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Ibaraki, Japan

ABSTRACT
Self-healing materials have been recognized as a promising type of next-generation materials. 
Among them, self-healing ceramics play a particularly important role, and understanding them 
better is necessary. Therefore, in this study, we applied the oxidation kinetics-based constitu
tive model to finite element analysis of a series of damage-healing processes in self-healing 
ceramics (alumina/SiC composites). In the finite element analysis, the data on the microstruc
ture distribution, such as relative density, size and aspect ratio of pores, and grain size, were 
taken as input values and reflected onto the parameters of a continuum damage model using 
a fracture mechanical model. We then performed a 3-point bending analysis, to consider both 
the self-healing effect under certain temperature and oxygen partial pressure conditions and 
scatter of the strength of the ceramics. Our results confirmed that the proposed methodology 
can reasonably reproduce both strength recovery and damage propagation behavior in self- 
healing ceramics.
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1. Introduction

Self-healing materials are considered as an important 
part of next-generation structural designs. In general, 
these materials utilize chemical reactions for autono
mous repair in service, thus ensuring structural integ
rity. During the last several decades, numerous studies 
have been conducted to develop various self-healing 
materials including polymers, concrete, metals, and 
their composites [1].

In particular, self-healing ceramics were studied as 
new functional compounds characterized by low weight 
and high heat resistance [2–9]. When a micro-crack 
propagates in self-healing ceramics, rebonding of the 
crack occurs under high temperature. Specifically, these 
materials include healing agents, which are non-oxide 
particles or mediums, and an induced chemical reaction 
(high-temperature oxidation kinetics) of the healing 

agent. Thus, the strength of the material autonomously 
recovers to its initial – or even more robust – state 
because the crack is rebonded by the oxidation product.

Among various types of crack-healing in ceramics, 
silicon carbide (SiC) oxidation is quite effective in 
achieving full strength recovery [10–12]. Thus far, 
many studies have reported on the crack-healing 
behavior resulting from the oxidation of alumina/SiC 
particle composites [13–17]. However, to apply the 
self-healing materials to various components of 
machines and structures, a novel numerical simulation 
method should be developed for evaluating both the 
damage and the healing processes. Under such cir
cumstances, recent developments have been observed 
in formulating both damage and healing processes 
within frameworks of continuum damage mechanics 
[18–26] and cohesive zone modeling [27].
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In particular, the authors have proposed a conti
nuum damage model that incorporates the effects of 
oxidation kinetics on the strength recovery rate of self- 
healing ceramics [28,29]. In addition, the proposed 
model was implemented in the finite element method 
(FEM) to demonstrate the numerical analysis of alu
mina/SiC particle composites under various conditions 
of temperature and oxygen partial pressure.

At the same time, ceramics are brittle materials, and 
it is known that their stochastic fracture is caused by 
internal defects, such as pores and flaws [30–35]. 
Hence, the scatter of fracture strength is observed 
even in the same lot of test specimens and structural 
members. Therefore, the evaluation of the fracture 
strength scatter of bulk bodies, including healed 
parts – in addition to the fracture strength scatter of 
virgin, i.e., non-damaged materials – is an essential 
issue for practical application in self-healing ceramics. 
For example, in the case of self-healing ceramics, even 
if the initial crack caused by an internal defect is 
rebonded, the second crack initiation upon subse
quent loading is expected to start from the healed 
part or defects around it. The fracture strength in 
such situations depends not only on the degree of 
strength recovery of the healed part – which depends 
on time, temperature, and oxygen partial pressure – 
but also on the spatial distribution characteristics of 
peripheral defects, in addition to boundary conditions.

In this study, we propose a finite element analysis 
(FEA) method for fracture statistics of self-healing 
ceramics by combining a numerical simulation of the 
damage-healing process with the prediction method 
of scatter of ceramic strength proposed by the 
authors [36,37]. Concretely, we conducted the fol
lowing investigation:

(1) Performing a series of simulations regarding 
crack initiation, propagation, and healing 
considering a stochastic distribution of micro
structures (relative density, pore, and grain 
size). Here, the three-point bending tests for 
non-damaged, as-cracked, and crack-healed 
specimens were virtually performed.

(2) Analyzing fracture statistics for crack-healed 
ceramics and discussing the strength scatter 
before and after healing using the Weibull dis
tribution generated by FEA.

In addition to this examination, a qualitative com
parison of the experimental results [15] was per
formed to demonstrate the effectiveness of the 
method used for the analyses of fracture statistics of 
self-healing ceramics. It should be noted that the 
ceramics we examined were Al2O3/15 vol% SiC, 
which were also used in previous studies [15,36,37]. 
The processing defects on their surfaces were 
repaired in advance through heat treatment. Thus, 

it was possible to consider only the fractures that 
start from internal flaws [8].

The paper is organized as follows: The formulation 
of the damage-healing constitutive model is described 
in Section 2, and the fracture mechanics model and the 
distribution characteristics of microstructure data are 
explained in Section 3. The numerical models of FEA 
and the boundary condition are provided in Section 4. 
Then, the analysis results of FEA and the discussion 
are described in Section 5. Finally, conclusions and 
future work are summarized in Section 6.

2. Constitutive model

In the isotropic damage and self-healing constitutive 
model proposed by the authors [28], the damage and 
healing phenomena are described based on conti
nuum damage mechanics. In this section, we briefly 
explain how the constitutive model incorporates the 
evolution laws for self-healing. In the formulation, the 
damage process is described by the cohesive-force 
embedded isotropic damage model [36–39], and the 
self-healing process is prescribed by the evolution laws 
based on the empirical oxidation kinetics equation 
[15]. For details on the formulation, see Ozaki 
et al. [28].

2.1 Damage model

The stress–strain relationship based on the typical 
isotropic damage model is given as follows: 

σ ¼ ð1 � DÞc : ε (1) 

where σ, ε, and c are the Cauchy stress tensor, small 
strain tensor, and fourth-order elastic coefficient tensor, 
respectively. D ð0 � D � 1Þis the damage variable, and 
D = 0 and D = 1 correspond to the non-damaged state 
and perfectly damaged state, respectively. To describe 
the dependency of damage history, the damage variable 
D is formulated as a function of the maximum value of 
equivalent strain κ in the loading history, and is given as 
below: 

DðκÞ ¼ 1 �
κ0

κ
exp �

σthe

Gf
ðκ � κ0Þ

� �

(2) 

Here, κ can be considered a state variable. κ0 is the 
equivalent strain at damage initiation, he is the char
acteristic length (which corresponds to the length of 
the element in FEA), σt is the fracture stress, and Gf is 
the fracture energy.

2.2 Evolution laws for state variables

In alumina/SiC composites, the self-healing behavior 
is achieved by the passive oxidation of SiC. Based on 
the empirical oxidation-kinetics [15], the average 
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crack-healing rate, vh, for complete strength recovery 
is given by 

vh ¼ Ah exp
� Qh

RTh

� �

ðaO2Þ
3n=2 (3) 

Here, Qh [kJ/mol] is the activation energy for crack 
healing, Ah [s–1] is the frequency factor, R [J/mol] is 
the gas constant, and Th [K] is the healing tempera
ture. Furthermore, n is the temperature-independent 
reaction order of O2 and aO2 ¼ PO2

=Po
O2 

is the oxygen 
pressure. Here, PO2 is the partial pressure of oxygen 
and Po

O2 is the standard pressure of 0.1 MPa.
To incorporate the self-healing behavior into the 

damage model described above, it was assumed that 
the damage variable evolves from the state of D�0 
towards D = 0 through the self-healing, depending on 
the temperature and oxygen partial pressure. In other 
words, the damage history disappears with self- 
healing, and the state variable κ evolves to the sound
ness state. Therefore, it was also assumed that the state 
variable κ additively decomposed into the equivalent 
strain (damage) part κε and the self-healing part � κh 
as follows: 

κ ¼ κε � κh (4) 

where the evolution of the damaged part is given by 
the following equation. 

κ� ε ¼ hεeq
�
i if κε ¼ εeq;

κ� ε ¼ 0 if κε > εeq:

)

(5) 

Here, < > stands for McAuley’s brackets. We adopted 
the following modified von-Mises equivalent strain εeq, 
which is a scalar value, for the evolution of damage: 

εeq ¼
k � 1

2kð1 � 2νÞ
I1 þ

1
2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k � 1
1 � 2ν

I1

� �2

þ
12k
ð1þ νÞ2

J2

s

(6) 

where ν is Poisson’s ratio, k is the ratio between the 
tensile and compressive strengths, I1 is the first invar
iant of the strain tensor, and J2 is the second invariant 
of the deviatoric strain tensor.

Conversely, the self-healing part κh is assumed to be 
a monotonic increasing function, which describes the 
process κ! κ0. Thus, we adopted the following func
tion for the evolution rule of κh: 

κ� h ¼ �1
wexp

ðκε � κ0Þhe
vh κ � κ0ð Þ for κε > κ0 (7) 

where �1 ð> 0Þ is the parameter that influences the 
self-healing rate, and wexp is the crack mouth opening 
displacement (maximum crack-opening width) in the 
experiment [15].

Furthermore, to describe the dependence of the 
strain at damage initiation after healing on the degree 

of self-healing, the maximum equivalent strain �κ 
received in the past must be re-evaluated. For the 
self-healing state, we assumed that the maximum 
equivalent strain �κ ¼ maxfκεg � κ0 gradually 
approaches κs, and the evolution rule for the max
imum equivalent strain can be expressed as follows: 

κ
�

¼ � �2
wexp

ðκε � κ0Þhe
vh �κ � κsð Þ for κε > κ0 (8) 

In the reloading state after healing, damage does not 
occur until κ � �κ. Here, �2 ð� 0Þ is the parameter 
affecting the self-healing rate. It should be noted that 
when κs > κ0, the fracture strength of the healed part 
becomes higher compared with the non-damaged 
part. This phenomenon is caused, not only by the 
strengthening of the healed part but also by the scatter 
of the strength due to internal pores. Therefore, κs > κ0 
means that the internal pore – which was an origin of 
initial crack – is also filled by the oxide, and then, the 
fracture strength after healing depends on spatial dis
tribution characteristics of peripheral pores. Thus, κs 
should be defined by referring to microstructure data 
after complete healing [16].

The judgment of damage and the loading criterion 
are described by 

if κ< κ0 ! D ¼ 0 for undamaged;
if κ< �κ ! D ¼ DðκÞ for κ � κ0;

if κ � �κ ! D ¼ DðκÞ for κ ¼ �κ:

9
=

;
(9) 

ε� eq

D E
> 0 : loading;

ε� eq

D E
¼ 0 : unloading;

κ
�

h

D E
> 0 : healing:

9
>>>=

>>>;

(10) 

Note that the initial value of �κ for non-damaged state 
corresponds to κ0.

2.3 Response characteristics of the 
damage-healing constitutive model

Figure 1 shows the schematic response characteris
tics of damage-healing processes by the present 
constitutive model under uniaxial tensile condi
tions. Here, Figure 1(a) presents crack occurrence 
and healing on a microstructure scale, Figure 1(b) 
corresponds to the stress–strain relation, and 
Figure 1(c) shows the variation of cracks in an 
element in which the cohesive zone relationship is 
embedded.

As shown in the figure, the constitutive model 
shows elastic behavior until the equivalent strain 
reaches κ0 ð¼ �κÞ, and transitions to D�0 state with 
crack initiation; then, stiffness decreases according to 
the magnitude of D. It should be noted that the 

Science and Technology of Advanced Materials 21 (2020) 611                                                                                                                 S. OZAKI et al.



equivalent strain at damage initiation, κ0, of each 
element is evaluated by the scatter of the fracture 
stress, σt, due to microstructure information and 
the elastic relation assumed to be in uniaxial relation 
(see next section). After unloading, the oxidation 
reaction starts with the initiation of cracking and 
the crack is filled with oxides. At the same time, the 
equivalent strain κ evolves depending on the tem
perature and oxygen partial pressure, and the 
damage variable recovers to D = 0. In addition, the 
maximum equivalent strain �κ evolves in response to 
the disappearance of the pore that is the origin of the 
initial crack, as the cracked part is sufficiently healed. 
Therefore, in subsequent loading, the fracture will 
occur starting from the next largest pore in the per
iphery of the healed part.

3. Stochastic distribution of fracture 
parameters

The crack initiation in self-healing ceramics is 
caused by inherent defects. Therefore, such fracture 
behavior must be reflected in the FEA. The most 
physically reasonable fracture mechanics model of 
ceramics is a combination of a stress concentration 
part (pore) and an initial crack [40–45]. In the FEA 
methodology previously proposed by the authors 
[36,37], the damage model parameters are evalu
ated automatically, based on the distribution of 
information regarding microstructure (relative den
sity, size and aspect ratio of pores, and grain size), 
by means of a fracture mechanics model. Therefore, 
the microscopic structure information obtained 

Figure 1. Schematic response characteristics of damage-healing processes by the damage-healing constitutive model under 
uniaxial tensile conditions: (a) crack occurrence and healing on a microstructural scale; (b) stress–strain relation; and (c) variation of 
cracks in an element with an embedded cohesive zone relationship.
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through image observation becomes the input value 
for the FEA.

In this section, the fracture mechanics model and 
the probability density function of each microscopic 
structure data are outlined. For details of the formula
tion, see Ozaki et al. [36].

3.1 Fracture mechanics model

Relative density, size and aspect ratio of pores, and 
grain size are stochastically distributed in a ceramic 
body because of sintering. Therefore, the parameters 
of the damage model for each element (or integration 
point) differ depending on these values. It should be 
noted that, in this study, we focus only on mode 
I cracks caused by tension.

The mechanical properties of ceramics that con
tain many pores are characterized by porosity. 
According to Flinn et al. [45], the relationship 
between porosity P (or relative density ρ) and the 
apparent Young’s modulus E is expressed by the 
following equation: 

E ¼ E100 1 �
P
P1

� �α

; P ¼ 1 � ρ (11) 

where E100 is the Young’s modulus for a fully dense 
sample, and P1 and exponent α are the fitting para
meters. Referring to Flinn et al. [45], we set P1 ¼ 0:45 
and α ¼ 1:15.

In this study, the fracture stress σt was estimated 
based on the linear fracture mechanics, as follows: 

σt ¼
KIC

F
1
ffiffiffiffiffi
πc
p (12) 

where KIC is the fracture toughness, and c is the initial 
crack length. F is the geometric factor obtained from 
the shape of an ellipsoidal (spheroidal) pore and 
the initial crack length, as shown in Figure 2. Here, 
Ra = R is the major axis radius, and Rb is the minor axis 
radius. Thus, the aspect ratio A of the ellipsoidal pores 
is defined as Rb/R.

The geometric factor for a circumferential crack 
emanating from an ellipsoidal pore under tension 
(Figure 2) is summarized as follows: 

F ¼ F1 for c=�ρ � 1;
maxðF1; F2Þ for c=�ρ > 1:

�

(13) 

Here, 

F1 ¼1:125Kt
1
3
þ

1
6

1
1þ λð Þ

2 þ
3

1þ λð Þ
4

( )" #

1þ 0:2238λ � 0:1643λ2� �
(14) 

F2 ¼
2
π

ffiffiffiffiffiffiffiffiffiffiffi
Rþ c

c

r

(15) 

where �ρ is the notch root radius, and λ ¼ c=�ρ. In this 
study, we assumed that the initial crack length 
c corresponds to grain size. Concrete equations, such 
as stress concentration factor Kt, were provided in 
Ozaki et al. [36].

The fracture energy used in the damage model is 
given as follows: 

Gf ¼
K2

IC
E

1 � ν2� �
(16) 

In addition, the equivalent strain at damage initiation, 
κ0, was set by assuming an uniaxial tensile fracture as 
follows: 

κ0 ¼ σt
ð1þ νÞð1 � 2νÞ

Eð1 � νÞ
(17) 

3.2 Probability density functions for 
microstructure data

In the present FEA methodology, different relative den
sities, sizes and aspect ratio of pores, and grain sizes are 
automatically set for each element (or integration point) 
by using the probability density function and random 
numbers. Then, the parameters are evaluated by Eqs. 
(11), (12), (16), and (17). Therefore, the average value 

Figure 2. Fracture mechanics model based on an ellipsoidal 
(spheroidal) pore [35].
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and standard deviation of microstructure data are used 
as input values. The probability density functions of 
each microstructure datum are described below.

3.2.1 Relative density ρ
The distributions of relative density were defined using 
probability density functions of the half-normal distri
bution with a maximum value μρ and a standard 
deviationσρ.

3.2.2 Pore size R
As clarified, that the larger the pores in the ceramics, 
the lower the probability of their existence. The dis
tribution of pore size was defined by the probability 
density function of the half-normal distribution with 
a minimum value μR and a standard deviation σR. 
Although many small pores exist within the size of 
one element, we pay attention only to the largest pore 
that can be the origin of crack in each element. 
Therefore, the minimum value corresponds to the 
maximum pore size that would exist in the volume 
per element. At the same time, the standard deviation 
prescribes the maximum pore size that may exist in 
the total volume of the analyzed body.

It was pointed out that the pore size distribution 
characteristics of ceramics often follow a power law. It 
should be noted that the present method can also use 
a power law distribution as a probability density func
tion of pore size [37].

3.2.3 Aspect ratio of pore A
The aspect ratio of pores was defined by the normal 
distribution, with a mean value μA and a standard 
deviation σA, based on the cross-sectional image 
observation results of Al2O3/15 vol% SiC, which was 
produced by pressure sintering.

3.2.4 Grain size (length of initial crack) c
Grain growth during sintering is explained by Ostwald 
ripening. Therefore, the distribution characteristics of 
the grain size were modeled by the lognormal distribu
tion with a mean value exp μc þ σ2

c=2
� �

and a standard 
deviation 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2μcþσ2

c ðeσ2
c � 1Þ

p
.

From the above, the parameters required for the 
constitutive model are obtained by providing the 
microstructure dataset (ρ, R, A, and c) and the basic 
material properties (E100, P1, α, ν, KIC, and k), in 
addition to the self-healing parameters.

4. Finite element model and analysis 
conditions

In the FEA, we used a commercial software package 
LS-DYNA and its related user subroutine [46]. For the 
analysis of the damage process, the dynamic explicit 
method based on the central difference method was 

adopted, whereas, for the analysis of the self-healing 
process, the dynamic implicit method based on the 
time discretization of the Newmark β method was 
adopted. The restart function of LS–DYNA was uti
lized for connecting each process, consisting of the 
loading, healing, and reloading stages, because the 
timescales of the loading/unloading stages were very 
different compared with the healing one. The specifi
cation of finite element (FE) models and analysis con
dition are described below.

4.1 FE model and boundary conditions

In this study, the 3-point bending test was adopted as 
the analysis target with reference to the previous 
experiments [8,15]. However, to simplify the examina
tion of the effects of the strength variation on the self- 
healing, the width of the specimen (z-direction) was 
set as one element, assuming the plane strain condi
tions. The following three types of test specimen mod
els were used for the analysis:

(1) Non-damaged specimen (Figure 3(a))
(2) As-cracked specimen (Figure 3(b))
(3) Crack-healed specimen, which corresponds to 

a healed specimen of as-cracked specimen.

Here, the length of the pre-crack in the as-cracked 
specimen was 1.2 mm, referring to Ono et al. [8].

To create the Weibull distribution, N = 20 non- 
damaged specimens and N = 5 as-cracked specimens 
were analyzed. Meanwhile, to confirm the strength 
recovery by self-healing, N = 5 crack-healed specimens 
were also analyzed. The simulation flow is summar
ized in Figure 4.

The jigs of the 3-point bending test were set as rigid 
bodies. In bending test calculations, a constant forced 
velocity (constant crosshead speed of 5 mm/s) in the 
vertical direction was imposed on the upper jig, while 
the displacements of the lower jigs were fixed. A friction 
coefficient of 0.3 was set at the contact boundary between 
the specimen and jigs. Meanwhile, in the self-healing 
process, the jigs were ignored, and the displacement 
condition of specimens was completely fixed. Then, the 
self-healing under prescribed constant temperature and 
oxygen partial pressure conditions was analyzed. In addi
tion, strength evaluation of crack-healed specimens used 
the 3-point bending jigs under the same boundary con
dition. It should be noted that stress, strain, and state 
variables in each element were inherited between damage 
and healing analyses, and vice versa.

4.2 Input parameters

Tables 1 and 2 show the mechanical and self-healing 
parameters of the Al2O3/15 vol% SiC, respectively. 
Table 3 shows the distribution characteristics of the 
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microstructure. These values are determined by refer
ring to the previous studies [28,29,36]. Regarding the 
atmospheric conditions for the self-healing process, 
constant values of healing temperature Th and oxygen 
partial pressure aO2 were set.

The pre-crack part shown in Figure 3(b) was con
sidered as an initial damaged part. The value of the 
initial damage was set to D = 0.93, which corresponds 
to κ ¼ κε ¼ �κ ¼ 500�10� 6. Here, the equivalent strain 
at damage initiation of initial damaged part, κ0, was 
determined by the scale parameter of Weibull distribu
tion obtained by the experiment [15] and Eq. (17).

As the microstructure data before and after self- 
healing differ, the material properties also differ. The 
mechanical parameters of the healed part were deter
mined by referring to the microstructure observation 
results [16]. Specifically, the relative density was set to 
ρ = 0.99, which was the same as before healing. The pore 
size after healing was Rh = 0.29 [μm]. The aspect ratio was 
Ah = 0.6. Although the composition of the healed part is 
mainly SiO2, we used the mean value of the grain size 
before healing, i.e., ch = 3.08 [μm]. The fracture stress σt 
and fracture energy Gf were calculated from the deter
mined microstructure data using Eqs. (12) and (16), 

Figure 3. FE models of the three-point bending test and healing: (a) non-damaged specimen; (b) as-cracked specimen and the 
details of initial damaged part.
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where the fracture toughness, KIC, shown in Table 1, was 
adopted. The strain at damage initiation after complete 
healing, κsð> κ0Þ, was determined from the fracture 
stress (σt = 1842 [MPa]) and Eq. (17). Other mechanical 
parameters are the same as Table 1.

5. FEA results and discussion

5.1 Results from non-damaged specimens

First, we describe the analysis results of non-damaged 
specimens. Figure 5 shows examples of the contour 
map of the fracture stress in three specimens. Here, 
specimens (a), (b), and (c) correspond to the bending 
strengths of the minimum, the median, and the max
imum value among N = 20 specimens, respectively.  

Figure 4. Simulation flow.

Table 1. Mechanical parameters of Al2O3/15 vol% SiC.
E [GPa] ν KIC [MPa mm0.5] k

398 0.21 120 11.3

Table 2. Parameters for self-healing of Al2O3/15 vol% SiC.
Ah [s−1] Qh [J/mol] R [J/(mol/K)] n wexp [μm]

1.04 × 104 3.87 × 105 8.31 0.836 0.1

�1; �2 Th [K] aO2 κs

5.0 1623 0.21 4750 × 10−6

Table 3. Microstructure distribution characteristics.
Relative density Pore size [μm] Aspect ratio Grain size [μm]
μρ σρ μR σR μA σA μc σc

0.99 0.001 0.437 3.18 1.0 0.5 0.6 0.1

Figure 5. Fracture stress distribution in the three specimens, where the colors in the contour map represent the elemental values. 
Here, specimens (a), (b), and (c) correspond to specimens of minimum, median, and maximum bending strengths, respectively.
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Further, Figure 6 shows histograms of the relative 
density, pore size, aspect ratio, and grain size of ele
ments obtained from one specimen arbitrary 
extracted. Reflecting the probability density function 
of the microstructure distribution shown in Table 3, it 
can be confirmed that they are dispersed within the 
specimens. In addition, the results in Figure 5 can 
confirm that the distribution of fracture stress differs 
for each specimen by using random numbers.

Figure 7 shows the results of the 3-point bending 
analysis of three specimens shown in Figure 5. Here, 
the figure depicts the contour map of the damage 
variable. The blue elements represent the state without 
damage (D = 0), whereas the red elements represent 
the damaged state (D � 1). In addition, Figure 8 
shows the relationships between the bending stress 
and deflection of each specimen. From the figures, it 
can be observed that the bending stress increases lin
early with deflection, the damage progresses when 

a certain element around the bottom center of speci
men reaches the fracture stress, and then the bending 
stress sharply decreases. Hence, the present FEA 
model can represent a typical brittle fracture behavior 
of ceramics. Furthermore, when considering the sto
chastic distribution of the microstructure, as the 
damage starts from the weaker element around the 
bottom center that receives a relatively large tensile 
stress, the bending strength varies depending on the 
distribution characteristics of the microstructure. In 
other words, the path of damage progress and bending 
strength differ for each specimen.

Figure 9 shows a time series variation of snapshots 
of the damage variable distribution in the specimen 
shown in Figure 5(a) during healing stage, under pre
scribed conditions after the unloading. Here, the load
ing was removed just when the bending stress reached 
the peak value. It can be observed that the damaged 
region has recovered to a soundness state (D = 0) 

Figure 6. Histogram of the microstructure data of the elements obtained by one specimen: (a) relative density; (b) pore size (major 
radius); (c) aspect ratio of the pore; and (d) grain size. The vertical axis of the graphs represents the number of elements.
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within the elapsed time. Further, reflecting on Eq. (7), 
the healing of the damage is attained from the region 
where the crack-opening width is small.

In this FEA example, the damage introduced by the 
3-point bending test was healed and the crack-opening 
width was larger than that of the crack introduced by 
the ordinary Vickers indenter [15]. Therefore, the 
healing time is very long. Note that the example is 
intended to demonstrate FEA for a series of damage- 
healing processes.

Figure 10 shows the FEA results when the specimen 
after healing (Figure 9) was reloaded. Here, Figure 10 
(a) and 10(b) shows the contour map of the damage 
variable and the bending stress–deflection relation
ship, respectively. It can be observed that the damage 
progresses to avoid the previously healed part when 
reloading. The white frame in Figure 10(a) corre
sponds to the healed part.

Focusing on the fracture stress of each element, the 
fracture stress of the element at the damage initiation 
on the bottom surface of the non-damaged specimen 
was 769 MPa, whereas the fracture stress increased to 
1842 MPa because of the sufficient healing. Therefore, 
it was confirmed that the fracture origin moved to the 
next weakest element (963 MPa) around the bottom 
center where the bending stress was large. As a result, 
the bending strength in Figure 10(b) also increases.

Bearing in mind the above-mentioned, the present 
FEA methodology can evaluate the self-healing beha
vior in conjunction with the simulation of the fracture 
strength scatter caused by the stochastic distribution 
of microstructure.

5.2 Results from as-cracked and crack-healed 
specimens

In this section, we describe the analysis results of as- 
cracked and crack-healed specimens.

Figure 11 shows time series variation of snapshots 
of the healing process of the initial damaged part in an 
as-cracked specimen. Here, the figure depicts the con
tour map of the damage variable. The blue elements 
represent the state without damage (D = 0), whereas 
the red elements represent the damaged state 
(D � 1). As in the case of Figure 9, it can be con
firmed that the initial damaged part has healed within 
the elapsed time and changed to a soundness state. 
The time required for complete healing is approxi
mately 900 s. As the crack size in the initial damage 
part is based on experiments [8,15], it can be con
firmed that the recovery is achieved on the same 
time scale as the experiment [15].

Next, the change in bending strength of the as- 
cracked specimen before and after healing is exam
ined. Figure 12 shows the results of the 3-point 
bending test for as-cracked and crack-healed speci
mens. As demonstrated by the bending stress– 
deflection relationship, although both specimens 
exhibit brittle fracture, the stiffness and strength of 
the cracked-healed specimen is clearly larger. The 
figure also shows the progress of the damage. In 
the as-cracked specimen, the damage propagates 
straight from the notch (initial damaged part) 
because of the stress concentration effect. Contrary 
to this, in the crack-healed specimen, the damage 
occurs around the pre-cracked part. As these results 
confirm, the fracture strength of the initial damaged 

Figure 7. The damage variable distribution in the specimens 
corresponding to that in Fig. 5. The contour map shows the 
result of damage propagation in specimens under the three- 
point bending test. The blue elements represent the state 
without damage, whereas the red elements represent the 
damaged state.
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Figure 8. Relationship between the bending stress and deflection obtained by three specimens shown in Fig. 5. The graph 
includes the result of the as-cracked specimen.

Figure 9. Time series snapshots of the distribution of damage variable D in the specimen of Fig. 5(a) during the healing 
stage under a prescribed condition after the unloading (temperature Th = 1623 [K] and oxygen partial pressure aO2 ¼ 0:21).
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part is recovered by sufficient healing, and the origin 
of damage initiation moves to the elements with 
relatively small fracture stress (elements with large 
pores or grain size) around it. The bending stress– 
deflection relationships in Figure 8 also show the 
results of the as-cracked specimen. As shown in the 
figure, the as-cracked specimen has lower strength 
and stiffness than the non-damaged specimens. It 
should be noted that the crack-healed specimen 
shown in Figure 12 exhibits a similar bending 
stress–deflection relationship to that of non- 
damaged specimens.

Furthermore, to confirm these tendencies of 
strength recovery and scatter, Weibull distributions 
were created using the bending strength (peak value 
of bending stress) obtained from the FEA.

Figure 13 shows the Weibull distributions of the 
non-damaged specimen (N = 20), as-cracked specimen 
(N = 5), and crack-healed specimen (N = 5), where the 

median rank method was adopted. In the figure, 
A-E shows the number of the test pieces, which are 
common between the as-cracked and crack-healed spe
cimens. As shown in the figure, when complete healing 
is achieved, the results of the crack-healed specimen 
overlap the Weibull distribution of the non-damaged 
specimens. In other words, the scatter of strength in 
the crack-healed specimen is almost the same as that 
in the non-damaged specimen, and the Weibull 
modulus m and the scale parameter β show similar 
values. This is because the same lot was assumed for 
the as-cracked and the non-damaged specimens, and 
the same probability density functions were set for the 
microstructure. In addition, as an example, the result 
obtained by the reloading, which corresponds to the 
result in Figure 10, is shown in the black square. Even 
if the non-damaged specimen is completely healed, the 
Weibull distribution is considered to slightly shift to the 
higher strength side under the same boundary 

Figure 10. FEA results of reloading for completely healed specimen shown in Fig. 9: (a) the contour map of the damage variable: 
(b) bending stress–deflection relationship. The white frame in the contour map depicts the path of damage progression in the first 
loading.
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Figure 11. Time series snapshots of the healing process of the initial damaged part in an as-cracked specimen. The blue elements 
represent the state without damage, whereas the red elements represent the damaged state.

Figure 12. Relationships between bending stress and deflection for as-cracked and crack-healed specimens. The figure also 
depicts the contour map of the damage variable. The white frame in the contour map depicts the initial damaged part.

Science and Technology of Advanced Materials 21 (2020) 621                                                                                                                 S. OZAKI et al.



conditions. It should be noted that the order (A-E) of 
the bending strengths magnitude after healing is differ
ent from that of as-cracked specimens because the 
microstructure data around the healed part in the 
crack-healing material are stochastically distributed.

In this analysis, the scatter of the as-cracked speci
men was relatively large. This is because the plane strain 
condition of one element (z-direction) is adopted, and 
the bending strength depends on the fracture stress of 
the element just above the initial damaged part corre
sponding to the stress concentration area. In the case of 

ordinary three-dimensional analysis in which many 
elements are discretized in the z-direction, the scatter 
of bending strength in the as-cracked specimen is con
sidered to become small.

5.3 Comparison with experimental results

Finally, a qualitative comparison between the FEA results 
and the experimental results [15] is described. Figure 14 
(a) and 14(b) show the results of FEA and experiment on 
the time dependence of strength recovery, respectively. 

Figure 13. Weibull distributions obtained by the FEA of non-damaged, as-cracked, and crack-healed specimens. The calculated 
combinations of the Weibull modulus m and the scale parameter β [MPa] are as follows: non-damaged specimen (13.4, 983 [MPa]), 
as-cracked specimen (4.5, 225 [MPa]), and crack-healed specimen (19.5, 975 [MPa]).

Figure 14. Time dependence of strength recovery obtained by (a) FEA and (b) experiment. The plots correspond to peak values of 
the bending stress-deflection relationships.
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Here, separate plots of the graph show non-damaged, as- 
cracked, and crack-healed specimens. The empty circles 
(i.e., ○) in the crack-healed specimen correspond to the 
cases in which the damage occurred in the parts other 
than the healed part, and the filled circles (i.e., ●) corre
spond to the cases occurring in the healed part. Further, 
the error bar of the non-damaged specimen shows the 
range between the maximum and minimum values of the 
Weibull distribution in Figure 13. As shown in the figure, 
the FEA results demonstrate that the strength of the as- 
cracked specimen recovered as the healing time 
increased, and reached the same level as the non- 
damaged specimen, as in the case of the experiment. It 
is also confirmed that the strength of the crack-healed 
specimen varies within the range of the non-damaged 
specimen scatter. Furthermore, when the healing time is 
sufficiently long, the strength of the healed part increases. 
Therefore, the tendency for crack initiation moving 
around the healed part is also the same.

However, in the experiment, the scatter of strength is 
observed even when a crack develops from the healed 
part after healing to some extent. This difference is 
because the FEA used the plane strain condition. For 
a quantitative agreement between the FEA and experi
ment, 3D model that considers both the discretization 
in the width direction (z-direction) and the microstruc
ture data of the completely healed part are necessary to 
be appropriately set. Considering these factors, it would 
be possible to quantitatively examine the time depen
dence of strength recovery. Even so, the present FEA 
methodology can express the basic characteristics of 
recovery and strength scatter in self-healing ceramics. 
Thus, the self-healing behavior, which is linked with the 
stochastic fracture simulation due to microstructure 
distribution, can be evaluated.

6. Conclusions

In this study, we applied the previously proposed 
damage-healing constitutive model to the FEA of 
a series of damage and healing processes of Al2O3/15 
vol% SiC. In the FEA, the stochastic distribution of the 
microstructure, such as relative density, size and 
aspect ratio of pores, as well as grain size, was also 
considered. We then virtually performed the 3-point 
bending test and analysis using a Weibull distribution, 
to examine both the self-healing effect and scatter of 
ceramics strength. Thereafter, the time dependence of 
strength recovery obtained through FEA was qualita
tively compared with that obtained by the experiment. 
It was confirmed that the present FEA methodology 
can reasonably reproduce the basic characteristics of 
recovery and scatter of strength in self-healing cera
mics. Thus, we conclude that the present FEA metho
dology could be used for studying the self-healing 
behavior linked with the simulation of stochastic frac
ture caused by the microstructure distribution, which 

is essential to the mechanical and materials design of 
self-healing ceramics.

The advantages of the present method are summar
ized as follows:

(1) By utilizing the features of the FEM, the present 
model can be applied to a member/component 
of arbitrary shape under arbitrary boundary 
condition.

(2) The fracture of ceramics is based on the weakest 
link theory; therefore, the size dependence of 
ceramic strength can be evaluated reasonably.

(3) Since the evolution law for self-healing based on 
the oxidation kinetics is adopted, analysis can be 
performed in the arbitrary atmospheric environ
ment (temperature and oxygen partial pressure).

(4) Other damage models, fracture mechanics 
models, and kinetics models can be applied 
as needed.

Regarding (4), however, we focused on the fracture 
process caused by the tensile cracking due to 3-point 
bending in this study. The effectiveness of the present 
FEA for mode II and mode III cracking and compres
sive fractures must be examined in the near future. 
Furthermore, we adopted the empirical oxidation 
kinetics equation for evolution laws. To reflect the actual 
crack-filling phenomena in the constitutive model, more 
precise kinetics equations should be applied.
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