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Abstract. We consider Bernoulli bond percolation on the product graph of a
regular tree and a line. We show the critical probability pc and the uniqueness
threshold pu can be expressed by using a certain function α(p), which is defined
by an exponential decay rate of probability that two vertices of the same layer
are connected, and was originally introduced by Schonmann to show that there
are a.s. infinitely many infinite clusters at p = pu.

1. Introduction

Let G = (V,E) be a connected, locally finite and infinite graph, where V is

the set of vertices, E is the set of edges. In Bernoulli bond percolation, each edge

will be open with probability p, and closed with probability 1− p independently,

where p ∈ [0, 1] is a fixed parameter. Let Ω = {0, 1}E be the set of samples,

where ω(e) = 1 means e is open. Each ω ∈ Ω is regarded as a subgraph of G

consisting of all open edges. The connected components of ω are referred to as

clusters. Let pc = pc(G) be the critical probability for Bernoulli bond percolation

on G, that is,

pc = inf {p ∈ [0, 1] | there exists an infinite cluster Pp-almost surely} ,

and let pu = pu(G) be the uniqueness threshold for Bernoulli bond percolation

on G, that is,

pu = inf {p ∈ [0, 1] | there exists a unique infinite cluster Pp-almost surely} .

One of the most popular graphs in the theory of percolation is the Euclidean

lattice Zd. In 1980 Kesten [11] proved that pc = 1/2 in the case of two dimen-

sions. But in the case of three dimensions or more, as a numerical value, the
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critical probability is not quite clear. Regarding the uniqueness threshold of the

Euclidean lattice, in 1987 Aizenman, Kesten, and Newman [2] proved that there

exists at most one infinite cluster almost surely for all d ≥ 1, that is, they showed

that pc = pu for all d ≥ 1. The product graph of a d-regular tree and a line Td¤Z
was presented as a first example of a graph with pc < pu < 1 by Grimmett and

Newman [7] in 1990, where a product graph means a Cartesian product graph.

They showed that pc < pu holds when d is sufficiently large. After this article

had appeared, percolation on Td¤Z has become a popular topic. However, the

critical probability of Td¤Z is, as a value, also not quite clear. In this paper

we study Bernoulli bond percolation on Td¤Z. Our goal is to write the critical

probability and the uniqueness threshold by using a certain function α(p).

We denote the probability measure associated with Bernoulli percolation pro-

cess by Pp or PG
p . Let (x ↔ y) be an event that there exists an open path between

x and y for two vertices x, y ∈ V . Similarly, Let (K ↔ L) be an event that there

exists two vertices x ∈ K, y ∈ L and an open path between x and y for two

sets of vertices K,L ⊂ V . If either K or L is finite in addition, then an event

(K ↔ L) is called a connection event. The function α(p), which was appeared

in [13], is defined by

α(p) = αd(p) = lim
n→∞

Pp(o ↔ (vn, 0))
1
n ,

where vn is a vertex on Td with distance n from the origin o. From a homogeneity

of Td, α(p) does not depend on a choice of vn. We abbreviate vn as n. We check

the existence of the above limit. From the FKG inequality, we have

Pp(o ↔ (n + l, 0)) ≥ Pp(o ↔ (n, 0))Pp(o ↔ (l, 0))

for all n, l ≥ 0. By using Fekete’s subadditive lemma, the existence of the limit

is ensured, and we have

α(p) = lim
n→∞

Pp(o ↔ (n, 0))
1
n = sup

n≥1
Pp(o ↔ (n, 0))

1
n .

Letting B(k) be a k-ball of Td¤Z whose center is o, we have

α(p) = sup
n≥1

sup
k≥1

PB(k)
p (o ↔ (n, 0))

1
n ,

and observe that we are taking the supremum of a continuous function of p.

Therefore α(p) is lower semi-continuous and, since it is clearly non-decreasing, it

is also left-continuous. By using the function α(p), we have new characterizations

of pc and pu as in the following theorem.
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THEOREM 1.1. For all d ≥ 3, we have

pc(Td¤Z) = α−1

(
1

d − 1

)
,

pu(Td¤Z) = α−1

(
1√

d − 1

)
.

To prove this theorem, we require the following lemmas.

LEMMA 1.2. For all d ≥ 3, we have

α(pc(Td¤Z)) =
1

d − 1
,

α(pu(Td¤Z)) =
1√

d − 1
.

LEMMA 1.3. The function α(p) is strictly increasing in [0, pu].

From Lemma 1.3, the inverse function of α can be defined in {α(p) | p ∈ [0, pu]}.
As for the critical probability pc, Hutchcroft showed the following theorem.

THEOREM 1.4. ([8]) Let G be a quasi-transitive graph with exponential growth.

Then

κpc(n) = inf {τpc(x, y) | x, y ∈ V, d(x, y) ≤ n} ≤ gr(G)−n

for all n ≥ 1, where τp(x, y) = Pp(x ↔ y) and gr(G) = lim inf
r→∞

|B(x, r)|1/r.

The following lemma can be shown by using a similar argument of this theorem.

LEMMA 1.5. Let G = Td¤Z. Then we have

α(pc) ≤ gr(G)−1 =
1

d − 1
.

On the other hand, when p > pc, we have the following lemma.

LEMMA 1.6. For all p > pc, we have

α(p) ≥ 1

d − 1
.

To obtain α(pc) = 1/(d − 1), we require the following lemma.

LEMMA 1.7. The function α(p) is continuous at p ∈ [0, pc].
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Hence by using Lemmas 1.5 and 1.6, we have α(pc) = 1/(d − 1).

We turn to the uniqueness threshold pu. A part of Lemma 1.2 was already

obtained by Schonman[13], who showed there are a.s. infinitely many infinite

clusters at p = pu.

THEOREM 1.8. ([13]) Let pu be the uniqueness threshold. Then we have

α(pu) ≤
1√

d − 1
.

To obtain α(pu) = 1/
√

d − 1, we require the following lemma.

LEMMA 1.9. For all p ≥ pu, we have

α(p) ≥ 1√
d − 1

.

We will show Lemma 1.5 and Lemma 1.6 in Section 2, and show Lemma 1.3

in Section 3. Section 4, Section 5 and Section 6 will be devoted to prove Lemma

1.7. In Section 7, we will show Lemma 1.9, and we will complete the proof of

Lemma 1.2.

2. Proof of Lemma 1.5 and Lemma 1.6

We require the following well-known theorem.

THEOREM 2.1. ([1], [3]) Let G be a quasi-transitive graph, and o be a fixed

vertex of G. Then we have ∑
x∈V

τp(o, x) < ∞

for all p < pc.

This theorem was proven in the transitive case by Aizenman and Barsky [1], and

in the quasi-transitive case by Antunović and Veselić [3].

Proof of Lemma 1.5. Let S(n) be a set of vertices of Td × {0} with distance n

from the origin. For all p ∈ [0, 1] and all n ≥ 1, we have

τp(o, (n, 0)) · |S(n)| =
∑

x∈Td,|x|=n

τp(o, (x, 0)) ≤
∑

x∈Td˜Z

τp(o, x).

By using Theorem 2.1, the right-hand side is finite when p < pc. We know

|S(n)| = d(d − 1)n−1. Then we have

lim
n→∞

τp(o, (n, 0))
1
n ≤ lim

n→∞

(∑
x∈Td˜Z τp(o, x)

|S(n)|

) 1
n

=
1

d − 1
.
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This means that α(p) ≤ 1/(d − 1) for all p < pc. Since α(p) is left-continuous,

we have α(pc) ≤ 1/(d − 1), which completes the proof of Lemma 1.5.

We prepare some tools to show Lemma 1.6. Let G•,m = Td¤[−m,m] for each

m ≥ 0. Similarly to α(p), we define αm(p) by

αm(p) = lim
n→∞

PG•,m
p (o ↔ (n, 0))

1
n = sup

n≥1
PG•,m

p (o ↔ (n, 0))
1
n .

Schonmann proved the following lemma.

LEMMA 2.2. ([13]) The function α(p) is given by taking a limit of αm(p), that

is,

lim
m→∞

αm(p) = α(p)

for all p ∈ [0, 1].

Proof. It is clear that for all m ≥ 0, αm(p) ≤ αm+1(p) ≤ α(p). Thus we have

{αm(p)}m≥0 converges and lim
m→∞

αm(p) ≤ α(p). On the other hand, by definition

of α(p), for any small ε > 0, there is an n such that

α(p) − ε ≤ Pp(o ↔ (n, 0))
1
n .

By the definition of αm(p), for any n ≥ 1, we have

PG•,m
p (o ↔ (n, 0)) ≤ αm(p)n.

From these two inequalities, we have

(α(p) − ε)n ≤ Pp(o ↔ (n, 0)) = lim
m→∞

PG•,m
p (o ↔ (n, 0)) ≤ lim

m→∞
αm(p)n.

Hence, we have α(p) − ε ≤ lim
m→∞

αm(p), which completes the proof.

Let π be a natural projection from Td¤Z to Td, and τp(o, π
−1(x)) = Pp(o ↔

π−1(x)) for x ∈ V (Td). We define functions α′(p), α′
m(p), similarly to α(p), αm(p).

α′(p) = sup
n≥1

Pp(o ↔ π−1(n))
1
n ,

α′
m(p) = lim

n→∞
PG•,m

p (o ↔ π−1(n))
1
n = sup

n≥1
PG•,m

p (o ↔ π−1(n))
1
n .

We check the existence of a limit defining the function αm(p). Let En be an

event that all edges of π−1(n)∩G•,m are open. By using the FKG inequality, we

have

PG•,m
p (o ↔ π−1(n + l)) ≥ PG•,m

p (o ↔ π−1(n + l) ∩ En)

= PG•,m
p ((o ↔ π−1(n)) ∩ En ∩ ((n, 0) ↔ π−1(n + l)))

≥ p2mPG•,m
p (o ↔ π−1(n))PG•,m

p (o ↔ π−1(l))
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for all n, l ≥ 0. By using Fekete’s subadditive lemma, the existence of the limit

is ensured, and we have

α′
m(p) = sup

n≥1
p

2m
n PG•,m

p (o ↔ π−1(n))
1
n = sup

n≥1
PG•,m

p (o ↔ π−1(n))
1
n .

Similarly to Lemma 2.2, we can show lim
m→∞

α′
m(p) = α′(p).

LEMMA 2.3. For all p ∈ [0, 1], we have α(p) = α′(p).

Proof. It is clear that αm(p) ≤ α′
m(p). On the other hand, we have

PG•,m
p (o ↔ π−1(n)) ≤

∑
|k|≤m

PG•,m
p (o ↔ (n, k)) ≤ (2m + 1)αm(p)n,

α′
m(p) = lim

n→∞
PG•,m

p (o ↔ π−1(n))
1
n ≤ lim

n→∞
(2m + 1)

1
n αm(p) = αm(p).

Then αm(p) = α′
m(p) holds for all m ≥ 0. By taking the limit, we have α(p) =

α′(p).

Proof of Lemma 1.6. We use another definition of the critical probability. Let

(o ↔ ∞) be the event that there exists an infinite open path from the origin.

Then we have

pc = sup {p ∈ [0, 1] | Pp(o ↔ ∞) = 0} .

Let B(n) ⊂ Td be a n-ball whose center is the origin, and we set Gn,• = B(n)¤Z.

If (o ↔ ∞) occurs on Td¤Z, then (o ↔ ∂B(n)¤Z) or (o ↔ ∞) occur on Gn,•.

It is clear that pc(Gn,•) = 1. Hence, by using Lemma 2.3, we have

Pp(o ↔ ∞) ≤ Pp(o ↔ ∂B(n)¤Z) + PGn,•
p (o ↔ ∞)

≤
∑

x∈∂B(n)

Pp(o ↔ π−1(x)) ≤ d(d − 1)n−1α(p)n

for all p < 1. The right-hand side goes to 0 if α(p) < 1/(d − 1). Since Pp(o ↔
∞) > 0 holds when p > pc, Then we have α(p) ≥ 1/(d − 1) for all p > pc.

3. Extension of some theorems

In Bernoulli percolation, some theorems can only be applied to events which

depend on finitely many edges. For an edge subset F , let [ω]F be a subset of Ω

whose elements have the same configuration as ω on F . An event A is said to

depend on (only) finitely many edges if there exists a finite edge set F such that
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[ω]F ⊂ A or [ω]F ∩ A = ∅ holds for all ω ∈ Ω. For ω, τ ∈ Ω, we write ω ≤ τ

if ω(e) ≤ τ(e) holds for all e ∈ E. An event A is called increasing if τ ∈ A

whenever ω ∈ A and ω ≤ τ .

THEOREM 3.1. ([6] (2.39)) Let A be an increasing event which depends on

finitely many edges. Then we have

Ppγ (A) ≤ Pp(A)γ

for all 0 < p < 1 and γ ≥ 1.

For two events A and B, A ◦ B is defined as the event that A and B occur on

disjoint edge sets, formulated by

A ◦ B = {ω ∈ Ω | ∃finite disjoint K,L ⊂ E s.t. [ω]K ⊂ A, [ω]L ⊂ B} .

THEOREM 3.2. (the BK inequality [5]) Let A,B be increasing events which

depends on finitely many edges. Then we have

Pp(A ◦ B) ≤ Pp(A)Pp(B).

We will extend these two theorems so that it can be applied to certain events

which depends on infinitely many edges. In section 1, we defined connection

events. It is clear that a connection event is an increasing event, and depends

on infinitely many edges in general. For example (o ↔ x) and (o ↔ π−1(x)) are

connection events which are depends on infinitely many edges.

LEMMA 3.3. Let A be a connection event. Then we have

Ppγ (A) ≤ Pp(A)γ

for all 0 < p < 1 and γ ≥ 1.

LEMMA 3.4. Let A,B be connection events. Then we have

Pp(A ◦ B) ≤ Pp(A)Pp(B).

Proof of Lemma 3.3 and Lemma 3.4. Let A = (K ↔ L), and Γ be a set of all

paths between K and L. Then we have

A =
∪
q∈Γ

(q : open).

Each event (q : open) is increasing and it depends on finitely many edges. For

any ε > 0, there exists a finite subset Γ′ ⊂ Γ such that

Ppγ (A) − ε ≤ Ppγ

( ∪
q∈Γ′

(q : open)

)
.
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The event in the right-hand side is increasing and it depends on finitely many

edges. Then by using Theorem 3.1, we have

Ppγ (A) − ε ≤ Pp

( ∪
q∈Γ′

(q : open)

)γ

≤ Pp(A)γ.

It completes the proof of Lemma 3.3. Next we will show Lemma 3.4. Let

Ai = (Ki ↔ Li), Γ
(n)
i be a set of all paths between Ki and Li with length n

or less, C
(n)
i =

∪
q∈Γ

(n)
i

(q : open) for i = 1, 2. Then we have

Ai =
∪
n≥1

C
(n)
i .

If ω ∈ A1 ◦ A2, then there exists finite disjoint subsets F1, F2 ⊂ E such that

[ω]Fi
⊂ Ai. We take n = max{|Fi|}, then we have [ω]Fi

⊂ C
(n)
i , that is ω ∈

C
(n)
1 ◦ C

(n)
2 . Hence, we have

Ai ◦ A2 ⊂
∪
n≥1

(
C

(n)
1 ◦ C

(n)
2

)
.

Since K1, K2 are finite, each of the events C
(n)
1 and C

(n)
2 is increasing and depends

on finite edges. Then by using Theorem 3.2, we have

Pp(A1 ◦ A2)

≤ lim
n→∞

Pp

(
C

(n)
1 ◦ C

(n)
2

)
≤ lim

n→∞

(
Pp

(
C

(n)
1

)
Pp

(
C

(n)
2

))
= Pp(A1)Pp(A2).

At the end of this section, we show Lemma 1.3. By using Lemma 3.3, we have

α(pγ) = lim
n→∞

Ppγ (o ↔ (n, 0))
1
n ≤ lim

n→∞
Pp(o ↔ (n, 0))

γ
n = α(p)γ.

We know α(p) < 1 for all p ≤ pu from Theorem 1.8. Then we have

α(pγ) ≤ α(p)γ < α(p)

for all p ≤ pu and γ > 1. Therefore α(p) is a strictly increasing function on

[0, pu].

4. Connection event

In Section 3, we prepared some lemmas concerning connection events. In this

section, we prepare one more lemma concerning connection events. A graph G
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is called nonamenable if the Cheeger constant of G, defined by

h(G) = inf

{
|∂S|
|S|

| S ⊂ V, |S| < ∞
}

,

is positive.

THEOREM 4.1. ([4]) Let G be a nonamenable Cayley graph. Then we have

Ppc(o ↔ ∞) = 0.

It is well-known that h(Td¤Z) = d − 2, that is, Td¤Z is a nonamenable graph

for all d ≥ 3. Also, let S = {a1, . . . , ad, b} be a generating set, and Γ =〈
ai, b|a−1

i = ai, aib = bai

〉
be a group generated by S, then Td¤Z is a Cayley

graph of (Γ, S). Therefore, we can use this theorem for Td¤Z.

LEMMA 4.2. Let G = Td¤Z, and A be a connection event. Then Pp(A) is

continuous at p ∈ [0, pc].

Proof. It is clear that Pp(A) is left-continuous similar to α(p), since

Pp(A) = sup
k≥1

PB(k)
p (A)

where B(k) is a k-ball. We will prove that Pp(A) is right-continuous at p ∈ [0, pc]

in this section. We prepare another definition of Pp which is found in [6]. Let

Ω′ = [0, 1]E, µe be a uniform distribution on [0, 1] for each e ∈ E, and µ =∏
e∈E µe be a probability measure on Ω′. For any p ∈ [0, 1] and {Xe}e∈E ∈ Ω′,

let ωp be a configuration defined by

ωp(e) = 1{Xe<p}

for any e ∈ E. We define a map fp from Ω′ to Ω = {0, 1}E, by fp({Xe}) = ωp.

Then the pushforward measure of µ is the same as Pp, that is,

fp∗(µ) = Pp.

By using this equation, we have

P(A) = µ(ωp ∈ A).

Fix p0 ∈ [0, pc] arbitrarily. For any p > p0, we have

Pp(A) − Pp0(A) = µ(ωp ∈ A, ωp0 6∈ A).
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Hence, by taking the limit, we have

lim
p↓p0

(Pp(A) − Pp0(A)) = µ(∀p > p0, ωp ∈ A,ωp0 6∈ A).

Let A = (K ↔ L), and suppose that (ωp0 6∈ A) occurs. By Theorem 4.1, there

exists no infinite path from x on ωp0 almost surely for any x ∈ K and any

p0 ∈ [0, pc]. Hence, connected components containing elements in K are finite.

Let H be a finite subgraph which contains all of these connected components. If

ωp ∈ A holds, then there exists at least one edge e on H such that ωp0(e) = 0

and ωp(e) = 1. If ωp ∈ A holds for all p > p0, then there exists at least one edge

e on H such that Xe = p0. Hence, we have

lim
p↓p0

(Pp(A) − Pp0(A)) ≤
∑

e∈E(H)

µ(Xe = p0) ≤ 0,

which completes the proof.

5. Another function β(p)

In this section, we prove Lemma 1.7. We prepare another function β(p)

similar to α(p), defined by

β(p) = lim
m→∞

Pp(o ↔ (0,m))
1
m = sup

m≥1
Pp(o ↔ (0,m))

1
m .

By using the FKG inequality and the homogeneity of Td¤Z, we have

Pp(o ↔ (2n, 0)) ≥ Pp ((o ↔ (n,m)) ∩ ((n,m) ↔ (2n, 0))) ≥ Pp(o ↔ (n,m))2.

Hence, we have

Pp(o ↔ (n,m)) ≤ Pp(o ↔ (2n, 0))
1
2 ≤ α(p)n

for each (n,m). Similarly, we have

Pp(o ↔ (n, m)) ≤ β(p)m.

For each n ≥ 1, we define In(p) by

In(p) =
∑
k∈Z

Pp(o ↔ (n, k)).

Since Pp(o ↔ (n,m)) ≤ β(p)m, it is well-defined when β(p) < 1.



CRITICAL PROBABILITY AND THE UNIQUENESS THRESHOLD FOR THE PRODUCT GRAPH 43

LEMMA 5.1. For any p < pu, we have

β(p) < 1.

This lemma will be shown in the next section. We assume Lemma 5.1 holds, and

only consider when p < pu.

LEMMA 5.2. For any n, l ≥ 1, we have

In+l(p) ≤ In(p)Il(p).

Proof. By using Lemma 3.4, we have

In+l(p)

=
∑
k∈Z

Pp(o ↔ (n + l, k)) =
∑
k∈Z

Pp

(∪
t∈Z

(o ↔ (n, t)) ◦ ((n, t) ↔ (n + l, k))

)
≤

∑
k∈Z

∑
t∈Z

Pp(o ↔ (n, t))Pp(o ↔ (l, k − t)) ≤ In(p)Il(p).

Therefore, we define the function η(p) by

η(p) = lim
n→∞

In(p)
1
n = inf

n≥1
In(p)

1
n .

LEMMA 5.3. The function η(p) is right-continuous at p ∈ [0, pc].

Proof. We define I
(m)
n (p) by

I(m)
n (p) =

∑
|k|≤m

Pp(o ↔ (n, k))

for all n ≥ 1,m ≥ 0. By Lemma 4.2, I
(m)
n (p) is continuous at p ∈ [0, pc]. For any

p0 ∈ (pc, pu), we have

In(p) − I(m)
n (p) =

∑
|k|>m

Pp(o ↔ (n, k)) ≤ 2
∑
k>m

β(p)k

= 2 · β(p)m+1

1 − β(p)
≤ 2 · β(p0)

m+1

1 − β(p0)
.

Since β(p0) < 1, the right-hand side goes to 0 as m → ∞. Then {I(m)
n (p)}m≥0

uniformly converges to In(p) on [0, p0]. Hence, In(p) is continuous at p ∈ [0, pc].

The function η(p) is defined as the pointwise infimum of continuous functions.

Therefore, η(p) is right-continuous at p ∈ [0, pc].
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Now we know that α(p) is left-continuous on [0, 1] and η(p) is right-continuous

at p ∈ [0, pc].

LEMMA 5.4. For any p ∈ [0, pu), we have α(p) = η(p). In particular, α(p) is

continuous at p ∈ [0, pc].

Proof. We define ηm(p) by

ηm(p) = lim inf
n→∞

I(m)
n (p)

1
n

for all m ≥ 0, n ≥ 1, p ∈ [0, pu). It is clear that I
(m)
n (p)1/n ≤ I

(m+1)
n (p)1/n ≤

In(p)1/n holds. Then {ηm(p)}m≥0 converges and we have lim
m→∞

ηm(p) ≤ η(p).

First, we show that lim
m→∞

ηm(p) = η(p). By the definition of ηm(p), for any

ε > 0,m ≥ 0, there exists an n ≥ 1 such that

I(m)
n (p)

1
n − ε ≤ ηm(p).

By the definition of η(p), for all n ≥ 1, we have

η(p)n ≤ In(p) = lim
m→∞

∑
|k|≤m

Pp(o ↔ (n, k)) = lim
m→∞

(
I(m)
n (p)

1
n

)n

,

η(p) ≤ lim
m→∞

I(m)
n (p)

1
n .

Therefore, we have

η(p) − ε ≤ lim
m→∞

ηm(p)

for any ε > 0. It completes the proof of lim
m→∞

ηm(p) = η(p). Next, for all n ≥ 1,

it is clear that Pp(o ↔ (n, 0))1/n ≤ In(p)1/n. Then we have α(p) ≤ η(p). For any

ε > 0, there exists m such that

η(p) − ε

2
≤ ηm(p).

By the definition of ηm(p), there exists N ≥ 1 such that

ηm(p) − ε

2
≤ I(m)

n (p)
1
n

for all n ≥ N . By the inequality Pp(o ↔ (n, k)) ≤ α(p)n, we have

I(m)
n (p) ≤ (2m + 1)α(p)n.

Therefore, from above three inequalities, we have

η(p) − ε ≤ (2m + 1)
1
n α(p)

for any ε > 0. The right-hand side goes to α(p) as n → ∞, which completes the

proof.
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6. Proof of Lemma 5.1

It is left to prove Lemma 5.1 to show Lemma 1.7. Our proof is an adaption

of the method in [12], which is about contact process, to percolation process.

LEMMA 6.1. For any p ∈ [0, pu), we have

inf
m≥0

Pp(o ↔ (0,m)) = 0.

Proof. We recall Gn,• is a subgraph defined by Gn,• = B(n)¤Z, where B(n) is

an n-ball whose center is the origin. Since pc(Gn,•) = 1, we have

inf
m≥0

PGn,•
p (o ↔ (0, m)) = 0

for any p < 1. If (o ↔ (0, m)) occurs on G, then (o ↔ (0,m)) occurs on Gn,• or

there exists x ∈ ∂B(n) such that (o ↔ π−1(x)) and ((0,m) ↔ π−1(x)) occur on

disjoint edge subsets. The latter occurs when there exists an open path between

o and (0,m) which is not contained Gn,•. Then we have

Pp(o ↔ (0,m))

≤ PGn,•
p (o ↔ (0,m)) + Pp

 ∪
x∈∂B(n)

(o ↔ π−1(x)) ◦ ((0,m) ↔ π−1(x))


for all n ≥ 1. By Lemma 2.3 and Lemma 3.4, we have

Pp

 ∪
x∈∂B(n)

(o ↔ π−1(x)) ◦ ((0,m) ↔ π−1(x))


≤

∑
x∈∂B(n)

Pp(o ↔ π−1(x))Pp((0,m) ↔ π−1(x))

≤ d(d − 1)n−1α(p)2n.

By Theorem 1.8 and Lemma 1.3, we have

α(p) <
1√

d − 1

for all p ∈ [0, pu). Therefore, we have

inf
m≥0

Pp(o ↔ (0,m)) ≤ d(d − 1)n−1α(p)2n → 0

as n → ∞, which completes the proof.



46 K. YAMAMOTO

Liggett used the level function. We define the level difference function L(x, y)

from Td × Td to Z, which is used by Hutchcroft [10]. Let ξ be a fixed end of Td.

The parent of a vertex x ∈ Td is the unique neighbor of x that is closer to ξ than

x is. We call the other vertices of x its children. If y is a parent of x, then we

define L(x, y) = 1. If y is a child of x, then we define L(x, y) = −1. In general

cases, for any x, y, there exists a unique geodesic {xi}n
i=0 such that x0 = x and

xn = y, then we define

L(x, y) =
n∑

i=1

L(xi−1, xi).

Note that L(x, z) = L(x, y) + L(y, z) and L(y, x) = −L(x, y) for any x, y, z ∈
V (Td). For n ≥ 0, z ∈ R>0, we define an(z) by

an(z) =
∑

x∈V (Td)
|x|=n

zL(o,x).

Stacey [14] has computed the number of vertices x ∈ Td satisfying |x| = n,

L(o, x) = 2t − n as 
bn (t = 0),

(b − 1)bn−t−1 (1 ≤ t ≤ n − 1),

1 (t = n),

where b = d − 1. By using this formula, Liggett [12] showed the following

equations.

an(z) = (bz−1)n +
n−1∑
t=1

(b − 1)bn−t−1z2t−n + zn

=

{
bn−1z−n(b2−z2)+zn(1−z2)

b−z2 (z2 6= b),
√

b
n
((n + 1) − b−1(n − 1)) (z2 = b),

an(1/bz) = an(z).

For r > 0 and z > 0 we define J(r, z) by

J(r, z) =
∑

x∈V (Td)

r|x|zL(o,x) =
∑
n≥0

rnan(z).

LEMMA 6.2. For any r < 1/
√

b and z ∈ (br, 1/r), we have J(r, z) < ∞.
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Proof. If z =
√

b, then we have

J(r, z) =
∑
n≥0

rnan(z)

=
b − 1

b

∑
n≥0

nrn
√

b
n

+
b + 1

b

∑
n≥0

rn
√

b
n

=
b − 1

b

r
√

b

(1 − r
√

b)2
+

b + 1

b

1

r
√

b
< ∞.

If z ∈ (br, 1/r) and z 6=
√

b, then we have

J(r, z) ≤
∑
n≥0

rnan(z)

=
b2 − z2

b(b − z2)

∑
n≥0

rn(bz−1)n +
1 − z2

b − z2

∑
n≥0

rnzn

=
b2 − z2

b(b − z2)
· 1

1 − rbz−1
+

1 − z2

b − z2
· 1

1 − rz
< ∞,

which completes the proof.

For m ≥ 0, we define Jm(p, z) by

Jm(p, z) =
∑

x∈V (Td)

Pp(o ↔ (x,m))zL(o,x) =
∑
n≥0

Pp(o ↔ (xn,m))an(z),

where xn ∈ V (Td) such that |xn| = n. From Lemma 6.2, if α(p) < 1/
√

b and

z ∈ (bα(p), 1/α(p)), we have

Jm(p, z) ≤
∑
n≥0

α(p)nan(z) = J(α(p), z) < ∞.

Therefore, Jm(p, z) is well-defined for α(p) < 1/
√

b and z ∈ (bα(p), 1/α(p)).

LEMMA 6.3. For any m, l ≥ 0, we have Jm+l(p, z) ≤ Jm(p, z)Jl(p, z).

Proof. By a homogeneity of Td¤Z, we can write

Jl(p, z) =
∑
x∈Td

Pp((y,m) ↔ (x,m + l))zL(y,x).
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By Lemma 3.4, we have

Jm+l(p, z) =
∑
x∈Td

Pp

( ∪
y∈Td

(o ↔ (y,m)) ◦ ((y,m) ↔ (x,m + l))

)
zL(o,x)

≤
∑
y∈Td

Pp(o ↔ (y,m))zL(o,y)
∑
x∈Td

Pp((y,m) ↔ (x,m + l))zL(y,x)

= Jm(p, z)Jl(p, z),

which completes the proof.

From this lemma, we can define φ(p, z) by

φ(p, z) = lim
m→∞

Jm(p, z)
1
m = inf

m≥0
Jm(p, z)

1
m .

By definition of φ(p, z), we have

φ(p, z)m ≤ Jm(p, z).

Since L(o, o) = 0, we have Pp(o ↔ (0, m)) ≤ Jm(p, z). Then β(p) ≤ φ(p, z).

Therefore, if there exists z such that inf
m≥0

Jm(p, z) < 1, then φ(p, z) < 1. Hence,

we obtain β(p) < 1. The next lemma completes the proof of Lemma 5.1.

LEMMA 6.4. For any z ∈ (bα(p), 1/α(p)), we have

inf
m≥0

Jm(p, z) = 0.

Proof. Since an(1/bz) = an(z), we have Jm(p, 1/bz) = Jm(p, z). Then we only

consider z ∈ [
√

b, 1/α(p)). For z 6=
√

b and any z0 ∈ (z, 1/α(p)), we have

an(z)

an(z0)
=

b − z2
0

b − z2
· bn−1z−n(b2 − z2) + zn(1 − z2)

bn−1z−n
0 (b2 − z2

0) + zn
0 (1 − z2

0)

=
b − z2

0

b − z2
· b−1(b/z2)n(b2 − z2) + (1 − z2)

b−1(b/zz0)n(b2 − z2
0) + (z0/z)n(1 − z2

0)

→ 0 as n → ∞.

Similarly, an

(√
b
)

/an(z0) goes to 0 as n → ∞ for z0 6=
√

b. Therefore, for any

z ∈ (bα(p), 1/α(p)) and ε > 0, there exist z0 and N ∈ N such that

an(z)

an(z0)
≤ ε

J(α(p), z0)
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for all n ≥ N , where J(α(p), z) is a constant which does not depend on m such

that Jm(p, z0) ≤ J(α(p), z0). Then we have

Jm(p, z) =
∑
n≥0

an(z)Pp(o ↔ (xn,m))

=
∑
n≥N

an(z)

an(z0)
· an(z0)Pp(o ↔ (xn,m)) +

∑
n<N

an(z)Pp(o ↔ (xn,m))

≤ ε

J(α(p), z0)
Jm(p, z0) +

∑
n<N

an(z)Pp(o ↔ (xn,m)),

where xn ∈ V (Td) such that |xn| = n. From Lemma 6.1 we have

inf
m≥0

Jm(p, z) ≤ ε +
∑
n<N

an(z) inf
m≥0

Pp(o ↔ (0, 2m))
1
2 = ε,

which completes the proof.

7. Proof of Lemma 1.9

It is left to prove Lemma 1.9. The level difference function L can be extended

to Td¤Z naturally. Let π be a natural projection from Td¤Z to Td, and LT

be the traditional level difference function on Td. Then we extend the level

difference function as L(x, y) = LT (π(x), π(y)). Similarly, we have L(x, z) =

L(x, y) + L(y, z) and L(y, x) = −L(x, y) for any x, y, z ∈ V (Td¤Z). We define

∆(x, y) by

∆(x, y) = (d − 1)L(x,y)

for all x, y ∈ V (Td¤Z). Note that ∆(x, z) = ∆(x, y)∆(y, z) and ∆(y, x) =

∆(x, y)−1 for any x, y, z ∈ V (Td) because L(x, z) = L(x, y)+L(y, z) and L(y, x) =

−L(x, y). Our method is based on [9]. The tilted susceptibility is defined by

χp,1/2(o) =
∑

x∈V (Td˜Z)

Pp(o ↔ x)∆(o, x)1/2.

For detail on this quantity, see [9]. Hutchcroft showed the following theorem.

THEOREM 7.1. ([9]) The set
{
p ∈ [0, 1] | χp,1/2(o) < ∞

}
is open in [0, 1].

By using this theorem, we show the following lemma.

LEMMA 7.2. We have χpu,1/2(o) = ∞.
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Proof. When p > pu, there exists a.s. only one infinite cluster. Hence, if both

(x ↔ ∞) and (y ↔ ∞) occur, then (x ↔ y) must occur. Thus, we have

Pp(x ↔ y) ≥ Pp ((x ↔ ∞) ∩ (y ↔ ∞)) ≥ Pp(x ↔ ∞)2 > 0

for all x, y ∈ V . Therefore, Pp(x ↔ y) has a uniform bound. Then we have

χp,1/2(o) ≥ Pp(o ↔ ∞)2
∑

x

∆(o, x)1/2 = Pp(o ↔ ∞)2
∑
n≥0

an

(√
d − 1

)
= ∞.

On the other hand, when p < pu, we have α(p) < 1/
√

d − 1. Then we obtain

χp,1/2(o) =
∑

x∈V (Td)

∆(o, x)1/2
∑
m∈Z

τp(o, (x,m))

=
∑

x∈V (Td)

√
d − 1

L(o,x)
Ix(p)

=
∑
n≥0

Ixn(p)an

(√
d − 1

)
where xn ∈ V (Td) such that |xn| = n. By using the Cauchy root test, χp,1/2(o) <

∞ because

lim
n→∞

(
Ixn(p)an

(√
d − 1

)) 1
n

= α(p)
√

d − 1 < 1.

Therefore, from Theorem 7.1, we have χpu,1/2(o) = ∞.

Proof of Lemma 1.9. Similarly to the proof of Lemma 7.2, if α(pu) < 1/
√

d − 1,

then we have χpu,1/2(o) < ∞. It is contrary to Lemma 7.2. Thus we have

α(pu) ≥ 1/
√

d − 1.
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