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Abstract We provide decision-making models for a manufacturer which plans
to produce multiple short life cycle products with the one-shot decision theory.
The obtained optimal production quantities are based on the most appropriate
scenarios for the manufacturer. Since the models are the bilevel programming
problems with the max-min or min-max operator in the lower levels, we pro-
pose two approaches to translate them into general single-level optimization
problems such that they can be solved via the commonly used optimization
methods. The effectiveness of our approaches is examined from the theoretical
and computational aspects.
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1 Introduction

The production planning problem is a fundamental and important managerial
decision-making problem in various industries such as agricultural industry,
manufacturing industry, entertainment industry, etc. Since production plan-
ning problems in the real world invariably include some unknown parame-
ters, uncertainty is a main factor that affects the effectiveness of the obtained
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plan. Uncertainty involved in production planning problems can generally be
categorized into two major types: system uncertainty and environmental un-
certainty. The former includes uncertainties within the production processes,
such as quality uncertainty, operation yield uncertainty and so on; the latter
involves uncertainties beyond the production processes, such as demand un-
certainty, supply uncertainty and so on [37]. The uncertainty in production
planning problems was first examined by Dantzig [20]. From then on, a con-
siderable amount of research (e.g., [5,27,34,36,40,55,56,60]) and surveys have
appeared in the production planning literature, including those of Mula et al.
[45], and Wazed, Ahmed and Nukman [64].

From the aspect of mathematical optimization, production planning prob-
lems involving uncertainty can be mainly modeled by the following approaches.
The first approach is stochastic programming where the uncertain parameters
can be characterized by random variables whose probability distributions are
known or can be estimated [13,41,46]. Specifically, there are two kinds of
methods to deal with stochastic programming problems: chance-constrained
methods and recourse methods. The chance-constrained methods ensure that
the optimal solution makes the probability of a certain constraint being satis-
fied above a certain level [16,44,47,50]. The recourse methods are mainly used
in two-stage (or multi-stage) problems: in the first stage, a feasible solution is
chosen before observing the random parameters; in the second stage, upon a
realization of the random parameters, further decisions are allowed to avoid the
infeasibility of constraints [11,54]. The second approach is robust optimization
to deal with the uncertain parameters which are known to reside in (bounded)
uncertainty sets [1,4–6,15]. According to different decision environments, this
kind of problem can be subdivided as static robust optimization or adjustable
robust optimization. Static robust optimization is for the case that all deci-
sion variables represent here-and-now decisions, that is, they should be made
before the actual parameters are observed. Adjustable robust optimization is
for the case that the part of the decision variables must be determined before
the realization of the uncertain parameters, while the others can be adjusted
after some parts of the uncertain parameters are revealed [9,26]. The paper
[10] gives a comprehensive overview of robust optimization theory and applica-
tions. In addition, distributionally robust optimization approach is also widely
used for the case that the uncertain parameters can be characterized by ran-
dom variables but the probability distributions are not fully known due to the
lack of enough historical data. Distributionally robust optimization provides
an alternative way to overcome the conservativeness of the robust optimiza-
tion without requiring exact specifications of the probability distributions [35,
65,68].

Uncertain optimization problems, especially multi-stage models, often raise
computational complexity. In order to overcome these computational difficul-
ties, a new approximation approach is proposed via linear or nonlinear decision
rules. Since the approximate models are computationally tractable and retain
the fundamental structure of the problem, decision rule approaches have grad-
ually drawn the attention of researchers in the last decade or so; see, e.g., [9,
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17,18]. In a recent paper [66], the authors applied this decision rule approach
to a two-stage stochastic bilevel programming problem and proposed two ap-
proximation problems that are easier to be solved than the original problem.

In this paper, we consider a production planning problem for innovative
products as defined by Fisher [24]. According to Fisher, an innovative product
has a higher profit margin, an intrinsically unpredictable demand and a short
life cycle. In addition, for such an innovative product, the procurement lead-
time is usually longer than the selling season so that there is often only one
opportunity to produce goods before the season. One typical example is fashion
clothes which are characterized by volatile and unpredictable demands, short
life cycles and long supply processes [53]. Fashion items are sold punctually
in a short period and generally not replenished so that they are called as one-
shot items [61]. Hence, the production planning problem for such products is
typically a one-shot decision problem.

We build production planning models with the one-shot decision theory
which is proposed by Guo [31]. The one-shot decision theory has been utilized
for analyzing a duopoly market of a new product with a short life cycle [29,30],
newsvendor problems for innovative products [32], multi-stage one-shot deci-
sion making problems [33] and first-price sealed-bid auctions [63]. For the sake
of simplicity, we only consider the market uncertainty which is characterized
by a random vector of unit profits of innovative products and all decision vari-
ables (the production levels of all products) represent here-and-now decisions.
The one-shot decision theory based production planning models (ODPPMs)
obtain the optimal solution by a two-step process shown below. First, for each
feasible production level, the manufacturer examines every realization of ran-
dom vector (unit profits of products) with considering the probability of this
realization and the outcome associated with it and chooses one as a focus
point of this production level. The selected focus point is the most appro-
priate scenario for the manufacturer executing this production level. Second,
the manufacturer determines such a production level as the optimal one that
generates the highest total profit when its focus point occurs. This focus point
is a supporting scenario for the optimal production level determined. In other
words, the reason that a production level is chosen as an optimal one is that its
focus point is regarded as the most appropriate scenario for the manufacturer.

ODPPMs are bilevel programming problems (BLPPs) where the upper
level problem is to determine the optimal production level of each product
and the lower level problem is to choose the focus point of each production
level. BLPP is an important optimization problem, which plays an important
role in many fields such as transportation, economics, business, engineering,
decision science and so on [21]. It has been known that it is generally difficult
to solve BLPPs because their constraints include a series of other optimization
problems [8,19]. The commonly used approach to a BLPP is to translate it
into a mathematical program with equilibrium constraints (MPEC) based on
the KKT reformulation. Since it is difficult to solve ODPPMs by the KKT
based method, we propose two new approaches by which we can translate the
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ODPPMs into general single-level optimization problems so that they can be
solved via the commonly used optimization methods and software.

Briefly, the contribution of this research is summarized as follows. (1) From
the operational research aspect, a new production planning model for multi-
ple products with short life-cycles is proposed to reflect the one-shot feature
of producing these products, it is fundamentally different from the existing
production planning models. The proposed production planning models are
BLPPs in which the lower level problem is for finding out the most appro-
priate prices of all products for each production level, while considering its
probability and the profit caused by it, which is called the focus point of this
production level; the upper level problem is to decide the optimal production
level based on all focus points of all production levels. (2) From the computa-
tional aspect, new solution methods are proposed to solve the ODPPMs with
the max-min or min-max operator in the lower levels. The proposed single-
level equivalence models are more tractable than traditional KKT condition
based reformulations. Hence, they can be efficiently solved by the classic nu-
merical methods or software. To the best of our knowledge, there is no such
kind of BLPPs which has been solved.

The remainder of this paper is organized as follows. In Section 2, we model
production planning problems under uncertainty with the one-shot decision
theory and compare the proposed approaches with several existing methods
including robust optimization, the expected utility based method. In Section
3, two methods are proposed for effectively solving the models. In Section 4, a
numerical example is used to show the effectiveness of the proposed methods,
a comparison with other methods is made, and the managerial insights are
gained. Finally, we conclude our research in Section 5.

2 Production planning models with the one-shot decision theory

Consider a manufacturer who is making a production planning for multiple
innovative products with short life-cycles under market uncertainty. The pro-
duction quantity of product i (i = 1, 2, · · · , n) is the decision variable xi, the
unit profit of product i is a random variable Ξi and its realization (a sce-
nario) is ξi. Assuming that the feasible region of ξ is Ω := [ξl, ξu] ⊂ Rn with
ξl < ξu where ξl and ξu are the lower and upper bounds of ξ, respectively.
X := {x : Ax ≤ b, x ≥ 0} ⊂ Rn represents the constraints of available re-
sources, such as time, materials, etc.

2.1 The existing models for production planning problems

Such a production planning problem is often modeled as the following stochas-
tic optimization problem:

max
x

ΞTx s.t. x ∈ X. (1)
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Since Ξ is a random vector, the meaning of ‘max’ is not clear at all. That
is, the problem (1) is not well defined. Basically, it will be reformulated as
deterministic optimization models based on the different consideration about
ΞTx. In the following, we briefly overview existing optimization models for it.

The expected profit based method indicates that the optimal choice of x
is the solution of the following optimization problem:

max
x

ΞTx s.t. x ∈ X, (2)

where ΞTx represents the expectation of ΞTx. Since ΞTx = Ξ
T
x for any

x ∈ X, we can rewrite (2) as a deterministic linear programming problem:

max
x

Ξ
T
x s.t. x ∈ X. (3)

Now let us consider a simple example as follows:

max
x

Ξ1x1 +Ξ2x2 s.t. 3x1 + x2 ≤ 9, x1 + 2x2 ≤ 8, x1, x2 ∈ N. (4)

Suppose that Ξ1 and Ξ2 are independent, discrete random variables and the
probability distributions of Ξ1 and Ξ2 are given as P (Ξ1 = 1) = 0.6, P (Ξ1 =
13) = 0.4 and P (Ξ2 = 3) = 0.3, P (Ξ2 = 4) = 0.7, respectively. We can obtain
that the joint probability distribution of the random vector Ξ := (Ξ1;Ξ2)
as P

(
Ξ = (1; 3)

)
= 0.18, P

(
Ξ = (1; 4)

)
= 0.42, P

(
Ξ = (13; 3)

)
= 0.12,

P
(
Ξ = (13; 4)

)
= 0.28, and the expectation of Ξ is Ξ = (5.8; 3.7). Further, we

can obtain the optimal solutions corresponding to four scenarios of (4), that is,
x∗
(
(1; 3)

)
= (0; 4), x∗

(
(1; 4)

)
= (0; 4), x∗

(
(13; 3)

)
= (3; 0) and x∗

(
(13; 4)

)
=

(3; 0) while the global optimal solution of (2) is x∗(Ξ) = (2; 3). Although
the optimal solution of (2) may not correspond to any possible realization in
the future, by the Law of Large Numbers, if the process repeats over a large
number of times, then the solution of (2) will be optimal on average. Indeed,
in this case, it makes sense to consider using the expected value method to
solve a stochastic optimization problem [54].

Another method for solving (1) is called the max-max optimization ap-
proach where the optimal choice of x is the solution of the following max-max
optimization problem:

max
x

max
ξ
{ξTx : ξ ∈ Ω} s.t. x ∈ X. (5)

The max-max approach is an important decision criterion assuming that the
best scenario will happen whatever action is taken. This approach is appropri-
ate for an optimistic decision-maker who is often attracted by the best results.
For any x ≥ 0, we have ξTu x = max{ξTx : ξ ∈ Ω}, which implies that (5) is
equivalent to the following deterministic linear programming problem:

max
x

ξTu x s.t. x ∈ X. (6)
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Considering the example (4), we have ξu = (13; 4) and x∗
(
(13; 4)

)
= (3; 0).

That is, the best scenario is (13; 4), and (3; 0) is obtained as an optimal solution
to correspond to this scenario.

The other method for solving (1) is called the max-min optimization ap-
proach where the optimal choice of x is the solution of the following max-min
optimization problem:

max
x

min
ξ
{ξTx : ξ ∈ Ω} s.t. x ∈ X. (7)

The max-min approach is another important decision criterion which assumes
that the worst scenario will appear whatever action is taken. The max-min
approach would be suitable for a pessimistic decision-maker who is always
worried about the worst results. Similarly, for any x ≥ 0, we have ξTl x =
min{ξTx : ξ ∈ Ω}, hence (7) can be written as the following deterministic
linear programming problem:

max
x

ξTl x s.t. x ∈ X. (8)

Considering the example (4), we have ξl = (1; 3) and x∗
(
(1; 3)

)
= (0; 4). That

is, (1; 3) is the worst scenario and (0; 4) is obtained as an optimal solution to
correspond to it.

Clearly, the max-max optimization approach might be too daring whereas
the max-min optimization approach might be too conservative in the sense
that the former only considers the best scenario but the latter only takes into
account the worst one no matter what the probabilities of them are. We call
the manufacturer who adopts the optimal production level formulated by (2),
(5) or (7) as the expected profit maximization manufacturer, the max-max
manufacturer or the max-min manufacturer, respectively.

2.2 The one-shot decision theory based models

We model the production planning problem for innovative products with short
life-cycles where the profits per unit of products are uncertain. Due to the short
life cycles of these products, one and only one realization of a random vector
of the unit profits of these products (a scenario) will appear in the future
and the manufacturer has only one opportunity to determine the production
levels before the scenario reveals. Considering the one-time feature of such
problems, we build the ODPPM to obtain the optimal production level by the
following two steps. First, for each feasible production level given by the upper
level problem, the lower level problem examines every possible realization of
the random vector of unit profits of products with considering the probability
of this realization and the outcome associated with it and chooses one as a
focus point of this production level (an optimal solution of the lower level
problem). Then, the upper level problem determines such a production level
as the optimal one that generates the highest total profit with its focus point.
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We consider two types of behaviors of the manufacturer choosing focus
points: one is choosing the scenario (one realization of the random vector)
which has a relatively high probability and can bring about a relatively high
profit as the active focus; the other is choosing the scenario which has a rel-
atively high probability but can lead to a relatively low profit as the passive
focus. We formulate these two types of focus points as follows.

– The active focus point of x, denoted as ξac(x), is a non-dominated optimal
solution of the following two-objective optimization problem:(

max
ξ

f(ξ); max
ξ

ξTx
)

s.t. ξ ∈ Ω, (9)

where f(ξ) is the objective probability mass (density) function for discrete
(continuous) random vector or the subjective probability exogenously given
by the manufacturer representing the degree of belief on the occurrence of
each scenario, and ξTx is the payoff function.

– The passive focus point of x, denoted as ξpa(x), is a non-dominated optimal
solution of the following two-objective optimization problem:(

max
ξ

f(ξ); min
ξ

ξTx
)

s.t. ξ ∈ Ω. (10)

(9) and (10) reflect the optimistic and pessimistic attitudes to evaluate the
scenario, respectively. We call the manufacturer who takes into account the
active focus point or passive focus point as active manufacturer or passive
manufacturer. The manufacturer considers the focus point as his/her most
appropriate scenario for each feasible production level and then chooses the
optimal production level that generates the highest total profit when its focus
point occurs. Based on the above considerations, we formulate the production
planning problems for these two kinds of manufacturers as follows.

– The production planning model with active focus points:

max
x

ξac(x)Tx s.t. x ∈ X. (11)

– The production planning model with passive focus points:

max
x

ξpa(x)Tx s.t. x ∈ X. (12)

The solutions of (11) and (12) are called the active optimal production level
and the passive optimal production level, respectively. It should be noted that
we only consider one non-dominated solution of (9) or (10) for each x ∈ X in
(11) or (12). In other words, we do not take into account the frontier of (9)
or (10). We have the following lemma to clarify the relationship between the
production planning model with active focus points and the max-max opti-
mization model and the relationship between the production planning model
with passive focus points and the max-min optimization model.

Lemma 1 The max-max optimization approach (5) is the special case of (11);
the max-min optimization approach (7) is the special case of (12).
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Proof It is easy to verify that ξu is Pareto optimal for the two-objective opti-
mization problem (9) since ξTu x = max{ξTx : ξ ∈ Ω} for any x ≥ 0. In other
words, if the best scenario ξu is chosen by the manufacturer as the active focus
point of all feasible x, i.e., ξac(x) ≡ ξu, then the production planning model
with active focus points reduces to the linear programming problem (6). Simi-
larly, we can verify that ξl is Pareto optimal for the two-objective optimization
problem (10) since ξTl x = min{ξTx : ξ ∈ Ω} for all feasible x. Hence the pro-
duction planning model with passive focus points can be reduced to the linear
programming problem (8) if ξpa(x) ≡ ξl. ut

It follows from Lemma 1 that max-max and max-min optimization ap-
proaches completely ignore probabilities. In what follows, we show other ap-
proaches which can obtain a non-dominated optimal solution of (9) and (10)
with considering profits and probabilities simultaneously. First, we give two
definitions as follows.

Definition 1 Let f be the original probability mass (density) function for
discrete (continuous) random vector and π : Ω → [0, 1] be a function satisfying

max
{
π(ξ) : ξ ∈ Ω

}
= 1.

We call π(ξ) as the relative likelihood degree of ξ if it satisfies π(ξ1) > π(ξ2)
for f(ξ1) > f(ξ2) and π(ξ1) = π(ξ2) for f(ξ1) = f(ξ2).

Definition 2 Let v be the payoff function and u : Ω×X → [0, 1] be a function
satisfying

max
{
u(ξ, x) : (ξ, x) ∈ Ω ×X

}
= 1.

We call u(ξ, x) as the satisfaction level of ξ for x if it satisfies u(ξ1, x) > u(ξ2, x)
for v(ξ1, x) > v(ξ2, x) and u(ξ1, x) = u(ξ2, x) for v(ξ1, x) = v(ξ2, x).

Clearly, the relative likelihood degree and the satisfaction level are used to
represent the relative position of probability and payoff, respectively.

In fact, there are many kinds of probability distributions. Considering the
fact that most commonly used probability distributions have a log-concave
density function [7] (e.g., normal distributions, exponential distributions), we
assume hereafter that Ξ follows a (truncated) log-concave distribution with
a given support Ω = [ξl, ξu]. Based on Definitions 1 and 2, we can give two
formulas as follows:

π(ξ) :=
1

log(fu)− log(fl)

(
log
(
f(ξ)

)
− log

(
fl
))
, (13)

u(ξ, x) :=
1

vu − vl
(ξTx− vl), (14)

where fl and fu are lower and upper bounds of f(ξ) in Ω respectively, i.e.,

fl := min
{
f(ξ) : ξ ∈ Ω

}
and fu := max

{
f(ξ) : ξ ∈ Ω

}
;
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vl and vu are lower and upper bounds of ξTx in Ω ×X respectively, i.e.,

vl := min
{
ξTx : x ∈ X, ξ ∈ Ω

}
and vu := max

{
ξTx : x ∈ X, ξ ∈ Ω

}
.

Instead of directly normalizing the original density function, we utilize (13) as
the relative likelihood function because it is a concave function and hence it
is computationally tractable.

With π(ξ) and u(ξ, x), we give another specific non-dominated solution of
(9) as follows:

max
ξ∈Ω

min
{
π(ξ), u(ξ, x)

}
. (15)

From (13) and (14), we can easily verify that the solutions of (15) are still
Pareto optimal for (9) for any x ∈ X. Since the minimal function between π
and u can be expressed as

min
{
π(ξ), u(ξ, x)

}
=

1

2

{
π(ξ) + u(ξ, x)− |π(ξ)− u(ξ, x)|

}
,

it is straightforward that using (15) we can find out a scenario ξ which si-
multaneously makes π(ξ) and u(ξ, x) large. In other words, comparing with
maxξ∈Ω

{
π(ξ) + u(ξ, x)

}
and maxξ∈Ω

{
π(ξ) ∗ u(ξ, x)

}
, (15) can avoid obtain-

ing ξ with a large π(ξ) but a small u(ξ, x) or a small π(ξ) but a large u(ξ, x)
because it tries to make |π(ξ) − u(ξ, x)| as smaller as possible. Similarly, by
solving

min
ξ∈Ω

max
{

1− π(ξ), u(ξ, x)
}
, (16)

we can obtain another specific non-dominated solution of (10). Considering

max
{

1− π(ξ), u(ξ, x)
}

=
1

2

{
1− π(ξ) + u(ξ, x) + |1− π(ξ)− u(ξ, x)|

}
,

we know that using (16) we can find out a scenario ξ with a relatively large
π(ξ) and a relatively small u(ξ, x).

With (15) and (16), we respectively embody the ODPPM with active focus
points and the ODPPM with passive focus points by Model A and Model B
as shown below.
Model A:

max
(x;ξ)

ξTx s.t. x ∈ X, ξ ∈ Λac(x), (17)

where Λac(x) (which is related to x) denotes the set of global optimal solutions
of the following max-min lower level problem:

max
ξ∈Ω

min
{
π(ξ), u(ξ, x)

}
. (18)

Clearly, for Model A, the upper level problem (17) is used to find the optimal
production level for maximizing the total profit on a specific scenario associ-
ated with it; the lower level problem (18) is used to seek this scenario which
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has a relatively high probability and can cause a relatively high profit. Consid-
ering the example (4), we can obtain that the active optimal production level
as x∗ = (3; 0) and its focus point as ξac(x∗) = (13; 4). It means that the active
manufacturer chooses the production level (3; 0) as the optimal one based on
one scenario (13; 4) (profits per units of two products). The relative likelihood
degree of (13; 4) is 0.6763 and it can lead to the satisfaction level of 1.0000 if
the production level is (3; 0).
Model B:

max
(x;ξ)

ξTx s.t. x ∈ X, ξ ∈ Λpa(x), (19)

where Λpa(x) (which is related to x) denotes the set of global optimal solutions
of the following min-max lower level problem:

min
ξ∈Ω

max
{

1− π(ξ), u(ξ, x)
}
. (20)

Likewise, for Model B, the upper level problem (19) is used to find the optimal
production level for maximizing the total profit on a specific scenario associ-
ated with it; the lower level problem (20) is used to seek this scenario which
has a relatively high probability and can cause a relatively low profit. Consid-
ering the example (4), we can obtain that the passive optimal production level
as x∗ = (0; 4) and its focus point as ξpa(x∗) = (1; 4). It means that the passive
manufacturer chooses the production level (0; 4) as the optimal one based on
one scenario (1; 4) (profits per units of two products). The relative likelihood
degree of (1; 4) is 1.0000 and it can lead to the satisfaction level of 0.4102 if
the production level is (1; 4).
Remarks: Comparing with the max-max optimization approach and the max-
min optimization approach, although Model A and Model B utilize the oper-
ator ‘max-min’ and ‘min-max’, they also incorporate the probability, and so
they simply eliminate the possibility of obtaining extreme results, that is, too
optimistic results from the max-max optimization approach or too conserva-
tive results from the max-min optimization approach. The expected utility
based method is for the decision maker whose action can be characterized
by four axioms (completeness, transitivity, independence and continuity) of
von Neumann and Morgenstern [62] or nine axioms (completeness, reflexiv-
ity, transitivity, sure thing principle, monotonicity, weak comparative, non-
degeneracy, small event continuity and uniform monotonicity) of Savage [51].
However, plenty of evidence shows that people systematically violate these ax-
ioms (see, e.g. Allais [2]; Ellsberg [25]; Kahneman and Tversky [39]; Starmer
[57]). ODPPMs are behavioral models with two basic assumptions (axioms):
for each action, there is an event which is personally most salient for the deci-
sion maker; the optimal action is determined by comparing the salient events
of all actions (Guo [31]). Actually, there are mounting evidence to support
these assumptions (for example, Orquin and Loose [48]; Stewart, Hermens
and Matthews [59]; Busse et al. [14]; Bordalo, Gennaioli and Shleifer [12]);
in addition, a behavioral model with the one-shot decision theory is built for
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explaining the anomalies in the first-price sealed-bid auctions, especially, it is
the first theoretical explanation for throwing-away phenomenon (Wang and
Guo [63]). In summary, with different assumptions, we can utilize different
production planning models, such as the max-max optimization model, the
max-min optimization model, the expected utility based model and the one-
shot decision theory based model; ODPPM provides an alternative strategy
for the manufacturer choosing the optimal production level.

3 The solutions to Models A and B.

From Model A and Model B, we know that solving these models is to solve
the BLPPs with non-smooth lower level problems. To overcome the difficulty
of non-smoothing, we first introduce a new auxiliary variable y where y ≤
min{π(ξ), u(ξ, x)}. Let us consider the following optimization problem:

max
(ξ;y)

y s.t. y ≤ π(ξ), y ≤ u(ξ, x), (ξ; y) ∈ [ξl, ξu]×R. (21)

Lemma 2 Let Ω(x) ⊂ Rn × R be the set of global optimal solutions of (21)
for any x ∈ X. If (ξ∗x; y∗x) ∈ Ω(x), then we have

y∗x = min
{
π(ξ∗x), u(ξ∗x, x)

}
. (22)

Proof If (ξ∗x; y∗x) is a global maximizer of (21) for any x ∈ X, then we have ei-
ther (22) or y∗x < min{π(ξ∗x), u(ξ∗x, x)}. In fact, y∗x < min{π(ξ∗x), u(ξ∗x, x)} does
not hold. The reason is as follows. If y∗x < min{π(ξ∗x), u(ξ∗x, x)} holds, setting
ȳx := 1

2

(
y∗x + min{π(ξ∗x), u(ξ∗x, x)}

)
, then we have ȳx < min{π(ξ∗x), u(ξ∗x, x)}.

Thus, we have ȳx < π(ξ∗x) and ȳx < u(ξ∗x, x), that is, (ξ∗x; ȳx) is feasible
for the problem (21). In addition, it is easy to verify that ȳx > y∗x if y∗x <
min{π(ξ∗x), u(ξ∗x, x)}. Clearly, this conflicts with the assumption that (ξ∗x; y∗x)
is a global maximizer of (21). Thus, only (22) holds. ut

Lemma 2 shows that the optimal solutions of the lower level problem (18)
and the problem (21) are equivalent globally. In other words, (21) is an equiva-
lent reformulation of the problem (18). In the following, we focus on the BLPP
(17) with the reformulated lower level problem (21). For any given x ∈ X, we
can understand from (13) and (14) that π(·) is a differentiable concave func-
tion and u(·, x) is an affine function, respectively. Hence, (21) is a smooth
convex optimization problem. Due to ξl < ξu, it is easy to verify that the
Slater’s condition holds for the problem (21) for any given x ∈ X. The com-
mon method to solve a BLPP with a convex lower level problem is to translate
it into an MPEC by replacing the lower level problem with its Karush-Kuhn-
Tucker (KKT) condition (e.g.,[3,22]). Based on the KKT method, we know
that solving (21) is equivalent to solving its KKT condition, that is, solving
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the following system with equalities and inequalities:
(1− w)π′(ξ) + wu′ξ(ξ, x) + α− β = 0,

0 ≤ 1− w ⊥ π(ξ)− y ≥ 0,
0 ≤ w ⊥ u(ξ, x)− y ≥ 0,
0 ≤ α ⊥ ξ − ξl ≥ 0,
0 ≤ β ⊥ ξu − ξ ≥ 0,

(23)

where w ∈ R, α, β ∈ Rn and 0 ≤ a ⊥ b ≥ 0 is called the complemen-
tarity constraint, which means that a ≥ 0, b ≥ 0 and aT b = 0. Setting
H1(w,α, β) := (1−w;w;α;β), H2(x, ξ, y) := (π(ξ)−y;u(ξ, x)−y; ξ−ξl; ξu−ξ)
and h(x, ξ, w, α, β) := (1 − w)π′(ξ) + wu′ξ(ξ, x) + α − β, we can reformulate
Model A as the following MPEC:

max
z

ξTx

s.t. Ax ≤ b, x ≥ 0, h(x, ξ, w, α, β) = 0, (24)

0 ≤ H1(w,α, β) ⊥ H2(x, ξ, y) ≥ 0,

z = (x; ξ;w;α;β) ∈ Rn ×Rn ×R×Rn ×Rn.

Although (24) is a single-level optimization problem, solving it is still diffi-
cult. First, (24) is not a convex optimization problem due to the existence
of complementarity constraints. Second, (24) fails to satisfy the general con-
straint qualifications, such as Mangasarian-Fromovizt constraint qualification
(MFCQ) which can ensure that the local minimizer must be a stationary
point. It is not difficult to understand that the above MPEC has a combina-
torial structure, that is, its feasible region is a union of lots of pieces. It means
that it is inappropriate to utilize classical nonlinear optimization theories and
algorithms to solve (24) directly [42,43]. To deal with this special nonlinear
optimization problem, various theories and methods on MPECs have been
made by researches (e.g., [28,38,52]). However, all these methods need strong
assumptions and can only find out stationary points. Another appealing way
to the BLPP is based on the so-called optimal value function of the lower level
problem. This approach was first introduced by Outrata [49] for obtaining a
numerical solution and subsequently used by Ye and Zhu [67] for obtaining
necessary optimality conditions. Although this approach does not require the
convexity assumption of the lower level problem, solving the reformulation
is significantly difficult because it is neither smooth nor convex, and what is
more, it is quite complicated to design effective numerical algorithms to solve
the reformulation because it consists of an implicitly determined constraint
function; see, e.g., [23,42,66]. Due to their inherent mathematical difficulties,
so far most references handling a BLPP assume that the lower level is a convex
optimization problem and then solve its KKT reformulation.

Without using the traditional KKT reformulation, we propose new ap-
proaches to solve the ODPPMs (Model A and Model B). First, we consider
the following two single-level optimization problems:
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Model I:

max
(x;ξ)

ξTx s.t. Ax ≤ b, x ≥ 0, ξ ∈ [ξl, ξu], F (ξ, x) ≤ 0, (25)

where

F (ξ, x) := u(ξ, x)− π(ξ). (26)

Model II:

max
z

L(x, ξ, λ, η, τ)

s.t. Ax ≤ b, x ≥ 0, ξ ∈ [ξl, ξu], G(x, ξ, λ, η, τ) = 0, (27)

z = (x; ξ;λ; η; τ) ∈ Rn ×Rn ×Rn+ ×Rn+ ×R+,

where

L(x, ξ, λ, η, τ) := (1− τ)u(ξ, x) + τ
(
1− π(ξ)

)
+ λT (ξ − ξu) + ηT (ξl − ξ),(28)

G(x, ξ, λ, η, τ) := (1− τ)u′ξ(ξ, x)− τπ′(ξ) + λ− η. (29)

In what follows, we examine the relationship between Model I and Model
A and the relationship between Model II and Model B.

Theorem 1 Suppose that (x∗; ξ∗) is a global optimal solution of Model I, then
it is still global optimal for Model A.

Proof Suppose that ξ(x) is a global optimal solution of the lower level problem
(18) where x ∈ X, then we have

min
{
π
(
ξ(x)

)
, u
(
ξ(x), x

)}
≥ min

{
π(ξ), u(ξ, x)

}
, ∀ ξ ∈ [ξl, ξu]. (30)

In fact, ξ(x) must satisfy the following condition:

u
(
ξ(x), x

)
− π

(
ξ(x)

)
≤ 0. (31)

The reason is as follows.
If (31) does not hold, then we have π

(
ξ(x)

)
= min

{
π
(
ξ(x)

)
, u
(
ξ(x), x

)}
.

Considering (30), if π(ξ) < u(ξ, x), we can obtain that

π
(
ξ(x)

)
= min

{
π
(
ξ(x)

)
, u
(
ξ(x), x

)}
≥ min

{
π(ξ), u(ξ, x)

}
= π(ξ).

Clearly, if π
(
ξ(x)

)
< u

(
ξ(x), x

)
, then π(ξ) is still global optimal for the fol-

lowing optimization problem:

max
ξ

π(ξ) s.t. π(ξ)− u(ξ, x) < 0, ξ ∈ [ξl, ξu]. (32)

From (13), we know that π(·) is a concave function and there exists µ ∈ [ξl, ξu]
satisfying π(µ) = max{π(ξ) : ξ ∈ [ξl, ξu]} = 1. Together with π(ξ) ∈ [0, 1] and
u(ξ, x) ∈ [0, 1], we can obtain that

π(µ)− u(µ, x) = 1− u(µ, x) ≥ 0.
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It is clear that ξ(x) 6= µ if π
(
ξ(x)

)
< u

(
ξ(x), x

)
. Since π(·) given by (13) is

concave and u(·, x) given by (14) is affine, there must exist ξx = (1 − σ)µ +
σξ(x) ∈ [ξl, ξu] where 0 < σ < 1 such that

π(ξx) > π
(
ξ(x)

)
and π(ξx)− u(ξx, x) < 0,

which conflict with the assumption that ξ(x) is the global optimal solution of
(32). Hence, (31) is true. Thus, we can rewrite (18) as the following optimiza-
tion problem:

max
ξ

u(ξ, x) s.t. u(ξ, x)− π(ξ) ≤ 0, ξ ∈ [ξl, ξu].

Since u(ξ, x) is the normalized profit function, we know that solving Model A
is equivalent to solving the following single-level optimization problem:

max
(x;ξ)

ξTx s.t. Ax ≤ b, x ≥ 0, ξ ∈ [ξl, ξu], u(ξ, x)− π(ξ) ≤ 0. (33)

Using (26), we can rewrite (33) as Model I. Clearly, if (x∗; ξ∗) is a global
optimal solution of Model I, then it is still global optimal for Model A. ut

Theorem 2 Suppose that (x∗; ξ∗;λ∗; η∗; τ∗) is a global optimal solution of
Model II, then (x∗; ξ∗) is global optimal for Model B.

Proof Suppose that ξ(x) is a global optimal solution of the lower level problem
(20) where x ∈ X, then we have

max
{

1− π
(
ξ(x)

)
, u
(
ξ(x), x

)}
≤ max

{
1− π(ξ), u(ξ, x)

}
, ∀ ξ ∈ [ξl, ξu].

We divide the difference of 1 − π
(
ξ(x)

)
and u

(
ξ(x), x

)
into the following two

cases:

1− π
(
ξ(x)

)
− u
(
ξ(x), x

)
> 0 and 1− π

(
ξ(x)

)
− u
(
ξ(x), x

)
≤ 0.

In fact, the first case does not hold. The reason is as follows.
If the first case holds, that is, π

(
ξ(x)

)
< 1− u

(
ξ(x), x

)
, then we have

1− π
(
ξ(x)

)
= max

{
1− π

(
ξ(x)

)
, u
(
ξ(x), x

)}
≤ max

{
1− π(ξ), u(ξ, x)

}
,

which implies that ξ(x) is still global optimal for the following optimization
problem:

min
ξ

1− π(ξ) s.t. 1− π(ξ) > u(ξ, x), ξ ∈ [ξl, ξu].

From (13), we know that π(·) is a concave function and there exists µ ∈ [ξl, ξu]
satisfying π(µ) = max

{
π(ξ) : ξ ∈ [ξl, ξu]

}
= 1. Together with π(ξ) ∈ [0, 1] and

u(ξ, x) ∈ [0, 1], we have that

1− π(µ) = 0 ≤ u
(
ξ(x), x

)
. (34)
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Clearly, ξ(x) 6= µ if 1−π
(
ξ(x)

)
> u

(
ξ(x), x

)
. Since π(·) given by (13) is concave

and u(·, x) given by (14) is affine, there must exist ξx = (1 − σ)µ + σξ(x) ∈
[ξl, ξu] where 0 < σ < 1 such that

1− π(ξx) < 1− π
(
ξ(x)

)
and 1− π(ξx) > u(ξx, x),

which conflict with the assumption that ξ(x) is the global optimal solution of
(34). Therefore, solving (20) is equivalent to solving the following optimization
problem:

min
ξ

u(ξ, x) s.t. 1− π(ξ)− u(ξ, x) ≤ 0, ξ ∈ [ξl, ξu]. (35)

Since u(ξ, x) is the normalized profit function, we can rewrite Model B as the
following max-min optimization problem:

max
x

min
ξ

{
u(ξ, x) : 1− π(ξ)− u(ξ, x) ≤ 0, ξ ∈ [ξl, ξu], Ax ≤ b, x ≥ 0

}
. (36)

From (13) and (14), we know that solving (35) is to solve a convex opti-
mization problem since u(·, x) is affine for any x 6= 0 and 1 − π(·) − u(·, x) is
convex. Since 1 − π(·) − u(·, x) is a convex function, it is easy to check that
there must exist ξ0 ∈ [ξl, ξu] such that

1− π(ξ0)− u(ξ0, x) < 0 and ξl < ξ0 < ξu,

which implies that Slater’s constraint qualification holds for the problem (35).
From the strongly dual theory for a convex optimization problem [58, Section
5.2], we know that solving (35) can be equivalent to solving its duality problem
and they have the same optimal value. Let us give the Lagrange function of
the problem (35) as follows:

L(x, ξ, λ, η, τ)

:= u(ξ, x) + λT (ξ − ξu) + ηT (ξl − ξ) + τ
(
1− π(ξ)− u(ξ, x)

)
, (37)

where λ ∈ Rn+, η ∈ Rn+ and τ ∈ R+. Clearly, L(x, ξ, λ, η, τ) is convex for the
variable ξ for any fixed x ∈ X, λ ≥ 0, η ≥ 0 and τ ≥ 0. Thus, we can express
its dual problem as

max
(λ;η;τ)

L(x, ξ, λ, η, τ) s.t. G(x, ξ, λ, η, τ) = 0, λ, η ∈ Rn+, τ ∈ R+, (38)

where

G(x, ξ, λ, η, τ) = L′ξ(x, ξ, λ, η, τ). (39)

(38) is also called the Wolfe duality problem. We can further rewrite (37) as
(28), (39) as (29). Since the strongly dual condition holds for the problem
(35), we know that solving (36) is equivalent to solving Model II. Clearly,
if (x∗; ξ∗;λ∗; η∗; τ∗) is a global optimal solution of Model II, then (x∗; ξ∗) is
global optimal for Model B. ut
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Comments: There are two papers [69,70] related to this research. In the pa-
per [69], we propose a production planning model with the one-shot decision
theory in which only the formula (15) is considered to obtain the solution of
the lower level problem. That is, the model in the paper [69] is a special case
of the model (11) proposed in this research. Although the model in the paper
[69] is the same as Model A in this research, we propose completely differ-
ent approaches to solve them. The approach proposed in the paper [69] is a
KKT-based method. In order to replace the lower level problem by the KKT
condition, we utilize the smooth function to approximate the min function in
the lower level problem and assume that the functions involved in the lower
level are all twice continuously differentiable and concave. Clearly, such as-
sumptions are stricter than the ones in this paper and the approach proposed
in the paper [69] can only obtain approximation solutions of Model A. Further,
as mentioned in Section 3, the KKT reformulation is very difficult to be solved
because of the existence of complementarity constraints. On the contrary, the
proposed approaches to Models A and B in this paper are not KKT-based
and can solve Models A and B easily. In the paper [70], we propose several
approaches to bilevel programming problems with max-min or min-max lower
level programs; these approaches are applicable for only the case that all deci-
sion variables are one-dimensional, and no constraint exists. Hence, Models A
and B in this research cannot be solved by the proposed methods in the paper
[70].

4 Numerical examples and computational discussion

In order to illustrate the proposed approaches, let us consider a numerical
example as follows. An apparel manufacturer is planning to produce four types
of new fashion clothes for the coming summer season. For producing fashion
clothes 1, 2, 3 and 4, four kinds of resources, that is, A, B, C and D are
needed. The available amounts of A, B, C and D are 1500, 2250, 1100 and
1300 units, respectively. The amounts of resource A needed for producing one
unit fashion clothes 1, 2, 3 and 4 are 2, 3, 3 and 2 units, respectively; the
amounts of resource B needed for producing one unit fashion clothes 1, 2, 3
and 4 are 2, 3, 4 and 5 units, respectively; the amounts of resource C needed
for producing one unit fashion clothes 1, 2, 3 and 4 are 3, 2, 2 and 1 units,
respectively; the amounts of resource D needed for producing one unit fashion
clothes 1, 2, 3 and 4 are 1, 2, 2 and 3 units, respectively. Hence, the feasible
set of production levels is

X =

x ∈ R4
+ :

2x1 + 3x2 + 3x3 + 2x4 ≤ 1500,
2x1 + 3x2 + 4x3 + 5x4 ≤ 2250,
3x1 + 2x2 + 2x3 + x4 ≤ 1100,
x1 + 2x2 + 2x3 + 3x4 ≤ 1300.

 .

The uncertainty of the profits per unit for clothes 1, 2, 3 and 4 is character-
ized by the truncated normal distribution where the mean vector is µ, the

zhu xide
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covariance matrix is Σ (a positive definite matrix) and the support is set as

Ω := [µ− kσ, µ+ kσ] with k > 0,

where σi :=
√
Σii represents the standard deviation of Ξi for i = 1, 2, 3, 4. In

particular, the relative likelihood function (13) can be given as

π(ξ) = 1− (ξ − µ)T
Σ−1

k2(σTΣ−1σ)
(ξ − µ). (40)

Since Σ−1 is a positive definite matrix, π(ξ) given by (40) is a quadratic
concave function which means that the mean vector has the maximal relative
likelihood degree 1 and the vector which has a longer Euclidean distance from
the mean vector will have a less relative likelihood degree. By (14), we have

u(ξ, x) =
ξTx− vl
vu − vl

, (41)

where vl = min
{

(µ− kσ)Tx : x ∈ X
}

and vu = max
{

(µ+ kσ)Tx : x ∈ X
}

.
The expected profit based production planning model (3) becomes

max
x

µTx s.t. x ∈ X. (42)

The max-max approach based production planning model (6) becomes

max
x

(µ+ kσ)Tx s.t. x ∈ X. (43)

The max-min approach based production planning model (8) becomes

max
x

(µ− kσ)Tx s.t. x ∈ X. (44)

In the following, we utilize the interior-point algorithm from Global Op-
timization Toolbox of MATLAB 7.10 to solve Models A and B, and use the
simplex algorithm to solve the other traditional optimization models (42), (43)
and (44). The numerical results and analysis are given in the following sections.

4.1 Numerical results

Case I: k = 2, Σ = Σ0 and µ = µ0 where

Σ0 =


2500 1250 1250 1250
1250 2500 1250 1250
1250 1250 2500 1250
1250 1250 1250 2500

 and µ0 =


150
200
200
150

 .

We obtain the results shown in Table 1.
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Table 1 Solutions of Production Planning Models for Case I

Model ξ∗ x∗ π(ξ∗) u(ξ∗, x∗) ξ∗T x∗

(43)

 250.0000
300.0000
300.0000
250.0000

  100.0000
200.0000
100.0000
200.0000

 0.0000 1.0000 165000

A

 191.5182
244.4839
244.4839
197.4494

  100.0000
150.0000
150.0000
200.0000

 0.7999 0.7999 131990

(42)

 150.0000
200.0000
200.0000
150.0000

  100.0000
186.1648
113.8352
200.0000

 1.0000 0.6364 105000

B

 91.9217
133.4775
133.4775
88.3976

  84.9330
180.1356
180.1324
124.6650

 0.5945 0.4055 66915

(44)

 50.0000
100.0000
100.0000
50.0000

  0.0000
236.7627
263.2373
0.0000

 0.0000 0.3030 50000

For examining how the solutions change with k for Case I, we consider the
following case.
Case II: k = 3, Σ = Σ0 and µ = µ0.
The obtained results are shown in Table 2.
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Table 2 Solutions of Production Planning Models for Case II

Model ξ∗ x∗ π(ξ∗) u(ξ∗, x∗) ξ∗T x∗

(43)

 300.0000
350.0000
350.0000
300.0000

  100.0000
202.1351
97.8649
200.0000

 0.0000 1.0000 195000

A

 213.5324
281.6845
254.4564
222.6085

  100.0000
300.0000
0.0000

200.0000

 0.7712 0.7712 150380

(42)

 150.0000
200.0000
200.0000
150.0000

  100.0000
186.1648
113.8352
200.0000

 1.0000 0.5385 105000

B

 77.1232
113.8610
113.8608
75.6643

  78.1756
193.6479
193.6497
90.8779

 0.7077 0.2923 57003

(44)

 0.0000
50.0000
50.0000
0.0000

  0.0000
271.1877
228.8123
0.0000

 0.0000 0.1282 25000

We examine how the solutions change with Σ for Case I. We consider the
following case III.
Case III: k = 2, Σ = 1.44×Σ0 and µ = µ0.
The obtained results are shown in Table 3.
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Table 3 Solutions of Production Planning Models for Case III

Model ξ∗ x∗ π(ξ∗) u(ξ∗, x∗) ξ∗T x∗

(43)

 270.0000
320.0000
320.0000
270.0000

  100.0000
200.0000
100.0000
200.0000

 0.0000 1.0000 177000

A

 201.8225
255.5241
255.5241
209.2257

  100.0000
150.0000
150.0000
200.0000

 0.7835 0.7835 138680

(42)

 150.0000
200.0000
200.0000
150.0000

  100.0000
186.1648
113.8352
200.0000

 1.0000 0.5932 105000

B

 85.3928
124.8230
124.8230
82.7798

  81.5170
186.9661
186.9659
107.5849

 0.6467 0.3533 62542

(44)

 30.0000
80.0000
80.0000
30.0000

  0.0000
258.4314
241.5686
0.0000

 0.0000 0.2260 40000

Table 4 The scenarios associated with the optimal solutions in Cases I and II

Model (43) Model A Model (42) Model B Model (44)

I

 250.0000
300.0000
300.0000
250.0000

  191.5182
244.4839
244.4839
197.4494

  150.0000
200.0000
200.0000
150.0000

  91.9217
133.4775
133.4775
88.3976

  50.0000
100.0000
100.0000
50.0000


II

 300.0000
350.0000
350.0000
300.0000

  213.5324
281.6845
254.4564
222.6085

  150.0000
200.0000
200.0000
150.0000

  77.1232
113.8610
113.8608
75.6643

  0.0000
50.0000
50.0000
0.0000
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Table 5 The scenarios associated with the optimal solutions in Cases I and III

Model (43) Model A Model (42) Model B Model (44)

I

 250.0000
300.0000
300.0000
250.0000

  191.5182
244.4839
244.4839
197.4494

  150.0000
200.0000
200.0000
150.0000

  91.9217
133.4775
133.4775
88.3976

  50.0000
100.0000
100.0000
50.0000


III

 270.0000
320.0000
320.0000
270.0000

  201.8225
255.5241
255.5241
209.2257

  150.0000
200.0000
200.0000
150.0000

  85.3928
124.8230
124.8230
82.7798

  30.0000
80.0000
80.0000
30.0000



Table 6 The optimal total profit for Cases I and II

Model (43) Model A Model (42) Model B Model (44)

I 165000 131990 105000 66915 50000

II 195000 150380 105000 57003 25000

Table 7 The optimal total profit for Cases I and III

Model (43) Model A Model (42) Model B Model (44)

I 165000 131990 105000 66915 50000

III 177000 138680 105000 62542 40000

Let us give an explanation for the above numerical examples. Model A in
Table 1 shows that the optimal production level for an active manufacturer.
The active optimal production level is (100.0000; 150.0000; 150.0000; 200.0000)
and its focus point (scenario) is (191.5182; 244.4839; 244.4839; 197.4494); the
relative likelihood degree of this scenario is 0.7999; when this scenario oc-
curs, the satisfaction level of this production level is 0.7999. In other words,
the reason that an active manufacturer chooses the production level (100.0000;
150.0000; 150.0000; 200.0000) is that the scenario (191.5182; 244.4839; 244.4839;
197.4494) is the most appropriate for this manufacturer. Model B in Table 1
shows that the optimal production level for a passive manufacturer. The pas-
sive optimal production level is (84.9330; 180.1356; 180.1324; 124.6650) and
its focus point (scenario) is (91.9217; 133.4775; 133.4775; 88.3976); the rel-
ative likelihood degree of this scenario is 0.5945; when the scenario occurs,
the satisfaction level of this production level is 0.4055. It means that the sce-
nario (91.9217; 133.4775; 133.4775; 88.3976) is the most acceptable scenario
amongst all unfavorable ones, a passive manufacturer chooses the production
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level (84.9330; 180.1356; 180.1324; 124.6650) based on this scenario. Model
(42) in Table 1 corresponds to the expected profit maximization manufacturer
where the mean of profits per units of four products is (150; 200; 200; 150)
whose relative likelihood degree is 1 and it can lead to the satisfaction level of
0.6364 for the optimal production level. Models (43) and (44) in Table 1 are
for the max-max manufacturer and the max-min manufacturer, respectively.
The max-max manufacturer takes into account the upper bound of profits per
units of four products (250; 300; 300; 250) whereas the max-min manufacturer
considers the lower bound of profits per units of four products (50; 100; 100;
50).

Table 2 shows how the optimal solutions change with the varying of the
feasible region of the realization of random variables, that is, the varying of
k; Table 3 shows how the optimal solutions change with the varying of uncer-
tainty, that is, the varying of Σ. From these tables, we know different models
provide different optimal solutions which can reflect different consideration
for handling the uncertainty. However, as summarized in Tables 4 and 5, in
all cases, the profit per unit of each product which is taken into account for
obtaining the optimal production level will increase according to the order
of the max-min manufacturer, the passive manufacturer, the expected profit
maximization manufacturer, the active manufacturer and the max-max man-
ufacturer. In addition, Tables 6 and 7 show that the profit anticipated by
a max-max manufacturer is larger than the one by an active manufacturer;
the profit anticipated by an active manufacturer is larger than the one by an
expected profit maximization manufacturer; the profit anticipated by an ex-
pected profit maximization manufacturer is larger than the one by a passive
manufacturer; the profit anticipated by a passive manufacturer is larger than
the one by a max-min manufacturer. It means that the max-max manufacturer
is the most optimistic, the max-min manufacturer is the most pessimistic, the
expected profit maximization manufacturer is at the middle of the active and
passive manufacturers.

When we compare the profit per unit of each product associated with the
optimal production levels between Case I and Case II (shown in Table 4), we
can find that increasing the feasible set of the realization of random variables,
that is, k increasing from 2 (Case I) to 3 (Case II), the max-min manufacturer
(Model (44)) and the passive manufacturer (Model B) will take a more con-
servative attitude so that the profit per unit of each product associated with
the optimal production level will decrease accordingly; on the contrary, the
max-max manufacturer ((Model (43)) and the active manufacturer (Model A)
will take a more aggressive attitude so that the profit per unit of each product
associated with the optimal production level will increase accordingly; how-
ever, an expected profit maximization manufacturer only takes into account
the mean vector of the profits per unit of products.

When we compare the profit per unit of each product associated with the
optimal production levels between Case I and Case III (shown in Table 5), we
can find that increasing the uncertainty of profits, that is, changing Σ from Σ0

(Case I) to 1.44×Σ0 (Case III), will cause the max-min manufacturer (Model
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(44)) and the passive manufacturer (Model B) more vigilant so that the profit
per unit of each product associated with the optimal production level will
decrease accordingly; on the contrary, the max-max manufacturer (Model (43))
and the active manufacturer (Model A) will become more optimistic so that the
profit per unit of each product associated with the optimal production level will
increase accordingly; however, the action of an expected profit maximization
manufacturer will remain unchanged.

The obtained managerial insights are intuitively acceptable and can be
used as a sort of criterion for selecting a production planning model to fit the
preference of the different types of decision makers.

5 Conclusions

We propose a new production planning model for a manufacturer that is plan-
ning to produce multiple innovative products with short life-cycles. Different
from the existing production planning models, we build the one-shot decision
theory based production planning models in which the optimal production
quantities are obtained based on the scenarios which are the most appropriate
for the manufacturer with considering the profit and the probability. In addi-
tion, the relationships between the proposed models and the existing ones has
been clarified. In order to facilitate the understanding of the proposed models,
the production planning problem is confined to the basic one. However, the
research provides a fundamentally new idea for solving the production plan-
ning problem under uncertainty; the proposed models can easily be extended
into complicated ones by adding more detailed and realistic constraints.

Since the proposed models are the bilevel programming problems, which
are difficult to be solved. We propose two approaches to solve them by trans-
lating them into general single-level optimization problems so that they can be
solved with the commonly used optimization methods and software. It should
be emphasized that the research shows an alternative for solving the bilevel
programming problems instead of using KKT-based methods. As an extension
of this research, we will apply the proposed models to real-world production
planning problems in the near future.
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