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Highly stretchable sensing 
array for independent detection 
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structural and resistive control
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Stretchable physical sensors are crucial for the development of advanced electrical systems, 
particularly wearable devices and soft robotics. currently available stretchable sensors that detect 
both pressure and strain are based on piezoelectric, piezoresistive, or piezocapacitive effects. 
The range of pressure sensing is 1–800 kPa with large deformations being within the range of 
deformations of parts of the human body, such as elbows and knees. However, these devices cannot 
easily allow simultaneous and independent detection of pressure and strain with sensor arrays at large 
tensions (> 50%) because strain affects the pressure signal. In this study, we propose a monolithic 
silicone-based array of pressure and strain sensors that can simultaneously and independently detect 
the in-plane biaxial tensile deformation and pressure. to realize these functionalities, the deformation 
of the device structure was optimized using a hetero-silicone substrate made of two types of silicone 
with different hardness characteristics and porous silicone bodies. In addition, the resistances of 
the sensors were controlled by adjusting a mixture based on carbon nanoparticles to improve the 
sensitivity and independence between the pressure and strain sensors. these concepts demonstrate 
the potential of this approach and its compatibility with the current architectures of stretchable 
physical sensors.

Stretchable sensors are in high demand for electronics used in advanced electric  systems1–7 particularly for 
wearable devices. Several stretchable physical sensors have been developed, including  pressure8–10,  strain10–13, 
 temperature14,15, shear  force16, and  light17,18 to detect human  motion19 or  condition20–22. Many multi-physical 
sensors with stretchability have been developed for combined detection of these physical  parameters23–25. Among 
stretchable devices, pressure and strain sensors are two of the most fundamental and important devices for the 
evaluation of the physical characteristics of body deformations and human movements. The benchmark for 
stretchability in terms of wearable devices is ~ 50% to match the maximum deformations of parts of the human 
 body26, such as elbows and knees.

Available stretchable pressure sensors are constructed based on piezoresistive, piezocapacitive, and piezo-
electric effects. These pressure sensors are composed of a liquid material for  wiring27,28 using complex-coated 
carbon  nanotubes23 and porous  silicone29. These devices can detect the applied pressure with high stretchability 
and are applied to electric skins in wearable devices. Currently, stretchable pressure sensors produce pressure 
measurement errors when subjected to strain deformation that hinders the detection of pressure and strain 
simultaneously and independently.

A pressure sensor that can detect strain at the same time was realized using a liquid metal-based pressure 
 sensor24. The strain and pressure sensors inside the device were switched according to the values of each sensor: 
when the device receives an x-axis stimulus, only the x-axis strain sensor is activated. Another pressure and 
strain sensor composed of carbon nano  tube23 and silver  nanowires24 can measure both pressure and strain. 
These devices measure pressure and strain using the same mechanism, when the device is stretched or pressed, 
the distance between the upper and lower layers decreases. However, sensing arrays that can detect both pressure 
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(over a large range of values) and strain (> 50%) have not yet been implemented. In particular, it is still difficult to 
detect the resistance or capacitance of each pressure sensor independently during large deformations. To ensure 
the detection of multiple physical deformations by humans, devices on the body surface should recognize and 
detect such deformations individually and within large ranges of pressure and tension (> 50%).

In this paper, we propose a sensing array that can detect pressure from an upper surface and large strains 
(> 50%) along the x/y axis simultaneously and independently. The detection of pressure and strain is based on 
the resistance properties of carbon nanoparticles. The resistances of the sensor and electrodes were optimized 
by adjusting the mixture of carbon nanoparticles and fluoropolymer to independently detect the resistance vari-
ation using each pressure and strain sensor in an array and minimize the mutual interference between tension 
and pressure signals owing to deformations. Furthermore, the resistance variation of the pressure sensor was 
controlled structurally by a hetero-silicone substrate composed of hard polydimethylsliloxane (PDMS) and soft 
Ecoflex, as well as porous carbon-coated silicone. The components of the device are made of highly biocompat-
ible materials. This is crucial for the development of wearable physical sensors.

Results
Device design and fabrication. As shown in Fig.  1a, soft porous silicone coated with a composite of 
Super P and polyvinylidene difluoride (PVDF) was used as the pressure sensor. The sensor enabled pressure 
detection based on the piezoresistive effect. The standard resistance value of the sensing element can be con-
trolled by changing the properties of the conductive liquid (e.g., liquid metal) in the porous silicone. The hetero-
silicone substrate was composed of hard silicone (PDMS) that formed the pressure sensors and soft silicone 
(Ecoflex). The PDMS around the pressure sensing elements prevents the development of large deformations of 
the elements during the developed device tension. This suppresses the resistance variation of the pressure sensor 
induced by strain. The conductive paste was composed of Super P carbon with high elasticity and was deposited 
on the top and bottom layers to achieve x and y strain sensors based on resistance variations along the x–y axis.

The circuit of each sensor was different to independently detect mapping of the pressure and strain of the x 
and y directions. Strain sensing is achieved using a conductive silicone elastomer consisting of carbon nanoparti-
cles and Ecoflex on the top or bottom layers, as shown in Fig. 1b. On the other hand, pressure sensing is achieved 
using a porous silicone elastomer via the conductive silicone elastomers on the top and bottom layers. However, 
the resistivity of the porous conductive silicone elastomer is significantly higher than that of the conductive 
silicone elastomers. Therefore, pressure and sensing of the x/y strain can be detected independently. To generate 
sensor maps, we constructed the passive matrix structure using the arrangement of patterned porous silicone 
in an array of pressure sensor elements based on the description of lines of stretchable conductive silicone paste 
on the top and bottom layers of the array.

Figure 2a shows the fabrication process of a single-pixel device. First, liquid Ecoflex 00-20 was poured onto a 
three-dimensional (3D) mold (i). After curing and peeling off the Ecoflex substrate from the mold, liquid PDMS 
was poured into a hole in the substrate (ii). After curing PDMS, a smaller hole was punched to allow placement 

Figure 1.  Stretchable pressure sensing array for independent detection of x and y tensions. (a) Schematic of 
the array. This silicone substrate is made of two different silicone types with different hardness values. Harder 
silicone, PDMS, can suppress the deformation of pressure sensing elements during tension. (b) Schematic of 
measurement methods and signals of a pressure mapping sensor subjected to strain deformation. This sensor 
can independently sense three different stimuli, namely pressure, x-, and y-directional strains.
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of the pressure sensor (iii). Sugar was added into the hole to create pores inside Ecoflex. Liquid Ecoflex was then 
poured into this part. By vacuuming the substrate, Ecoflex penetrated the regions in which sugar was deposited. 
After curing Ecoflex, the substrate was sonicated through ultrasonication to dissolve sugar (v). A solution of 
Super P carbon, fluoropolymer, PVDF, and N-methylpyrrolidone (NMP) was poured into the porous Ecoflex 
and penetrated this part (vi). This porous structure increased the resistance of the pressure sensing part. Finally, 
the column and row electrodes of the carbon paste were formed on the top and bottom sides of the substrate 
for the detection of the x and y strains. Acquisition of highly magnified images and analysis of molecules was 
performed using scanning electron microscopy (SEM) and with energy dispersive X-ray spectroscopy (EDS) of 
the carbon and fluorine elements (Fig. 2b–f). The resistance of the porous silicone pressure sensing element was 
different, depending on the material used in coating the surface of the porous silicone (Fig. 2g).

testing and results. The results of the pressure and strain experiments conducted with the single-pixel 
device are shown in Fig. 3. The resistance of the pressure sensors was measured based on the electrical path of 
the porous conductive silicone and conductive paste on the top and bottom layers. The resistivity of the porous 
conductive silicone was 1,000 times higher than that of the conductive silicone in the strain sensor, and strain 
sensor’s resistance was enough small to be neglected while detecting the pressure. Both the x- and y-axis elec-
trodes are needed to measure pressure. As shown in Supplementary Fig. S4, the y-axis strain was not significantly 
affected by x-axis tensile deformation (< 1.3% during 50% strain at the other axis) because the cross sectional 
area of the strain sensor might not be affected by stretching. That is, even if the height of the cross section 
becomes small, the width would be large. The resistance of the porous conductive silicone decreased with respect 
to pressure, and its sensitivity was much higher than that of the nonporous conductive silicone composed of the 
same materials. The porous silicone used in this device had high flexibility compared with normal Ecoflex. In 
fact, the Young’s modulus was ~ 5 kPa, which is seven times lower than that of regular Ecoflex (see Supplemen-
tary Fig. S1). These results show that the porous silicone can be used to increase the sensitivity of the pressure 
sensor. Figure 3b shows the stability of the resistance of the pressure elements when subjected to a 50% tension 
compared with hetero-silicone and Ecoflex substrates. The resistance of a device that uses a hetero-silicone sub-
strate barely changes even when the device is subjected to 50% tension.

In contrast, the resistance of a device whose substrate was only composed of Ecoflex decreased to approxi-
mately 70% when the device was subjected to 50% tension. As mentioned earlier, the resistance of the circuit was 
dominated by the pressure element. The change in the area of the pressure sensing part was only 1.7%, as shown 
in Supplementary Fig. S2. This explains why the resistance of the pressure sensor in the device did not change 
when the device was subjected to 50% tension. Figure 3c shows the resistance change of the conductive silicone 
line on the top layer of the device during the period in which the device was subjected to 50% tension. The resist-
ance of the strain sensor increased with respect to the strain in both devices, that is, in the device composed of 
hetero-silicone substrate and the device composed of Ecoflex substrate. Both devices possess almost the same 
sensitivities, and the resistance was stable after the application of 100 cycles of strain (with the device subjected to 
50% strain at each cycle) (see Supplementary Fig. S3). Figure 3d shows the resistance changes associated with the 

Figure 2.  Fabrication process and characteristics of a single-pixel device. (a) Fabrication process. (b,c) 
Scanning electron microscopy (SEM) image of porous pressure sensing element infiltrated by a carbon/PVDF 
mixture. Higher magnification SEM image of the porous silicone. (d–f) SEM and energy dispersive spectroscopy 
(EDS) analytics of carbon and fluorine in the pressure sensing element. (g) Resistance differences according to 
the conductive material in the porous silicone.
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pressure and x and y strain sensors when a pressure of 5 kPa and 50% tension were applied. The device detected 
biaxial tension and pressure independently. The pressure sensor exhibited an error of 1 kPa when the device 
was subjected to 50% strain. This error is considered to be very small, particularly for device strains lower than 
50%. During tension, the device can become thinner. However, the solid silicone and PDMS around the pressure 
sensing part can suppress deformation of the part in the perpendicular direction. Therefore, pressure sensing was 
not affected by large tension in the devices. The standard resistance value depends highly on the structures and 
materials of the sensor components, as shown in Supplementary Fig. S5. In particular, the real resistance value 
of the pressure sensors was more than 10 times higher than that of the strain sensors, suppressing the effect of 
tension on the pressure sensor. The resistance value can be adjusted depending on the application and structure.

We extended the design to 9 pixels for mapping of pressure and x and y strain sensing based on accumu-
lated experience with the single-pixel device. Figure 4a shows a demonstration of the mapping process when a 
force of 0.3 N was applied at an arbitrary point while the device was subjected to strain. The positions and the 
amount of the applied pressure were detected, while the strain deformation was ignored. In addition, the tensile 
deformations of the device were also detected based on measurements of the resistance changes of the strain 

Figure 3.  Sensing characteristics of a single-pixel device. (a) Resistance variation of a pressure sensor composed 
of porous and conductive silicone with respect to pressure. Resistance “r” in this figure is low and resistance 
“R” is high. (b) Resistance variation of pressure sensors on the entire Ecoflex and hetero-substrates subjected 
to 50% strain deformation. (c) Resistance increases with respect to strain deformation. (d) Demonstration of 
independent pressure and x and y strain detection using a single-pixel device. The resistance along the x and y 
axes increased while this device was strained in the x and y directions. In contrast, the pressure sensor resistance 
decreased while the sensor of the device was pressed. In this demonstration, the pressure and strain stimuli were 
sensed independently while the stimuli were applied simultaneously.
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sensors. In the analysis of the applied pressures of this device, the resistance of the desired position in the map 
was affected by different electric paths (Supplementary Information 1). This explains why calculations were 
performed based on formulated equations from each electrical pathway to measure the precise resistance of the 
pressures at each point. In this demonstration, 20% strain was used because the area occupied by the PDMS of 
the 9-pixel device was larger compared with the device size (see Supplementary Fig. S12). The device itself can 
be extended by 50%; however, it was difficult to extend the center of the device by 50%. On the other hand, it 
was possible to apply 50% strain to a 4-pixel device having the same ratio of the PDMS part as the devices in 

Figure 4.  Demonstration of functionality of a multipixel device. (a) Maps of pressure and strain using the 
9-pixel device. The device achieved 9-pixel mapping of pressure when subjected to large strains. In addition, 
it sensed strain using six conductive lines based on a passive matrix. (b) Demonstration of display controlled 
by a 2-pixel device with a strain indicator. The digital display controlled by the 2-pixel device shows the word 
“MEMS” and works like a keyboard. In addition, the strain indicator, which was composed of an LED bar, 
was turned based on the amount of strain. Pressure and strain sensing were independently controlled by each 
motion.
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Fig. 3 in the same demonstration (see Supplementary Fig. S13). It may be necessary to optimize the design of 
the device depending on the application.

Figure 4b shows a demonstration of the display control based on a keyboard configuration using a 2-pixel 
device on a human wrist. This device was equipped with two porous silicone structures used as pressure sensors 
and one conductive silicone line used as the strain sensor. The device was attached to a wrist. As shown in Fig. 4b 
and Supplementary Video S1, the light emitting diode (LED) bar is lit in five stages according to the bending of 
the wrist. This means that the device attached to the wrist detected the strain of the device during the bending 
process. In addition to the strain motion, the digital display system displayed the letters “M,” “E,” and “S,” on a 
16-segment LED display according to the combination of input signals from two pressure sensors on the device. 
The pressure sensors were not affected by this bending deformation. Therefore, no character was displayed on 
the LED monitor upon bending. In contrast, lighting of the LED light bar as a result of wrist flexion was not 
attenuated by the application of pressure. This indicates that strain and pressure were detected independently 
using the developed device.

Discussion
In the fabrication process used for the pressure sensors in our device, caster sugar was used to synthesize the 
porous PDMS structure instead of granulated sugar commonly used in the fabrication process. Granulated sugar 
consists of particles with diameters in the range of 300–500 µm, whereas caster sugar is composed of particles 
with diameters in the range of 100–200 µm. SEM images of porous silicone fabricated with caster or granulated 
sugar are shown in Supplementary Fig. S6. The robustness of the porous silicone was altered depending on the 
pore size. That is, the strength of the porous silicone increased with respect to the pore size. In this study, caster 
sugar was used to fabricate the porous structure to obtain increased robustness because the deformation induced 
by the developed tension should be suppressed. The particle size of the sugar is approximately 200 µm. This 
is the reason the device requires a thickness of 2 mm to create a sufficient porous network using caster sugar. 
Polystyrene  beads30 and polymethyl methacrylate (PMMA)31 can be used instead of caster sugar to decrease the 
thickness for practical use of the device. The processing method of the pore structure composed of smaller holes 
using these materials have been demonstrated in other  studies30,31. The use of a smaller size of the particle can 
decrease the device thickness.

This study utilized the advantages of Super P carbon black used as conductive material inside the porous 
silicone. The mixture of carbon nanotubes (CNT) and Super P carbon proved useful for adjusting the deforma-
tion sensitivity. The device used in this study required increased strain sensor sensitivity. Therefore, Super P 
carbon was  adopted32.

In terms of the device construction, the sensitivity of the sensor with porous body was 4.8%  kPa−1, and that 
with regular conductive silicone was 0.6%  kPa−1 (see Supplementary Fig. S7). The sensitivity of the porous 
silicone-based pressure sensor was 8 times higher than that composed of an entire conductive Ecoflex sensor, as 
shown in Supplementary Fig. S7. The resistance of the porous silicone can be controlled based on the amount 
of carbon and the ratio of PVDF to achieve values in the range of 1.3–4,260 kΩ (Supplementary Figs. S8, S9). In 
addition, Supplementary Figs. S10 and S11 show that the resistances of the conductive sponge and paste increased 
linearly as a function of their length. Therefore, the ratio of PVDF and the amount of carbon particle should be 
appropriately selected to optimize the device construction depending on the application.

Supplementary Table S1 presents a comparison of the stretchable pressure sensors used in this study and in 
other studies. The sensitivity was 1,000%  kPa−1 for a highly sensitive stretchable pressure mapping sensor using 
a conductive material and  microstructure33,34 (see Supplementary Table S1, items i, ii). These studies reported 
excellent pressure sensitivities. On the other hand, the ranges of the linear current variations of these sensors 
are narrow, and the sensitivities vary depending on the applied pressure. In addition, the pressure sensor with 
conductive stretchable polymer yielded a resistance change of approximately 30% for 33%  tension34 (see Supple-
mentary Table S1, item ii). The developed device had a broad detectable range because the resistance decreased 
linearly with respect to pressure up to approximately 18 kPa (Fig. 3a). Compared with liquid metal-based pressure 
sensors with high stretchability and conductive  stability27, the sensitivity of our device was more than two times 
that of a liquid metal sensor with a diameter of 15 mm (see Supplementary Table S1, item iii).

Supplementary Table S1 highlights the limitation of tensile deformation without any effects on pressure 
sensing, in which the fabricated device in this study could be stretched up to 50% by ignoring strain-induced 
deformations (see Supplementary Table S1, item viii). This result demonstrates the significant benefit of the 
hetero-silicone substrate structure. In another study, the capacitance variation of the pressure sensor was approxi-
mately 20%23 (see Supplementary Table S1, item iv) and 35%24 (see Supplementary Table S1, item v) when 50% 
tension was applied, whereas in yet another study, the resistance variation was 600%25 when 45% tension was 
applied (see Supplementary Table S1, item vi).

In these studies, it may be difficult to recognize pressure and strain in a signal device given that signals 
from pressure and strain affect each other. In contrast, stretchable pressure sensors that used metal thin film 
demonstrated stable pressure sensing even when 15% strains were  applied35 (see Supplementary Table S1, item 
vii). These sensors possess high-pressure sensing sensitivity but did not exhibit stable pressure sensing during 
large deformations (more than 20%). The device with hetero-silicone substrate developed in this study yielded a 
maximum resistance variation of 4.9% when subjected to 50% strain deformation. This is equal to the variation 
obtained when a pressure of 1 kPa was applied in the pressure test, as shown in Fig. 3a.

In summary, the developed device can independently detect pressure at large deformations (up to 50%) by 
exploiting structural and resistive control. In this study, the resistivity of stretchable conductive components 
was controlled from 1 to 1,000 Ω·m using the fine porous structure and the mixture of carbon nanomaterials. It 
is crucial to assemble electrical components for stretchable devices such as electrodes and sensors. In addition, 
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the device utilized the advantage of the hetero-silicone substrate to prevent strain from affecting the pressure 
element responses. As a result, a combination of these structural optimization and resistive control schemes of 
the device assembly achieved a stretchable array of pressure and strain sensing within large ranges independently. 
Independent detection of tensile deformation and pressure is important in fields in which complex pressure pat-
terns are applied during large deformations. These developed devices might be useful as wearable devices and 
surface mounted sensors on soft robots and actuators associated with large deformations.

Methods
preparation of conductive materials. High resistance solution with carbon and PVDF. We mixed 
10 mg (14.3%) of Super P carbon black (IMERYS) and 60 mg (85.7%) of PVDF (KUREHA KF Polymer), and 
sonicated the solution using an ultrasonic cleaner (AS ONE US CLEANER US-2R) in NMP (FUJIFILM Wako 
Chemicals). The resistance was controlled by varying the amount of Super P carbon black and PVDF. PVDF is 
widely used as binder material in lithium-ion  battery36,37. It has good adhesive property for carbon and silicone 
materials. This leads to electrical stability of the carbon material because PVDF prevents carbon nanoparticles 
from detaching from the surface of  silicone38. The solution was poured into porous silicone. Conductive porous 
silicone was obtained after drying NMP for 12 h at 70 °C.

Low resistance paste with carbon. Super P carbon black (44 mg) was added into 1 ml chloroform (FUJIFILM 
Wako Chemicals). After dispersing using an ultrasonic stirrer for 30 min, this solution was mixed with Ecoflex 
00-10 for 2 min at 2000 rpm, and air was removed for 1 min at 2,200 rpm using a rotation-and-revolution mixer. 
The Ecoflex containing Super P was cured at 70 °C for 15 min.

Measurement of pressure and x-and y-strains sensing using a single-pixel device. Measure-
ment of strain sensing was conducted using a tensile tester. The tester was connected to the carbon paste lines 
on the device. Furthermore, the tester was connected to column and row electrodes to measure the resistance 
variations of the pressure sensor. Pressure and x- and y-strain sensing measurements were conducted following 
the application of tension and pressure either simultaneously or alternately. The control system consisted of a 
switching integrated circuit and Arduino Uno switch circuits for resistance measurement with a millisecond 
temporal resolution.

Stretchable pressure mapping device for 9‑pixel pressure and x‑ and y‑strain sensor measure-
ments. In the 9-pixel mapping test, two sensors were pressed with application of uniform pressure when the 
device was subjected to strain. The resistance variations of all the sensing elements were measured. The pressure 
was 0.3 N and the strain was 20%. Electrical resistances were measured and calculated based on the theory intro-
duced in the Supplementary Information section.

Demonstration of a stretchable keyboard on a wrist to control electric display and sensed 
strain. Display control was demonstrated using the device after attaching it on the wrist. This displayed the 
word “MEMS” when the device was subjected to large deformations. In this demonstration, the response of the 
display equipped with a strain indicator was observed according to bending of the wrist and application of pres-
sure. The five-level strain indicator was composed of yellow LEDs indicating the degree of the strain according 
to bending motion of the wrist. The first level of the LED indicated an 8% increase of the strain sensor. On the 
other hand, the LED monitor can display three types of characters depending on the pressure sensor that was 
pressed in the 2-pixel device. The letters “M,” “E,” and “S,” were displayed on a 16-segment LED display accord-
ing to the combination of input signals from the two pressure sensors. As shown in Fig. 4b, the 16-segment LED 
display did not light up following the application of strain, even though the LED light bars were turned on. This 
is because the pressure sensor did not sense the strain during the bending process, although it can sense pressure 
effectively when it is pressed. Supplementary Figs. S16 and S17 show the circuit diagrams of the strain system 
indicator and 16-segment LED display.
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