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Abstract. The discrete-time quantum walk (QW) is a quantum version of the
random walk (RW) and has been widely investigated for the last two decades.
Some remarkable properties of QW are well known. For example, QW has a
ballistic spreading, i.e., QW is quadratically faster than RW. For some cases,
localization occurs: a walker stays at the starting position forever. In this paper,
we consider stationary measures of two-state QWs on the line. It was shown that
for any space-homogeneous model, the uniform measure becomes the stationary
measure. However, the corresponding result for space-inhomogeneous model is
not known. Here, we present a class of space-inhomogeneous QWs on the line
and cycles in which the uniform measure is stationary. Furthermore, we briefly
discuss a difference between QWs and RWs.

1. Introduction

The discrete-time quantum walk (QW) is a quantum analog of the random

walk (RW) [1, 2, 7, 22]. There are two well-known important properties for QWs.

The first one is ballistic spreading, i.e., the standard deviation of the walker’s

position grows linearly in time, quadratically faster than RW [13, 14]. The second

one is localization, i.e., a walker stays at the starting position forever. In some

cases, QWs have both ballistic spreading and localization [16].

There are not only above-mentioned theoretical aspects but also practical

application of QW, such as the strongly correlated electron system [27], topo-

logical insulators [11, 23, 24], and radioactive waste reduction [8, 20, 21]. For

more detailed information on QWs, see Venegas-Andraca [30, 31], Konno [15],

Cantero et al. [3], Manouchehri and Wang [19], Portugal [28].

Stationary measures of discrete-time QWs have been extensively investigated

from around 2014 [4, 5, 6, 9, 10, 12, 17, 18, 32]. In this paper, we focus on sta-
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tionary measures of two-state QWs in one dimension. Konno [17] proved that

the uniform measure becomes the stationary measure for any space-homogeneous

model. We call this measure “uniform stationary measure”. However, the corre-

sponding result for space-inhomogeneous model is not known. This is a motiva-

tion of our study. Here, we present a class of space-inhomogeneous QWs on the

line and cycles in which the uniform measure is stationary. See Theorem 3.2 for

line case and Proposition 4.1 for cycle case.

Moreover, we consider a difference between the periodicity of coins for the

QW and the RW. As for our results, see Corollary 5.1 (QW case) and Proposition

6.1 (RW case).

The rest of this paper is organized as follows. In Section 2, we introduce the

two-state space-inhomogeneous QW on the line. Section 3 presents our main

result and the proof. Section 4 deals with an application to cycles. We consider

the periodicity of coins for QW (Section 5) and RW (Section 6). Section 7 is

devoted to summary.

2. Model and method

We introduce a discrete-time space-inhomogeneous QW on the line which is

a quantum version of the RW with an additional coin state. Let N be the set of

all natural numbers, Z be the set of all integers and C be the set of all complex

numbers. The walker has a coin state, Ψn(x), at time n(∈ N) and position x(∈ Z)

described by a two-dimensional vector:

Ψn(x) =

[
ΨL

n(x)

ΨR
n (x)

]
∈ C2.

The upper and lower elements are referred as left and right chiralities, respec-

tively. The time evolution is determined by 2 × 2 unitary matrices Ux which is

called coin matrix here:

Ux =

[
ax bx

cx dx

]
(x ∈ Z).

The subscript x stands for the position. We divide Ux into Ux = Px + Qx with

Px =

[
ax bx

0 0

]
, Qx =

[
0 0

cx dx

]
.

The 2×2 matrix Px(resp. Qx) represents the walker’s movement to the left (resp.

right) at position x at each time step. Then the time evolution of the walk is

defined by

Ψn+1(x) ≡ Px+1Ψn(x + 1) + Qx−1Ψn(x − 1).
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That is [
ΨL

n+1(x)

ΨR
n+1(x)

]
=

[
ax+1Ψ

L
n(x + 1) + bx+1Ψ

R
n (x + 1)

cx−1Ψ
L
n(x − 1) + dx−1Ψ

R
n (x − 1)

]
.

Now let

Ψn = T [ ... , ΨL
n(−1), ΨR

n (−1), ΨL
n(0), ΨR

n (0), ΨL
n(+1), ΨR

n (+1), ... ],

U (s) =



. . .
...

...
...

...
...

...

· · · Q−2 O P0 O · · · · · ·
· · · O Q−1 O P1 O · · ·
· · · · · · O Q0 O P2 · · ·
· · · ...

...
...

...
...

. . .

 with O =

[
0 0

0 0

]
,

where T means the transposed operation. Then the state Ψn of the QW at time

n is given by Ψn = (U (s))nΨ0 for any n ≥ 0. Put R+ = [0,∞). Here we introduce

a map Γ : (C2)Z → RZ
+, as

Γ(Ψ) ≡ T

[
· · · , |ΨL(−1)|2 + |ΨR(−1)|2, |ΨL(0)|2

+ |ΨR(0)|2, |ΨL(1)|2 + |ΨR(1)|2, · · ·
]
∈ RZ

+,

for

Ψ = T

[
· · · ,

[
ΨL(−1)

ΨR(−1)

]
,

[
ΨL(0)

ΨR(0)

]
,

[
ΨL(1)

ΨR(1)

]
, · · ·

]
∈ (C2)Z.

By using the map Γ, we define a measure µ : Z → R+ by

µ(x) ≡ Γ(Ψ)(x) = |ΨL(x)|2 + |ΨR(x)|2 (x ∈ Z).

Let M(U (s)) be the set of the measures of the QW. Then, we put the set

Ms(U
(s))=

{
µ ∈ M(U (s)) : ∃Ψ0 ∈

(
C2

)Z
s.t. Γ((U (s))nΨ0)=µ (n = 0, 1, 2, . . .)

}
.

We call the element of Ms(U
(s)) the stationary measure of the QW. Generally,

the set of stationary measures of QW depends on its time evolution operator.

It was shown by [17] that two-state space-homogeneous QWs in one dimension

have a uniform stationary measure. In space-homogeneous case, the coin matrix

Ux does not depend on x. In order to emphasize the homogeneity, we use U
(s)
hom

as U (s). Thus, if we define Munif be the set of uniform measures on Z;

Munif =
{

measure µ : there exists c > 0 such that µ(x) = c for any x ∈ Z
}

,
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then we can write Munif ⊂ Ms(U
(s)
hom).

On the other hand, it was not known whether a two-state space-inhomogeneous

QW in one dimension has a uniform measure as a stationary measure or not. Let

us consider the eigenvalue problem

U (s)Ψ = λΨ,

where λ ∈ C with |λ| = 1. If we assume that the initial state is Ψ0 satisfying

U (s)Ψ0 = λΨ0, then we have

Ψn = (U (s))nΨ0 = λnΨ0.

Noting that |λ| = 1, we see that for any n ≥ 0,

µn(x) = Γ(Ψn)(x) = Γ(λnΨ0)(x) = |λn|2Γ(Ψ0)(x) = Γ(Ψ0)(x) = µ0(x).

This shows that µ0 is a stationary measure, i.e., µ0 ∈ Ms(U
(s)). For λ ∈ C with

|λ| = 1, we put

A(λ)
e (U (s)) =

{
Ψ ∈

(
C2

)Z \ {0} : U (s)Ψ = λΨ
}

.

Moreover, we introduce the following set of measures:

M(λ)
e (U (s)) =

{
Γ(Ψ) ∈ Ms(U

(s)) : Ψ ∈ A(λ)
e (U (s))

}
.

If we define the following set of measures:

Me
s(U

(s)) =
∪

λ∈C,|λ|=1

M(λ)
e (U (s))

Clearly, we obtain Me
s(U

(s)) ⊂ Ms(U
(s)).

3. Main result

In this section, we consider QWs defined by the parameters {ωx}x∈Z. The

coin at position x of the QWs is

Ux =

[
cos θ eiωx sin θ

e−iωx sin θ − cos θ

]
(ωx ∈ [0, 2π), θ ∈ (0, 2π)).

In particular, we focus on a class of QWs satisfying that there exists φ ∈ [0, 2π)

such that ωx − ωx−1 = 2φ (mod 2π) for all x ∈ Z. We write this class of QWs

defined by the sequence of coin {Ux}x∈Z as Cφ and simply denote Ux ∈ Cφ. Before

showing our result, we introduce the following result in [10].



MEASURE OF QUANTUM WALKS 5

LEMMA 1. (Theorem 3.1 in [10]) Let Ψ(x) = T [ΨL(x), ΨR(x)] be the amplitude.

The coin matrix is defined by

Ux =

[
ax bx

cx dx

]
(x ∈ Z)

where axbxcxdx 6= 0. Then a solution of the following eigenvalue problem:

U (s)Ψ = λΨ

is given by

Ψ(x) =



x∏
y=1

D+
y Ψ(0) (x ≥ 1),

Ψ(0) (x = 0),
x∏

y=−1

D−
y Ψ(0) (x ≤ −1).

(3.1)

where

D+
x =

λ2 − bxcx−1

λax

−bxdx−1

λax
cx−1

λ

dx−1

λ

 , D−
x =

 ax+1

λ

bx+1

λ

−ax+1cx

λdx

λ2 − bx+1cx

λdx

 .

These matrices both D+
x and D−

x are called transfer matrices. Moreover, we

define {Γ(Ψ)} as the set of all Γ(Ψ) given by Theorem 3.1 in [10]. Therefore,

{Γ(Ψ)} = Me
s(U

(s))(⊂ Ms(U
(s))).

If we apply this result into our model, then we can get the following theorem.

THEOREM 1. We consider QWs with Ux ∈ Cφ(φ ∈ [0, 2π)) and θ 6= π
2
, θ 6= 3π

2
.

Then we can construct Ψ ∈ (C2)Z satisfying U (s)Ψ = eiφΨ in the following:

Ψ(x) =



x∏
y=1

D+
y Ψ(0) (x ≥ 1),

Ψ(0) (x = 0),
x∏

y=−1

D−
y Ψ(0) (x ≤ −1),

where

D+
x =

[
eiφ cos θ eiαx sin θ

e−iαx sin θ −e−iφ cos θ

]
, D−

x =

[
e−iφ cos θ eiαx+1 sin θ

e−iαx+1 sin θ −eiφ cos θ

]
,

αx = φ + ωx−1 = ωx − φ (mod 2π).

Moreover, Γ(Ψ) ∈ Munif ∩ Me
s(U

(s)) ( ⊂ Ms(U
(s)) ). That is, our QW model

has a uniform stationary measure.
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Proof. In the case of QWs with Ux ∈ Cφ (φ ∈ [0, 2π)), considering the following

eigenvalue problem

U (s)Ψ = eiφΨ,

then we calculate the transfer matrices as follows.

D+
x =

λ2 − bxcx−1

λax

−bxdx−1

λax
cx−1

λ

dx−1

λ


=

e2iφ − eiωx sin θe−iωx−1 sin θ

eiφ cos θ
−eiωx sin θ(− cos θ)

eiφ cos θ
e−iωx−1 sin θ

eiφ
−cos θ

eiφ


=

eiφ − ei(ωx−ωx−1−φ) sin2 θ

cos θ
ei(ωx−φ) sin θ

e−i(ωx−1+φ) sin θ −e−iφ cos θ


=

[
eiφ cos θ eiαx sin θ

e−iαx sin θ −e−iφ cos θ

]
.

The forth equality comes from the assumption that ωx−ωx−1 = 2φ (mod 2π) for

all x ∈ Z. Because of the assumption, we get φ + ωx−1 = ωx − φ (mod 2π) for

all x ∈ Z. We write αx = φ + ωx−1 = ωx − φ (mod 2π). As in the case of D+
x ,

we compute D−
x in the following.

D−
x =

 ax+1

λ

bx+1

λ

−ax+1cx

λdx

λ2 − bx+1cx

λdx


=

 cos θ

eiφ

eiωx+1 sin θ

eiφ

−e−iωx sin θ cos θ

−eiφ cos θ

e2iφ − eiωx+1 sin θe−iωx sin θ

−eiφ cos θ


=

 e−iφ cos θ ei(ωx+1−φ) sin θ

e−i(ωx+φ) sin θ −eiφ − ei(ωx+1−ωx−φ) sin2 θ

cos θ


=

[
e−iφ cos θ eiαx+1 sin θ

e−iαx+1 sin θ −eiφ cos θ

]
.

These transfer matrices D+
x and D−

x are unitary matrices. By Eq.(3.1) in Lemma

3.1, if transfer matrices are unitary matrices, the norm of Ψ(x) is independent of

position x. Therefore, the conclusion Γ(Ψ) ∈ Munif can be derived from Lemma

3.1.
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Ohno [25, 26] investigated unitary equivalent classes of one-dimensional QWs.

Using the method in [26], we can also prove Theorem 3.2. However, compared

with his method, our method is easier to show our result.

4. Application to cycles

In this section, we consider two-state QWs on a cycle C2N with 2N vertices

for N ∈ N. Here a cycle Cm = (V,E) with m ∈ N is defined by the set of vertices,

V = {x ∈ Z/mZ},

and the set of edges,

E = {(x, x + 1), (x + 1, x) : x ∈ V }.

We define QWs on a cycle Cm whose coin matrix at position x is given by Ux.

As in the case of Z, the time evolution of the walk is determined by

Ψn+1(x) ≡ Px+1Ψn(x + 1) + Qx−1Ψn(x − 1) (x ∈ Z/mZ).

The time evolution operator in the cycle case is given by U
(s)
c like U (s) in the

case of Z. Then we see that Ψn+1 = U
(s)
c Ψn (n ≥ 0), where

Ψn = T [ ... , ΨL
n(−1), ΨR

n (−1), ΨL
n(0), ΨR

n (0), ΨL
n(+1), ΨR

n (+1), ... ].

We should remark that
∏m

x=1 D+
x = I2 folds for our cycle Cm case, if we can

replace U (s) with U
(s)
c in Theorem 3.2, where I2 is the 2 × 2 identity matrix.

Using this remark, we can get the following result.

PROPOSITION 2. We consider the QWs on a cycle C2N with N ∈ N whose

coin matrix at position x is given by

Ux =

[
cos θ eiωx sin θ

e−iωx sin θ − cos θ

]
(ωx ∈ [0, 2π), θ ∈ (0, 2π)),

where ωx − ωx−1 = 2π
N

(mod 2π) for all x ∈ Z and θ 6= π
2
, θ 6= 3π

2
. This model

has a uniform stationary measure.

Proof. In this case, we obtain

D+
x =

[
ei π

N cos θ eiαx sin θ

e−iαx sin θ −e−i π
N cos θ

]
,
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where αx = π
N

+ ωx−1 = ωx − π
N

(mod 2π). By definition of αx, we get

αx+1 − αx =
( π

N
+ ωx

)
−

( π

N
+ ωx−1

)
=

2π

N
(mod 2π) (4.2)

and

αx+1 −
π

N
= αx +

π

N
(mod 2π). (4.3)

Thus we see

D+
x+1D

+
x

=

[
ei π

N cos θ eiαx+1 sin θ

e−iαx+1 sin θ −e−i π
N cos θ

] [
ei π

N cos θ eiαx sin θ

e−iαx sin θ −e−i π
N cos θ

]
=

[
ei 2π

N 0

0 e−i 2π
N

]
.

The second equality derived from the Eqs.(4.2) and (4.3). Therefore, we have

2N∏
x=1

D+
x =

[
ei 2π

N 0

0 e−i 2π
N

]N

= I2.

Thus, the desired conclusion can be obtained.

5. Periodicity of coins of QW on the line

In this section, we consider the periodicity of the sequence of coins {Ux}x∈Z

which determines QW. Put N ∈ N. If Ux+N = Ux for x ∈ Z, we say that {Ux}x∈Z

has N period. If not, {Ux}x∈Z has no period.

By Theorem 3.2, we get the following result.

COROLLARY 3. We consider QWs on the line with {Ux}x∈Z in which for each

x ∈ Z, satisfying Ux ∈ Cφ with φ ∈ [0, 2π), i.e.,

Ux =

[
cos θ eiωx sin θ

e−iωx sin θ − cos θ

]
(ωx ∈ [0, 2π), θ ∈ (0, 2π)),

where ωx − ωx−1 = 2π
N

(mod 2π) for all x ∈ Z. In this setting, we have

Case 1. If we choose φ = 1
N
× π with N ∈ N, then {Ux}x∈Z has N period.

Case 2. If we choose φ = aπ where a is an irrational number, then {Ux}x∈Z has

no period.

We give an example corresponding to case 1 in Corollary 5.1. In this case,

we put φ = 1
3
× π (i.e., N = 3) and ω0 = 0. Then {Ux}x∈Z can be written as

Ux =


U0 (x = 0 mod 3),

U1 (x = 1 mod 3),

U2 (x = 2 mod 3),
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where

U0 =

[
cos θ sin θ

sin θ − cos θ

]
, U1 =

[
cos θ e

2
3
πi sin θ

e−
2
3
πi sin θ − cos θ

]
, U2 =

[
cos θ e

4
3
πi sin θ

e−
4
3
πi sin θ − cos θ

]
.

6. RW case

This section is devoted to stationary measures of RWs on Z. For more details

on RWs, see [29]. The RW is determined by a sequence of the classical counter-

part of coins {px}x∈Z with px ∈ [0, 1]. That is to say, the time evolution of the

RW is defined by

µn(x) = px+1µn−1(x + 1) + qx−1µn−1(x − 1), (6.4)

where µn(x) is the measure for the RW at time n and position x, and qx = 1−px.

Here we introduce the transition matrix P (s) of the RW as follows

P (s) =



. . .
...

...
...

...
...

...

· · · q−2 0 p0 0 · · · · · ·
· · · 0 q−1 0 p1 0 · · ·
· · · · · · 0 q0 0 p2 · · ·
· · · ...

...
...

...
...

. . .

 .

Let M(P (s)) be the set of all measures of the RW. Furthermore, Ms(P
(s))

denotes the set of all stationary measures of the RW, i.e.,

Ms(P
(s)) =

{
µ ∈ Ms(P

(s)) : P (s)µ = µ
}

In this setting, we obtain the following result.

PROPOSITION 4. Assume that Munif ⊂ Ms(P
(s)). Then, {px}x∈Z has 1 pe-

riod (i.e., px is a constant) or 2 period.

Proof. The assumption implies that there exists a uniform stationary measure

µn(x) = c (> 0) for any n = 0, 1, 2, ... and x ∈ Z. Thus, we see that Eq.(6.4)

becomes

c = px+1c + (1 − px−1)c,

since qx−1 = 1 − px−1. Therefore we have

px−1 = px+1 (x ∈ Z)

and the proof is complete.
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Table 1 summarizes our results on Corollary 5.1 (QW case) and Proposition

6.1 (RW case) and clarifies the difference between them, where “◦” means there

exists a sequence of coins with n period for n = 0, 1, 2, . . . ,∞ and “×” means

“otherwise”. Here “∞ period” is equivalent to “no period”.

Table 1

The number of the period 1 2 3 4 · · · ∞
RW ◦ ◦ × × · · · ×
QW ◦ ◦ ◦ ◦ · · · ◦

7. Summary

In this paper, we studied stationary measures of discrete-time two-state QWs.

We presented models having the uniform stationary measure on Z and cycles.

Moreover, considering the sequence of coins, we found out an interesting differ-

ence between QWs and RWs. As a future work, it would be fascinating to extend

our result and observation to QWs and RWs on general graphs.
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