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ON SOLUTIONS OF x′′ = tαλ−2x1+α

IN THE UNSETTLED CASES
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(Received May 20, 2019; Revised November 16, 2019)

Abstract. As a continuation work, we show asymptotic behaviour of all positive
solutions of the differential equation written in the title, in terms of getting the
analytical expressions of the solution in the neighbourhoods of the ends of its
domain. This is done in all unsettled cases.

1. Introduction

Using the method of [3, 4], we show the asymptotic behaviour of all positive

solutions of

x′′ = tαλ−2x1+α ( ′ = d/dt) (E)

in [5, 6, 7, 10, 11, 13, 14], where α, λ are real parameters and t, x are positive

variables. However the cases

I : α < λ0, λ < −1 or α < λ0, λ > 0 (λ0 = −(2λ + 1)2/4λ(λ + 1))

II : α < 0, −1 < λ < 0

are not yet treated. On the other hand, the techniques of the previous papers

suffice for treating these cases. So we consider these in this paper and in the

proofs we state only their outlines.

2. On the case I

In this section, we consider the case I. The transformation

(t, x) → (1/t, x/t)

of [2] reduces the case λ < −1 to the case λ > 0. So, suppose

α < λ0, λ > 0.
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Figure 1

Note α < 0 from this.

First, use Saito’s transformation

y = ψ(t)−αxα, z = ty′ (T)

where ψ(t) = {λ(λ + 1)}1/αt−λ is a particular solution of (E) (see [3, 4]). Then

(E) is transformed into a first order rational differential equation

dz

dy
=

(α − 1)z2 + α(2λ + 1)yz + α2λ(λ + 1)y2(y − 1)

αyz
(R)

and using a parameter s, we rewrite this as a two dimensional autonomous system

dy

ds
= αyz,

dz

ds
= (α − 1)z2 + α(2λ + 1)yz + α2λ(λ + 1)y2(y − 1) (S)

whose critical points are (0, 0), (1, 0). Note y > 0, for t > 0, x > 0.

As shown below, the phase portrait of (S) is drawn as in Figure 1. Here (1, 0)

is a spiral point, O1, O2, O3 are unique orbits such that O1 is tangent to the line



ON SOLUTIONS OF x′′ = tαλ−2x1+α IN THE UNSETTLED CASES 79

z = αλy, and O2, O3 satisfy z = O(y3/2) as y → ∞. In the phase portrait of the

case −2 < α < λ0, we denote as R1 the region which the z axis, O1 and O2

surround, as R2 the region which O1, O2 and O3 surround, and as R3 the region

which the z axis and O3 surround. Note that the case −2 < α < λ0 arises if

λ > (−1 +
√

2)/2.

Given the initial condition

x(t0) = A, x′(t0) = B (t0 > 0, A > 0, B ∈ R) (I)

of (E), from applying (T) to the solution x = x(t) of the initial value problem

(E), (I) we get the solution z = z(y) of (R) with

z(y0) = z0

and the orbit (y, z) of (S) passing (y0, z0), where

y0 = ψ(t0)
−αAα, z0 = αy0

(
λ +

t0B

A

)
.

Now, take (t0, A,B) of (I) and determine (y0, z0). Then we state our theorems

as follows: First, suppose α ≤ −2.

THEOREM 1. (i) If (y0, z0) ∈ O1, then x(t) is defined for 0 < t < ∞. In the

neighbourhood of t = 0, x(t) is represented as

x(t) = ψ(t)

[
1 +

∞∑
k=1

tkδ1

k∑
l=0

{
x

(1)
kl cos(lδ2 log t) + x

(2)
kl sin(lδ2 log t)

}]
(1)

where x
(1)
kl , x

(2)
kl are constants such that

x
(1)
k0 = 0 if k = 2m − 1, x

(1)
kl = x

(2)
kl = 0 if k − l = 2m − 1

(m = 1, 2, · · · )

and

δ1 =
2λ + 1

2
(> 0), δ2 =

√
−(2λ + 1)2 − 4αλ(λ + 1)

2
(> 0).

Also, in the neighbourhood of t = ∞, x(t) is represented as

x(t) = K

(
1 +

∞∑
n=1

xnt
αλn

)
(K,xn : constants). (2)
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(ii) If (y0, z0) /∈ O1, then x(t) is defined for 0 < t < ∞. In the neighbourhood of

t = 0, x(t) is represented as (1), and in the neighbourhood of t = ∞, as

x(t) = Lt

(
1 +

∑
m+n>0

xmnt
α(λ+1)m−n

)
if − 1/α(λ + 1) /∈ N

x(t) = Lt

{
1 +

∞∑
k=1

tα(λ+1)kpk(log t)

}
if − 1/α(λ + 1) ∈ N

(3)

where L, xmn are constants, x0n = 0 if n = 2, 3, · · · , and pk are polynomials with

deg pk ≤ [−α(λ + 1)k].

Next, suppose −2 < α < λ0.

THEOREM 2. (iii) If (y0, z0) ∈ O2, then x(t) is defined for 0 < t < ω+ (ω+: a

positive constant). In the neighbourhood of t = 0, x(t) is represented as (1), and

in the neighbourhood of t = ω+, as

x(t) =

{
2(α + 2)

α2ωαλ−2
+

}1/α

(ω+ − t)−2/α

×

{
1 +

∞∑
n=1

xn(ω+ − t)n

}
(xn : constants). (4)

(iv) If (y0, z0) ∈ R1, then x(t) is defined for 0 < t < ω+. In the neighbourhood of

t = 0, x(t) is represented as (1), and in the neighbourhood of t = ω+, as

x(t) = L(ω+ − t)

{
1 +

∑
j+k+l>0

djkl(ω+ − t)j

× (ω+ − t)−(α/2)k(ω+ − t)((α+2)/2)l
}

(L, djkl : constants). (5)

(v) If (y0, z0) ∈ R2, then (i), (ii) of Theorem 1 follow.

(vi) If (y0, z0) ∈ O3, then x(t) is defined for ω− < t < ∞ (ω−: a positive

constant). In the neighbourhood of t = ∞, x(t) is represented as (3), and in the

neighbourhood of t = ω−, as

x(t) =

{
2(α + 2)

α2ωαλ−2
−

}1/α

(t − ω−)−2/α

×

{
1 +

∞∑
n=1

xn(t − ω−)n

}
(xn : constants). (6)
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(vii) If (y0, z0) ∈ R3, then x(t) is defined for ω− < t < ∞. In the neighbourhood

of t = ∞, x(t) is represented as (3), and in the neighbourhood of t = ω−, as

x(t) = L(t − ω−)

{
1 +

∑
j+k+l>0

djkl(t − ω−)j

× (t − ω−)−(α/2)k(t − ω−)((α+2)/2)l
}

(L, djkl : constants). (7)

For the proofs, let us first discuss the critical point (1, 0) of (S), and follow

the way of getting (1.4) of [8]. Then we see that (1, 0) is a spiral point and the

orbits reaching this point are expressed as

y = 1 + αCeµs + αC̄eµ̄s + · · · , z = µCeµs + µ̄C̄eµ̄s + · · ·

where C is an arbitrary constant, µ = α(δ1 + δ2i), and · · · denote double power

series of eµs, eµ̄s converging in the neighbourhood of s = −∞. As usual, · · ·
starts from a term with the greater degree than that of the previous term. Also,

from this we have (1) in the neighbourhood of t = 0.

Let us next discuss the critical point (0, 0), and adopt the way of [10]. Then

we get the expressions of the orbits as follows: O1 is expressed as

z = αλy(1 + · · · )

and the other orbits, as

z = α(λ + 1)y(1 + · · · )

in the neighbourhood of y = 0, where · · · denote power series of y. O2, O3 in

the case −2 < α < λ0 are expressed as

z = ±ρ−1y3/2(1 + · · · )

respectively in the neighbourhood of y = ∞, where

ρ =
1

α

√
α + 2

2λ(λ + 1)

and · · · denote power series of y−1/2, and the other orbits continuable to y = ∞
are represented as

z = Cy(α−1)/α(1 + · · · )

in the neighbourhood of y = ∞, where C is an arbitrary constant and · · · denotes

a double power series of y−1/2, y(α+2)/2α. Also, we have the other analytical

expressions (2) - (7) of x(t) from these expressions.
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To draw the phase portrait of (S) of the case α ≤ −2, note that there appears

no periodic orbit in the phase plane of (S) from a lemma of [1] (see [12]). Also,

to draw that of the case −2 < α < λ0, fix λ with λ > (−1 +
√

2)/2 so that

−2 < α < λ0 is possible, let (y0(s, α), z0(s, α)) denote the unique orbit of (S)

tending to (0, 0) with a tangent l1 : z = αλy, and let (y1(s, α), z1(s, α)) denote

the orbit of (S) reaching (1, 0) and identical with (y0(s, α), z0(s, α)) if α ≤ −2.

Then y0(s, α), z0(s, α), y1(s, α), z1(s, α) are holomorphic in α, and from the

monodromy theorem we have

(y1(s, α), z1(s, α)) = (y0(s, α), z0(s, α))

even if −2 < α < λ0. Therefore the phase portrait of (S) is drawn as in Figure

1.

Finally, note that if the solution x(t) of (E), (I) gives (y, z) through (T), then

(y, z) moves on all the orbit (see Lemma 2 of [6]). Then the proofs of Theorems

1, 2 are complete.

3. On the case II

Let us suppose the case II, namely

α < 0, −1 < λ < 0.

As in Section 2, transform (E) into (R) through (T) and rewrite (R) as (S). Then

from λ(λ + 1) < 0, we have

y < 0

and from (T),

x = {−λ(λ + 1)}1/αt−λ(−y)1/α.

Also, the phase portrait of (S) is as in Figure 2.

Here the orbits tangent to the lines lj (j = 1, 2) are represented as

z = cjy(1 + · · · ) (c1 = α(λ + 1), c2 = αλ)

where · · · denote double power series of

−y, (−y)(−1)j+1/cj{h log(−y) + C} (h,C are constants)

and h = 0 if (−1)j+1/cj /∈ N (see [5, 9]). In the case −2 < α < 0, O1, O2 are the

unique orbits of (S) represented respectively as

z = ±ρy3/2(1 + · · · )

(
ρ =

1

α

√
− α + 2

2λ(λ + 1)

)
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in the neighbourhood of y = −∞, where · · · denotes power series of (−y)−1/2.

Also, the orbits lying above O1 and below O2 are expressed as

z = C(−y)(α−1)/α(1 + · · · )

in the neighbourhood of y = −∞, where C is a constant and · · · denotes a double

power series of (−y)−1/2, (−y)(α+2)/2α (see [9]).

If x(t) denotes the solution of (E), (I) again, then a point (y0, z0) is given in

the phase plane of (S) through (T), where

y0 = ψ(t0)
−αAα, z0 = αy0

(
λ +

t0B

A

)
.

So, take (t0, A,B) of (I) and determine (y0, z0). Then we state our theorems as

follows: First, suppose −2 < α < 0.

THEOREM 3. (i) If (y0, z0) ∈ O1, then x(t) is defined for ω− < t < ∞ (ω−:

a positive constant). In the neighbourhood of t = ω−, x(t) is represented as (6)

and in the neighbourhood of t = ∞, as (3).
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(ii) If (y0, z0) lies above O1, then x(t) is defined for ω− < t < ∞. In the neigh-

bourhood of t = ω−, x(t) is represented as (7) and in the neighbourhood of t = ∞,

as (3).

(iii) If (y0, z0) ∈ O2, then x(t) is defined for 0 < t < ω+ (ω+: a positive con-

stant). In the neighbourhood of t = ω+, x(t) is represented as (4) and in the

neighbourhood of t = 0, as

x(t) = K

(
1 +

∑
m+n>0

xmnt
αλm+n

)
if 1/αλ /∈ N

x(t) = K

(
1 +

∞∑
k=1

tαλkpk(log t)

)
if 1/αλ ∈ N

(8)

where K, xmn are constants, x0n = 0 (n = 2, 3, · · · ), and pk are polynomials with

deg pk ≤ [αλk].

(iv) If (y0, z0) lies below O2, then x(t) is defined for 0 < t < ω+. In the neigh-

bourhood of t = ω+, x(t) is represented as (5) and in the neighbourhood of t = 0,

as (8).

(v) If (y0, z0) lies between O1 and O2, then x(t) is defined for 0 < t < ∞. In the

neighbourhood of t = 0, x(t) is represented as (8) and in the neighbourhood of

t = ∞, as (3).

Finally, we state the following:

THEOREM 4. If α ≤ −2, then the conclusion of (v) of Theorem 3 follows.

The proofs of Theorems 3, 4 are the same as those of Theorems 1, 2, and

omitted.

References

[ 1 ] R. Bellman, Stability Theory of Differential Equations. McGraw-Hill, New York, 1953.
[ 2 ] D. E. Panayotounakos and N. Sotiropoulos, Exact analytic solutions of unsolvable classes

of first- and second-order nonlinear ODEs (Part II: Emden-Fowler and relative equa-
tions). Appl. Math. Lett. 18 (2005), 367–374.

[ 3 ] T. Saito, On bounded solutions of x′′ = tβx1+α. Tokyo J. Math. 1 (1978), 57–75.
[ 4 ] T. Saito, Solutions of x′′ = tαλ−2x1+α with movable singularity. Tokyo J. Math. 2 (1979),

262–283.
[ 5 ] I. Tsukamoto, On the generalized Thomas-Fermi differential equations and applicability

of Saito’s transformation. Tokyo J. Math. 20 (1997), 107–121.
[ 6 ] I. Tsukamoto, On solutions of x′′ = tαλ−2x1+α starting at some positive t. Hokkaido

Math. J. 32 (2003), 523–538.
[ 7 ] I. Tsukamoto, On solutions of x′′ = tαλ−2x1+α where α > 0 and λ = 0, −1. Hokkaido

Math. J. 35 (2006), 41–60.



ON SOLUTIONS OF x′′ = tαλ−2x1+α IN THE UNSETTLED CASES 85

[ 8 ] I. Tsukamoto, On asymptotic behavior of positive solutions of x′′ = eαλtx1+α with
α < −1. Hiroshima Math. J. 37 (2007), 161–180.

[ 9 ] I. Tsukamoto, Asymptotic behavior of positive solutions of x′′ = −tαλ−2x1+α with α < 0
and λ < −1 or λ > 0, Hokkaido Math. J. 36 (2007), 535–562.

[ 10 ] I. Tsukamoto, Asymptotic behavior of positive solutions of x′′ = tαλ−2 x1+α in the
sublinear case. Tokyo J. Math. 33 (2010), 195–221.

[ 11 ] I. Tsukamoto, On asymptotic behavior of positive solutions of x′′ = tαλ−2x1+α in the
superlinear case. Far East J. Math. Sci. 45 (2010), 1–16.

[ 12 ] I. Tsukamoto, On asymptotic behaviour of positive solutions of x′′ = −tαλ−2x1+α with
α > λ0, −1 < λ < 0. Far East J. Math. Sci. 83 (2013), 233–250.

[ 13 ] I. Tsukamoto, Asymptotic behaviour of positive solutions of x′′ = tαλ−2x1+α where
α = λ0 and λ > 0. Comment. Math. Univ. St. Pauli 65 (2016), 15–34.

[ 14 ] I. Tsukamoto, On solutions of x′′ = t−2x1+α where α < 0. Yokohama Math. J. 64 (2018),
99–110.

3-10-38, Higashi-kamagaya
Kamagaya-shi, Chiba 273-0104, Japan
E-mail: kf423825@fc5.so-net.ne.jp


