname{te}\left(T_{1}^{\prime} ; k\right)+\operatorname{te}\left(T_{2}^{\prime} ; k\right) \leq \operatorname{te}\left(T_{1} ; k\right)+\operatorname{te}\left(T_{2} ; k\right)$. Since $\operatorname{deg}_{T_{3}}\left(w_{1}\right)<\operatorname{deg}_{T_{3}^{\prime}}\left(w_{1}\right)$, we have $W\left(T_{3}\right)<W\left(T_{3}^{\prime}\right)$. These contradict (T1), (T2), or (T3).

Figure 2.8: Claim 2.4.13 (the case where $\left.w_{1} \in P_{T_{3}}\left(w_{2}, z_{k}\right)\right)$

Figure 2.9: Claim 2.4.13 (the case where $\left.w_{2} \in P_{T_{3}}\left(w_{1}, z_{k}\right)\right)$

Claim 2.4.14 For each $j(1 \leq j \leq k+\alpha+1),\left|Y_{j}^{+}\right| \geq(k-1)\left|Y_{j}\right|$.
Proof. Let j be an index with $1 \leq j \leq k+\alpha+1$, and let $w=x_{j}$ if $1 \leq j \leq k$ and $w=x_{k}$ if $k+1 \leq j \leq k+\alpha+1$. Since D_{j} is a tree, we have $N_{T_{3}, w}^{+}\left(y_{1}\right) \cap N_{T_{3}, w}^{+}\left(y_{2}\right)=\emptyset$ for any $y_{1}, y_{2} \in Y_{j}$ with $y_{1} \neq y_{2}$. Note that if $n_{T_{3}, w_{1}}^{-}\left(z_{i}\right)=z_{j}$ for some $i(1 \leq i \leq$ $k+\alpha+1, i \neq j)$, then $\operatorname{deg}_{T_{3}}\left(z_{j}\right) \geq k+1$. Hence by Claims 2.4.8, 2.4.11 and the definitions (I) and (II) of $C(*)$, for each $y \in Y_{j},\left|N_{T_{3}, w}^{+}(y) \cap V\left(D_{j}\right)\right| \geq k-1$. Then we obtain $\left|Y_{j}^{+}\right|=\sum_{y \in Y_{j}}\left|N_{T_{3}, w}^{+}(y) \cap V\left(D_{j}\right)\right| \geq(k-1)\left|Y_{j}\right|$.

For each $j(1 \leq j \leq k)$, by Claims 2.4.10 (i) and 2.4.14,

$$
\begin{align*}
\left|N_{G}\left(x_{j}\right) \cap V\left(D_{j}\right)\right| & \leq\left|D_{j}\right|-\left|\left\{x_{j}\right\}\right|-\left|Y_{j}^{+}\right| \\
& \leq\left|D_{j}\right|-1-(k-1)\left|Y_{j}\right|, \tag{2.13}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{1 \leq i \leq k, i \neq j}\left|N_{G}\left(x_{i}\right) \cap V\left(D_{j}\right)\right| \leq(k-1)\left|Y_{j}\right| . \tag{2.14}
\end{equation*}
$$

Hence it follows from (3.1) and (2.14) that for each $j(1 \leq j \leq k)$,

$$
\begin{equation*}
\sum_{1 \leq i \leq k}\left|N_{G}\left(x_{i}\right) \cap V\left(D_{j}\right)\right| \leq\left|D_{j}\right|-1 \tag{2.15}
\end{equation*}
$$

On the other hand, for each $j(k+1 \leq j \leq k+\alpha+1)$, by Claims 2.4.10 (ii), 2.4.12 and 2.4.14,

$$
\left|N_{G}\left(x_{k}\right) \cap V\left(D_{j}\right)\right| \leq \begin{cases}\left|D_{j}\right|-\left|\left\{z_{j}^{\prime}\right\}\right|-\left|Y_{j}^{+}\right| \leq\left|D_{j}\right|-1-(k-1)\left|Y_{j}\right| & \left(n_{T_{3}, w_{1}}^{-}\left(z_{k}\right) \neq z_{j}^{\prime}\right) \tag{2.16}\\ \left|D_{j}\right|-\left|Y_{j}^{+}\right| \leq\left|D_{j}\right|-(k-1)\left|Y_{j}\right| & \text { (otherwise) }\end{cases}
$$

and

$$
\begin{equation*}
\sum_{1 \leq i \leq k-1}\left|N_{G}\left(x_{i}\right) \cap V\left(D_{j}\right)\right| \leq(k-1)\left|Y_{j}\right| . \tag{2.17}
\end{equation*}
$$

Hence it follows from (2.16) and (2.17) that for each $j(k+1 \leq j \leq k+\alpha+1)$,

$$
\sum_{1 \leq i \leq k}\left|N_{G}\left(x_{i}\right) \cap V\left(D_{j}\right)\right| \leq \begin{cases}\left|D_{j}\right|-1 & \left(n_{T_{3}, w_{1}}^{-}\left(z_{k}\right) \neq z_{j}^{\prime}\right) \tag{2.18}\\ \left|D_{j}\right| & \text { (otherwise) } .\end{cases}
$$

Note that there exists at most one index $j(k+1 \leq j \leq k+\alpha+1)$ such that $n_{T_{3}, w_{1}}^{-}\left(z_{k}\right)=z_{j}^{\prime}$. Consequently, by Claims 2.4.9, 2.4.13, (2.15), and (3.3),

$$
\begin{aligned}
\Delta_{k}(X ; G) & =\sum_{x \in X_{k}} \operatorname{deg}_{G}(x) \\
& \leq \sum_{1 \leq i \leq k}\left(\left|N_{G}\left(x_{i}\right) \cap\left\{w_{1}\right\}\right|+\sum_{1 \leq j \leq k+\alpha+1}\left|N_{G}\left(x_{i}\right) \cap V\left(D_{j}\right)\right|\right) \\
& \leq \begin{cases}k-1+\left(\left|T_{3}\right|-\left|\left\{w_{1}\right\}\right|-(k+\alpha+1-1)\right) & \left(n_{T_{3}, w_{1}}^{-}\left(z_{k}\right)=z_{j}^{\prime} \text { for } k+1 \leq j \leq k+\alpha+1\right) \\
k+\left(\left|T_{3}\right|-\left|\left\{w_{1}\right\}\right|-(k+\alpha+1)\right) & \text { (otherwise) }\end{cases} \\
& \leq|G|-\alpha-2,
\end{aligned}
$$

a contradiction. This completes the proof of Theorem 2.18.

Chapter 3

Spanning trees with some specified properties

In this chapter, we focus on a spanning tree with some specified properties. In Section 3.1, we show some degree conditions for graphs to have a spanning tree with bounded total number of branch vertices and leaves. In Section 3.2, we show a Fan-type condition for graphs to be k-leaf-connected, which is a generalization of Hamilton-connected.

3.1 Degree conditions for graphs to have spanning trees with few branch vertices and leaves

We prove the following theorem, which gives a degree condition for a graph to have a spanning tree with bounded total number of branch vertices and leaves.

Theorem 3.1 Let $k \geq 2$ be an integer. Suppose that a connected graph G satisfies

$$
\max \left\{\operatorname{deg}_{G}(x), \operatorname{deg}_{G}(y)\right\} \geq \frac{|G|-k+1}{2}
$$

for every two nonadjacent vertices $x, y \in V(G)$. Then G has a spanning tree T with $|L(T)|+|B(T)| \leq k+1$.

The lower bound of the degree condition in Theorem 3.1 is sharp as shown in Section 3.1.2. One might conjecture that the sentence "for every two nonadjacent vertices" in Theorem 3.1 can be replaced by "for every two vertices $x, y \in V(G)$ with $\operatorname{dist}_{G}(x, y)=2$ ", which is so-called a Fan-type degree condition.

The following problem assumes a weaker degree condition than Theorem 3.1.

[^1]$$
\max \left\{\operatorname{deg}_{G}(x), \operatorname{deg}_{G}(y)\right\} \geq \frac{|G|-k+1}{2}
$$
for every two vertices $x, y \in V(G)$ with $\operatorname{dist}_{G}(x, y)=2$. Does G have a spanning tree T with $|L(T)|+|B(T)| \leq k+1$?

The answer of Problem 3.2 is in the negative and the counterexample for Problem 3.2 is shown in Section 3.1.4. When we restrict ourselves to 2-connected graphs, we also obtain the following result, which contains a Fan-type degree condition.

Theorem 3.3 Let $k \geq 2$ be an integer. Let G be a 2 -connected graph. Suppose that

$$
\max \left\{\operatorname{deg}_{G}(x), \operatorname{deg}_{G}(y)\right\} \geq \frac{|G|-k+1}{2}
$$

for every two vertices $x, y \in V(G)$ with $\operatorname{dist}_{G}(x, y)=2$. Then G has a spanning tree T with $|L(T)|+|B(T)| \leq k+1$.

The following two results motivate our results. Theorem 3.4 gives an Ore-type condition for a graph to have a spanning k-ended tree.

Theorem 3.4 (Broersma and Tuinstra [8]) Let $k \geq 2$ be an integer and let G be a connected graph. If G satisfies $\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y) \geq|G|-k+1$ for every two nonadjacent vertices $x, y \in V(G)$, then G has a spanning k-ended tree.

The following theorem is stronger than Theorem 3.4 although it assumes the same condition as Theorem 3.4.

Theorem 3.5 (Nikoghosyan [46], Saito and Sano [54]) Let $k \geq 2$ be an integer. If a connected graph G satisfies $\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y) \geq|G|-k+1$ for every two nonadjacent vertices $x, y \in V(G)$, then G has a spanning tree T with $|L(T)|+|B(T)| \leq k+1$.

3.1.1 Preliminary Lemmas

We prove the following lemmas which are used in the proof of Theorems 3.1 and 3.3.
Lemma 3.6 Let G be a connected graph and let T be a spanning tree of G such that $|L(T)|+|B(T)|$ is minimal. If $B(T) \neq \emptyset$, then $L(T)$ is an independent set of G.

Proof. Suppose that there exist two vertices $u, v \in L(T)$ with $u v \in E(G)$. Then $T+u v$ contains a unique cycle C. By $B(T) \neq \emptyset, C$ has a branch vertex w of T. For $x \in N_{T}(w) \cap$ $V(C), T^{\prime}:=T+u v-w x$ is a spanning tree of G such that $L\left(T^{\prime}\right) \subseteq(L(T) \backslash\{u, v\}) \cup\{x\}$ and $B\left(T^{\prime}\right) \subseteq B(T)$. This contradicts the minimality of $|L(T)|+|B(T)|$.

Lemma 3.7 Let G be a connected graph and let T be a spanning tree of G such that $|L(T)|+|B(T)|$ is minimal. Let x be a leaf of T. Suppose that $B(T) \neq \emptyset, T$ is regarded as a rooted spanning tree of G with the root x.

Then the following two statements hold:
(i) $N_{G}(x)^{-} \cap N_{G}(y)=\emptyset$ for each $y \in L(T) \backslash\{x\}$ and
(ii) $N_{G}(x)^{-} \cap B(T)=\emptyset$.

Proof. (i) Suppose that there exists $y \in L(T) \backslash\{x\}$ such that $N_{G}(x)^{-} \cap N_{G}(y) \neq \emptyset$. Since T is a spanning tree of G such that $\operatorname{deg}_{T}(x)=\operatorname{deg}_{T}(y)=1$ and $B(T) \neq \emptyset, P_{T}(x, y)$ contains a branch vertex v. Let $u \in N_{G}(x)^{-} \cap N_{G}(y)$ and $u^{+} \in N_{T}^{+}(u) \cap N_{G}(x)$. Then $T+u^{+} x+u y-u^{+} u$ contains a unique cycle C. For $w \in N_{T}(v) \cap V(C), T^{\prime}:=T+u^{+} x+u y-$ $u^{+} u-v w$ is a spanning tree of G with $L\left(T^{\prime}\right) \subseteq(L(T) \cup\{w\}) \backslash\{x, y\}$ and $B\left(T^{\prime}\right) \subseteq B(T)$. This contradicts the minimality of $|L(T)|+|B(T)|$. Hence $N_{G}(x)^{-} \cap N_{G}(y)=\emptyset$ for each $y \in L(T) \backslash\{x\}$.
(ii) If there exists a vertex $z \in N_{G}(x)^{-} \cap B(T)$, then $T^{\prime}:=T+x z^{+}-z^{+} z$ is a spanning tree of G with $L\left(T^{\prime}\right)=L(T) \backslash\{x\}$ and $B\left(T^{\prime}\right) \subseteq B(T)$. This is a contradiction. Consequently, $N_{G}(x)^{-} \cap B(T)=\emptyset$.

Let T be a tree with $B(T) \neq \emptyset$. For all pairs $x \in L(T)$ and $y \in B(T)$ such that $\left(V\left(P_{T}(x, y)\right) \backslash\{y\}\right) \cap B(T)=\emptyset$, we delete $V\left(P_{T}(x, y)\right) \backslash\{y\}$ from T. Let T^{\prime} be the resulting graph. Then T^{\prime} is a tree and $L\left(T^{\prime}\right) \subseteq B(T)$. We say that a leaf of T^{\prime} is a peripheral branch vertex of T. By the definition of T^{\prime}, we obtain the following fact.

Fact 1 Let T be a tree and let v be a peripheral branch vertex of T. Then the number of leaves x in T satisfying $\left(V\left(P_{T}(x, v)\right) \backslash\{v\}\right) \cap B(T)=\emptyset$ equals $\operatorname{deg}_{T}(v)-1$.

Lemma 3.8 Let G be a connected graph having no Hamiltonian path. Choose a spanning tree T of G such that
(T1) $|L(T)|+|B(T)|$ is as small as possible and
(T2) $\min \left\{\operatorname{deg}_{T}(x): x\right.$ is a peripheral branch vertex of $\left.T\right\}$ is as small as possible, subject to (T1).

Let y be a peripheral branch vertex of T such that $\operatorname{deg}_{T}(y)$ is minimal and let z be a leaf of T such that $\left(V\left(P_{T}(y, z)\right) \backslash\{y\}\right) \cap B(T)=\emptyset$. Then $N_{G}(z) \cap(B(T) \backslash\{y\})=\emptyset$.

Proof. Suppose that there exists a vertex $w \in N_{G}(z) \cap(B(T) \backslash\{y\})$. We regard T as a rooted tree with the root z. Then $T^{\prime}:=T+w z-y y^{-}$is a spanning tree of G with $L\left(T^{\prime}\right)=(L(T) \backslash\{z\}) \cup\left\{y^{-}\right\}$. If $\operatorname{deg}_{T}(y)=3$, then $B\left(T^{\prime}\right)=B(T) \backslash\{y\}$ and $\left|L\left(T^{\prime}\right)\right|=|L(T)|$, which is a contradiction to (T1). If $\operatorname{deg}_{T}(y) \geq 4$, then y is a peripheral branch vertex of T^{\prime} with $\operatorname{deg}_{T^{\prime}}(y)<\operatorname{deg}_{T}(y)$, which is a contradiction to (T2).

3.1.2 Sharpness of Theorem 3.1

In Theorem 3.1, we cannot replace the lower bound $(|G|-k+1) / 2$ in the degree condition by $(|G|-k) / 2$, which is shown in the following example. Let t be a positive integer and let $k \geq 2$ be an integer. Consider the complete bipartite graph G with partite sets A and B such that $|A|=t$ and $|B|=t+k$. Then $|G|=2 t+k$ and $\max \left\{\operatorname{deg}_{G}(x), \operatorname{deg}_{G}(y)\right\} \geq$ $t=(|G|-k) / 2$ for every two nonadjacent vertices $x, y \in V(G)$. Suppose that G has a spanning tree T with $|L(T)|+|B(T)| \leq k+1$. If $|L(T)| \leq k$, then $|E(T)| \geq \mid B \cap$ $L(T)|+2| B \backslash(B \cap L(T))|=2| B|-|B \cap L(T)| \geq k+2 t=|G|$. This is a contradiction. If $|L(T)| \geq k+1$, then $|L(T)|+|B(T)| \geq k+2$ because T has at least one branch vertex. Hence G has no spanning tree T with $|L(T)|+|B(T)| \leq k+1$.

3.1.3 Proof of Theorem 3.1

Suppose that a graph G satisfies all the conditions of Theorem 3.1, but has no desired spanning tree. Choose a spanning tree T of G so that
(T1) $|L(T)|+|B(T)|$ is as small as possible and
(T2) $\min \left\{\operatorname{deg}_{T}(x): x\right.$ is a peripheral branch vertex of $\left.T\right\}$ is as small as possible, subject to (T1).

If $|L(T)|=2$, then T is a Hamiltonian path of G, which satisfies $|L(T)|+|B(T)|=2<$ $k+1$, a contradiction. Hence we may assume that $|L(T)| \geq 3$ and $|B(T)| \geq 1$. By Lemma 3.6 and the assumption of Theorem 3.1, the number of leaves in T having the degree at least $(|G|-k+1) / 2$ in G is at least $|L(T)|-1$, i.e.,

$$
\begin{equation*}
\left|\left\{v \in L(T): \operatorname{deg}_{G}(v) \geq(|G|-k+1) / 2\right\}\right| \geq|L(T)|-1 \geq 2 . \tag{3.1}
\end{equation*}
$$

We divide the proof into two cases according to the value of $|B(T)|$.
Case 3.1.1 $|B(T)|=1$.
By (3.1), we can choose two distinct vertices $x, y \in L(T)$ which satisfy $\operatorname{deg}_{G}(x) \geq(|G|-$ $k+1) / 2$ and $\operatorname{deg}_{G}(y) \geq(|G|-k+1) / 2$. We regard T as a rooted tree with the root x. By Lemma 3.6, $N_{G}(y) \cap L(T)=\emptyset$. By Lemmas 3.7(i) and (ii), $N_{G}(x)^{-} \cap N_{G}(y)=\emptyset$ and $\left|N_{G}(x)^{-}\right|=\left|N_{G}(x)\right|$. Hence we obtain

$$
\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y)=\left|N_{G}(x)^{-}\right|+\left|N_{G}(y)\right| \leq|G|-|L(T)|+|\{x\}| .
$$

On the other hand, $\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y) \geq|G|-k+1$ by the hypothesis of this theorem. Conbining two inequalities above, we obtain $|L(T)| \leq k$ and hence $|L(T)|+|B(T)| \leq k+1$. This is a contradiction. This completes the proof of Case 3.1.1.

Case 3.1.2 $|B(T)| \geq 2$.

Choose a peripheral branch vertex b_{1} of T such that $\operatorname{deg}_{T}\left(b_{1}\right)$ is as small as possible. By Fact 1 , there exist two leaves x_{1} and x_{2} of T such that $\left(V\left(P_{T}\left(b_{1}, x_{i}\right)\right) \backslash\left\{b_{1}\right\}\right) \cap B(T)=\emptyset$ for each $i=1,2$. By $|B(T)| \geq 2$, there exists a peripheral branch vertex b_{2} of T with $b_{2} \neq b_{1}$. Fact 1 implies that there exist two leaves x_{3} and x_{4} of T such that $\left(V\left(P_{T}\left(b_{2}, x_{i}\right)\right) \backslash\right.$ $\left.\left\{b_{2}\right\}\right) \cap B(T)=\emptyset$ for each $i=3$, 4. By (3.1), without loss of generality, we may assume that $\operatorname{deg}_{G}\left(x_{i}\right) \geq(|G|-k+1) / 2$ for each $i=1,3$. Note that $x_{1} \neq x_{3}$. We regard T as a rooted tree with root x_{3}. By Lemma 3.6, $N_{G}\left(x_{1}\right) \cap L(T)=\emptyset$. By Lemmas 3.7(i) and (ii), $N_{G}\left(x_{1}\right) \cap N_{G}\left(x_{3}\right)^{-}=\emptyset$ and $\left|N_{G}\left(x_{3}\right)^{-}\right|=\left|N_{G}\left(x_{3}\right)\right|$. By Lemma 3.7(ii) and Lemma 3.8, $N_{G}\left(x_{3}\right)^{-} \cap B(T)=\emptyset$ and $N_{G}\left(x_{1}\right) \cap\left(B(T) \backslash\left\{b_{1}\right\}\right)=\emptyset$. Hence

$$
\begin{aligned}
\left|N_{G}\left(x_{1}\right)\right|+\left|N_{G}\left(x_{3}\right)\right| & =\left|N_{G}\left(x_{1}\right)\right|+\left|N_{G}\left(x_{3}\right)^{-}\right| \\
& \leq|T|-\left(|L(T)|-\left|\left\{x_{3}\right\}\right|+|B(T)|-\left|\left\{b_{1}\right\}\right|\right) \\
& =|G|-(|L(T)|+|B(T)|)+2 .
\end{aligned}
$$

On the other hand, $\left|N_{G}\left(x_{1}\right)\right|+\left|N_{G}\left(x_{3}\right)\right|=\operatorname{deg}_{G}\left(x_{1}\right)+\operatorname{deg}_{G}\left(x_{3}\right) \geq|G|-k+1$. Consequently, $|L(T)|+|B(T)| \leq k+1$. This is a contradiction. This completes the proof of Case 3.1.2. Hence Theorem 3.1 is proved.

3.1.4 Counterexample of Problem 3.2

For two integers k and t such that $k \geq 2$ and $t \geq k+1$, denote by K_{t} a complete graph of order t and denote by $P_{i}=a_{i} b_{i}$ a path of order two for each $i=1, \ldots, k+1$.

We define a graph G of order $t+2 k+2$ as follows:

$$
\begin{aligned}
& V(G)=V\left(K_{t}\right) \cup\left(\bigcup_{i=1}^{k+1} V\left(P_{i}\right)\right) \text { and } \\
& E(G)=E\left(K_{t}\right) \cup\left(\bigcup_{i=1}^{k+1}\left\{x a_{i}: x \in V\left(K_{t}\right)\right\}\right) \cup\left(\bigcup_{i=1}^{k+1} E\left(P_{i}\right)\right) .
\end{aligned}
$$

Then, by $t \geq k+1, \max \left\{\operatorname{deg}_{G}(x), \operatorname{deg}_{G}(y)\right\} \geq t+1=|G|-2 k-1 \geq(|G|-k+1) / 2$ for every two vertices $x, y \in V(G)$ with $\operatorname{dist}_{G}(x, y)=2$. Since all the vertices in $\left\{b_{1}, b_{2}, \ldots, b_{k+1}\right\}$ are leaves for each spanning tree T of G, we obtain $|L(T)| \geq k+1 \geq 3$ and thus $|L(T)|+$ $|B(T)| \geq k+2$. Therefore the answer for Problem 3.2 is in the negative.

3.1.5 Proof of Theorem 3.3

Suppose that a graph G satisfies all the conditions of Theorem 3.3, but has no desired spanning tree. Let $S=\left\{v \in V(T): \operatorname{deg}_{G}(v) \geq(|G|-k+1) / 2\right\}$. Choose a spanning tree T of G such that
(T1) $|L(T)|+|B(T)|$ is as small as possible and
(T2) $|S \cap L(T)|$ is as large as possible subject to (T1).

If $|L(T)|=2$, then T is a Hamiltonian path, which satisfies $|L(T)|+|B(T)|=2<k+1$, a contradiction. Hence we consider the case when $|L(T)| \geq 3$ and $|B(T)| \geq 1$.

Claim 3.1.1 For any leaf x of $T, \operatorname{deg}_{G}(x) \geq(|G|-k+1) / 2$.
Proof. Suppose that $\operatorname{deg}_{G}(x)<(|G|-k+1) / 2$ for some leaf x of T. Choose a vertex $w \in N_{G}(x)$ such that $\left|P_{T}(x, w)\right|$ is as large as possible. Write $P_{T}(x, w)=v_{1} v_{2} \ldots v_{m}$ with $v_{1}=x$ and $v_{m}=w$. Note that $m \geq 3$ because G is 2 -connected and $\operatorname{deg}_{T}(x)=1$. We regard T as a rooted tree with root v_{1}.

Subclaim 3.1.1.1 $\left\{v_{2}, v_{3}, \ldots, v_{m}\right\} \subseteq N_{G}\left(v_{1}\right)$.
Proof. Suppose that $v_{1} v_{i-1} \notin E(G)$ for some i with $v_{1} v_{i} \in E(G)$. Then $\operatorname{dist}_{G}\left(v_{1}, v_{i-1}\right)$ $=2$. It follows from the degree condition of this theorem that $\operatorname{deg}_{G}\left(v_{i-1}\right) \geq(|G|-k+1) / 2$. Since $v_{i-1} \notin B(T)$ by Lemma 3.7(ii), $T^{\prime}:=T+v_{1} v_{i}-v_{i} v_{i-1}$ is a spanning tree of G with $L\left(T^{\prime}\right)=\left(L(T) \backslash\left\{x_{1}\right\}\right) \cup\left\{v_{i-1}\right\}, B\left(T^{\prime}\right)=B(T)$, and $\left|S \cap L\left(T^{\prime}\right)\right|>|S \cap L(T)|$. This contradicts the choice (T2). Hence $v_{1} v_{i-1} \in E(G)$ for all i with $v_{1} v_{i} \in E(G)$. By $v_{1} v_{m} \in E(G)$, this subclaim holds.
By Lemma 3.7(ii) and Subclaim 3.1.1.1, $\left\{v_{1}, v_{2}, \ldots, v_{m-1}\right\} \cap B(T)=\emptyset$.
Subclaim 3.1.1.2 $\operatorname{deg}_{G}\left(v_{i}\right)<(|G|-k+1) / 2$ for any v_{i} with $i=1,2, \ldots, m-1$.
Proof. If $\operatorname{deg}_{G}\left(v_{i}\right) \geq(|G|-k+1) / 2$ for some v_{i} with $i=2, \ldots, m-1$, then $T+v_{1} v_{i+1}-$ $v_{i} v_{i+1}$ contradicts the choice (T2). Hence Subclaim 3.1.1.2 is proved.

We denote by \mathcal{T} the set of spanning trees T_{i} for $1 \leq i \leq m-1$ such that $L\left(T_{i}\right)=$ $(L(T) \backslash\{x\}) \cup\left\{v_{i}\right\}, B\left(T_{i}\right)=B(T)$ and $\max \left\{\left|P_{T_{i}}\left(v_{i}, u\right)\right|: u \in N_{G}\left(v_{i}\right)\right\}$ is as large as possible. Note that each T_{i} satisfies (T1) and (T2) and $\mathcal{T} \neq \emptyset$. Choose $T_{k} \in \mathcal{T}$ so that
(T3) $\max \left\{\left|P_{T_{k}}\left(v_{k}, u\right)\right|: u \in N_{G}\left(v_{k}\right)\right\}$ is as large as possible.
Then $v_{k} \in L\left(T_{k}\right)$ by the choice of T_{k} and $\operatorname{deg}_{G}\left(v_{k}\right)<(|G|-k+1) / 2$ by (T2). Hence the role of v_{k} in T_{k} is similar to that of v_{1} in T. Therefore, without loss of generality, we may assume $k=1$. Then $\left|P_{T_{1}}\left(v_{1}, u\right)\right|$ is maximal.

Subclaim 3.1.1.3 $N_{G}\left(v_{i}\right) \subseteq\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ for each $i=1,2, \ldots, m-1$.
Proof. By the definitions of $v_{1}=x$ and u, the subclaim holds for $i=1$. Suppose that v_{i} is adjacent to $u^{\prime} \in V(G) \backslash\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ for some $i=2, \ldots, m-1$. By Subclaim 3.1.1.1, $v_{1} v_{i+1} \in E(G)$ and let $T^{\prime}:=T_{1}+v_{1} v_{i+1}-v_{i} v_{i+1}$. Then $\left|P_{T^{\prime}}\left(v_{i}, u^{\prime}\right)\right|>m=\left|P_{T_{1}}\left(v_{1}, u\right)\right|$, this implies that there exists the tree $T_{i} \in \mathcal{T}$ such that $\max \left\{\left|P_{T_{i}}\left(v_{i}, u\right)\right|: u \in N_{G}\left(v_{i}\right)\right\}>$ $\max \left\{\left|P_{T_{1}}\left(v_{1}, u\right)\right|: u \in N_{G}\left(v_{1}\right)\right\}$. This contradicts the choice (T3).
By Subclaim 3.1.1.3, v_{m} is a cut-vertex of G, which contradicts the condition that G is 2 -connected. Consequenlty, Claim 3.1.1 is proved.

Take any peripheral branch vertex b of T and put $\operatorname{deg}_{T}(b)=p$. By Fact $1, T$ contains $p-1$ leaves x_{1}, \ldots, x_{p-1} such that $V\left(P_{T}\left(x_{i}, b\right)\right) \cap(B(T) \backslash\{b\})=\emptyset$ for each $i=1, \ldots, p-1$. Note that $p-1=\operatorname{deg}_{T}(b)-1 \geq 2$ because b is a branch vertex of T.

Claim 3.1.2 $N_{G}\left(x_{i}\right) \cap(B(T) \backslash\{b\}) \neq \emptyset$ for each $i=1, \ldots, p-1$.
Proof. Suppose that $N_{G}\left(x_{i}\right) \cap(B(T) \backslash\{b\})=\emptyset$ for some $i=1, \ldots, p-1$. Without loss of generality, we may assume that $i=1$. We regard T as a rooted tree with root x_{2}. By Lemma 3.7(ii), we obtain $N_{G}\left(x_{2}\right)^{-} \cap B(T)=\emptyset$ and hence $\left|N_{G}\left(x_{2}\right)\right|=\left|N_{G}\left(x_{2}\right)^{-}\right|$. Moreover, $N_{G}\left(x_{1}\right) \cap N_{G}\left(x_{2}\right)^{-}=\emptyset$ by Lemma 3.7(i) and $N_{G}\left(x_{1}\right) \cap L(T)=\emptyset$ by Lemma 3.6. Consequently

$$
\begin{aligned}
\left|N_{G}\left(x_{1}\right)\right|+\left|N_{G}\left(x_{2}\right)\right| & =\left|N_{G}\left(x_{1}\right)\right|+\left|N_{G}\left(x_{2}\right)^{-}\right| \\
& \leq|T|-\left(|L(T)|-\left|\left\{x_{2}\right\}\right|+|B(T)|-|\{b\}|\right) \\
& \leq|G|-k .
\end{aligned}
$$

On the other hand, $\left|N_{G}\left(x_{1}\right)\right|+\left|N_{G}\left(x_{2}\right)\right|=\operatorname{deg}_{G}\left(x_{1}\right)+\operatorname{deg}_{G}\left(x_{2}\right) \geq|G|-k+1$ by Claim 3.1.1. This is a contradiction.

For each $i=1,2, \ldots, p-2$, let $y_{i} \in N_{T}(b) \cap V\left(P_{T}\left(b, x_{i}\right)\right)$ and let $b_{i} \in N_{G}\left(x_{i}\right) \cap(B(T) \backslash$ $\{b\})$. Then $T^{\prime}:=T+x_{1} b_{1}+\cdots+x_{p-2} b_{p-2}-b y_{1}-\cdots-b y_{p-2}$ is a spanning tree of G with $L\left(T^{\prime}\right) \subseteq L(T) \backslash\left\{x_{1}, \ldots, x_{p-2}\right\} \cup\left\{y_{1}, \ldots, y_{p-2}\right\}$ and $B\left(T^{\prime}\right) \subseteq B(T) \backslash\{b\}$. This is a contradiction to (T1). Therefore the proof of Theorem 3.3 is completed.

3.2 A Fan-type condition for graphs to be k-leaf-connected

A graph G is said to be k-leaf-connected if $|G|>k$ and for each subset S of $V(G)$ with $|S|=k, G$ has a spanning tree T precisely S as the set of leaves. By the definition, it is easy to see that "2-leaf-connected" is "Hamilton-connected."

We prove the following theorem, which gives a Fan-type condition for graphs to be k-leaf-connected.

Theorem 3.9 Let $k \geq 2$ be an integer. Suppose that G is a $(k+1)$-connected graph and that

$$
\max \left\{\operatorname{deg}_{G}(u), \operatorname{deg}_{G}(v)\right\} \geq \frac{|G|+1}{2}
$$

for any vertices u and v in G with $\operatorname{dist}_{G}(u, v)=2$. Then G is k-leaf-connected.

3.2.1 Related Results

It is known that many results concerning conditions for a graph to be Hamilton-connected. The property " G is Hamilton-connected" is as same as " G has a spanning tree with two specified endvertices." Moreover, by the definition, it is easy to see that "2-leaf-connected" is "Hamilton-connected." Thus it is natural to look for conditions which ensure the existence of a spanning tree with a specified set of endvertices. This paper is mainly concerned with sufficient conditions for a graph to have a spanning tree with a specified set of endvertices.

The following result motivate our result. Theorem 3.10 is fundemental result, which gives an Ore-type condition for graphs to be k-leaf-connected.

Theorem 3.10 (Egawa, Matsuda, Yamashita, and Yoshimoto [23]) Let $k \geq 2$ be an integer and let G be a $(k+1)$-connected graph. Suppose that

$$
\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y) \geq|G|+1
$$

for any two nonajacent vertices $x, y \in V(G)$. Then G is k-leaf-connected.
Theorem 3.9 is a stronger result than Theorem 3.10. In fact, there are infinitely many graphs which satisfy all the conditions of Theorem 3.9, but not satisfy the degree condition of Theorem 3.10.

For example, let $n \geq k+1$ and define K_{n} as a complete graph of order n with $V\left(K_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and K_{n+1} a complete graph of order $n+1$ with $V\left(K_{n+1}\right)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n+1}\right\}$. Construct a graph G of order $2 n+1$ as $V(G)=V\left(K_{n}\right) \cup V\left(K_{n+1}\right)$ and $E(G)=E\left(K_{n}\right) \cup E\left(K_{n+1}\right) \cup\left\{u_{i} v_{i}, u_{i} v_{i+1}: i=1, \ldots, n-1\right\} \cup\left\{u_{n} v_{n}, u_{n} v_{1}\right\}$.

Since K_{n} and K_{n+1} are complete graphs and $n \geq k+1, G$ is $(k+1)$-connected. Moreover, $\max \left\{\operatorname{deg}_{G}\left(u_{i}\right), \operatorname{deg}_{G}\left(v_{j}\right)\right\} \geq n+1=(|G|+1) / 2$ for any two vertices u_{i} and v_{j} with $\operatorname{dist}_{G}\left(u_{i}, v_{j}\right)=2$. In particular, for each $i=1,2, \ldots, n$, two vertices u_{i} and v_{n+1} satisfy $\operatorname{dist}_{G}\left(u_{i}, v_{n+1}\right)=2, \max \left\{\operatorname{deg}_{G}\left(u_{i}\right), \operatorname{deg}_{G}\left(v_{n+1}\right)\right\}=n+1=(|G|+1) / 2$, and $\operatorname{deg}_{G}\left(u_{i}\right)+\operatorname{deg}_{G}\left(v_{n+1}\right)=2 n+1 \leq|G|$. Thus G satisfies all the conditions of Theorem 3.9, but not satisfy the degree condition of Theorem 3.10. Consequently, Theorem 3.9 can guarantee that G is k-leaf-connected although Theorem 3.10 cannot.

3.2.2 Sharpness of Theorem 3.9

The conditions of Theorem 3.9 are best possible in the following sense:

- We cannot replace the lower bound of the degree condition $(|G|+1) / 2$ by $|G| / 2$. Consider a complete bipartite graph $|G|$ with partite sets A and B such that $|A|=$ $|B|=n$, where n is an integer with $n \geq k+1$. Then G is $(k+1)$-connected, $|G|=2 n$, and $\max \left\{\operatorname{deg}_{G}(x), \operatorname{deg}_{G}(y)\right\} \geq|G| / 2$ for any vertices x and y of G with $\operatorname{dist}_{G}(x, y)=2$. If G is k-leaf-connected, then G has a spanning tree T with $L(T) \subset$ B and $\operatorname{deg}_{T}(x) \geq 2$ for all $x \in A$. Therefore we have $|E(T)| \geq 2|A|=2 n=|G|$. This contradicts the fact $|E(T)|=|G|-1$. Hence G is not k-leaf-connected.
- For $k \geq 2$, the condition that G is $(k+1)$-connected is necessary. Consider the graph $G:=K_{k}+\left(K_{1} \cup K_{r}\right)$, where $r \geq 2$ is an integer. Then G is k-connected but not $(k+1)$-connected. For two nonadjacent vertices $x \in V\left(K_{r}\right)$ and $y \in V\left(K_{1}\right)$, $\max \left\{\operatorname{deg}_{G}(x), \operatorname{deg}_{G}(y)\right\}=|G|-2 \geq(|G|+1) / 2$. Note that the last inequality holds by $|G|=k+r+1 \geq 5$. Since G has no spanning tree T with $L(T)=V\left(K_{k}\right), G$ is not k-leaf-connected.

3.2.3 Proof of Theorem 3.9

We prove Theorem 3.9 by induction on k. Suppose that G satisfies all the conditions of Theorem 3.9. If $k=2$, then Theorem 3.9 holds by Theorem 1.6 (iii). Thus we consider the case when $k \geq 3$. Suppose that G has no spanning tree T such that $L(T)=S$ and $|S|=k$ for some $S \subset V(G)$. By the induction hypothesis, G has a spanning tree T such that $L(T) \subset S$ and $|L(T)|=|S|-1$. Denote $\left\{x_{0}\right\}=S-L(T)$ and choose such a spanning tree T so that
(T1) $\operatorname{deg}_{T}\left(x_{0}\right)$ is as small as possible subject to (T1).
We regard T as a rooted tree with root x_{0} in which all the edges are directed away from the root. Write $N_{T}\left(x_{0}\right)=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$. By the choice of T, x_{0} is not a leaf of T and thus $\left|N_{T}\left(x_{0}\right)\right|=m \geq 2$. Let T_{i} be the component in $T-\left\{x_{0}\right\}$ containing the vertex y_{i} for each $i=1,2, \ldots, m$ and denote $S_{i}=S \cap L\left(T_{i}\right)$ for each $i=1,2, \ldots, m$.

Claim 3.2.1 $\left\{y_{1}, y_{2}, \ldots, y_{m}\right\} \cap S=\emptyset$.
Proof. Suppose that $\left\{y_{1}, y_{2}, \ldots, y_{m}\right\} \cap S \neq \emptyset$. Then we may assume that $y_{1} \in S$. Since $\left|S \backslash\left\{y_{1}\right\}\right|=k-1$ and G is $(k+1)$-connected, $G-\left(S \backslash\left\{y_{1}\right\}\right)$ is 2-connected. Hence there exists $z \in V\left(T_{j}\right) \backslash S_{j}$ with $z y_{1} \in E(G)$ for some $j=2, \ldots, m$. Then $T^{\prime}=T+y_{1} z-x_{0} y_{1}$ is a spanning tree of G. If $\operatorname{deg}_{T}\left(x_{0}\right)=2$, then $L\left(T^{\prime}\right)=S$, a contradiction. Hence $\operatorname{deg}_{T}\left(x_{0}\right) \geq 3$. Then $L\left(T^{\prime}\right)=L(T)$ and $\operatorname{deg}_{T}\left(x_{0}\right)>\operatorname{deg}_{T^{\prime}}\left(x_{0}\right)$, which contradicts (T1).

Let \mathcal{T} be the set of the all spanning trees T^{\prime} of G such that $L\left(T^{\prime}\right)=L(T)$ and $N_{T^{\prime}}\left(x_{0}\right)=N_{T}\left(x_{0}\right)$. Then we can regard T as an arbitrary tree in \mathcal{T}.

Claim 3.2.2 The following four statements hold;
(i) $\operatorname{deg}_{T}\left(y_{i}\right)=2$ for each $i=1,2, \ldots, m$,
(ii) $B(T)^{+} \cap N_{G}\left(y_{i}\right)=\emptyset$ for each $i=1,2, \ldots, m$,
(iii) any vertex $v \in\left(N_{G}\left(y_{i}\right) \cap V\left(T_{i}\right)\right)^{-}$satisfies $N_{G}(v) \subseteq S \cup V\left(T_{i}\right)$ for each $i=1,2, \ldots, m$, and
(iv) no vertex in $\left(N_{G}\left(y_{i}\right) \cap V\left(T_{i}\right)\right)^{-}$is adjacent to a vertex in $\left(B(T) \backslash B\left(T_{i}\right)\right)^{+}$for each $i=1,2, \ldots, m$.

Proof. (i) By Claim 3.2.1, $\operatorname{deg}_{T}\left(y_{i}\right) \geq 2$ for all $i=1,2, \ldots, m$. Assume that $\operatorname{deg}_{T}\left(y_{i}\right) \geq$ 3 for some $i=1,2, \ldots, m$. Since G is $(k+1)$-connected and $|S|=k, G-S$ is connected. Thus, for some i with $1 \leq j \leq m$ and $j \neq i$, there exist two vertices $z_{i} \in V\left(T_{i}\right) \backslash S_{i}$ and $z_{j} \in V\left(T_{j}\right) \backslash S_{j}$ such that $z_{i} z_{j} \in E(G)$. Then $T^{\prime}:=T+z_{i} z_{j}-x_{0} y_{i}$ is a spanning tree of G. If $\operatorname{deg}_{T}\left(x_{0}\right)=2$, then $L\left(T^{\prime}\right)=S$, a contradiction. Hence $\operatorname{deg}_{T}\left(x_{0}\right) \geq 3$. Then $L\left(T^{\prime}\right)=L(T)$ and $\operatorname{deg}_{T}\left(x_{0}\right)>\operatorname{deg}_{T^{\prime}}\left(x_{0}\right)$. This contradicts (T1).
(ii) Suppose that there exists a vertex $u \in B(T)^{+} \cap N_{G}\left(y_{i}\right)$. By Claim 3.2.2 (i), $y_{i} \notin B(T)$ for all i and so $u y_{i} \notin E(T)$. Then $T^{\prime}:=T+u y_{i}-u u^{-}$is a spanning tree of G with $L\left(T^{\prime}\right)=L(T), N_{T^{\prime}}\left(x_{0}\right)=N_{T}\left(x_{0}\right)$, and $\operatorname{deg}_{T^{\prime}}\left(y_{i}\right) \geq 3$ and so $T^{\prime} \in \mathcal{T}$. This contradicts Claim 3.2.2 (i).
(iii) Suppose that there exists a vertex $v \in N_{G}\left(y_{i}\right) \cap V\left(T_{i}\right)$ such that v^{-}is adjacent to a vertex $w \in V(G) \backslash\left(V\left(T_{i}\right) \cup S\right)$ for some $i=1,2, \ldots, m$. Suppose that $v^{-}=y_{i}$. Then $T^{\prime}:=T+v^{-} w-v^{-} x_{0}$ is a spanning tree of G. If $\operatorname{deg}_{T}\left(x_{0}\right)=2$, then $L\left(T^{\prime}\right)=S$, a contradiction. Hence $\operatorname{deg}_{T}\left(x_{0}\right) \geq 3$. Then $L\left(T^{\prime}\right)=L(T)$ and $\operatorname{deg}_{T}\left(x_{0}\right)>\operatorname{deg}_{T^{\prime}}\left(x_{0}\right)$. This contradicts (T1).

Hence we may assume that $v^{-} \neq y_{i}$. Then $T^{\prime}:=T+v y_{i}+v^{-} w-v v^{-}-x_{0} y_{i}$ is a spanning tree of G. If $\operatorname{deg}_{T}\left(x_{0}\right)=2$, then $L\left(T^{\prime}\right)=S$, a contradiction. Hence $\operatorname{deg}_{T}\left(x_{0}\right) \geq 3$. Then $L\left(T^{\prime}\right)=L(T)$ and $\operatorname{deg}_{T}\left(x_{0}\right)>\operatorname{deg}_{T^{\prime}}\left(x_{0}\right)$. This contradicts (T1).
(iv) Suppose that for some $i=1,2, \ldots, m$, there exists $v \in N_{G}\left(y_{i}\right) \cap V\left(T_{i}\right)$ such that v^{-}is adjacent to $w \in\left(B(T) \backslash B\left(T_{i}\right)\right)^{+}$. Note that $v^{-} \neq y_{i}$ by Claim 3.2.2 (iii). Then $T^{\prime}:=T+v y_{i}+v^{-} w-v v^{-}-w w^{-}$is a spanning tree of G with $L\left(T^{\prime}\right)=L(T)$, $N_{T^{\prime}}\left(x_{0}\right)=N_{T}\left(x_{0}\right)$, and $\operatorname{deg}_{T^{\prime}}\left(y_{i}\right) \geq 3$ and so $T^{\prime} \in \mathcal{T}$. This contradicts Claim 3.2.2 (i).

Claim 3.2.3 $\operatorname{dist}_{G}\left(y_{i}, y_{j}\right)=2$ for each $1 \leq i<j \leq m$.
Proof. By Claims 3.2.1 and 3.2.2 (iii), y_{i} and y_{j} are nonadjacent in G. Since each two vertices y_{i} and y_{j} have the common neighbor $x_{0}, \operatorname{dist}_{G}\left(y_{i}, y_{j}\right)=2$ for each $1 \leq i<j \leq m$.

Claim 3.2.4 $N_{T}\left(y_{i}\right) \cap S_{i}=\emptyset$ for each $i=1,2, \ldots, m$.
Proof. Suppose that $N_{T}\left(y_{i}\right) \cap S_{i} \neq \emptyset$ for some $i=1,2, \ldots, m$. Then, by Claim 3.2.2 (i), $\left|S_{i}\right|=1$ and $\left|T_{i}\right|=2$. Moreover, $N_{G}\left(y_{i}\right) \subseteq S$ by Claim 3.2.2 (iii). Hence $G-S$ is disconnected because $m \geq 2$. This contradicts the assumption that G is $(k+1)$-connected.

Claim 3.2.5 $\left|N_{G}\left(y_{i}\right) \cap V\left(T_{i}\right)\right| \leq\left|T_{i}\right|-\left|S_{i}\right|-1$ for each $i=1,2, \ldots, m$.
Proof. We first assume that T_{i} which has no branch vertex of T. Then $\left|S_{i}\right|=1$. Since G is $(k+1)$-connected and $|S|=k, G-S$ is connected. Thus, for some $1 \leq j \leq m$ with
$j \neq i$, there exist two vertices $z_{i} \in V\left(T_{i}\right) \backslash S_{i}$ and $z_{j} \in V\left(T_{j}\right) \backslash S_{j}$ such that $z_{i} z_{j} \in E(G)$. By Claim 3.2.2 (iii), we obtain $y_{i} \neq z_{i}$ and $N_{G}\left(y_{i}\right) \cap\{z\}^{+}=\emptyset$. Therefore

$$
\left|N_{G}\left(y_{i}\right) \cap V\left(T_{i}\right)\right| \leq\left|T_{i}\right|-\left|\left\{y_{i}\right\} \cup\left\{z_{i}\right\}^{+}\right|=\left|T_{i}\right|-2=\left|T_{i}\right|-\left|S_{i}\right|-1 .
$$

Next, we conside the case when T_{i} has at least one branch vertex of T. For each vertex $\ell \in S_{i}$, let $f(\ell)$ denote the unique vertex in $B\left(T_{i}\right)^{+}$such that $\operatorname{dist}_{T}(f(\ell), \ell)$ is as small as possible. Note that $f(\ell) \neq f\left(\ell^{\prime}\right)$ for any distinct two vertices ℓ and ℓ^{\prime} in S_{i}. By Claim 3.2.2 (ii), $y_{i} f(\ell) \notin E(G)$ for all $\ell \in S$. Since $y_{i} \neq f(\ell)$ for all $\ell \in S_{i}$,

$$
\left|N_{G}\left(y_{i}\right) \cap V\left(T_{i}\right)\right| \leq\left|T_{i}\right|-\left|\left\{y_{i}\right\} \cup S_{i}\right|=\left|T_{i}\right|-\left|S_{i}\right|-1 .
$$

Hence this claim holds.

By Claims 3.2.2 (iii), 3.2.4, and 3.2.5 for each $i=1,2, \ldots, m$,

$$
\begin{aligned}
\operatorname{deg}_{G}\left(y_{i}\right) & \leq\left|N_{G}\left(y_{i}\right) \cap\left(S \backslash S_{i}\right)\right|+\left|N_{G}\left(y_{i}\right) \cap V\left(T_{i}\right)\right| \\
& \leq|S|-\left|S_{i}\right|+\left|T_{i}\right|-\left|S_{i}\right|-1=|S|+\left|T_{i}\right|-2\left|S_{i}\right|-1 .
\end{aligned}
$$

Hence we obtain

$$
\begin{align*}
\sum_{i=1}^{m} \operatorname{deg}_{G}\left(y_{i}\right) & \leq m|S|+\sum_{i=1}^{m}\left|T_{i}\right|-2 \sum_{i=1}^{m}\left|S_{i}\right|-m \\
& =m|S|+|G|-\left|\left\{x_{0}\right\}\right|-2\left(|S|-\left|\left\{x_{0}\right\}\right|\right)-m \\
& =|G|+(m-2)|S|-m+1 \tag{3.1}
\end{align*}
$$

On the other hand, by Claim 3.2.3 and the assumption of Theorem 3.9, at least $m-1$ vertices in $\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ have degree more than or equal to $(|G|+1) / 2$ in G. Besides, $\delta(G) \geq k+1=|S|+1$ as G is $(k+1)$-connected. Thus we obtain

$$
\begin{equation*}
\sum_{i=1}^{m} \operatorname{deg}_{G}\left(y_{i}\right) \geq(m-1) \frac{|G|+1}{2}+|S|+1 \tag{3.2}
\end{equation*}
$$

By (3.1) and (3.2),

$$
\begin{equation*}
(m-3)|S| \geq \frac{m-3}{2}|G|+\frac{3 m-1}{2} . \tag{3.3}
\end{equation*}
$$

We divide the proof into the following two cases according to the value of $m=\left|N_{T}\left(x_{0}\right)\right|$.
Case $3.2 .1 m \geq 3$.
Substituting $m=3$ into the inequality (3.3), we have $0 \geq 4$, a contradiction. Thus we consider the case $m \geq 4$. By (3.3), we obtain

$$
|S| \geq \frac{1}{2}\left(|G|+\frac{3 m-1}{m-3}\right)>\frac{1}{2}(|G|+1)
$$

Since G is $(k+1)$-connected, $\delta(G) \geq k+1=|S|+1>(|G|+1) / 2+1$. Then G satisfies all the conditions of Theorem 3.10 and thus it is k-leaf-connected.

Case 3.2.2 $m=2$.

By Claim 3.2.3 and the degree condition of Theorem 3.9, at least one of y_{1} and y_{2} have degree more than or equal to $(|G|+1) / 2$ in G. Without loss of generality, we may assume that

$$
\operatorname{deg}_{G}\left(y_{1}\right) \geq \frac{|G|+1}{2}
$$

Using the inequality (3.1) with $m=2$, we have

$$
\frac{|G|+1}{2}+\operatorname{deg}_{G}\left(y_{2}\right) \leq \operatorname{deg}_{G}\left(y_{1}\right)+\operatorname{deg}_{G}\left(y_{2}\right) \leq|G|-1
$$

Hence $\operatorname{deg}_{G}\left(y_{2}\right) \leq(|G|-3) / 2$. Since $G-S$ is connected, there exist two vertices $z_{1} \in$ $V\left(T_{1}\right) \backslash S_{1}$ and $z_{2} \in V\left(T_{2}\right) \backslash S_{2}$ with $z_{1} z_{2} \in E(G)$. Note that $z_{i} \neq y_{i}$ for each $i=1,2$ by Claims 3.2 .1 and 3.2.2 (iii). Since Claim 3.2.2 (iv) asserts that $\left\{z_{2}\right\}^{+} \cap N_{G}\left(y_{2}\right)=\emptyset$, there exists a vertex $z \in V\left(T_{2}\right)$ which is nonadjacent to y_{2} in G. Choose such a vertex z so that $\left|P_{T}\left(y_{2}, z\right)\right|$ is as small as possible. By the choice of z, y_{2} is adjacent to all the vertices of $V\left(P_{T}\left(y_{2}, z^{-}\right)\right) \backslash\left\{y_{2}\right\}$ in G. Thus $\operatorname{dist}_{G}\left(y_{2}, z\right)=2$. By $\operatorname{deg}_{G}\left(y_{2}\right)<(|G|+1) / 2$ and the assumption of this theorem, we obtain

$$
\operatorname{deg}_{G}(z) \geq \frac{|G|+1}{2}
$$

Since y_{2} is adjacent to all the vertices of $V\left(P_{T}\left(y_{2}, z^{-}\right)\right) \backslash\left\{y_{2}\right\}$ in G, it follows from Claim 3.2.2 (ii) that $\left(V\left(P_{T}\left(y_{2}, z^{-}\right)\right) \backslash\left\{z^{-}\right\}\right) \cap B\left(T_{2}\right)=\emptyset$.

Claim 3.2.6 $\left|N_{G}\left(y_{1}\right) \cap V\left(T_{1}\right)\right|+\left|N_{G}(z) \cap V\left(T_{1}\right)\right| \leq\left|T_{1}\right|$.
Proof. To show the claim, suppose first that $\left(N_{G}\left(y_{1}\right) \cap V\left(T_{1}\right)\right)^{-} \cap N_{G}(z) \neq \emptyset$. Then there exists a vertex $w \in N_{G}\left(y_{1}\right) \cap V\left(T_{1}\right)$ with $w^{-} \in N_{G}(z)$. Then by Claim 3.2.2 (iv), $N_{G}\left(w^{-}\right) \subseteq S \cup V\left(T_{1}\right)$ and so $z \in S_{2}$. Since y_{2} is adjacent to all the vertices of $V\left(P_{T_{2}}\left(y_{2}, z^{-}\right)\right) \backslash\left\{y_{2}\right\}$ in G, it follows from Claim 3.2.2 (iii) that $z^{-}=z_{2}$. Then $T^{\prime}:=$ $T+y_{1} w+w^{-} z+z_{1} z_{2}-x_{0} y_{1}-z z^{-}-w^{-} w$ is a spanning tree with $L\left(T^{\prime}\right)=S$. This contradicts the assumpution that G has no spanning tree T with $L(T)=S$. Hence $\left(N_{G}\left(y_{1}\right) \cap V\left(T_{1}\right)\right)^{-} \cap N_{G}(z)=\emptyset$. Since $\left|N_{G}\left(y_{1}\right) \cap V\left(T_{1}\right)\right|=\left|\left(N_{G}\left(y_{1}\right) \cap V\left(T_{1}\right)\right)^{-}\right|$holds by Claim 3.2.2 (ii), we obtain

$$
\left|N_{G}\left(y_{1}\right) \cap V\left(T_{1}\right)\right|+\left|N_{G}(z) \cap V\left(T_{1}\right)\right|=\left|\left(N_{G}\left(y_{1}\right) \cap V\left(T_{1}\right)\right)^{-}\right|+\left|N_{G}(z) \cap V\left(T_{1}\right)\right| \leq\left|T_{1}\right| .
$$

Therefore the claim is proved.

Subcase 3.2.2.1 $B\left(T_{2}\right)=\emptyset$.

By Claim 3.2.2 (iii) and $\left|S_{2}\right|=1$,

$$
\left|N_{G}\left(y_{1}\right) \cap V\left(T_{2}\right)\right|+\left|N_{G}(z) \cap V\left(T_{2}\right)\right| \leq\left|S_{2}\right|+\left|T_{2}\right|-\left|\left\{z, y_{2}\right\}\right|=\left|T_{2}\right|-1
$$

The above inequality together with Claim 3.2.6 implies

$$
\operatorname{deg}_{G}\left(y_{1}\right)+\operatorname{deg}_{G}(z) \leq\left|T_{1}\right|+\left|T_{2}\right|-1+2\left|\left\{x_{0}\right\}\right|=|G|
$$

This contradicts $\operatorname{deg}_{G}\left(y_{1}\right)+\operatorname{deg}_{G}(z) \geq|G|+1$.
Subcase 3.2.2.2 $B\left(T_{2}\right) \neq \emptyset$.
For any $v \in V\left(T_{2}\right)$, we denote by $S(v)$ the set of vertices ℓ in S_{2} such that $P_{T}\left(v^{-}, \ell\right)$ contains v. In other words, $S(v)$ is defined as the set of leaves in S_{2} which exist in the direction away from v in T when v is not a leaf in T_{2}; otherwise $S(v)=\{v\}$.

Claim 3.2.7 The following two statements hold for any vertex $v \in B\left(T_{2}\right)^{+}$,
(i) $y_{2} \notin\left(N_{G}\left(y_{1}\right) \cap V\left(T_{2}\right)\right)^{-} \cup N_{G}(v)$ and
(ii) $\left(N_{G}\left(y_{1}\right) \cap V\left(T_{2}\right)\right)^{-} \cap N_{G}(v) \subseteq S(v)^{-}$.

Proof. (i) By Claim 3.2.2 (ii), y_{2} is not adjacent to v in G. Assume that there exists $w \in N_{G}\left(y_{1}\right) \cap V\left(T_{2}\right)$ with $w^{-}=y_{2}$. By $B\left(T_{2}\right) \neq \emptyset$ and Claim 3.2.2 (iii), $y_{2} \in B\left(T_{2}\right)$. This contradicts Claim 3.2.2 (i).
(ii) Suppose that $\left(\left(N_{G}\left(y_{1}\right) \cap V\left(T_{2}\right)\right)^{-} \cap N_{G}(v)\right) \backslash S(v)^{-} \neq \emptyset$. Let $w \in\left(N_{G}\left(y_{1}\right) \cap\right.$ $\left.V\left(T_{2}\right)\right) \backslash S(v)$ be a vertex such that $v w^{-} \in E(G)$. Then $w \in S_{2}$ because Claim 3.2.2 (iii) with y_{1} implies $N_{G}\left(y_{1}\right) \subseteq S \cup V\left(T_{1}\right)$. Note that $P_{T}\left(w, v^{-}\right)$does not contain v by $v \notin S(v)$. By $v^{-} \in B\left(T_{2}\right)$ and Claim 3.2.2 (ii), $w^{-} \neq v^{-}$and thus $v w^{-} \notin E(T)$. Then $T^{\prime}:=T+w y_{1}+v w^{-}-w w^{-}-v v^{-}$is a spanning tree of G with $L\left(T^{\prime}\right)=L(T)$, $N_{T^{\prime}}\left(x_{0}\right)=N_{T}\left(x_{0}\right)$, and $\operatorname{deg}_{T^{\prime}}\left(y_{i}\right) \geq 3$. This yields $T^{\prime} \in \mathcal{T}$, which contradicts Claim 3.2.2 (i).

Define X as the set of vertices in the path components of $T_{2}-z$ containing a vertex in $\{z\}^{+}$. (In Fig. 3.1, X consists of the black vertices.) Note that $X \cap B\left(T_{2}\right)=\emptyset$ and it might be $X=\emptyset$. Let $x \in\left(N_{G}\left(y_{1}\right) \cap V\left(T_{2}\right)\right) \backslash X$. Since x is adjacent to y_{1} in G, we obtain $x \in S_{2} \backslash X$ by Claim 3.2.2 (iii). We define a function g from $\left(N_{G}\left(y_{1}\right) \cap V\left(T_{2}\right)\right) \backslash X$ to $V\left(T_{2}\right)$ as follows. If $x \in S(z)$, then by $x \notin X, P_{T}(z, x)$ contains a vertex in $B\left(T_{2}\right)$ and define $g(x) \in B\left(T_{2}\right)^{+}$as a vertex such that $\left|P_{T}(x, g(x))\right|$ is as small as possible; otherwise $g(x):=x^{-}$(see Fig. 3.1). By Claim 3.2.2 (ii), $g(x) \notin X$ for each $x \in\left(N_{G}\left(y_{1}\right) \cap V\left(T_{2}\right)\right) \backslash X$. Since $x \in S_{2} \backslash X$, each pair of two vertices x and $g(x)$ is a one-to-one correspondence. Moreover, $g(x) \neq z$ by the definition of X.

Choose a spanning tree $T \in \mathcal{T}$ so that
(T2) $\sum_{x \in S \backslash\left\{x_{0}\right\}}\left|P_{T}\left(x_{0}, x\right)\right|$ is as small as possible subject to (T1).

Figure 3.1: A tree T, where dotted lines are the edges not in $T, g(x)=x^{\prime}$, and $g(y)=y^{\prime}$.

Claim 3.2.8 $z g(x) \notin E(G)$ for each $x \in\left(N_{G}\left(y_{1}\right) \cap V\left(T_{2}\right)\right) \backslash X$.

Proof. If $\left(N_{G}\left(y_{1}\right) \cap V\left(T_{2}\right)\right) \backslash X=\emptyset$, then Claim 3.2.8 holds. Thus we assume that there exists a vertex $x \in\left(N_{G}\left(y_{1}\right) \cap V\left(T_{2}\right)\right) \backslash X$. Suppose first that $x \notin S(z)$. Then $B\left(T_{2}\right) \cap$ $V\left(P_{T}\left(y_{2}, z^{-}\right)\right) \neq \emptyset$. Since $\left(V\left(P_{T}\left(y_{2}, z^{-}\right)\right) \backslash\left\{z^{-}\right\}\right) \cap B\left(T_{2}\right)=\emptyset$, we obtain $z^{-} \in B\left(T_{2}\right)$. Since $z \in B\left(T_{2}\right)^{+}$and $g(x)=x^{-}$, it follows from Claim 3.2.7 (ii) that $z g(x) \notin E(G)$.

We next consider the case when $x \in S(z)$. If $z g(x) \in E(G)$, then $T^{\prime}:=T+z g(x)-$ $g(x) g(x)^{-}$is a spanning tree of G such that $L\left(T^{\prime}\right)=L(T), N_{T^{\prime}}\left(x_{0}\right)=N_{T}\left(x_{0}\right)$, and $\sum_{x \in S \backslash\left\{x_{0}\right\}}\left|P_{T^{\prime}}\left(x_{0}, x\right)\right|<\sum_{x \in S \backslash\left\{x_{0}\right\}}\left|P_{T}\left(x_{0}, x\right)\right|$. This contradicts (T2).

Hence Claim 3.2.8 holds.
By Claim 3.2.8, we obtain

$$
\begin{align*}
\left|\left(N_{G}\left(y_{1}\right) \cap V\left(T_{2}\right)\right) \backslash X\right|+\left|\left(N_{G}(z) \cap V\left(T_{2}\right)\right) \backslash X\right| & \leq\left|T_{2}\right|-|X|-\left|\left\{y_{2}, z\right\}\right| \\
& =\left|T_{2}\right|-|X|-2 . \tag{3.4}
\end{align*}
$$

We shall show that $\left|N_{G}\left(y_{1}\right) \cap X\right|+\left|N_{G}(z) \cap X\right| \leq|X|+1$. To prove it, we need the following three claims.

Claim 3.2.9 For any $v \in B\left(T_{2}\right)^{+}, \operatorname{deg}_{G}(v)<(|G|+1) / 2$ if $|S(v)|=1$.
Proof. Suppose that there exists a vertex $v \in B\left(T_{2}\right)^{+}$such that $|S(v)|=1$ and $\operatorname{deg}_{G}(v) \geq(|G|+1) / 2$. Let ℓ be the unique vertex in $S(v)$. We distinguish two cases.

We first consider the case $v \notin\left(N_{G}\left(y_{1}\right) \cap V\left(T_{2}\right)\right)^{-}$. If $v=\ell$, then by $v \in B\left(T_{2}\right)^{+}$and Claim 3.2.2 (ii), we obtain $y_{1} \ell \notin E(G)$. Hence

$$
\left|N_{G}\left(y_{1}\right) \cap\{\ell\}\right|+\left|N_{G}(v) \cap\{\ell\}\right| \leq \begin{cases}0 & \text { if } v=\ell \\ 2 & \text { otherwise }\end{cases}
$$

Claim 3.2.2 (ii) asserts that $\left|N_{G}\left(y_{1}\right) \cap\left(V\left(T_{2}\right) \backslash\{\ell\}\right)\right|=\left|\left(N_{G}\left(y_{1}\right) \cap\left(V\left(T_{2}\right) \backslash\{\ell\}\right)\right)^{-}\right|$and Claims 3.2.7 (i) and (ii) yield

$$
\begin{aligned}
& \left|N_{G}\left(y_{1}\right) \cap\left(V\left(T_{2}\right) \backslash\{\ell\}\right)\right|+\left|N_{G}(v) \cap\left(V\left(T_{2}\right) \backslash\{\ell\}\right)\right| \\
= & \left|\left(N_{G}\left(y_{1}\right) \cap\left(V\left(T_{2}\right) \backslash\{\ell\}\right)\right)^{-}\right|+\left|N_{G}(v) \cap\left(V\left(T_{2}\right) \backslash\{\ell\}\right)\right| \\
\leq & \begin{cases}\left|T_{2}\right|-\left|\left\{y_{2}, \ell\right\}\right|+\left|S(v)^{-}\right|=\left|T_{2}\right|-1 & \text { if } v=\ell ; \\
\left|T_{2}\right|-\left|\left\{y_{2}\right\}\right|-|\{\ell, v\}|=\left|T_{2}\right|-3 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Hence we obtain

$$
\begin{equation*}
\left|N_{G}\left(y_{1}\right) \cap V\left(T_{2}\right)\right|+\left|N_{G}(v) \cap V\left(T_{2}\right)\right| \leq\left|T_{2}\right|-1 . \tag{3.5}
\end{equation*}
$$

Since $v \in B\left(T_{2}\right)^{+}$, it follows from Claim 3.2.2 (iv) that $\left(N_{G}\left(y_{1}\right) \cap V\left(T_{1}\right)\right)^{-} \cap N_{G}(v)=\emptyset$. By Claim 3.2.2 (ii), $\left|N_{G}\left(y_{1}\right) \cap V\left(T_{1}\right)\right|=\left|\left(N_{G}\left(y_{1}\right) \cap V\left(T_{1}\right)\right)^{-}\right|$. Hence

$$
\begin{align*}
& \left|N_{G}\left(y_{1}\right) \cap V\left(T_{1}\right)\right|+\left|N_{G}(v) \cap V\left(T_{1}\right)\right| \\
= & \left|\left(N_{G}\left(y_{1}\right) \cap V\left(T_{1}\right)\right)^{-}\right|+\left|N_{G}(v) \cap V\left(T_{1}\right)\right| \leq\left|T_{1}\right| . \tag{3.6}
\end{align*}
$$

By (3.5) and (3.6),

$$
\operatorname{deg}_{G}\left(y_{1}\right)+\operatorname{deg}_{G}(v) \leq\left|T_{1}\right|+\left|T_{2}\right|-1+2\left|\left\{x_{0}\right\}\right|=|G| .
$$

On the other hand, $\operatorname{deg}_{G}\left(y_{1}\right)+\operatorname{deg}_{G}(v) \geq|G|+1$. This is a contradiction.
Next, we consider the case $v \in\left(N_{G}\left(y_{1}\right) \cap V\left(T_{2}\right)\right)^{-}$. Note that $v=\ell^{-}$and $\mid N_{G}\left(y_{1}\right) \cap$ $\{\ell\}\left|+\left|N_{G}(v) \cap\{\ell\}\right|=2\right.$. By Claim 3.2.2 (ii), $|\left(N_{G}\left(y_{1}\right) \cap V\left(T_{2}\right)\right) \backslash\{\ell\}|=|\left(\left(N_{G}\left(y_{1}\right) \cap\right.\right.$ $\left.\left.V\left(T_{2}\right)\right) \backslash\{\ell\}\right)^{-} \mid$and by Claims 3.2.7 (i) and (ii),

$$
\begin{aligned}
& \left|\left(N_{G}\left(y_{1}\right) \cap V\left(T_{2}\right)\right) \backslash\{\ell\}\right|+\left|\left(N_{G}(v) \cap V\left(T_{2}\right)\right) \backslash\{\ell\}\right| \\
= & \left|\left(\left(N_{G}\left(y_{1}\right) \cap V\left(T_{2}\right)\right) \backslash\{\ell\}\right)^{-}\right|+\left|\left(N_{G}(v) \cap V\left(T_{2}\right)\right) \backslash\{\ell\}\right| \\
\leq & \left|T_{2}\right|-\left|\left\{y_{2}, \ell, v\right\}\right|+\left|S(v)^{-}\right|=\left|T_{2}\right|-2 .
\end{aligned}
$$

Hence we obtain

$$
\begin{equation*}
\left|N_{G}\left(y_{1}\right) \cap V\left(T_{2}\right)\right|+\left|N_{G}(v) \cap V\left(T_{2}\right)\right| \leq\left|T_{2}\right| . \tag{3.7}
\end{equation*}
$$

Suppose that v is adjacent to a vertex $z_{1}^{\prime} \in V\left(T_{1}\right) \backslash S_{1}$. Note that $v \ell \in E(T)$. Then $T^{\prime}:=T+y_{1} \ell+v z_{1}^{\prime}-v \ell-x_{0} y_{1}$ is a spanning tree of G with $L\left(T^{\prime}\right)=S$. Hence T^{\prime} is a required tree, a contradiction. Hence $\left(N_{G}(v) \cap V\left(T_{1}\right)\right) \subseteq S_{1}$. By Claim 3.2.5,

$$
\begin{equation*}
\left|N_{G}\left(y_{1}\right) \cap V\left(T_{1}\right)\right|+\left|N_{G}(v) \cap V\left(T_{1}\right)\right|=\left|T_{1}\right|-\left|S_{1}\right|-1+\left|S_{1}\right|=\left|T_{1}\right|-1 . \tag{3.8}
\end{equation*}
$$

By (3.7) and (3.8),

$$
\operatorname{deg}_{G}\left(y_{1}\right)+\operatorname{deg}_{G}(v) \leq\left|T_{1}\right|-1+\left|T_{2}\right|+2\left|\left\{x_{0}\right\}\right|=|G| .
$$

This contradicts $\operatorname{deg}_{G}\left(y_{1}\right)+\operatorname{deg}_{G}(v) \geq|G|+1$.

Claim 3.2.10 $z \notin\left(N_{G}\left(y_{1}\right) \cap X\right)^{-}$.
Proof. Suppose that $z \in\left(N_{G}\left(y_{1}\right) \cap X\right)^{-}$. Take $\ell \in N_{G}\left(y_{1}\right) \cap X$ with $\ell^{-}=z$. By the assumption of Subcase 3.2.2.2 and Claim 3.2.2 (ii), $z^{-} \in B\left(T_{2}\right)$. Hence $z \in B\left(T_{2}\right)^{+}$. By the definition of X, we obtain $z, \ell \notin B\left(T_{2}\right)$. Hence $|S(z)|=1$. Therefore, by Claim 3.2.9, $\operatorname{deg}_{G}(z)<(|G|+1) / 2$. This contradicts $\operatorname{deg}_{G}(z) \geq(|G|+1) / 2$.

Claim 3.2.11 $\left|\left(N_{G}\left(y_{1}\right) \cap X\right)^{-} \cap N_{G}(z)\right| \leq 1$.
Proof. Suppose that $\left|\left(N_{G}\left(y_{1}\right) \cap X\right)^{-} \cap N_{G}(z)\right| \geq 2$. Then there exist two distinct vertices $a_{1}, a_{2} \in X$ such that $\left(N_{G}\left(y_{1}\right) \cap\left\{a_{i}\right\}\right)^{-} \cap N_{G}(z) \neq \emptyset$ for each $i=1,2$. Since $a_{1}, a_{2} \in S_{2}$ by Claim 3.2.2 (iii), we have $z \in B\left(T_{2}\right)$. Furthermore, $a_{1}, a_{2} \notin\{z\}^{+}$by Claim 3.2.2 (ii). Let $w_{i} \in\{z\}^{+} \cap V\left(P_{T}\left(z, a_{i}\right)\right)$ for each $i=1,2$. By Claim 3.2.9, $\operatorname{deg}_{G}\left(w_{i}\right)<(|G|+1) / 2$ for each $i=1,2$. This together with the assumption of the theorem implies $w_{1} w_{2} \in E(G)$. Note that $a_{i} \neq w_{i}$ for each $i=1,2$. Then $T^{\prime}:=T+a_{1} y_{1}+a_{1}^{-} z+w_{1} w_{2}-a_{1} a_{1}^{-}-z w_{1}-z w_{2}$ is a spanning tree of G with $L\left(T^{\prime}\right)=L(T), N_{T^{\prime}}\left(x_{0}\right)=N_{T}\left(x_{0}\right)$, and $\operatorname{deg}_{T^{\prime}}\left(y_{1}\right) \geq 3$. This contradicts Claim 3.2.2 (i).

By Claim 3.2.2 (ii), $\left|N_{G}\left(y_{1}\right) \cap X\right|=\left|\left(N_{G}\left(y_{1}\right) \cap X\right)^{-}\right|$. By Claims 3.2.10 and 3.2.11, we obtain

$$
\left|N_{G}\left(y_{1}\right) \cap X\right|+\left|N_{G}(z) \cap X\right|=\left|\left(N_{G}\left(y_{1}\right) \cap X\right)^{-}\right|+\left|N_{G}(z) \cap X\right| \leq|X|+1 .
$$

By (3.4), Claim 3.2.6, and the above inequality, we obtain

$$
\operatorname{deg}_{G}\left(y_{1}\right)+\operatorname{deg}_{G}(z) \leq\left|T_{1}\right|+\left|T_{2}\right|-1+2\left|\left\{x_{0}\right\}\right|=|G| .
$$

This contradicts $\operatorname{deg}_{G}\left(y_{1}\right)+\operatorname{deg}_{G}(z) \geq|G|+1$. The proof of Subcase 3.2.2.2 is shown.
This completes the proof of Theorem 3.9.

Chapter 4

Long paths in bipartite graphs

4.1 A Hamilton path in bipartite graphs

In 1963, Moon and Moser obtained a degree condition for bipartite graphs to have a Hamiton cycle (resp. path). For a bipartite graph G with bipartition (A, B), we define

$$
\sigma_{1,1}(G)=\min \left\{\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y): x \in A y \in B, x y \notin E(G)\right\}
$$

if G is a complete bipartite, then $\sigma_{1,1}(G)=\infty$.
Theorem 4.1 (Moon and Moser [44]) Let G be a connected bipartite graph with bipartition (A, B).
(i) If $|A| \leq|B| \leq|A|+1$ and $\sigma_{2}(G) \geq|B|$, then G has a Hamilton path.
(ii) If $|A|=|B|=n \geq 2$ and $\sigma_{1,1}(G) \geq n+1$, then G has a Hamilton cycle.

Note that the conditions $|A| \leq|B| \leq|A|+1$ and $|A|=|B|$ are necessary conditions for bipartite graphs to have a Hamilton path and a Hamilton cycle, respectively.

4.2 Long paths in bipartite graphs and path-bistar bipartite Ramsey numbers

To find a long path in graphs is one of generalizations of finding a Hamilton path. Inspired by Theorems 4.1, we study a Fan-type condition for long paths in bipartite graphs in this section.

In Graph Theory, many types of degree conditions were studied for some important properties. We explain it with the Hamiltonicity of graphs as an example. Dirac [20] proved that if a graph G of order $n \geq 3$ satisfies $\operatorname{deg}_{G}(x) \geq \frac{n}{2}$ for all $x \in V(G)$, then G has a Hamilton cycle. This result influenced sufficient conditions for the existence of a Hamilton cycle with many extensions, for example, degree-sum condition, neighborhood-union
condition, and so on (see a survey [37]). One of important extensions is a Fan-type degree condition that we introduce in Chapter 2. In Graph Theory, similar situations occur, i.e., a minimum degree condition is frequently replaced by a Fan-type condition, that is a condition concerning $\max \left\{\operatorname{deg}_{G}(x), \operatorname{deg}_{G}(y)\right\}$ for non-adjacent vertices x and y (see, for example, [40, 43, 57]). We carry the concept to bipartite graphs. The following is one of our main results.

Theorem 4.2 Let m and n be positive integers with $n \geq m$. Let G be a bipartite graph having partite sets X_{1} and X_{2} with $\left|X_{1}\right|=\left|X_{2}\right|=n$. If
(D1) $\max \left\{\operatorname{deg}_{G}\left(x_{1}\right), \operatorname{deg}_{G}\left(x_{2}\right)\right\} \geq m$ or
(D2) $\min \left\{\operatorname{deg}_{G}\left(x_{1}\right), \operatorname{deg}_{G}\left(x_{2}\right)\right\} \geq \frac{n+1}{2}$
for all vertices $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ with $x_{1} x_{2} \notin E(G)$, then G contains a path P with $|V(P)| \geq 2 m$.

The condition (D1) in Theorem 4.2 is best possible because $G=K_{n, n}-E\left(K_{m-1, m-1} \cup\right.$ $K_{n-m+1, n-m+1}$) satisfies $\max \left\{\operatorname{deg}_{G}\left(x_{1}\right), \operatorname{deg}_{G}\left(x_{2}\right)\right\} \geq m-1$ for all vertices $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ with $x_{1} x_{2} \notin E(G)$, and any paths of G have at most $2 m-1$ vertices.

One of our main targets in this section is the bipartite Ramsey number. Let H^{r} and H^{b} be bipartite graphs. The following fact is obtained by similar argument in the original Ramsey's theorem: there exists a positive integer N such that for any edge-disjoint spanning subgraphs G^{r} and G^{b} of $K_{N, N}$ with $E\left(G^{r}\right) \cup E\left(G^{b}\right)=E\left(K_{N, N}\right), H^{r} \subset G^{r}$ or $H^{b} \subset$ G^{b}. The smallest value of N satisfying the above property is called the bipartite Ramsey number with respect to H^{r} and H^{b} and denoted by $b\left(H^{r}, H^{b}\right)$. Note that $b\left(H^{r}, H^{b}\right)=$ $b\left(H^{b}, H^{r}\right)$. If H^{b} is a star, then the determination problem of $b\left(H^{r}, H^{b}\right)$ is reduced to a problem of finding H^{r} under a high minimum degree condition. Thus the bipartite Ramsey numbers involving stars tend to be simply determined. For example, Harary et al. [29] proved that $b\left(K_{1, s}, K_{1, t}\right)=s+t-1$ and Hattingh and Henning [30] completely determined the value $b\left(P_{s}, K_{1, t}\right)$ for $s \geq 2$ and $t \geq 2$. Further results for the bipartite Ramsey number related to stars were given in [17,53]. As we mentioned above, some bipartite Ramsey numbers involving stars are determined using a high minimum degree condition problem. We will later show that a Fan-type condition gives manageable objects which can be replaced by stars.

Let n_{1} and n_{2} be non-negative integers, and let S_{1} and S_{2} be two vertex-disjoint stars having $n_{1}+1$ vertices and $n_{2}+1$ vertices, respectively. The (n_{1}, n_{2})-bistar, denoted by $B_{n_{1}, n_{2}}$, is the graph obtained from S_{1} and S_{2} by joining their centers. Note that the $\left(n_{1}, 0\right)$-bistar is the star having $n_{1}+2$ vertices and the $(0,0)$-bistar is the connected graph of order two. Recently, Hattingh and Joubert [31] proved that $b\left(B_{s, s}, B_{t, t}\right)=s+t+1$, and Alm et al. [2] extended the result as $b\left(B_{s_{1}, s_{2}}, B_{t_{1}, t_{2}}\right)=s_{1}+t_{1}+1$ for $s_{1} \geq s_{2}$ and $t_{1} \geq t_{2}$. In particular, we obtain $b\left(K_{1, s}, K_{1, t}\right)=b\left(B_{s-1, s-1}, B_{t-1, t-1}\right)$. Hence the bipartite Ramsey number involving bistars seems to be related to one involving stars.

Recall that $b\left(P_{s}, K_{1, t+1}\right)\left(=b\left(P_{s}, B_{t, 0}\right)\right)$ was determined by Hattingh and Henning [30]. In this paper, using Theorem 4.2, we extend their result and determine the value $b\left(P_{s}, B_{t_{1}, t_{2}}\right)$ as following.

Theorem 4.3 Let s, t_{1} and t_{2} be integers with $s \geq 2$ and $t_{1} \geq t_{2} \geq 0$. Then the following hold.
(i) If $t_{1}=t_{2}$, then $b\left(P_{s}, B_{t_{1}, t_{2}}\right)=\left\lfloor\frac{s-1}{2}\right\rfloor+t_{1}+1$.
(ii) Assume that $t_{1}>t_{2}$.
(ii-a) If $t_{1} \geq\left\lfloor\frac{s-1}{2}\right\rfloor$, then

$$
b\left(P_{s}, B_{t_{1}, t_{2}}\right)= \begin{cases}\left\lfloor\frac{s-1}{2}\right\rfloor+t_{1}+1 & \left(s \text { is even, or } s \text { is odd and } t_{1} \equiv 0\left(\bmod \frac{s-1}{2}\right)\right) \\ \left\lfloor\frac{s-1}{2}\right\rfloor+t_{1} & (\text { otherwise }) .\end{cases}
$$

(ii-b) If $t_{1}<\left\lfloor\frac{s-1}{2}\right\rfloor$, then

$$
b\left(P_{s}, B_{t_{1}, t_{2}}\right)= \begin{cases}2 t_{1}+1 & \left(2 t_{1}-t_{2} \geq\left\lfloor\frac{s-1}{2}\right\rfloor\right) \\ \left\lfloor\frac{s-1}{2}\right\rfloor+t_{2}+1 & (\text { otherwise })\end{cases}
$$

4.2.1 Proof of Theorem 4.2

We start with two lemmas. The following lemma is well-known (see, for example, [30]).
Lemma 4.4 Let m be a positive integer, and let G be a bipartite graph. If $\operatorname{deg}_{G}(x) \geq m$ for all $x \in V(G)$, then G contains a path P such that $|V(P)| \geq 2 m$.

Lemma 4.5 Let m be a positive integer. Let G be a connected bipartite graph having partite sets X_{1} and X_{2} with $\left|X_{1}\right| \geq\left|X_{2}\right|$, and let $x_{1} \in X_{1}$. If $\operatorname{deg}_{G}(x) \geq m$ for all $x \in X_{1}$, then G contains a path P such that x_{1} is an end-vertex of P and $|V(P)| \geq 2 m$.

Proof. We proceed by induction on m. It is clear that the theorem holds for $m=1$. Thus we may assume that $m \geq 2$.

Let $H_{0}=G-\left\{x_{1}, y: y \in N_{G}\left(x_{1}\right), \operatorname{deg}_{G}(y)=1\right\}$. Since $\left|V\left(H_{0}\right)\right| \geq\left|X_{1}-\left\{x_{1}\right\}\right| \geq$ $\left|X_{2}\right|-1 \geq \operatorname{deg}_{G}\left(x_{1}\right)-1 \geq m-1 \geq 1, H_{0}$ is non-empty. Since $\left|V\left(H_{0}\right) \cap X_{1}\right|=\left|X_{1}\right|-1 \geq$ $\left|X_{2}\right|-1 \geq\left|V\left(H_{0}\right) \cap X_{2}\right|-1$, there exists a component H_{1} of H_{0} such that $\left|V\left(H_{1}\right) \cap X_{1}\right| \geq$ $\left|V\left(H_{1}\right) \cap X_{2}\right|-1$. Since G is connected, it follows from the definition of H_{0} that there exists a vertex $x_{2} \in N_{G}\left(x_{1}\right) \cap V\left(H_{1}\right)$ and $\left|V\left(H_{1}\right)\right| \geq 2$.

Since $\left|V\left(H_{1}-x_{2}\right) \cap X_{1}\right|=\left|V\left(H_{1}\right) \cap X_{1}\right| \geq\left|V\left(H_{1}\right) \cap X_{2}\right|-1=\left(\left|V\left(H_{1}-x_{2}\right) \cap X_{2}\right|+1\right)-1$, there exists a component H_{2} of $H_{1}-x_{2}$ such that $\left|V\left(H_{2}\right) \cap X_{1}\right| \geq\left|V\left(H_{2}\right) \cap X_{2}\right|$. Since $\operatorname{deg}_{G}\left(x_{2}\right) \geq 2$, there exists a vertex $x_{3} \in N_{G}\left(x_{2}\right) \cap V\left(H_{2}\right)$. Note that $x_{3} \in X_{1}$ and $\operatorname{deg}_{H_{2}}(x)=\operatorname{deg}_{G}(x)-\left|N_{G}(x)-V\left(H_{2}\right)\right| \geq m-\left|N_{G}(x) \cap\left\{x_{2}\right\}\right| \geq m-1$ for all $x \in V\left(H_{2}\right) \cap X_{1}$. By the induction hypothesis, H_{2} contains a path Q such that x_{3} is an end-vertex of Q and $|V(Q)| \geq 2(m-1)$. Then the path $P=x_{1} x_{2} x_{3} Q$ is a desired path.

Proof of Theorem 4.2. Let m, n, G, X_{1} and X_{2} be as in Theorem 4.2. By way of contradiction, suppose that every path of G has at most $2 m-1$ vertices. Let $P=y_{1} y_{2} \cdots y_{l}$ be a longest path of G. Then $l \leq 2 m-1$. Note that $V(G)-V(P) \neq \emptyset$ because $|V(G)|=2 n$. Without loss of generality, we may assume that $y_{1} \in X_{1}$.

Since P is a longest path, all neighbors of y_{1} are contained in $V(P) \cap X_{2}$. So, if $\operatorname{deg}_{G}\left(y_{1}\right) \geq m$, then $|V(P)|=\left|V(P) \cap X_{1}\right|+\left|V(P) \cap X_{2}\right| \geq 2\left|V(P) \cap X_{2}\right| \geq 2 \operatorname{deg}_{G}\left(y_{1}\right) \geq$ $2 m$, a contradiction. Thus, we have $\operatorname{deg}_{G}\left(y_{1}\right) \leq m-1$.

Suppose that there exists a vertex $u \in X_{2}-V(P)$ such that (D2) $\min \left\{\operatorname{deg}_{G}\left(y_{1}\right), \operatorname{deg}_{G}(u)\right\} \geq \frac{n+1}{2}$ holds. Let $I_{1}=\left\{1 \leq i \leq \frac{l}{2}: y_{1} y_{2 i} \in E(G)\right\}$ and $I_{2}=\left\{1 \leq i \leq \frac{l}{2}: u y_{2 i-1} \in E(G)\right\}$. Note that $\left|I_{1}\right|=\operatorname{deg}_{G}\left(y_{1}\right) \geq \frac{n+1}{2}$ and since y_{l} is not a neighbor of $u,\left|I_{2}\right|=\operatorname{deg}_{G}(u)-\operatorname{deg}_{G-V(P)}(u) \geq \frac{n+1}{2}-\left|X_{1}-V(P)\right|$. Thus,

$$
\begin{aligned}
n-\left|X_{1}-V(P)\right| & =\left|X_{1} \cap V(P)\right| \geq \frac{l}{2} \geq\left|I_{1} \cup I_{2}\right| \\
& =\left|I_{1}\right|+\left|I_{2}\right|-\left|I_{1} \cap I_{2}\right| \geq n+1-\left|X_{1}-V(P)\right|-\left|I_{1} \cap I_{2}\right| .
\end{aligned}
$$

This implies $I_{1} \cap I_{2} \neq \emptyset$, say $i \in I_{1} \cap I_{2}$. Then $y_{l} y_{l-1} \cdots y_{2 i} y_{1} y_{2} \cdots y_{2 i-1} u$ is a path longer than P, a contradiction.

Therefore, for $u \in X_{2}-V(P)$, (D1) $\max \left\{\operatorname{deg}_{G}\left(y_{1}\right), \operatorname{deg}_{G}(u)\right\} \geq m$ holds. Since $\operatorname{deg}_{G}\left(y_{1}\right) \leq m-1$, we have $\operatorname{deg}_{G}(u) \geq m$ for $u \in X_{2}-V(P)$. Since $\left|X_{1}\right|=\left|X_{2}\right|$ and $\left|V(P) \cap X_{1}\right| \geq\left|V(P) \cap X_{2}\right|$, there exists a component H_{0} of $G-V(P)$ such that $\left|V\left(H_{0}\right) \cap X_{2}\right| \geq\left|V\left(H_{0}\right) \cap X_{1}\right|$. Let $h=\max \left\{\left|N_{G}(u) \cap V(P)\right|: u \in V\left(H_{0}\right) \cap X_{2}\right\}$. Take a vertex $u^{*} \in V\left(H_{0}\right) \cap X_{2}$ so that $\left|N_{G}\left(u^{*}\right) \cap V(P)\right|=h$. Since $\left|V(P) \cap X_{1}\right| \leq \frac{l+1}{2} \leq \frac{2 m}{2}$ and $u^{*} y_{1} \notin E(G)$, we have $0 \leq h \leq m-1$. For $u \in V\left(H_{0}\right) \cap X_{2}$, since $\operatorname{deg}_{G}(u) \geq m$,

$$
\operatorname{deg}_{H_{0}}(u)=\operatorname{deg}_{G}(u)-\left|N_{G}(u) \cap V(P)\right| \geq m-h(\geq 1)
$$

Then by Lemma 4.5, there exists a path P^{\prime} of H_{0} such that u^{*} is an end-vertex of P^{\prime} and $\left|V\left(P^{\prime}\right)\right| \geq 2(m-h)$. If $h=0$, then $\left|V\left(P^{\prime}\right)\right| \geq 2 m$, which is a contradiction. Thus $h \geq 1$.

Note that $N_{G}\left(u^{*}\right) \cap V(P) \subseteq V(P) \cap\left(X_{1}-\left\{y_{1}\right\}\right)\left(=\left\{y_{2 j-1}: j \geq 2\right\}\right)$. Let j be the maximum integer satisfying $u^{*} y_{2 j-1} \in E(G)$. Since $\left|N_{G}\left(u^{*}\right) \cap V(P)\right|=h$, we have $j \geq h+1$. Let $P^{\prime \prime}$ be the path as $P^{\prime \prime}=y_{1} P y_{2 j-1} u^{*} P^{\prime}$. Then $\left|V\left(P^{\prime \prime}\right)\right| \geq(2 j-1)+2(m-h) \geq$ $(2(h+1)-1)+2(m-h)>2 m$, which is a contradiction. This completes the proof of Theorem 4.2.

4.2.2 Proof of Theorem 4.3

In this section, we prove Theorem 4.3.
Lemma 4.6 Let N be a positive integer, and let t_{1} and t_{2} be non-negative integers with $N \geq t_{1} \geq t_{2}$. Let X_{1} and X_{2} be the partite sets of $K_{N, N}$. Let G^{r} and G^{b} be edge-disjoint spanning subgraphs of $K_{N, N}$ with $E\left(G^{r}\right) \cup E\left(G^{b}\right)=E\left(K_{N, N}\right)$. If $B_{t_{1}, t_{2}} \not \subset G^{b}$, then
(N1) $\max \left\{\operatorname{deg}_{G^{r}}\left(x_{1}\right), \operatorname{deg}_{G^{r}}\left(x_{2}\right)\right\} \geq N-t_{2}$ or
(N2) $\min \left\{\operatorname{deg}_{G^{r}}\left(x_{1}\right), \operatorname{deg}_{G^{r}}\left(x_{2}\right)\right\} \geq N-t_{1}$
for all vertices $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ such that $x_{1} x_{2} \notin E\left(G^{r}\right)$.
Proof. Let $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ be vertices such that $x_{1} x_{2} \notin E\left(G^{r}\right)$. Since $B_{t_{1}, t_{2}} \not \subset G^{b}$, $\operatorname{deg}_{G^{b}}\left(x_{1}\right) \leq t_{j}$ or $\operatorname{deg}_{G^{b}}\left(x_{2}\right) \leq t_{3-j}$ for each $j \in\{1,2\}$. Since $\operatorname{deg}_{G^{r}}\left(x_{i}\right)+\operatorname{deg}_{G^{b}}\left(x_{i}\right)=N$, this implies that

$$
\begin{equation*}
\operatorname{deg}_{G^{r}}\left(x_{1}\right) \geq N-t_{j} \text { or } \operatorname{deg}_{G^{r}}\left(x_{2}\right) \geq N-t_{3-j} \text { for each } j \in\{1,2\} . \tag{4.1}
\end{equation*}
$$

If $\operatorname{deg}_{G^{r}}\left(x_{1}\right) \geq N-t_{2}$ or $\operatorname{deg}_{G^{r}}\left(x_{2}\right) \geq N-t_{2}$, then (N1) holds. Thus we may assume that $\operatorname{deg}_{G^{r}}\left(x_{1}\right)<N-t_{2}$ and $\operatorname{deg}_{G^{r}}\left(x_{2}\right)<N-t_{2}$. Then by (4.1), we have $\operatorname{deg}_{G^{r}}\left(x_{1}\right) \geq N-t_{1}$ and $\operatorname{deg}_{G^{r}}\left(x_{2}\right) \geq N-t_{1}$, which implies (N2).

Lemma 4.7 Let s be an integer with $s \geq 2$, and let t_{1} and t_{2} be non-negative integers with $t_{1} \geq t_{2}$. Then $b\left(P_{s}, B_{t_{1}, t_{2}}\right) \leq\left\lfloor\frac{s-1}{2}\right\rfloor+t_{1}+1$.

Proof. Let $N=\left\lfloor\frac{s-1}{2}\right\rfloor+t_{1}+1$. Let X_{1} and X_{2} be the partite sets of $K_{N, N}$. Let G^{r} and G^{b} be edge-disjoint spanning subgraphs of $K_{N, N}$ with $E\left(G^{r}\right) \cup E\left(G^{b}\right)=E\left(K_{N, N}\right)$. Suppose that $B_{t_{1}, t_{2}} \not \subset G^{b}$. It suffices to show that $P_{s} \subset G^{r}$. Since $t_{1} \geq t_{2}$, it follows from Lemma 4.6 that $\max \left\{\operatorname{deg}_{G^{r}}\left(x_{1}\right), \operatorname{deg}_{G^{r}}\left(x_{2}\right)\right\} \geq N-t_{1}=\left\lfloor\frac{s-1}{2}\right\rfloor+1$ for all vertices $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ with $x_{1} x_{2} \notin E\left(G^{r}\right)$. Since $N \geq\left\lfloor\frac{s-1}{2}\right\rfloor+1$, applying Theorem 4.2 with $n=N$ and $m=\left\lfloor\frac{s-1}{2}\right\rfloor+1$, we obtain a path P in G^{r} with

$$
|V(P)| \geq 2\left(\left\lfloor\frac{s-1}{2}\right\rfloor+1\right) \geq 2\left(\frac{s-2}{2}+1\right)=s
$$

as desired.

Lemma 4.8 Let s be an odd integer with $s \geq 3$, and let t_{1} and t_{2} be non-negative integers such that $t_{1}>t_{2}$ and $t_{1} \not \equiv 0\left(\bmod \frac{s-1}{2}\right)$. Then $b\left(P_{s}, B_{t_{1}, t_{2}}\right) \leq \frac{s-1}{2}+t_{1}$.

Proof. Let $N=\frac{s-1}{2}+t_{1}$. Let X_{1} and X_{2} be the partite sets of $K_{N, N}$. Let G^{r} and G^{b} be edge-disjoint spanning subgraphs of $K_{N, N}$ with $E\left(G^{r}\right) \cup E\left(G^{b}\right)=E\left(K_{N, N}\right)$. By way of contradiction, suppose that $P_{s} \not \subset G^{r}$ and $B_{t_{1}, t_{2}} \not \subset G^{b}$. Since $t_{1}>t_{2}$, it follows from Lemma 4.6 that $\max \left\{\operatorname{deg}_{G^{r}}\left(x_{1}\right), \operatorname{deg}_{G^{r}}\left(x_{2}\right)\right\} \geq N-t_{1}=\frac{s-1}{2}$ for all vertices $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ with $x_{1} x_{2} \notin E\left(G^{r}\right)$.

Claim 4.2.1 If a component H of G^{r} contains a path of order $s-1$, then $|V(H)|=s-1$.

Proof. Suppose that H contains a path $P=y_{1} y_{2} \cdots y_{s-1}$. Without loss of generality, we may assume that $y_{1} \in X_{1}$. Note that $y_{s-1} \in X_{2}$. Since H contains no path of order $s, N_{H}\left(y_{1}\right) \subseteq V(P) \cap X_{2}$ and $N_{H}\left(y_{s-1}\right) \subseteq V(P) \cap X_{1}$. If $y_{1} y_{s-1} \notin E(H)$, then $\operatorname{deg}_{H}\left(y_{1}\right) \leq\left|V(P) \cap\left(X_{2}-\left\{y_{s-1}\right\}\right)\right|=\frac{s-3}{2}, \operatorname{deg}_{H}\left(y_{s-1}\right) \leq\left|V(P) \cap\left(X_{1}-\left\{y_{1}\right\}\right)\right|=\frac{s-3}{2}$, which contradicts the fact that $\max \left\{\operatorname{deg}_{H}\left(y_{1}\right), \operatorname{deg}_{H}\left(y_{s-1}\right)\right\} \geq \frac{s-1}{2}$. Thus $y_{1} y_{s-1} \in E(H)$. In particular, $y_{1} y_{2} \cdots y_{s-1} y_{1}$ is a cycle of H. Since G^{r} contains no path of order s, it follows that $N_{H}\left(y_{i}\right) \subseteq V(P)$ for all $i(1 \leq i \leq s-1)$. In particular, $H[V(P)]=H$.

Since $N=\frac{s-1}{2}+t_{1} \geq \frac{s-1}{2}$, applying Theorem 4.2 with $n=N$ and $m=\frac{s-1}{2}$, we obtain a path P in G^{r} with $|V(P)| \geq 2 \cdot \frac{s-1}{2}=s-1$. It follows from Claim 4.2.1 that $G^{r}[V(P)]$ is a component of G^{r}. In particular, $\operatorname{deg}_{G^{r}[V(P)]}(x) \leq \frac{s-1}{2}=N-t_{1}<N-t_{2}$ for all $x \in V(P)$. This together with Lemma 4.6 implies that $\operatorname{deg}_{G^{r}}(u) \geq N-t_{1}$ for all $u \in V\left(G^{r}\right)-V(P)$.

Since $N-\frac{s-1}{2}=t_{1} \geq 1, V\left(G^{r}\right)-V(P) \neq \emptyset$. Let H be a component of G^{r} other than $G^{r}[V(P)]$. Since $\operatorname{deg}_{G^{r}}(u) \geq N-t_{1}=\frac{s-1}{2}$ for every $u \in V(H)$, it follows from Lemma 4.4 that H contains a path of order $s-1$. Then by Claim 4.2.1, $|V(H)|=s-1$ (i.e., $\left|V(H) \cap X_{1}\right|=\frac{s-1}{2}$). Since H is arbitrary, $N\left(=\left|X_{1}\right|\right)$ is a multiple of $\frac{s-1}{2}$, which contradicts the assumption that $t_{1} \not \equiv 0\left(\bmod \frac{s-1}{2}\right)$.

Lemma 4.9 Let s be an integer with $s \geq 2$, and let t_{1} and t_{2} be non-negative integers with $\left\lfloor\frac{s-1}{2}\right\rfloor>t_{1}>t_{2}$. Then

$$
b\left(P_{s}, B_{t_{1}, t_{2}}\right) \leq \begin{cases}2 t_{1}+1 & \left(2 t_{1}-t_{2} \geq\left\lfloor\frac{s-1}{2}\right\rfloor\right) \\ \left\lfloor\frac{s-1}{2}\right\rfloor+t_{2}+1 & (\text { otherwise })\end{cases}
$$

Proof. Let $N=\left\lfloor\frac{s-1}{2}\right\rfloor+t_{2}+1+\max \left\{2 t_{1}-t_{2}-\left\lfloor\frac{s-1}{2}\right\rfloor, 0\right\}$. Let X_{1} and X_{2} be the partite sets of $K_{N, N}$. Let G^{r} and G^{b} be edge-disjoint spanning subgraphs of $K_{N, N}$ with $E\left(G^{r}\right) \cup E\left(G^{b}\right)=E\left(K_{N, N}\right)$. Suppose that $B_{t_{1}, t_{2}} \not \subset G^{b}$ as a subgraph. It suffices to show that $P_{s} \subset G^{r}$. Note that $N-t_{2} \geq\left(\left\lfloor\frac{s-1}{2}\right\rfloor+t_{2}+1\right)-t_{2}=\left\lfloor\frac{s-1}{2}\right\rfloor+1$ and $N-t_{1} \geq \frac{N+1}{2}$ because

$$
\begin{aligned}
2\left(N-t_{1}\right)-(N+1) & =N-2 t_{1}-1 \\
& =\left\lfloor\frac{s-1}{2}\right\rfloor+t_{2}+\max \left\{2 t_{1}-t_{2}-\left\lfloor\frac{s-1}{2}\right\rfloor, 0\right\}-2 t_{1} \\
& = \begin{cases}0 & \left(2 t_{1}-t_{2} \geq\left\lfloor\frac{s-1}{2}\right\rfloor\right) \\
\left\lfloor\frac{s-1}{2}\right\rfloor-\left(2 t_{1}-t_{2}\right)>0 & \text { (otherwise). }\end{cases}
\end{aligned}
$$

This together with Lemma 4.6 implies that, for all vertices $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ with $x_{1} x_{2} \notin E\left(G^{r}\right)$,

- $\max \left\{\operatorname{deg}_{G^{r}}\left(x_{1}\right), \operatorname{deg}_{G^{r}}\left(x_{2}\right)\right\} \geq N-t_{2} \geq\left\lfloor\frac{s-1}{2}\right\rfloor+1$ or
- $\min \left\{\operatorname{deg}_{G^{r}}\left(x_{1}\right), \operatorname{deg}_{G^{r}}\left(x_{2}\right)\right\} \geq N-t_{1} \geq \frac{N+1}{2}$.

Since $N=\left\lfloor\frac{s-1}{2}\right\rfloor+t_{2}+1+\max \left\{2 t_{1}-t_{2}-\left\lfloor\frac{s-1}{2}\right\rfloor, 0\right\} \geq\left\lfloor\frac{s-1}{2}\right\rfloor+1$, applying Theorem 4.2 with $n=N$ and $m=\left\lfloor\frac{s-1}{2}\right\rfloor+1$, we obtain a path P in G^{r} with

$$
|V(P)| \geq 2\left(\left\lfloor\frac{s-1}{2}\right\rfloor+1\right) \geq 2\left(\frac{s-2}{2}+1\right)=s
$$

as desired.

Proof of Theorem 4.3. Let s, t_{1} and t_{2} be as in Theorem 4.3. We first prove the theorem for the case where $s=2$, i.e., $b\left(P_{2}, B_{t_{1}, t_{2}}\right)=t_{1}+1$. By Lemma 4.7, we have $b\left(P_{2}, B_{t_{1}, t_{2}}\right) \leq$ $t_{1}+1$. Now we prove that $b\left(P_{2}, B_{t_{1}, t_{2}}\right) \geq t_{1}+1$. Let X_{1} and X_{2} be the partite sets of $K_{t_{1}, t_{1}}$. Let G^{r} be the graph obtained from $K_{t_{1}, t_{1}}$ by deleting all edges, and let $G^{b}=K_{t_{1}, t_{1}}$. Then it is clear that $P_{2} \not \subset G^{r}$ and $B_{t_{1}, t_{2}} \not \subset G^{b}$, and so $b\left(P_{2}, B_{t_{1}, t_{2}}\right) \geq t_{1}+1$. Thus we may assume that $s \geq 3$. Let $q \in \mathbb{N} \cup\{0\}$ and $r\left(0 \leq r \leq\left\lfloor\frac{s-1}{2}\right\rfloor-1\right)$ be the integers satisfying $t_{1}=\left\lfloor\frac{s-1}{2}\right\rfloor q+r$.
(i) Suppose that $t_{1}=t_{2}$. Let $N=\left\lfloor\frac{s-1}{2}\right\rfloor+t_{1}+1$. By Lemma 4.7, we have $b\left(P_{s}, B_{t_{1}, t_{2}}\right) \leq$ N. Now we prove that $b\left(P_{s}, B_{t_{1}, t_{2}}\right) \geq N$. Let X_{1} and X_{2} be the partite sets of $K_{N-1, N-1}$. We partition X_{i} into $q+2$ sets $X_{i}^{0}, X_{i}^{1}, \ldots, X_{i}^{q+1}$ with $\left|X_{i}^{0}\right|=\left|X_{i}^{1}\right|=$ $\cdots=\left|X_{i}^{q}\right|=\left\lfloor\frac{s-1}{2}\right\rfloor$ and $\left|X_{i}^{q+1}\right|=r$. Note that $X_{i}^{q+1}=\emptyset$ if and only if $t_{1} \equiv$ $0\left(\bmod \left\lfloor\frac{s-1}{2}\right\rfloor\right)$. Let G^{r} be the spanning subgraph of $K_{N-1, N-1}$ such that

$$
E\left(G^{r}\right)=\bigcup_{0 \leq j \leq q+1}\left\{x_{1} x_{2}: x_{1} \in X_{1}^{j}, x_{2} \in X_{2}^{j}\right\}
$$

and let $G^{b}=K_{N-1, N-1}-E\left(G^{r}\right)$. Then the order of longest paths of G^{r} is at $\operatorname{most} 2\left\lfloor\frac{s-1}{2}\right\rfloor(\leq s-1)$. Furthermore, since $\min \left\{\operatorname{deg}_{G^{b}}\left(x_{1}\right), \operatorname{deg}_{G^{b}}\left(x_{2}\right)\right\} \leq(N-1)-$ $\left\lfloor\frac{s-1}{2}\right\rfloor=t_{1}\left(=t_{2}\right)$ for every edge $x_{1} x_{2} \in E\left(G^{b}\right)$, we see that $B_{t_{1}, t_{2}} \not \subset G^{b}$. Therefore $b\left(P_{s}, B_{t_{1}, t_{2}}\right) \geq N$.
(ii-a) Suppose that $t_{1}>t_{2}$ and $t_{1} \geq\left\lfloor\frac{s-1}{2}\right\rfloor$. Note that $q \geq 1$. Let

$$
N= \begin{cases}\left\lfloor\frac{s-1}{2}\right\rfloor+t_{1}+1 & \left(s \text { is even, or } s \text { is odd and } t_{1} \equiv 0\left(\bmod \frac{s-1}{2}\right)\right) \\ \left\lfloor\frac{s-1}{2}\right\rfloor+t_{1} & \text { (otherwise). }\end{cases}
$$

By Lemmas 4.7 and 4.8, we have $b\left(P_{s}, B_{t_{1}, t_{2}}\right) \leq N$. Now we prove that $b\left(P_{s}, B_{t_{1}, t_{2}}\right) \geq$ N. Let X_{1} and X_{2} be the partite sets of $K_{N-1, N-1}$.
If s is even, or s is odd and $t_{1} \equiv 0\left(\bmod \frac{s-1}{2}\right)$, we partition X_{i} into $q+2$ sets $X_{i}^{0}, X_{i}^{1}, \ldots, X_{i}^{q+1}$ with $\left|X_{i}^{0}\right|=\left|X_{i}^{1}\right|=\cdots=\left|X_{i}^{q}\right|=\left\lfloor\frac{s-1}{2}\right\rfloor$ and $\left|X_{i}^{q+1}\right|=r$; otherwise, we partition X_{i} into $q+2$ sets $X_{i}^{0}, X_{i}^{1}, \ldots, X_{i}^{q+1}$ with

- $\left|X_{i}^{j}\right|=\frac{s-1}{2}$ for $i \in\{1,2\}$ and $j(0 \leq j \leq q)$ with $(i, j) \notin\{(1,0),(2,1)\}$,
- $\left|X_{1}^{0}\right|=\left|X_{2}^{1}\right|=\frac{s-3}{2}$ and
- $\left|X_{1}^{q+1}\right|=\left|X_{2}^{q+1}\right|=r$.

Note that $X_{i}^{q+1}=\emptyset$ if and only if $t_{1} \equiv 0\left(\bmod \left\lfloor\frac{s-1}{2}\right\rfloor\right)$. Let G^{r} be the spanning subgraph of $K_{N-1, N-1}$ obtained by

- joining all vertices in X_{1}^{0} to all vertices in $X_{2}^{0} \cup X_{2}^{q+1}$,
- joining all vertices in X_{2}^{1} to all vertices in $X_{1}^{1} \cup X_{1}^{q+1}$ and
- for each $j(2 \leq j \leq q)$, joining all vertices in X_{1}^{j} to all vertices in X_{2}^{j},
and let $G^{b}=K_{N-1, N-1}-E\left(G^{r}\right)$.
If s is even, then the order of longest paths of G^{r} is at most $2\left\lfloor\frac{s-1}{2}\right\rfloor+1=2 \cdot \frac{s-2}{2}+1=$ $s-1$; if s is odd and $t_{1} \equiv 0\left(\bmod \frac{s-1}{2}\right)$, then the order of longest paths of G^{r} is $2\left\lfloor\frac{s-1}{2}\right\rfloor=2 \cdot \frac{s-1}{2}=s-1$; if s is odd and $t_{1} \not \equiv 0\left(\bmod \frac{s-1}{2}\right)$, then the order of longest paths of G^{r} is at most

$$
\max \left\{2 \cdot \frac{s-1}{2}, 2 \cdot \frac{s-3}{2}+1\right\}=s-1
$$

Furthermore, since we easily check that $\operatorname{deg}_{G^{b}}(x) \leq t_{1}$ for all $x \in V\left(G^{b}\right), B_{t_{1}, t_{2}} \not \subset G^{b}$. Therefore $b\left(P_{s}, B_{t_{1}, t_{2}}\right) \geq N$.
(ii-b) Suppose that $t_{1}>t_{2}$ and $t_{1}<\left\lfloor\frac{s-1}{2}\right\rfloor$. Let $N=\left\lfloor\frac{s-1}{2}\right\rfloor+t_{2}+1+\max \left\{2 t_{1}-t_{2}-\left\lfloor\frac{s-1}{2}\right\rfloor, 0\right\}$. By Lemma 4.9, we have $b\left(P_{s}, B_{t_{1}, t_{2}}\right) \leq N$. Now we prove that $b\left(P_{s}, B_{t_{1}, t_{2}}\right) \geq N$. Let X_{1} and X_{2} be the partite sets of $K_{N-1, N-1}$.
If $2 t_{1}-t_{2} \geq\left\lfloor\frac{s-1}{2}\right\rfloor$ (i.e., $N-1=2 t_{1}$), we partition X_{i} into two sets X_{i}^{1} and X_{i}^{2} with $\left|X_{i}^{1}\right|=\left|X_{i}^{2}\right|=t_{1}$; otherwise (i.e., $N=\left\lfloor\frac{s-1}{2}\right\rfloor+t_{2}$), we partition X_{i} into two sets X_{i}^{1} and X_{i}^{2} with $\left|X_{i}^{1}\right|=\left\lfloor\frac{s-1}{2}\right\rfloor$ and $\left|X_{i}^{2}\right|=t_{2}$. Let G^{r} be the spanning subgraph of $K_{N-1, N-1}$ such that

$$
E\left(G^{r}\right)=\bigcup_{j \in\{1,2\}}\left\{x_{1} x_{2}: x_{1} \in X_{1}^{j}, x_{2} \in X_{2}^{j}\right\},
$$

and let $G^{b}=K_{N-1, N-1}-E\left(G^{r}\right)$.
Since $t_{2}<t_{1}<\left\lfloor\frac{s-1}{2}\right\rfloor$, the order of longest paths of G^{r} is at most $2\left\lfloor\frac{s-1}{2}\right\rfloor\left(\leq 2 \cdot \frac{s-1}{2}=\right.$ $s-1)$. Furthermore, if $2 t_{1}-t_{2} \geq\left\lfloor\frac{s-1}{2}\right\rfloor$, then $\operatorname{deg}_{G^{b}}(x)=(N-1)-t_{1}=t_{1}$ for all $x \in V\left(G^{b}\right)$; if $2 t_{1}-t_{2}<\left\lfloor\frac{s-1}{2}\right\rfloor$, then $\min \left\{\operatorname{deg}_{G^{b}}\left(x_{1}\right), \operatorname{deg}_{G^{b}}\left(x_{2}\right)\right\}=t_{2}$ for every edge $x_{1} x_{2} \in E\left(G^{b}\right)$. In either case, $B_{t_{1}, t_{2}} \not \subset G^{b}$. Therefore $b\left(P_{s}, B_{t_{1}, t_{2}}\right) \geq N$.

This completes the proof of Theorem 4.3.

Bibliography

[1] J. Akiyama and M. Kano, Factors and Factorizations of Graphs, Springer (2010).
[2] J.F. Alm, N. Hommowun and A. Schneider, Mixed, multi-color, and bipartite Ramsey numbers involving trees of small diameter, preprint, arXiv:1403.0273.
[3] A. Amahashi, On factors with all degrees odd, Graphs Combin. 1 (1985), 111-114.
[4] M. Aung and A. Kyaw, Maximum trees with bounded maximum degree in a graph, Graphs Combin. 14 (1998) 209-221.
[5] A. Benhocine and A.P. Wojda, The Geng-Hua Fan condition for pancyclic or Hamilton-connected graphs. J. Combin. Theory Ser. B 42, (1987) 167-180
[6] C. Berge and M. Las Vergnas, On the existence of subgraphs with degree constraints, Nederl. Akad. Wetensch. Indag. Math. 40 (1978) 165-176.
[7] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135.
[8] H. J. Broersma, Hamilton cycles in graphs and related topic, (1988) Ph.D-Thesis, University of Twente.
[9] H. J. Broersma and H. Tuinstra, Independence trees and Hamilton cycles, J. Graph Theory. 29 (1998) 227-237.
[10] H.J. Broersma, Z. Ryjáček and I. Schiermeyer, Closure concepts: a survey, Graphs Combin. 16 (2000) 17-48.
[11] Y. Caro, I. Krasikov and Y. Roditty, Spanning trees and some edge reconstructible graphs, Ars Combin 20 (1985) A 109-118.
[12] P.A. Catlin, A reduction method to find spanning eulerian subgraphs, J. Graph Theory 12 (1988) 29-44.
[13] P.A. Catlin, Supereulerian graphs: A survey, J. Graph Theory 16 (1992) 177-196.
[14] P.A. Catlin, Edge-connectivity and edge-disjoint spanning trees, preprint: http://www.math.wvu.edu/hjlai/Pdf/Catlin Pdf/Catlin49a.pdf
[15] P.A. Catlin, H.J. Lai, and Y. Shao, Edge-connectivity and edge-disjoint spanning trees, Discrete Mathematics. 309 (2009) 1033-1040.
[16] G. Chartrand, L. Lesniak, and P.Zhang, GRAPHS \& DIGRAPHS 6th edition, Chapman \& Hall (2015).
[17] M. Christou, C.S. Iliopoulos and M. Miller, Bipartite Ramsey numbers involving stars, stripes and trees, Electron. J. Graph Theory Appl. 1 (2013) 89-99.
[18] V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111-113.
[19] A. M. Dean, The computation complexity of deciding hamiltonian-connectedness, Congr. Num. 93 (1993) 209-214.
[20] G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. 2 (1952) 69-81.
[21] D. Duffus, R. J. Gould and M. S. Jacobson, Forbidden subgraphs and the hamitonian theme, The Theory and Applications of Graphs. ed. by G. Chartrand, J. Alavi, D. Goldsmith, L. Lesniak, Wiley, New York, (1981) 297-316.
[22] J. Edmond and E.L. Johnson, Matching, Euler tours and the Chinese postman, Mathematical Programming 5 (1973), 88-124.
[23] Y. Egawa, H. Matsuda, T. Yamashita, and K. Yoshimoto, On a spanning tree with specified leaves. Graphs Combin. 24 (2008) 13-18.
[24] H. Enomoto, Y. Ohnishi and K. Ota, Spanning trees with bounded total excess, Ars Combin. 102 (2011) 289-295.
[25] G. Fan, New sufficient conditions for cycles in graphs. J. Combin Theory Ser. B 37 (1984) 221-227.
[26] R. J. Faudree and R. J. Gould, Characterizing forbidden pairs for Hamiltonian properties, Discrete Math. 173 (1997) 45-60.
[27] J. Fujisawa, H. Matsumura and T. Yamashita, Degree bounded spanning trees, Graphs Combin. 26 (2010) 695-720.
[28] M. R. Garey and D. S. Johnson, Computers and Intractability : A Guide to the Theory of NP-completeness, W. H. Freeman \& Co., New York, NY, USA (1979).
[29] F. Harary, H. Harborth and I.Mengersen, Generalized Ramsey theory for graphs XII: Bipartite Ramsey sets, Glasgow Math. J. 22 (1981) 31-41.
[30] J.H. Hattingh and M.A. Henning, Star-path bipartite Ramsey numbers, Discrete Math. 185 (1998) 255-258.
[31] J.H. Hattingh and E.J. Joubert, Some bistar bipartite Ramsey numbers, Graphs Combin. 30 (2014) 1175-1181.
[32] B. Jackson and N. C. Wormald, k-walks of graphs, Australas. J. Combin. 2 (1990) 135-146.
[33] F. Jaeger, Flows and generalized coloring theorems in graphs, J. Combin. Theory Ser. B 26 (1979), 205-216.
[34] A. Kaneko, Spanning trees with constraints on the leaf degree, Discrete Applied Mathematics 115 (2001) 73-76.
[35] M. Kouider and P.D. Vestergaard, Connected factors in graphs - a Survey, Graph Combin. 21 (2005), 1-26.
[36] M. Las Vergnas, Sur une proprietédes arbres maximaux dans un graphe, C. R. Acad. Sci. Paris Ser. A-B. 272 (1971) A1297-A1300.
[37] H. Li, Generalizations of Dirac's theorem in Hamiltonian graph theory-a survey, Discrete Math. 313 (2013) 2034-2053.
[38] Y. Liu, F. Tian and Z. Wu, Some results on longest paths and cycles in $K_{1,3}$-free graphs, J. Changsha Railway Inst. 4 (1986) 105-106.
[39] L. Lovász, Combinatorial problems and exercises AMS Chelsea Publishing, (2007).
[40] M. Lu, H. Liu and F. Tian, Fan-type theorem for long cycles containing a specified edge, Graphs Combin. 21 (2005) 489-501.
[41] W. Mader, Minimale n-fach kantenzusammenhngende Graphen. Math. Ann. 191 (1971), 21-28.
[42] R. Matsubara, M. Tsugaki and T. Yamashita, Closure and Spanning k-trees, Graphs Combin. 30 (2014) 957-962.
[43] H. Matsuda, Fan-type results for the existence of [a,b]-factors, Discrete Math. 306 (2006) 688-693.
[44] J. Moon and L. Moser, On Hamiltonian bipartite graphs, Israel J. Math. 1 (1963) 163-165.
[45] C.St.J.A. Nash-Williams, Edge disjoint spanning trees in finite graphs, J. Lond. Math. Soc. 36 (1961), 445-450.
[46] Zh. G. Nikoghosyan, Spanning trees with few branch and end vertices, Mathematical Problems of Computer Science. 46 (2016) 18-25.
[47] Y. Ohnishi and K. Ota, A note on total excess of spanning trees, AKCE Int. J. Graphs Combin. 8 (2011) 97-103.
[48] O. Ore, Notes on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.
[49] O. Ore, Hamilton connected graphs, J. Math. Pures Appl. 42 (1963) 21-27.
[50] K. Ota and T. Sugiyama, Forbidden subgraphs and the existence of spanning k-trees, Discrete Math. 310 (2010) 3506-3511.
[51] K. Ozeki, A toughness condition for a spanning tree with bounded total excesses, Graphs Combin. 31, 5 (2015) 1679-1688.
[52] K. Ozeki and T. Sugiyama, Spanning k-forests with large components in $K_{1, k+1}$-free graphs, Graphs Combin. 31 (2015) 1659-1677.
[53] G. Raeisi, Star-path and star-stripe bipartite Ramsey numbers in multicoloring, Trans. Comb. 4 (2015) 37-42.
[54] A. Saito and K. Sano, Spanning trees homeomorphic to a small tree, Discrete Math. 339 (2016) 677-681.
[55] W.T. Tutte, On the problem of decomposing a graph into n connected factors, J. Lond. Math. Soc. 36 (1961), 221-230.
[56] S. Win, Existenz von Gerüsten mit vorgeschriebenem Maximalgrad in Graphen (in German). Abh. Math. Sem. Univ. Hamburg 43 (1975) 263-267.
[57] J. Yan, S. Zhang and J. Cai, Fan-type condition on disjoint cycles in a graph, Discrete Math. 341 (2018) 1160-1165.

[^0]: ${ }^{1}$ We can generalize G_{1} by replacing each vertex in V_{1} with a complete graph.

[^1]: Problem 3.2 Let $k \geq 2$ be an integer. Let G be a connected graph. Suppose that G satisfies

