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Abstract 

SLAU2 (Simple Low-dissipation Advection-Upstream-splitting-method 2) numerical flux function, one of 

AUSM-type methods (3-wave solver), originally developed and widely used in gasdynamics, has been applied to 

two-dimensional magnetohydrodynamics (MHD) simulations. According to numerical tests for a wide range of flow 

and magnetic conditions, its reliability, efficiency, and accuracy have been demonstrated: i) Robustness of SLAU2 

against shock-anomalies (e.g., carbuncle phenomena) has been confirmed in the MHD-extended version of our 

hypersonic flow test; ii) The computational cost has been reduced for approximately 3% compared with HLLD 

(Harten-Lax-van_Leer with Discontinuities), a more expensive, 5-wave solver; iii) Nevertheless, its solution 

qualities are almost equal to those of HLLD, as opposed to very diffused HLL solutions. For benchmark tests, 

detailed and important flow physics such as multidimensional shock/shock interactions have been successfully 

reproduced by SLAU2. We hope that SLAU2 will contribute to further progress of the astrophysics and other 

research fields. 
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1. Introduction 

There are continued attentions to accurate, robust, yet economical magnetohydrodynamics (MHD) simulations 

such as in astrophysics [1, 2, 3], aerospace engineering [4], and nuclear engineering communities [5, 6]. In order 

to accomplish such simulations, it is of great importance to establish and/or employ a reliable numerical method 

in each part of the computational process, such as reconstruction methods [7, 8], slope limiters [9], numerical flux 

functions [10, 11, 12, 13], time integration methods [14], and divergence treatments [15-19]. In this work, a 

particular attention will be paid to the flux functions (that calculate fluxes through cell interfaces based on the 

interpolated variables there), since they affect both the accuracy and the qualitative behavior of the numerical 

solutions, in the worst case yielding what appear to be incorrect weak solutions, often referred to as “anomalous 

solutions” [20-26]. Let us provisionally categorize the flux functions into four groups according to the numbers of 

resolved waves and their responses to the shocks, as shown in Fig. 1. 

- Group I: Full-wave solvers (or 7-wave solvers) – Roe [27-31] (extended from gasdynamics [9]) and HLLI 

(Harten-Lax-van_Leer with Intermediate waves) [32]. They capture all the seven waves in MHD, i.e., 

left/right-running fast waves, Alfvén waves, slow waves, and an entropy wave. They are accurate in 

resolving detailed flow physics. However, they tend to produce anomalous solutions at the captured 

shocks (e.g., “carbuncle” phenomena [21-26]), as pointed out by Liou [33] and confirmed by many 

researchers in gasdynamics [21] and MHD [3]. In addition, especially in MHD, treating all the seven 

waves is computationally expensive. 

- Group II: 5-wave solver – HLLD (Harten-Lax-van_Leer with Discontinuities) [11], which is an extended 

version of HLLC (Harten-Lax-van_Leer with Contact) from gasdynamics. This Riemann solver omits 

slow waves, and hence, captures left/right fast waves, left/right Alfvén waves, and the entropy wave. 

While this solver does not recognize the slow waves, it produces satisfactory solutions as demonstrated 

by many subsequent works [34, 35, 36]. 

- Group III: 3-wave solvers – AUSM (Advection-Upstream-Splitting-Method)-type solvers [37, 38, 39], E-

CUSP (Energy-conservative Convective Upwind and Split Pressure) [40], and HLLC [41, 42]. These 

recent AUSM solvers inherit the spirit of the earlier AUSM, i.e., they possess both the simplicity of flux-
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vector-splitting (FVS) (e.g. Van Leer’s [43]) and the contact-resolving nature of the flux-difference-

splitting (FDS) (e.g., Roe). In MHD, they treat the fast waves (the sound waves in gasdynamics) in both 

directions along with the entropy wave. In addition to this simplification, they eliminate the need of the 

complicated eigensystems in MHD for efficiency. SLAU2 [12] was extended to “1D” MHD in [37]. 

AUSMPW+ (AUSM by Pressure-based Weight functions +) [44] was applied to MHD by Han et al. [39], 

but with only a limited multidimensional case, which was later further extended to several 2D simulations 

by Xisto et al. [38] and enhanced in [37]. They are known to be very robust against the shock anomalies 

in gasdynamics [12, 25, 45]. Moreover, they can capture the contact discontinuity accurately, and hence, 

boundary-layers in viscous simulations too [12, 44]. E-CUSP [46] has a similar structure of the AUSM-

type fluxes and was extended to MHD in [40], although it will be more diffusive according to its 

formulation. HLLC, on the other hand, is known to be as vulnerable as Roe solver to the carbuncle [21, 

47], probably because it can be written in a very similar manner to the Roe solver in the eigenmatrix-free 

expression [48, 49]. Li [41] and Gurski [42] tried to extend HLLC [50] to MHD, but their versions of 

HLLC are of course not capable of resolving Alfvén waves. 

- Group IV: 2-wave solvers – (2-wave) HLL [13] (a “3-wave” HLL was also proposed there, which might 

be categorized into Group III, as well as Linde’s version [73]), Rusanov (or also known as Local Lax 

Friedrich) [51], and typical FVS methods. An MHD-extended HLL was proposed in [52]. These solvers 

omit the entropy wave, and resolve only the left and right fastest waves (i.e., fast waves in MHD, and 

sound waves in gasdynamics). As a natural consequence, a contact discontinuity and a boundary-layer are 

smeared. However, as opposed to Roe flux for instance, they are very robust in capturing shocks, again as 

explained in [33]. In ATHENA [35] code, HLL is hybridized with Roe or HLLD such that HLL is used 

only at the shocks in a multidimentional manner [24, 53], although universality of such techniques is not 

fully guaranteed [25, 54]. What is more, such a hybridization adds extra cost and complexity to the 

numerical code. 

As reviewed above, AUSM-type solvers in Group III appear to be promising because they feature robustness, 

accuracy, efficiency, and simplicity by itself. Specifically, SLAU2 is nowadays utilized by many practitioners and 

incorporated in many numerical codes, such as FaSTAR [55], LS-FLOW [56], and SU2 (Stanford University 

Unstructured code) [57]. It features robustness against the shock anomalies [12], and also capability of all-speed 
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(including an incompressible regime, such as the solar convective zone [58, 59, 60, 61] or International 

Thermonuclear Experimental Reactor (ITER) [5, 6]) flow computations [20]. Furthermore, in contrast with 

AUSM+-up [62], no user-specified parameters are required such as “cutoff Mach number” [32, 36], that 

significantly affect the solutions and sometimes need experts’ care. 

Kitamura & Balsara [37] proposed SLAU2 (Group III) in 1D MHD and extensively tested its performance 

(such as in 1D MHD shocktube tests [27, 28]). Overall, SLAU2 produced good solutions, except for very severe 

cases in which slight oscillations were observed [37]. However, the performance of SLAU2 in more realistic, 

multidimensional problems was not surveyed in [37]. In fact, many flow physics such as a vortex, an oblique 

shock, a boundary-layer, shock- or contact-induced instabilities (e.g., carbuncle), and their interactions are 

multidimensional. In addition, however good the 1D solution is, it does not guarantee multidimensional accuracy 

or robustness of the computation as evident in gasdynamics simulations [24, 25]. 

In this work, therefore, the SLAU2 in MHD will be thoroughly investigated in an MHD-extended carbuncle 

test and well-known benchmark cases in 2D, as a natural extension of the previous work. Through these 

numerical tests, as a first goal of the present work, both strengths (in most cases, e.g., robustness against shock-

anomalies) and limitations (in a limited case) of SLAU2 in 2D MHD are expected to be discovered and 

highlighted. It is also expected that these findings will contribute to further developments of numerical algorithms 

in the future, as a second goal. In multidimensions, it is reported that the treatment of divergence of magnetic 

field is necessary, whereas its compatibility with SLAU2 is still questionable. Among many methods for 

divergence-free treatments on magnetic field (▼·B = 0) [15-19], we select a hyperbolic divergence-cleaning 

method [15] which is already incorporated in CANS+ [34], an open MHD code developed in Japan. In order for 

SLAU2 in MHD to be readily available to many potential users/practitioners (a third goal), we employed CANS+ 

code rather than in-house one (in [37]) throughout the paper. 

This paper is organized as follows. Section 2 will describe the governing equations. In Sec. 3, its 

discretization, and the numerical methods to solve these equations will be presented, in particular SLAU2 in 

MHD. Then, two-dimensional MHD numerical tests will be conducted to survey the performance of SLAU2 in 

Sec. 4. Finally, Sec. 5 will summarize the present work. 
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2. Governing Equations 

The governing equations are the compressible MHD equations as follows: 

where Q is the vector of conservative variables, ρ is the density, u = (u, v, w)T is velocity, p gas pressure, pG global 

pressure (pG = p + B2/2), B magnetic field [B2 = B·B; B = (Bx, By, Bz)T], E total energy per unit mass [E = (p/ρ)/(γ-

1)+0.5(u2+v2+w2)+0.5B2/ρ], and H total enthalpy [H = E + (p/ρ)]. The working gas is assumed as the calorically 

perfect gas with the specific heat ratio γ. The first five equations are Euler equations, whereas the 6th – 8th 

equations comprise Faraday’s law for MHD, which is a part of the Maxwell equations. In addition, a scalar 

potential ψ is solved in a similar manner as a hyperbolic divergence cleaning method [15]. 

Then, Eq. (1a) is solved with a finite-volume code, and can be written in the delta form as: 

where ∆Qi is change of conservative variables in time, ∆t is the time step, ∆V stands for the volume of the cell, 

and Fi±1/2 is the inviscid (Euler) flux through the cell-interface (which separates the cell i and its neighbor cell 

i±1), respectively. Details of the inviscid fluxes are explained below. 

3. Numerical Methods 

3.1 Flux Function 

SLAU2 was first extended to 1D MHD in [37]. As discussed in [37], the Euler equations (the gas flow part, 1st-

5th equations of Eq.(1)) and Maxwell equations (the magnetic field, 6th – 8th) are handled separately. Let us begin 

from the Euler equations part, i.e., the first five components of Eq.(1).  
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and aL/R is the gas speed of sound, 
RL

RLp
a

RL ρ
γ

=2 . 

Then, the pressure flux is: 

for the gasdynamics part (1st – 5th lines of Eq.(1)). On the other hand, the magnetic part, i.e., 6th – 8th lines are 

solved by simple HLL manner: 

where SL/R are “signal” speeds traveling in lift and right directions, respectively. With this simplification of the 

Faraday’s law treatment, the robustness of SLAU2 was dramatically improved in 1D. The key idea behind this 

modification in [37] was that we eliminated the dissipation term from the magnetic part, which would have 

contaminated the magnetic field. It should be noted that there was another variant proposed in [37] which adopted 

the early AUSM manner instead of HLL for the magnetic part, resulted in very similar solutions and performances 

(thus, omitted in this paper). In addition, Eq.(5b) uses only local velocities and the fast speeds for simplicity, 

whereas in [37] the Roe average values were used. The results in Sec. 4 will confirm the validity of this change. 

Furthermore, in order to take Alfvén waves into account and enhance the stability at strong shocks, we 

introduced the following Alfvén speed, 

and a strong-shock-detector using the pressure function borrowed from AUSMPW+ flux function (but with cA-

weight included) [39, 44], 
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where 

Then, the following new signal speeds are employed that considered both the fast speed and Alfvén speeds, 

which will be substituted for Eq.(5a). The point here is that, when there are no strong shocks in the solution (w ≈ 1), 

the flux (for the magnetic field only) is soon switched from fast-speed-based HLL [Eq.(5b)] to the Alfvén-speed-

based HLL [Eq.(6)], while SLAU2 for the Euler equation part is unaltered. This version will be simply called 

“SLAU2” in this paper, and will be tested in Section 4. 

 

3.2 Other Aspects 

     The spatial accuracy is two by MUSCL [7] with the minmod limiter [9], or five by MP5 (5th-order Monotonicity-

Preserving scheme) (only in 4.7) [8], according to the selected reconstruction method. The temporal order of 

accuracy is three by an explicit TVD-RK (Total-Variation-Diminishing Runge-Kutta) method [14]. The divergence-

free treatment for the magnetic field is realized by the hyperbolic divergence cleaning [15]. These detailed 

descriptions can be found in the original CANS+ paper [34]. 

 

4. 2D MHD Numerical Tests 

A series of 2D test problems are conducted. The solutions of HLL or HLLD are also presented in selected cases 

for comparisons. We did not include HLLC solver because i) it is also a 3-wave solver, and ii) in spite of i), it 

showed carbuncle solutions as frequently as Roe, as demonstrated in [45]. 

 

4.1 2D-Extended Ryu-Jones Shocktubet 

     The Ryu-Jones shocktube test [28] has been extensively conducted to investigate the method’s capability in 1D 

MHD, and SLAU2 actually showed the satisfactory solution in [37]. Ryu et al. extended this test to two dimensions 

in [63] in which waves travel in diagonal directions in the computational domain, with no detailed explanations on 

the computational setup. Here we prepared the same initial conditions, but with simpler boundary conditions on a 
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rectangular space [0, 1] x [0, 0.25] divided by 400 x 100 squares (Fig. 2). 

- (ρ, u, v, w, p, Bx, By, Bz)L = (1.08, 1.19/ 2 , 1.21/ 2 , 0.5, 0.95, π86.1− , π86.5 , π82 ) for x + y 

< 0.625 

- (ρ, u, v, w, p, Bx, By, Bz)R = (1,    0,     0,    0,      1,  π82− ,  π86 ,  π82 ) for x + y > 0.625 

with γ = 5/3. In order to treat the diagonal propagations of waves economically, we adopted a “shifted” periodical 

boundary condition, in which, for example, the cells of (i, j) = (101, 0) and (1, 100) are continuously connected. The 

simple outlet condition is applied to the other cells. The simulations are run until t = 0.04 x 20.5 with TVD-RK3 

(CFL = 0.6) for time integration and MP5 for spatial reconstruction [8]. 

The density, pressure, and magnetic field profiles along x-y = 0.75 line are plotted in Fig. 3 and Fig. 4. These 

figures demonstrate that the present computations were successful, including the shifted boundary setup. The 

solution of SLAU2 (for all the density, pressure, magnetic field in the wave-perpendicular component in the 

computational plane Bperp = (-Bx + By)/20.5, and the component out of the plane Bz) is very similar to the 5-wave 

HLLD solution, and reproduces the reference solution (created by HLL on a 4,000 x 1,000 grid) and the well-known 

1D Ryu-Jones solutions [28]. 

 

4.2 MHD Carbuncle Test 

     This test was initially proposed for gasdynamics by Kitamura, Roe, and Ismail in [25], and the MHD version of 

the similar test was conducted in [3]. Here, the “1-1/2-D test” in [25] is directly extended to MHD (Fig. 5). We 

prepared a rectangular computational domain [0, 1] x [0, 0.5] filled with 50 x 25 squares, without any grid 

perturbations. Then, as the initial condition, the pre-shock condition is given at cells of i≤12, while the post-shock 

state according to the Rankine-Hugoniot condition is prescribed for i≥14; as for all the primitive variables qM in the 

numerically-expressed shock internal zone, i.e., i=13th cell, values upstream (qL) and downstream (qR) the shock are 

blended according to the specified, initial shock location parameter ε = 0.0, 0.1, … 0.9: 

     This setup is justified by the fact that, according to [64], a mathematical expression inside the numerical shock 

inevitably exhibits at most 40% errors between the mass conservation law and the Hugoniot curve at Mach 10. It is 

also supported by many practical simulations in which the shock does not necessarily sit exactly on the grid lines but 

( ) RLM qqq εε −+= 1  (9) 
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resides on a few cells – in either case, the numerically captured shock may or may not be destabilized according to 

the chosen numerical methods, computational cells, flow conditions, etc. [21, 25, 45]. 

The left and right initial conditions for Mach 6, γ = 5/3 for instance, are as follows: 

- (ρ, u, v, w, p, Bx, By, Bz)L = (1, 6, 0, 0, 1/γ, 25, 0, 0) for i <12 

- (ρ, u, v, w, p, Bx, By, Bz)R = (3.692, 1.625, 0, 0, 26.85, 25, 0, 0) for i >14 

and if M = 20, 

- (ρ, u, v, w, p, Bx, By, Bz)L = (1, 20, 0, 0, 1/γ, 25, 0, 0) for i <12 

- (ρ, u, v, w, p, Bx, By, Bz)R = (3.970, 5.0375, 0, 0, 299.85, 25, 0, 0) for i >14 

The inlet condition (Mach 6 or 20) is prescribed at the left boundary; the outlet condition with the fixed post-

shock pressure is imposed at the right boundary; specified at the top and the bottom boundaries are the periodic 

condition. The computations are carried out with spatially first-order (which best highlights the difference arising 

from shock anomalies [25]) or second-order (by MUSCL, denoted as “MUSCL2”), third-order TVD-RK time 

integration (hereafter, “TVD-RK3”) for 40,000 timesteps (CFL=0.5). 

Typical solutions (Mach 20, ε=0.0 or 0.5, first-order in space) are presented in Fig. 6, with no signs of carbuncle 

or other shock anomalies observed (nearly the same solutions were obtained for the other initial parameters). 

Therefore, robustness against shock anomalous solutions such as carbuncle has been confirmed for SLAU2 in MHD 

(with a broader shock as designed than HLLD, which apparently reached different shock locations according to the 

initial condition), as well as in gasdynamics [12]. 

 

4.3 Orzag-Tang Vortex  

This is a typical 2D MHD problem [65] conducted in many computational MHD papers [18, 35, 38, 39, 40]. The 

following initial condition triggers a complicated MHD flowfield involving several shock interactions: 

- (ρ, u, v, w, p, Bx, By, Bz) = (γ2, -sin(y), sin(x), 0, γ, -sin(y), sin(2x), 0) 

with γ = 5/3. The uniform 100 x 100 cells cover [0, 2π] x [2π]. This computational grid is relatively coarse, which 

will better highlight differences among solutions by different numerical fluxes. The periodic condition is applied to 

all the four boundaries. The computations are conducted until t = π with MUSCL2 and TVD-RK3 (CFL = 0.3). 

     In Fig. 7, density and pressure contours are displayed for SLAU2, HLLD, and HLL. They overall look similar 

and resemble the reported solutions in literature [18, 35, 38, 39, 40], capturing important physics such as shock 
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interactions. However, HLL appears to be more diffusive than the others. In order to take a closer look, we plotted 

the density and pressure profiles along y = 1 line in Fig. 8. It is seen that SLAU2 (3-wave-solver) and HLLD (5-

wave-solver) produced almost the same results but the HLL (2-wave-solver) solution was rather diffused especially 

around x = 1.4 in the density, whereas in the pressure these three methods yielded almost the same solutions 

(SLAU2 solution is slightly closer to HLL than HLLD in pressure, though – this trend is also evident in the center 

zone of pressure in each right figure of Fig.8). From this example, it has been demonstrated that SLAU2 successfully 

handled this 2D MHD problem involving complex shock interactions as well as HLLD. Nevertheless, the 

computational cost of the SLAU2 case is 3% (which is slight but indeed) lower than the HLLD case for this 

particular problem (but common to almost all the other test problems), as summarized in Table 1. It is worth 

pointing out that this difference will rise in three-dimensional problems. 

 

4.4 MHD Blast Wave 

This problem was conducted by [17, 38, 66, 67]. There are several variants for this problem, but we chose the 

following setup as the initial condition: 

- (ρ, u, v, w, p, Bx, By, Bz) = (1, 0, 0, 0, 100, 210 , 210 , 0) inside a circle centered at (x, y) = (0.5, 0.5) 

with 0.125 radius 

- (ρ, u, v, w, p, Bx, By, Bz) = (1, 0, 0, 0, 1, 210 , 210 , 0) elsewhere (β = 2p/|B|2 =0.001) 

with γ = 1.4. The 100 x 100 computational cells are uniformly distributed in a [0, 1] x [0, 1] domain, having the 

periodic boundary conditions on all the four edges, as in the previous example. The computational methods 

(MUSCL2 and TVD-RK3, CFL = 0.3) are also the same as in the previous test. The computations were successful 

without suffering from negative pressure [38] or serious oscillations, and the solutions are compared at t = 0.02 in 

Fig. 9. All the solutions preserve symmetry with respect to the magnetic field and nearly reproduce the published 

solution [66], with slight differences (HLL is smooth yet diffused, especially in the direction orthogonal to the 

magnetic field). These observations are confirmed from Fig. 10 where diagonal distributions of density and pressure 

are compared. 

The above ambient condition corresponds to a small value of the plasma beta β = 2p/|B|2 = 0.001. Xisto et al. 

[38] failed the computation under this setup, and claimed that it attributed to this small β. Thus, they alternatively 
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employed the following larger β: 

- (ρ, u, v, w, p, Bx, By, Bz) = (1, 0, 0, 0, 1000, π825 , π825 , 0) inside a circle centered at (x, y) = (0.5, 

0.5) with 0.1 radius 

- (ρ, u, v, w, p, Bx, By, Bz) = (1, 0, 0, 0, 0.1, π825 , π825 , 0) elsewhere (β = 0.004) 

again, with γ = 1.4. Figure 11 displays the solutions at t = 0.012 obtained by SLAU2, HLLD, and HLL for this 

second setup. These solutions are again satisfactory, and very similar to each other and those reported in [38]. 

 

4.5 MHD Rotor 

This problem was conducted in [17, 18, 35, 38, 40]. We followed Xisto et al.’s setup [38]: 

- (ρ, u, v, w, p, Bx, By, Bz) = (10, -2y/0.1, 2x/0.1, 0, 1, π45 , 0, 0) for r < 0.1 (inside the cylinder) 

- (ρ, u, v, w, p, Bx, By, Bz) = (1+9f(r), -2f(r)y/r, 2f(r)x/r, 0, 1, π45 , 0, 0) for 0.1 < r < 0.115 (buffer) 

- (ρ, u, v, w, p, Bx, By, Bz) = (1, 0, 0, 0, 1, π45 , 0, 0) for 0.115 < r (ambient) 

with γ = 1.4 as the initial condition. The r is given as r = [(x – 0.5)2 + (y – 0.5)2]0.5 from the cylinder center (x, y) = 

(0.5, 0.5) with its radius 0.1. The function f(r) is defined as f(r) = (200/3) (0.115 – r), which linearly interpolates the 

buffer region from the cylinder to the ambient. 

Computational grids of evenly spaced 100 x 100 cells and 50 x 50 cells are prepared for a [0, 1] x [0, 1] 

computational space, with the periodic conditions applied to all the boundaries. The computational methods 

(MUSCL2 and TVD-RK3 with CFL = 0.3) are again the same as in the above tests. The results at t = 0.15 are 

compared in Fig. 12 (100x100 cells) and Fig. 13 (50x50 cells).  

These solutions look similar to each other on 100x100 cells, capturing all the important physics and match well 

with the others’ solutions (Fig. 12). On 50x50 cells (Fig. 13), however, the HLLD solution is slightly more diffused 

than the SLAU2 solution, and the HLL solution is further smeared especially in the density plots. Thus, again, 

SLAU2 can produce nearly the same result as HLLD’s even in this torsional-Alfvén-wave-featured MHD field. This 

is more clearly seen from Fig. 14 where density and pressure profiles along x=0.5 line are compared (especially in 

the density double peak near y=0.36 and 0.6). In addition, Shen et al. [40] were unable to compute this problem 

using E-CUSP, unless the spatial accuracy was lowered to one. Thus, these solutions demonstrate the robustness of 

SLAU2 in 2D MHD, again. 
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4.6 MHD Cloud/Shock Interaction 

This problem deals with a cloud/shock interaction in MHD [18, 38, 68]. The left, right, and cloud initial 

conditions are as follows: 

- (ρ, u, v, w, p, Bx, By, Bz)L = (3.86859, 0, 0, 0, 167.345, 0, 2.18262, 0) for x <0.6 

- (ρ, u, v, w, p, Bx, By, Bz)R = (1, -11.2536, 0, 0, 1, 0, 0.564190, 0.564190) for x >0.6, r > 0.15 

- (ρ, u, v, w, p, Bx, By, Bz)cloud = (10, -11.2536, 0, 0, 1, 0, 0.564190, 0.564190) for r < 0.15 

with γ = 5/3. The r is given as r = [(x – 0.8)2 + (y – 0.5)2]0.5 from the high-density cloud center (x, y) = (0.8, 0.5) with 

its radius 0.15. The [0, 1] x [0, 1] domain is filled with 200 x 200 squares. The supersonic inlet condition (i.e., all the 

variables are specified) is employed at the right boundary, whereas the outlet condition (i.e., all the variables are 

extrapolated from the interior neighbor cells) applies to the other boundaries. The computations are run with 

MUSCL2 and TVD-RK3 (CFL = 0.3), again. The solutions at t = 0.06 are displayed in Fig. 15.  

The results involving shocks well reproduced the literature [18, 68]. The present SLAU2 and HLLD solutions 

resemble the mushroom-like cloud in [18, 68]; whereas the HLL is closer to the E-CUSP solution [38] which looks 

rather diffused with the rounded shape of the cloud on the same number of cells adopted. A careful reader may point 

out slightly larger oscillations near the shock in SLAU2 than those in HLLD. We feel they are acceptable, but a 

hybridization with a full-wave solver may suppress those oscillations, as done in our previous work for 1D MHD 

[37]. Figure 16 showing density profiles along x=0.3 also supports the above observation that SLAU2 and HLLD 

solutions are very similar, while HLL’s is rather diffused. 

 

4.7 Early Stage of Kelvin-Helmholtz Instability 

This problem is solved on a very coarse grid, i.e., 16 x 20 cells splitting a [0, 5π] x [-10, 10] domain. The 

purpose of this test is to highlight the differences in solution resolutions on the initial stage of Kelvin-Helmholtz 

instability due to different numerical fluxes. In this problem, the following setup is employed as the initial 

conditions.  
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with γ = 5/3 and a is a random number created by the Fortran subroutine “random_number”. The Eq.(10b) provides 

the velocity field with the shear profile [34], which will evolve and create a vortical flow structure as time 

progresses. The periodic conditions are applied to the left and right boundaries, while the outlet condition is used to 

the top and bottom. As for the computational methods, MP5 for spatial reconstruction [8] (the lower-order 

reconstruction failed to reproduce the flow structure on this very coarse grid), and TVD-RK3 (CFL = 0.3) for time 

integration are used. The solutions at t = 100 are compared in Fig. 17. As seen, even on this very coarse grid, 

SLAU2 and HLLD develop the expected vorticity field (indicted by high and low pressure spots) [69] as in [70], 

whereas HLL totally diffused such a structure. As a quantitative comparison, we plotted the time history of the root-

mean-squares of the y-velocity [63], normalized by the values at t = 10, in Fig. 18. It is evident from this graph that 

SLAU2 and HLLD almost similarly developed the y-component velocity field (very similarly to the theoretical 

linear growth), whereas HLL diffused it. 

     In summary, SLAU2 produced reliable results in all the cases tested, without showing anomalies, severe 

oscillations, or losses of resolutions. The SLAU2 solutions demonstrated comparable qualities to the HLLD 

counterparts with better efficiency, and surpassed HLL which smeared out important physics such as density 

discontinuities and vorticities. We hope that SLAU2 will be incorporated into MHD codes (e.g., [35, 71, 72]), and 

will contribute to further progress of the astrophysics and the other related research areas. 

( )1205.01 −+= aρ  (10a) 

( )yu tanh15.0 γ+−=  (10b) 

( ) ( )( )2cosh4.0sin101.0 yxv γ+=  (10c) 

0=w  (10d) 

( ) 5.05.01 222 =++−= zyx BBBp  (10e) 

0=xB  (10f) 

0=yB  (10g) 

1=zB  (10h) 



Prepared for Submission, Oct xx, 2019 
 

15 
 

5. Conclusions 

The SLAU2 (Simple Low-dissipation Advection-Upstream-splitting-method 2) numerical flux function, one of 

AUSM-type methods (3-wave solver), originally developed and widely used in gasdynamics, has been applied to 

two-dimensional magnetohydrodynamics (MHD) simulations. According to the numerical tests for a wide range of 

flow and magnetic conditions, its reliability, efficiency, and accuracy have been successfully demonstrated. 

- Robustness of SLAU2 against shock-anomalies (e.g., carbuncle phenomena) has been confirmed in the 

MHD-extended hypersonic flow test by the authors. 

- The computational cost has been reduced for approximately 3% compared with HLLD (Harten-Lax-

van_Leer with Discontinuities), a more expensive, 5-wave solver. 

- Nevertheless, its solution qualities are almost equal to those of HLLD, as opposed to very diffused HLL 

solutions. For benchmark tests, detailed and important flow physics such as multidimensional shock/shock 

interactions have been successfully reproduced by SLAU2. 

- SLAU2 exhibit slightly larger oscillations than HLLD did in a limited case. Although they appear to be 

acceptable, a hybridization with a 7-wave solver may suppress those oscillations, as conducted in our 

precedent work for one-dimensional MHD. 

We presented a new carbuncle test and several well-known benchmark problems in two-dimensional MHD. All 

the results support efficacies of SLAU2 in MHD simulations, and the three-dimensional extension as a more realistic 

simulation is left as a future work.  
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Appendix A: HD Blast Wave 

This problem has a setup very similar to “4.4 MHD Blast Wave” but without the magnetic field.  

- (ρ, u, v, w, p, Bx, By, Bz) = (1, 0, 0, 0, 1000, 0, 0, 0) inside a circle with 0.1 radius 

- (ρ, u, v, w, p, Bx, By, Bz) = (1, 0, 0, 0, 0.1, 0, 0, 0) elsewhere 

with γ = 5/3. The solutions of SLAU2 and HLLD on 256 x 256 uniform cells are shown in Fig. A1, which 

demonstrates the SLAU2’s smoother solution than HLLD which exhibit a zigzag-shaped shock profile. 

http://www.astro.phys.s.chiba-u.ac.jp/cans/doc/application_kh.html
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Figures 

 
 

a) 7-wave solvers (Roe, HLLI) 

  

b)  5-wave solver (HLLD) 

 

Fig. 1 Numerical Flux Functions in MHD; (a) 7-wave solvers (Roe, HLLI), (b) 5-wave solver (HLLD), (c) 3-wave 
solvers (SLAU2, AUSMPW+, E-CUSP, HLLC), and (d) 2-wave solver (HLL), continued. 
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c) 3-wave solvers (SLAU2, AUSMPW+, E-CUSP, HLLC) 

 
 

d)  2-wave solver (HLL) 

 

Fig. 1  Numerical Flux Functions in MHD; (a) 7-wave solvers (Roe, HLLI), (b) 5-wave solver (HLLD), (c) 3-wave 
solvers (SLAU2, AUSMPW+, E-CUSP, HLLC), and (d) 2-wave solver (HLL), concluded. 
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Fig. 2  2D-Extended Ryu-Jones Shocktube: Grid (every five lines are displayed) and Boundary Conditions. 



Prepared for Submission, Oct xx, 2019 
 

24 
 

 

a) 

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 0.05 0.1 0.15 0.2 0.25

D
en

si
ty

y

SLAU2
HLLD
Ref

 
b) 

0.9

1.1

1.3

1.5

1.7

1.9

2.1

0 0.05 0.1 0.15 0.2 0.25

Pr
es

su
re

y

SLAU2
HLLD
Ref.

 
Fig. 3   2D-Extended Ryu-Jones Shocktube (400x100 cells), profiles along x-y =0.75 line; (a) density, and (b) 
pressure. 
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Fig. 4   2D-Extended Ryu-Jones Shocktube (400x100 cells), profiles along x-y =0.75 line; (a) Bperp = (-Bx + By) /20.5, 
and (b) Bz. 
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a) Grid, Initial Conditions, and Boundary Conditions 

  
 
b)   Initial Shock Location Parameter ε 

 
Fig. 5  MHD Carbuncle Test Setup, (a) Grid, Initial Conditions, and Boundary Conditions, (b)  Initial Shock 
Location Parameter ε. 
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a) SLAU2, ε=0.0 

 
b) SLAU2, ε=0.5 

 
c) HLLD, ε=0.0 

 
d) HLLD, ε=0.5 

 
Fig. 6  SLAU2 Solutions of MHD Carbuncle Test (Density) at Mach 20, (a)  SLAU2, ε=0.0, (b) SLAU2, ε=0.5, (c) 
HLLD, ε=0.0, and (d) HLLD, ε=0.5. 
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a) 

  
b) 

  
c) 

  
Fig. 7  Orzag-Tang Vortex Problem, (left) density, (right) pressure; (a)SLAU2, (b) HLLD, and (c) HLL. 

y=1.0 
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a) 

 
b) 

 
Fig. 8  Orzag-Tang Vortex Problem, profiles along y=1 line; (a) density, (b) pressure. 
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a) 

  
b) 

  
c) 

  
Fig. 9  MHD Blast Wave Problem (β=0.001), (left) density in logarithmic scale, (right) pressure in logarithmic scale; 
(a) SLAU2, (b) HLLD, and (c) HLL. 

x+y=1.0 
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Fig. 10   MHD Blast Wave Problem (β=0.001), profiles along x+y=1 line; (a) density, (b) pressure. 
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a) 

  
b) 

  
c) 

  
Fig. 11  MHD Blast Wave Problem (β=0.004), (left) density in logarithmic scale, (right) pressure in logarithmic 
scale; (a) SLAU2, (b) HLLD, and (c) HLL. 



Prepared for Submission, Oct xx, 2019 
 

33 
 

 

a) 

  
b) 

  
c) 

  
Fig. 12  MHD Rotor Problem (100x100 cells), (left) density, (right) pressure; (a) SLAU2, (b) HLLD, and (c) HLL. 
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a) 

  
b) 

  
c) 

  
Fig. 13  MHD Rotor Problem (50x50 cells), (left) density, (right) pressure; (a) SLAU2, (b) HLLD, and (c) HLL. 

x=0.5 



Prepared for Submission, Oct xx, 2019 
 

35 
 

 

a) 

0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1

SLAU2
HLLD
HLL

 
b) 

0.01

0.1

1

10

0 0.2 0.4 0.6 0.8 1

SLAU2
HLLD
HLL

 
Fig. 14   MHD Rotor Problem (50x50 cells), profiles along x =0.5 line; (a) density, (b) pressure. 
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a) 
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c) 

 
Fig. 15  MHD Shock/Cloud Interaction Problem (200x200 cells), density; (a) SLAU2, (b) HLLD, and (c) HLL. 
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Fig. 16    MHD Shock/Cloud Interaction Problem, density profiles along x =0.3 line. 
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a) 
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c) 

 
Fig. 17  Early Stage of Kelvin-Helmholtz Instability (16x20 cells), pressure with velocity vectors; (a) SLAU2, (b) 
HLLD, and (c) HLL. 
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Fig. 18     Early Stage of Kelvin-Helmholtz Instability, growth rates of root-mean-squares of the y-velocity 
(normalized by each initial value). 
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a) 

 

b) 

 
Fig. A1  HD Blast Wave Problem (t =0.01), velocity magnitude 0<|u|<12.8, (a) SLAU2, (b) HLLD. 
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Table 

 

 

 

Table 1.  Computational Costs for Orzag-Tang Vortex Problem. 

Numerical Flux SLAU2 HLLD HLL 

CPU Time  

(non-dimensionalized by SLAU2 cost) 
1 1.033 0.943 
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