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PREFACE 
  
This Doctoral Thesis is written in culmination of my research at Department of Risk Management and 

Environment Sciences, which is a part of Graduate School of Environment and Information Sciences at 

the Yokohama National University (YNU), Yokohama, Japan. This work has been performed during the 

spring of 2017 in continuation of the project thesis written in the autumn of 2019 and final submission 

in 2020.  

 
This thesis is prepared in collaboration with the Strategic Innovative Program (SIP) project, financed 

by the Japan Institute of Science and technology (JST), coordinated by YNU and supported by Japanese 

Government MEXT Scholarship. The intended reader for this thesis should have practical experience 

in areas related to risk and operations in the oil and gas industry and/or education equivalent to Risk 

Analysis and Process Safety Management. In addition, certain basic knowledge on Bayesian Belief 

Networks is advantageous to understand the models discussed in this thesis. 

 
The Ph.D has been a unique opportunity for contributing to fields in which I take great interest, namely 

technical safety and reliability, to be used in engineering plants. 

 

  
Yokohama, Japan                                                                                 _________________________   

March 2020                                                                                    Mahesh KrishnaKumar Kodoth 
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SUMMARY 
 
The overall objective of this Ph.D thesis has been to develop strategies for addressing uncertainties in 

the risk assessment. It addresses Accident Modelling and Improvement in Risk and Reliability 

Quantifications based on Probabilistic and Statistical Modelling to support New Process Technology 

Risk Assessment. The concept of the research aims at addressing uncertainties in risk and accident 

modelling by using dynamic bayesian based assessment. 

 
Leak rate estimation, Failure frequency estimation and Risk based Inspection modelling are some of 

the important measures of risk and reliability quantification. Risk quantifications involve many 

uncertainties, and assessing probabilities to represent these uncertainties is itself a complex task 

utilizing a variety of information sources. At a practical level, uncertainties are driven by three 

important modelling issues; accident, failure probability and risk based model. The current modelling 

issues are related to model structuring, probability assessment, information gathering, and sensitivity 

analysis. The doctoral research is focused on addressing uncertainty in these areas of risk and 

reliability quantifications to support risk assessment. 

 
By virtue of the new knowledge developed during the Ph.D, the decision makers are expected to gain a 

better insight into the pros and cons of accident analysis using statistical models, improvement areas 

in risk assessment, how uncertainty in risk assessment influences major accidents, the risk based 

inspection model, the degree and distribution of the causes of human factors in the hydrogen station 

unwanted releases.  

 
The key objectives of this thesis include: 

 Propose a model for lack of data uncertainty and its treatment. 

 Statistical interpretation of data and use of advanced frequency based models for accident and 

failure data analysis. 

 Develop quantitative insights in the study to set performance standards for availability and 

reliability in operation and maintenance of the Hydrogen stations. 

 Verification of risk and reliability quantifications using aging/life parameter method. 

 Improvement in risk and reliability quantification using Bayesian update process. 

 Propose a risk based inspection model to optimize inspection test for identified safety critical 

components. 

 Propose a methodology for human error critical task assessment using bayesian networks. 
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1. INTRODUCTION 

1.1 Background 

Executing innovative technology-based system entails a range of potential hazards that can have a direct 

or indirect effect on the social lives and wellbeing (Nakayama et al., 2015). The potential of risk is 

much higher than conventional systems simply because failures and failure modes are not previously 

characterized. The risk posed by new technological systems and/or processes are not only limited to 

safety and social issues, but can considerably impact the environment, public confidence as well as 

damage to the property (Jafari et al., 2012).  However, the acceptance of new technological system is 

crucial in order to reap benefits such as increased industrial opportunities, market growth, employment 

rate, etc. The positive effects of the new technological system can be seen as a reason for implementing 

the system, however it also induces some risks i.e. negative effects. The, undesirable, uncertain or 

uncontrollable event is termed as “process accident” or just “accident”.  

 
An accident modelling is an important study to understand consequences well in advance and 

accordingly take appropriate safety measures to prevent accident occurrence (Sakamoto et al., 2018). 

Accident modelling can reveal safety characteristics at the early design stage of the system before they 

are brought into the real world. The process accidents are more likely to occur in the energy industry if 

the concept of accident is not well understood. The accidents related to new technology systems 

(hydrogen) involving high pressure equipment’s as stated by Sakamoto et al. (2016) is shown in table 

below. 

Table 1. New technology accidents (hydrogen) 
Source Name Country/Year Number of accidents Database administrator 

High Pressure Gas 

Safety Act Database 

(KHK) 

Japan  

(2005–2014) 

21 High Pressure Gas Safety 

Institute of Japan 

Hydrogen Incident and 

Accident database 

(HIRD) 

USA  

(2004–2012) 

22 Pacific Northwest National 

Laboratory, USA 
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The total number of incidents and accidents in Japan from 2005 to 2014 is 21. In Japan, mainly accident 

occurred around a screw joint (Sakamoto et al., 2016). The total number of incidents in the USA from 

2004 to 2012 is 22. The emergence of newer technologies mainly aims at extending convenience to the 

public. However, the hazards related to these technologies are often ignored and a single mishap often 

leads to dissatisfaction and unacceptance by the public and other authorities. This leads to difficulties 

in the implementation of such technologies thereby making it necessary to consider the public safety 

aspects associated with the technologies. 

 
In a society that has grown increasingly complex with multifaceted socio-economic problems, an 

accident events, as the ones listed above will have undesired consequences. The harm resulting from 

such undesired consequences may be greater than the expected outcome or alternatively could result in 

domino effects. Thus, it is no longer credible to develop preventive measures for accidents as they arise. 

Earlier, many of the accidents were unknown, thus there was a tendency to adopt a traditional accident 

analysis model. Traditional accident models are unable to present a holistic picture of system/process 

safety and are not capable of accommodating modelling of multiple causal factors. As shown in Fig.1, 

traditional accident models do not necessarily detect the undesired event leading to accidents. They are 

more of a descriptive type rather than a predictive type model. One of the drawbacks associated with 

accident modelling methods is the un-adopted comprehensive quantification (i.e. no cyclic parameter 

updating to reduce the uncertainty). The traditional accident modelling methods lack the concept of 

updating parameters based on new evidence or findings. The problems associated with such approaches 

can be better understood from Fig.1. 

 

Figure 1. Accident concept from traditional approaches 
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One of the examples of the traditional approach is seen in gasoline-powered vehicles.  Gas propulsion 

technology has been widely adopted in Japan over the years after being introduced in the beginning of 

the 20th century. The execution of such technology was accompanied by technological developments 

(including infrastructure such as roads) and regulatory adjustments, from which safety measures were 

derived (MacLean and Lave, 2003). Today, we are forecasting the rise of new hydrogen technology 

such as electric vehicles and fuel cell vehicles. This technology is likely to spread relatively quickly 

given the technical innovations and government support attached to it, not to mention the fact that the 

technological infrastructure (that used for gasoline-powered vehicles) is already in place. However, to 

ascertain the risks presented by such technology, including unexpected events such as accidents and 

natural disasters, we must go beyond analyzing existing vehicle propulsion technology and other 

relevant technologies. 

 
In addition to understanding the accident characteristics, reliability is an important factor in the 

development of new technological systems. Nevertheless, several factors influence the reliability of a 

system, for instance, the environmental conditions, operational changes etc. The equipment must be 

reliable enough to safeguard the environment, and make the exploitation of the hydrogen economically 

feasible for a rather long period. Therefore, before an authority accepts to install a new hydrogen system, 

authority personnel must be convinced that the new system has a sufficiently high reliability and a 

prerequisite is that failures requiring hydrogen- station repair interventions must not occur. A system 

intervention requires often a long production downtime at a cost of several million dollars. The time to 

the first planned shutdown may be scheduled in five years, or even longer, and it is important that the 

installed system is able to survive at least this period without failure (Rahimi and Rausand, 2013). 

 
Due to the nature of newer technologies, defining risk is vital and can influence the way we choose to 

live with risk in everyday life. Hydrogen energy system being easily accessible to public strengthens 

the requirement to understand the concept of risk. In addition to risk review, the accident characteristic 

should be studied to understand the trend of accident occurrence in new systems. Such study can reveal 

failure frequency, downtime, root causes etc. Thus, the concept of the research aims at addressing 

uncertainties in risk and accident modelling by using dynamic bayesian based assessment. The research 
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identifies issues related to new technology system such as hydrogen fuel station in the field of risk and 

reliability quantification. It involves assessing uncertainties in the risk and reliability field and using 

hydrogen energy system as a case study. Various modeling techniques and methods will be discussed 

to provide treatment of uncertainties. The outline of the thesis is organized such that Part I focuses on 

core concept on risk and reliability, accident analysis, safety classification of new technology 

(hydrogen) system. Part II addresses various technical safety and risk uncertainties and adopts 

modelling techniques to reduce the uncertainties. 

 
The scope of the research is focused mainly on probability risk and uncertainty associated with it. It is 

to be noted that consequence risk is not considered in the scope of this research. Accident modelling 

and probability uncertainty is key issues for most of the failures involved in the process industry and 

especially with new technology system. The terms system, equipment, and technology are frequently 

used in this thesis. Technology can be defined as “the scientific study and use of applied sciences, and 

the application of this to practical tasks in industry” or as “application of knowledge to practical 

purposes” (DNV, 2011). Equipment and system therefore, denote any physical technical items, 

components or instruments. The thesis is structured in a way that reflects the characteristics of hydrogen 

fueling stations, the subject matter of the research. Hydrogen energy is already used in settings such as 

plants and business facilities. Therefore, the technology and system are not especially new in this aspect. 

Nonetheless, this research classify hydrogen energy as a technological innovation because the 

technology is set to be increasingly adopted in public’s daily life activities such as hydrogen fueling 

stations and fuel cell vehicles. 

1.1.1 About Research Concept and Motivation 

 
This PhD project contributes to the scientific evaluation of the presented work by a detailed description 

of the model, an assessment of the content, and a description of the limitations and benefits of the model. 

The research aim to benefit academic risk analyst and process industry engineers who constantly 

perform various risk assessments on engineering system. Taking into account the practical engineering 

challenges, the research attempts to keep the work as simple as possible. 
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The concept of the research is focused on three things: 

1. New technology system (or engineering system) 

2. Treatment of uncertainties in risk and reliability quantification 

3. Bayesian dynamic modelling 

The originality of the research is the application of dynamic modelling for treatment of uncertainties in 

the field of risk and reliability quantification for new technology system. The bayesian technique is 

quite old and has been commonly used across various applications. Fundamentally though these 

technique often are ‘black boxes’ and are not easily understood by safety engineers, in applications such 

as accident modelling or risk and reliability field. This could be due to the complexity of the approach 

or lack of availability of software in the risk field. Another limitation in the ‘industrial risk learning’ 

case is that it involves collecting abundant data for statistical interpretation. You need a good reliability 

data to justify risk model for example. New engineering system lacks such good quality data and hence 

not compatible with the existing statistical modelling approach. 

 
These limitations make it difficult or impossible to make models that work with only a small amount 

of data and leverage domain-specific expertise. They also adversely affect models in dangerous or 

legally complicated contexts such as risk or insurance. The models that yield predictions must come 

with confidence that allow one to assess risk. For example, it’s important to know the uncertainty 

estimates when predicting likelihood of a hydrogen release having a high consequences. 

 
Until recently the practical engineering challenges of implementing these systems were prohibitive, and 

required a large amount of specialized knowledge. Thus we introduce probabilistic dynamic modelling 

to risk science. Probabilistic dynamic modelling (PDM) hides the complexity of Bayesian inference, 

making these advanced techniques accessible to a broad audience of risk and reliability analysts. PDM 

allows to incorporate your domain knowledge with your observed data. It is powerful for three reasons:  

- For allowing to incorporate domain knowledge  

- Works well with small or scarce datasets  

- It is interpretable 
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In the past 10 years, several researchers have introduced the concept of bayesian in the academic science, 

however they were conceptually applied without addressing practical challenges in the risk and 

reliability field. If we go beyond these limitations, we open the door to new kinds of products and 

analyses that is the subject of this thesis. The fundamental ideas of probabilities and distributions of 

results are the basic building blocks of models utilized in this paradigm. One of the impactful idea in 

this research has been deep learning for risk analysis. This can change the way we perceive and treat 

risk in the near future. 

 
In this PhD project, it was possible to perform case studies where the method can be tested for a specific 

application. In this case, the results may be validated qualitatively or by expert judgments, or preferably, 

compare the results with outcomes from other recognized and comparable methods. The development 

of frameworks and methods is based on logic arguments, initial assumptions, existing methods, and 

knowledge to derive new relationships or insight. In such cases, the validity of the method is confirmed 

by comparing with other suitable methods. 

 
In the early phase of design and operation, a new technology system is aimed on only the positive 

aspects of the risk such as profit, usability, social benefits etc. However, it should be understood that 

these are not the only benefits the technology can bring to the society. The negative aspects of the risk 

such as injury, leakage etc. can also bring benefits to the society over the long run by reducing 

production downtime, increasing safety, environmental protection and company reputation through 

public confidence. The process safety is a vast field with numerous areas that can be addressed to 

improve safety and risk. The PhD project focuses on safety and reliability engineering areas. The idea 

of introducing dynamic modelling in various safety and reliability engineering aspects was the key 

motivation in undergoing the PhD project. Therefore, we decided to address several issues that are often 

highlighted in several research papers however still there is insufficient data. These topics mainly 

contribute to uncertainty in the risk. Wide range of topics such as lack of data, accident analysis, 

verification of risk assessment, inspection interval, leak rate analysis etc. are covered and will be 

addressed using the research principles underlined in the PhD project. 
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1.1.2 Scope of Research 

 
The scope of the research is focused mainly on probability risk (reliability) and uncertainty associated 

with it. Consequence part of the risk is not addressed in Accident modelling and probability uncertainty 

is key issues for most of the failures involved in the process industry and especially with new technology 

system. The main reason for choosing probability side of the risk is as follows: 

① In case of new technology systems, probability (or frequency) is hard to estimate due to lack 

of statistical and failure data. Data uncertainty assessment is therefore necessary in probability 

estimation. 

② On the other side, consequence of the new technology can be estimated through chemical and 

physical characteristics of the source fuel. The data uncertainty is significantly lower in case 

of consequence modelling. 

③ Probability (or frequency) is a key parameter since most of the initial events are failures with 

high probability and low consequence. This is typically the case with new technology system.  

④ Consequence risk is a key parameter for major accident hazard (MAH) with low probability 

and high consequence. This is more likely to happen in case of natural disaster. 

 
1.2 Principles of Risk and Safety 

1.2.1 The Risk Concept – Review of Risk 

 
The definition of risk must be agreed before establishing the concept of risk. This section reviews the 

different definition and meaning of the concept of risk. This thesis is addressed in a very broad manner, 

the risk term can be interpreted in different ways depending on the individual roles, areas of effects, 

and academic/industry disciplines concerned. It is also considered that risk can be perceived in a 

different way depending on the concerned parties. For example, the risk perceived by owner can be 

altogether different from the way risk perceived by operator or public. This section outlines two key 

concepts that are essential in understanding the risk concept applied to this thesis i.e. “social risk” and 

“process risk.” Process risk is commonly used across process industry due to the possibility of fire 

and/or explosion resulting from the process failure. However, it is not common to find data on social 
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risk in the industry guidelines. Perhaps this could be due to the nature of risk that is considered vital 

across the industry. 

 
However, due to the nature of hydrogen, safety issues on the risk of fire and explosion based on process 

risk are not the only thing to be considered when planning social implementation. Discussions on the 

social implementation of hydrogen fueling stations should be treated equally and assessed with proper 

care. Social risk matters to consider include user-friendliness, business continuity, and environmental 

impact. Such risks are fundamental matters in hydrogen energy system and they warrant careful 

examination. Some of the risks associated with these areas offset risks in other areas. All risks must be 

managed comprehensively to ensure that the stations, in addition to being reliable themselves, reliably 

serve the local community and society as a whole. This is why the concept of risk needs to be extended 

and risk should be defined as comprehensive social risk. 

 
A general risk model is concerned with safety risks (risks to human health, property and the 

environment). A comprehensive social risk model is focused on process risk and social safety that 

explores the consequences to people’s lives, social dynamics, and values. Risk is an important concept, 

and fields such as safety engineering have developed effective conceptual models for risk. 

Organizations such as the Atomic Energy Commission and Massachusetts Institute of Technology, as 

well as individual theorists like Herbert William Heinrich, have introduced models for quantifying the 

likelihood that an event will occur and the effects (the scale of the damage that would result from such 

an event). This approach emphasizes the negative effects of risk. Quantifying likelihood and effect is 

advantageous in that it enables an objective judgment. On the contrary, you cannot quantify all 

likelihoods and effects. Moreover, in as much as these models focus on negative effects, they are less 

effective for analyzing the potential positive effects alongside the negative ones. Examples of positive 

effects include how the technology will make life more convenient or contribute to the economy. 

 
Most of the techniques employed in risk assessment are typically categorized based on the amount of 

detailed assessment. This further widens the definition of risk to qualitative risk and quantitative risk. 

In qualitative risk, the risk is assessed based on certain qualitative criteria without numerical 
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quantification. However, in quantitative risk assessment detailed quantification and modelling is 

involved to assess risk (Kaplan and Garrick, 1981). Most analysts would probably see the need for both 

quantitative methods and qualitative methods. Another important parameter that has an effect on the 

definition of risk is “time”. It has been found that there has been a gradual change from narrow risk 

perspectives based on probabilities to broader non-probability based risk. This also notices a distinction 

between risk as a concept and how this concept is measured. The concept of risk is widening to suit 

various development needs of risk analysis (Thompson et al., 2005). 

 
From the above concept of risk from different perspectives, the definitions of the risk can be broadly 

categorized into; 

① Social risk vs Process risk 

② Safety risk vs Comprehensive social risk 

③ Positive effects vs Negative effects 

④ Qualitative risk vs Quantitative risk 

⑤ Probability risk vs Non probability (consequence)  risk 

 
There is no universal definition of risk. This thesis define risk as “the effect of uncertainty following 

the rules of probability”. The classification of risk definition is as follows: 

I. Risk=Probability of an (undesirable) event  

a) Risk is the chance of loss in terms of safety or environment. 

b) Risk equals the probability of a leak event. 

c) Risk means the likelihood of a specific effect originating from a certain hazard occurring within 

a specified period or in specified circumstance. 

II. Risk=Probability Uncertainty 

a) Risk is measurable uncertainty, i.e., uncertainty where the distribution of the outcome in a 

group of instances is known either through calculation a priori for limited data or from statistics 

of past experience for well-known data. 
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The understanding of the concept of ‘uncertain risk and probability’ may be influenced by the 

interpretation of two central concepts in risk research: ‘uncertainty in risk’ and ‘probability’. According 

to Walker and colleagues uncertainty is ‘any deviation from the unachievable ideal of completely 

deterministic knowledge of the relevant system’ (Walker et al., 2003). The concept is generally 

understood to express something uncertain, but for that uncertainty to constitute a risk, something must 

be known about it (Hansson 2002). Different approaches to risk and definitions (e.g. based on 

probabilities, expected values, uncertainty or undesirable events) have been discussed extensively in 

the risk literature (Althaus 2005; Aven 2010, 2012, 2014; Aven and Renn 2009; Aven et al., 2011). The 

uncertainty can be due to various parameters, out of which some key factors will be detailed in the study.  

The uncertainty of risks risk refers to both the positive and negative consequences of uncertainty.  

 
In this PhD project, the uncertain risk described aspects were categorized in six overarching themes: 

 Accident/leak rate uncertainty using statistical interpretation  

 Accident rate uncertainty modelling due to lack of data 

 Uncertainty about verifications aspects related to risk assessment 

 Failure rate uncertainty modelling 

 Sensitivity analysis on Inspection Interval based on uncertain risk types 

 Ambiguity in the understanding of risk and errors caused from human judgement and actions 

 
Safety engineers adopt the concept of risk, but within a limited scope. Consequently, businesses and 

public authorities have tended to employ risk treatments that focus on preventing events from 

reoccurring. Similarly, when safety and risk assessments are performed for technological innovations, 

these assessments typically focus on safety issues concerning internal parties and parties who are 

peripheral to the system; these assessments seldom cover risks to the public as a whole. Why is this so? 

One reason is that, as mentioned above, risk tends to be defined narrowly. Another reason is that 

technological risks (and their effects) tend to be analyzed in a reductionist manner, mostly within a 

technological context. On the other hand, when social scientists analyze risk, they adopt a more holistic 

perspective. However, their assessments tend to be general and abstract, making it hard to derive 

specific safety evaluations or safety measures. 

https://www.tandfonline.com/doi/full/10.1080/13669877.2018.1503614
https://www.tandfonline.com/doi/full/10.1080/13669877.2018.1503614
https://www.tandfonline.com/doi/full/10.1080/13669877.2018.1503614
https://www.tandfonline.com/doi/full/10.1080/13669877.2018.1503614
https://www.tandfonline.com/doi/full/10.1080/13669877.2018.1503614
https://www.tandfonline.com/doi/full/10.1080/13669877.2018.1503614
https://www.tandfonline.com/doi/full/10.1080/13669877.2018.1503614
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1.2.2 Classification and Qualification of New Technology in terms of Safety 
 
The solution to the amount of detailing the comprehensive risk assessment should depend on the level 

of newness of the technology. The newness of the technology can be classified into several systems to 

assist in prioritizing safety activities. For example, in terms of safety, new technology is defined as that 

which (i) has never been previously characterized, (ii) has extremely limited data on failures and 

accidents, or (iii) new or unknown failure modes. The hydrogen fueling station can be more related to 

the gasoline or petroleum industry due to the nature of the chemical characteristic. 

 
In the DNV guideline (DNV, 2011), technology is classified as new when its characteristics are 

unknown i.e. not proven. The concept explained in DNV guidelines is generic that applies across any 

new technology. However, this thesis is limited to safety issues only and therefore the DNV guideline 

is modified to understand the implications of new technology in terms of safety and risk. Technology 

can be classified as new when its safety characteristics are unknown i.e. not safety proven. The safety 

characteristics refer to the possible failure modes of the system. Technology is said to be safety proven 

when it has a well-documented risk record of accomplishment or database system from the potential 

hazardous environment application. The record or database should list all potential or real failures that 

have occurred in the past with similar systems or likely to occur. Documentation of failure modes and 

failures can provide confidence in the system design or operation. Such documentation must provide 

confidence in the technology from practical operations, with respect to the ability of the technology to 

meet the specified requirements (DNV, 2011; IEC61508, 2010).  

Safety qualification of new technology is the process of providing the evidence that the technology will 

operate within the tolerable risk limits with an acceptable level of confidence. New equipment or 

installation to be qualified for safety can be classified according to: (i) the newness of the technology 

and (ii) the amount of risk experience from previous applications of similar technology in the actual 

operational and environmental context. Based on these factors, the safety of new technology can be 

classified into four categories of newness: 

① No new technical uncertainties: This is the least demanding category, where proven in use 

technology is used in a known application. 
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② New technical uncertainties: This category has two subcategories: a) Technology with a 

limited field history (i.e., partly known) that is used in a known application. b) Proven in use 

technology that is used in a new application for the company/user.  

③ New technical challenges: This category has three subcategories: a) New or unproven 

technology that is used in a known application. b) Technology with a limited field history (i.e., 

partly known) that is used in a new application for the company/user. c) Proven technology 

that is used for a new application for the whole industry. 

④ Demanding new technical challenges: This is the most demanding category where: a) New or 

unproven technology is used in a new application both for the company/user and for the 

in1dustry. b) Technology with limited field history that is used in a new application for the 

industry. 

Table 2. New technology Categorization: Safety 
Application Area Degree of safety of technology 

Proven in use Limited field history Unknown failure modes 
Known 1 2 3 
Limited Knowledge 2 3 4 
New 3 4 4 

 

This classification applies to the totality of the applied technology as well as to each of its parts, 

functions, and subsystems. It is used to highlight where care must be taken due to limited field history. 

Technology in category 1 is proven technology where proven methods for qualification, tests, 

calculations, and analysis can be used to document margins. Technology in categories 2 to 4 is defined 

as new technology and must be qualified according to a qualification procedure. By distinguishing 

between 2, 3, and 4, it is possible to focus on the areas of concern. 

 
An equipment or installation should be qualified for safety once there is enough evidence that the new 

technology meets the minimum criteria. DNV defines qualification as “confirmation by examination 

and provision of evidence that the new technology meets the specified requirements for the intended 

use.” Thus, the safety qualification is a systematic process aiming to- 

1. Reduce the risk and increase the probability of product success. 

2. Ensure that the product is fit for purpose before being put into operation. 
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In order to set the criteria for the qualification of a new technology, the responsible authority or 

institution should serve the following purposes:  

 Provide proof of fitness for the purpose of introducing the new product/technology to the market. 

 The system integrator, who integrates the new technology into a larger system, needs to evaluate 

the effect on the total system reliability and to use it as input to the reliability assessment of a larger 

system. 

 The end-user of the new technology must optimize the risk posed by the new technology over the 

benefits of the technology. The risk introduced by the new technology must be grossly 

disproportionate to the benefits obtained through its operation. 

 

1.2.3 Safety Qualification of Hydrogen energy system (mainly hydrogen fueling stations) 
 
The hydrogen-based technology should be classified under Category 3 due to limited knowledge of the 

application and extremely limited data on accidents/failures. The qualification of a hydrogen system 

implies that based on the provided evidence, whether the system is fit-for-purpose and can start its 

operational phase. Performance criteria for the product and/or the technologies must be specified by the 

developer, regulatory bodies, or by the end-user and may be related to various reliability measures based 

on the time-to-failure probability distribution and/or some defined margins against specified failure 

modes (e.g., see DNV, 2011; IEC60300, 2007). Due to the high number of tasks that needs to be verified 

for Qualification, it is advised to categorize qualification into 3 stages namely 

① Planning Stage Qualification 

②  Design Stage Qualification 

③ Implementation Stage Qualification 

1.2.3.1 Planning Stage Qualification 
 
In this stage, the feasibility of the implementation of a hydrogen energy system should be considered. 

The following points must be thoroughly reviewed and examined for the planning stage qualification 

of hydrogen energy system. 
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 List the hazards associated with hydrogen fueling stations as exhaustively as possible from multiple 

viewpoints. All identified hazards must be recorded in a hazard register. The hazards should be 

identified from the viewpoint of operators, public and initiating authorities. Ideally, the assessment 

should broadly examine the general trends in energy (hydrogen and other energy), the life cycle of 

hydrogen fueling stations, and similar themes. 

 Briefly identify the potential failure modes and cause consequence pair so as to pinpoint the risks 

that could have major effects. 

 If proceeding with the implementation would entail significant issues, the parties should consider 

measures to mitigate the effects of these issues. They must then verify the effectiveness of these 

strategies and incorporate them into the implementation schedule. 

 If unsure as to what mitigation strategies to adopt or whether the measures will be effective, review 

whether it is advisable to proceed with the implementation in the first place. 

 The risk analyst should determine the impact of the implementation of hydrogen fueling stations 

and the hydrogen energy system on the society once implemented and conclude whether such 

implementation would be appropriate.  

 The risk analysts should examine all possible risks and effects to identify any abnormal scenario 

that could have major effects. Even small unimaginable risks should not be missed. 

 Analyse in detail the risks that could have major effects on the individuals or environment. 

 Analyse the risks of system failure and natural disasters. Other risks to analyse include human error 

and terrorist attacks. 

1.2.3.2 Design Stage Qualification 

 
Once the planning stage is finalized, the risk assessment should be refined before introducing the system. 

A complete risk assessment should be performed at this stage before the system is actually constructed 

and operated. The following points must be thoroughly reviewed and examined for the design stage 

qualification of the hydrogen energy system. 
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 Consider the risks associated with hydrogen fueling stations during normal, abnormal, and accident 

situations.  It is also important to consider the variation in risks and social values depending on the 

local environments. 

 Confirm all potential failure modes are identified and addressed in a satisfactory manner so that 

margins to failure are documented and the reliability of the product can be proven. 

 In addition to preventative measures, consider mitigation measures that can help reduce the 

escalation of potential event that has occurred.  

 Consider the likelihood that smaller risks (for which risk treatments have not been devised) will 

have major effects once the technology or system is diffused. 

 Analyse the trade-offs with competing technologies or systems. This analysis should be conducted 

from an overall society perspective.  

 

1.2.3.3 Implementation Stage Qualification 

 
At this stage, more evidence that is new can be observed either randomly or through inspection. No 

matter how extensively it is executed, the hydrogen energy system will eventually be replaced by an 

alternative system and require disposal. While proceeding with the execution, the team should assess 

end-of-life treatments. 

 In case of modifications or replacement, assess risks associated with the system being replaced by 

another system. 

 Gather new evidence observed and update the model to obtain new results on risks. 

 Refine (update) all the documentation associated with the safety and risk of hydrogen energy system. 

The documentation may include Hazard register, HAZOP, QRA, Probability estimation, etc. 

 Identify any new hazard introduced to the system by means of modification or aging conditions. A 

proactive risk management is required in such cases to prevent any unexpected outcome. 

1.2.4 Static versus Dynamic (Bayesian) approaches 

 
Static approaches are traditional risk assessment approach that uses an initial set of data to quantitatively 

assess the risk and reliability of systems. The input data is obtained through several ways such as 
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manufacturer data, plant maintenance database, external sources such as certificates, handbooks, 

records, etc. Once the system is quantitatively assessed to identify and evaluate the risk, the risk is 

treated as a constant parameter. Static approaches can have some serious limitations. These limitations 

cannot overcome the current industry limitations. Some limitation of the static approach is as follows: 

 Traditional methods are not suitable for “sparse” data – New technology systems and high 

reliability systems often have sparse data. 

 No Real Prior Knowledge - Traditional reliability analysis makes no assumptions about the 

population prior to taking sample data. 

 Highly Relying on External Sources 

 Unable to capture the dynamic behaviour of the process operation 

 Unable to update the quantitative results 

 
The dynamic approach is aimed to resolve the above limitation with the adoption of Bayesian approach. 

Dynamic risk analysis is the ability to provide continuous acquisition, effective process and meaningful 

communication of risk through quantitative assessment. Dealing with data in this manner is particularly 

interesting in managing risk and asset integrity of engineering plants. Research in this context is faced 

with the dilemma that, while there have been significant developments in understanding how accidents 

occur, there has been no comparable development in understanding how to adequately assess and reduce 

risks (Bouloiz et al., 2013), considering both process and personnel side of safety (Fabiano et al., 1995). 

In safety and risk management area, Simon et al. (2018) has explicitly described a need for an integrated 

and holistic system approach to address both technical and social aspects. Advanced research trends 

include knowledge-based methods combined with process models, such as Petri nets, signed digraphs, 

and dynamic simulation. 

 
The application of BN in the field of risk and reliability was explored by many researchers, e.g. Yeo et 

al. (2016). A system is safe if it is impervious and resilient to perturbations, thus the identification and 

assessment of relevant hazards is an essential prerequisite for system safety. Nevertheless, traditional 

methods for risk assessment do not take into account interactions between system components and do 

not adequately address human and organizational factors, thus being not appropriate for complex 
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systems (Leveson, 2004). Some efforts have been made to include human and organizational factors 

(Milazzo et al., 2010), while few works attempt to integrate organizational and human factors (HFs) in 

a dynamic approach. As examples based on Bayesian theory, Kalantarnia et al. (2009) proposed a 

method for dynamic safety management and Meel & Seider (2006) estimated the dynamic probabilities 

of accident sequences having different severity levels by using statistical analyses of near-miss and 

incidents. 

 
In this work, a dynamic approach for addressing uncertainty in risk assessment, based on the evaluation 

of the state of the system under analysis, is outlined to be applied for those cases when a static 

assessment method is not trustable. The Bayesian networks are constructed from Fault Trees Analyses 

(FTA) and failure rates represent a priori probabilities. The modelling provides a set of independent 

nodes (root elements of FTA, i.e. critical items) and intermediate events for the top event. The network’s 

training is performed by using historical reliability data and accident data series collected from the 

evidences of KHK reports. 

 
1.3 Case Study - About Hydrogen Fueling Station in Japan 

Hydrogen is receiving increasing attention as a future energy carrier in Japan. It is expected that 

widespread usage of hydrogen energy will result in energy savings, strengthen energy security, and 

reduce the environmental impact of energy consumption. One of the primary uses for hydrogen at 

present is in fuel cell vehicles (FCV’s). FCVs were introduced into the Japanese market in 2014, and 

the Government of Japan is planning to have approximately 40,000 FCV’s in Japan by 2020 (METI, 

2016).The two main safety issues in HRS are: (i) the operating pressure of standard HRS in Japan is 

substantially high at 82 MPa. (ii) Inherent unsafe characteristics of hydrogen fuel can possible lead to 

explosion and fire: hydrogen is likely to leak because of its low density, large flammability range, and 

low minimum ignition energy. Meaning risks are associated with the high-pressure condition in addition 

to the known hazardous properties of hydrogen. Considering these scenarios, it is inevitably necessary 

to reduce the risk associated with possible breakdowns in HRSs. 
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Various projects that focused on introducing FCV and Hydrogen Refueling Station (HRS) have been 

implemented. One such major project is the Japan Hydrogen & Fuel Cell Demonstration Project (JHFC), 

which conducted FCV research activities from 2002 to 2010 (JHFC, 2017). For HRS, the “Concurrent 

Operation of Hydrogen Stations with Different Types of Fuel and Different Methods - The First 

Demonstration Study in the World” project was implemented with the objective of researching actual 

efficiency and any problems associated with HRS. In addition to these projects, several laws have been 

revised to facilitate the implementation of hydrogen energy (METI, 2015). For example, the High 

Pressure Gas Safety Act was revised to expand the varieties of steel used for facilities such as pipelines, 

lowering the safety factor for pipelines, and devise rules relevant for liquid HRS. Further, an HRS and 

a gas station can be installed at the same place according to the Fire Safety Act. The Building Standards 

Act has also been revised to enable the storage of sufficient hydrogen stock to provide hydrogen in 

cities. These laws enabled FCVs and HRSs to be introduced and utilized in the market. 

 
Hydrogen refueling stations (HRSs) are a key infrastructure in the fuel supply chain for fuel cell vehicles 

(FCVs). Several hundreds of stations are planned until 2020 in the worldwide (IEA, 2015). Since 

pressurized hydrogen is used in FCVs having enough cruising distance, a large amount of pressurized 

hydrogen is stored at HRS. Thus, there are risks due to pressurized hydrogen at the HRS. When an 

accident takes place with respect to the high-pressure gas, a notification report shall be submitted to the 

prefectural governor or police official due to the High Pressure Gas Safety Act (KHK, 2015). Accident 

information such as hydrogen leakage at an HRS is available in the high-pressure gas incidents database 

of The High Pressure Gas Safety Institute of Japan (KHK, 2012). This database contains a compilation 

of high-pressure gas accidents, including the accident information for HRSs. It also provides 

information on which facility tends to fail and on the accident count through years. Considering the 

accident statistics of natural gas stations, there are concerns that HRS accidents may increase as more 

HRSs are implemented in the future. 

 
It is well-known that there is a possibility of abnormal events occurring at an HRS due to increased 

activities and operations performed at the HRS. As HRSs store and dispense hydrogen at relatively high 

pressure, they are controlled by the aforementioned Act. The Act defines “accident” as follows:(i) 
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Explosion, (ii) Fire, (iii) Leak, (iv) Degradation, (v) Others. In legal terms, explosions, fires, spouting 

or leaks, rupture or damage, and loss or burglary are defined as “accidents” (Yamada et al., 2015). 

 
1.4 Research Challenges and Questions 

Based on a thorough literature review of both academic studies and published technical reports by 

industrial organizations and companies, overall challenges have been divided into three main 

categories: 

I. Challenges regarding Accidental data of HRS: data evaluation, statistical modelling, challenges 

due to lack of data, improvements, and new developments. 

II. Challenges regarding Reliability/failure rate: prediction methods, new environment, new 

system, using available field data, follow-up in operational phase, continuous improvement, 

new developments. 

III. Challenges regarding human failures and inspection as a threat to reliability: identification of 

critical components, risk influencing factors, human error quantification, inspection estimation, 

and optimization. 

More specifically, the following specific challenges related to the qualification and reliability 

assessments have been identified. The above challenges are described in more detail below. 

1.4.1 Operational time-based leak/accident data analysis of HRS 
 
One of the ways to analyse hydrogen-based accidents is to collate data from the key Institutions that are 

responsible to record such accidents data. For example, in Japan, the high-pressure gas institute (KHK) 

are responsible for recording all minor to major accidents related to LPG, gasoline or hydrogen related 

technology. The lessons learned from the accidents can be used as prior information to prevent the cause 

of accident in the future. A further statistical modelling using these data and advanced distributions can 

provide a better estimation of accidents. The result from the analysis can be used to make decisions 

improving safety measures across all the installation thereby improving public confidence in the 

technological systems in Japan. However, in the case of new technological systems such as hydrogen 

stations, lack of data or inaccurate data can result in accident rate uncertainty. Hence, an appropriate 
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model is required to understand accident rate uncertainty in the statistical modelling techniques. The 

first part of the research focuses on two aspects: 

i. Leak Frequency Analysis using Bayesian and Frequentist methods (refer to case study 1) 

ii. Accident rate uncertainty modelling due to lack of data (refer to case study 2) 

1.4.2 Reliability improvement through dynamic modelling of a hydrogen technology system 
 
Risk and reliability quantifications forms a key element in the risk assessment of new technological 

systems introduced. Reliability is an important factor in the development of hydrogen systems. But 

several factors influencing the reliability of an equipment, for instance, the environmental conditions 

will change significantly as time passes (e.g., reduced pressure, changed gas/oil ratio, more produced 

water, different chemical content). The system must be reliable enough to safeguard the environment, 

and make the exploitation of the hydrogen processes economically feasible for a rather long period. The 

numerical risk and reliability figures estimated from risk assessment help the stakeholders make critical 

decisions concerning the system/process involved. The second part of the research focuses on risk and 

reliability quantifications. The failure frequency estimation and consequence modelling are the two 

important measures of risk quantification. The estimation of failure rates provides a key input to QRA 

quantification. The limitations of current risk assessment/quantification approach are: 

 Inability to capture the dynamic behavior of the process operation; 

 Inability to update the quantitative results;  

 Inability to take account of early into account;  

 Significant uncertainty of quantitative estimation;  

 No predictive capabilities;  

 Utilization of risk assessment in early stage of the process life cycle (design stage not in operational 

or modification stages). 

 
Reliability analyses and predictions should be performed from the early stages of the product 

development process. This ensures all necessary factors such as environmental, human factors and other 

possibilities are taken into account. There are several approaches for predicting reliability. Obtaining a 

point value for the reliability is not the single purpose of such an analysis. The analysis should help 
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designers to compare alternative designs, identify potential design weaknesses and give advice on how 

the design can be improved. Such reliability improvements may be related to physical design changes, 

establishing requirements and objectives for reliability testing, and so on. An important objective of 

reliability analysis is, therefore, to provide a decision basis that can be comprehended by design 

engineers (Lundteigen and Rausand, 2009). 

 
Successful reliability prediction generally requires developing a reliability model of the system 

considering its structure and later assigning failure data to the model. The level of detail of the model 

will depend on the level of design detail available at the time. In regards to failure data, prediction of 

reliability using field data is the most reliable form of data requirement for any industry. However, the 

hydrogen system being a new technology, there is not much data available. Most of the new hydrogen 

systems are adapted from similar systems such as gasoline technology. Related equipment reliability 

information can be collated from OREDA (OREDA, 2009).  However, this information cannot be used 

directly for new hydrogen systems, because their designs have been modified, systems are not alike and 

there are different environmental stresses and operations. Currently, no practical method is available 

that can be used to extrapolate the available reliability data from similar and known systems and come 

up with a failure rate prediction for new hydrogen based systems operating in a different environment. 

Relevant research questions to address are therefore: 

 What kind of reliability modelling and calculation approaches are suitable for new systems? 

 How can a more realistic reliability prediction be achieved for new technologies where no field data 

are available? 

 What initial values can be used to predict the preliminary failure rate of new systems? 

 How can new failure observations be integrated into the reliability model to predict a more real 

failure information on the systems? 

Focusing on the above limitations and challenges, the second part of this research draws conclusions 

on how failure rates and failure probability can be controlled in practice.  The proposed Bayesian 

framework (dynamic approach) addresses the above requirements by providing a periodic updating 

process that allows industry knowledge about failure rates to be incorporated in a prior distribution and 
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cyclical update of new survival data as it becomes available. The study also demonstrates that the failure 

rate can vary by a small to large margin based on the life parameter chosen for reliability predictions. 

Hence, the QRA should be verified to select correct life parameter depending on the actual usage 

conditions. Based on this theory the second part of the research focuses on two aspects: 

i. QRA Parameter Verification analysis (refer to case study 3) 

ii. Improvement in reliability quantification - dynamic approach (refer to case study 4) 

 

1.4.3 Integrating Human Factors and Risk based Inspection into New Technology systems 
 
The third part (last part) of the research focuses on other risk analysis limitations such as human factors 

and risk based inspection assessment. This is because human factors and inspection requirements have 

a vital role in the overall risk analysis. They form a major part of the preventive/mitigate measures. On 

the negative side, human factors are accounted to be the major contributor to accidents. Under such 

circumstances, human reliability analysis for new technological systems should be prioritized in 

advance. Another important assessment i.e. risk based inspection model is an important integral part of 

the plant maintenance which needs to be continuously monitored from safety, reliability and availability 

point of view. New technological system identifies the requirement to maintain the equipment and 

components in terms of reliability and availability aspects through preventive maintenance. Based on 

this theory the third part of the research focuses on two aspects: 

i. Risk-based inspection (RBI) methodology to decide inspection time in relation to the risks 

(refer to case study 5) 

ii. Human error critical task assessment on HRS (refer to case study 6) 

 
To summarize - accident rate, failure frequency, inspection time and human error assessment are some 

of the important measures of risk and reliability quantification. However, there are uncertainties 

associated within these areas that lead to small to large uncertainties in overall risk assessment. Risk 

quantifications involve many uncertainties, and assessing probabilities to represent these uncertainties 

is itself a complex task utilizing a variety of information sources. At a practical level, uncertainties are 

driven by three important modelling issues i.e. accident, failure probability and human factor. The 
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current modelling issues are related to model structuring, probability assessment, information gathering, 

and sensitivity analysis. The doctoral research is focused on addressing uncertainty in these areas of 

risk and reliability quantifications to support risk assessment. 

 
Figure 2. Uncertain risk areas for application of bayesian technique 

In most of the cases, hydrogen-refueling station is selected as a base application for illustrative purpose. 

However, it should be noted that the theme of the research is focused on process industry (i.e. .oil and 

gas, power plants) and hence the work presented should be viewed from a broader sense, not just 

limiting to hydrogen technology/system. The research is divided into 6 main areas of research 

associated with the risk assessment of technological systems. All these areas are carefully selected 

looking at the current industry related issues faced by the process industry. Some of the current issues 

are already addressed in this section. The six main areas of this research are as follows: 

① Accident Modelling and Inspection Interval forecast 

② Accident rate data uncertainty analysis  

③ Verification of appropriate life parameters in risk and reliability quantifications 

④ Improvement in reliability quantification to support BS EN 61511 failure probability analysis 

⑤ Risk Based Inspection Model for Hydrogen Storage Process using Bayesian Network 

⑥ Human Factor Modelling using advanced probabilistic models 
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The above areas address uncertainties related to one or the other parts of risk assessment (QRA). 

Reducing or improving uncertainties in the above fields will more or less reduce uncertainties in the 

risk assessment thereby improving its quality and accuracy.  Broadly speaking, there are uncertainties 

associated with several areas related to risk and reliability quantifications. These areas include Accident 

analysis, failure probability analysis and QRA verification. The three key areas are described in brief 

in the next part. This research focuses on uncertainty areas within risk assessment that needs some 

uncertainty modelling to improve the risk assessment process. 

Table 3. Key Aspects of New Technology Risk and Reliability Case Analysis 

 
The Ph.D thesis addresses all the key aspects and suggests new analytical methods to overcome 

uncertainties associated with risk and reliability quantifications that mainly can be used by academic 

researchers, reliability analysts, design and end users in risk assessment. 

1.5 Objectives 

The main objective of this thesis is: 

“To develop systematic approaches that contribute to uncertainties in the risk and reliability 

quantifications of new technology system using dynamic bayesian assessment” 

In the initial phase, a general concept on risk and safety is discussed. This includes review of risk, 

change in risk term through recent development rends, accident analysis and safety classification of 

new technology system such as hydrogen energy system. In the second phase, the research focuses on 

risk and safety modelling methods by assessing their uncertainties.   This involves identification of gaps 

in the existing risk and reliability quantifications and providing solutions to overcome them. The 

Case Analysis 

 
 

Accident 
Analysis 

 
& 
 

Risk & 
Reliability 

Quantifications 

Accident 
Analysis 

Case Study 1 Accident/Leak rate estimation using statistical 
interpretation  

Case Study 2 Accident rate uncertainty modelling due to lack 
of data 
Inspection Interval forecasts based on accident 
estimation 

Failure 
Probability 
Analysis 

Case Study 3 QRA Verification analysis (parameter 
verification) 

Case Study 4 Improvement in reliability quantification 
(dynamic approach) 

Task-based 
Risk analysis 

Case Study 5 Risk Based Inspection Model for Hydrogen 
Storage Process using Bayesian Network 

Case Study 6 Human Reliability Analysis (probabilistic 
graphical model) 
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concept of the research primarily aims at addressing uncertainties in risk and accident modelling by 

using dynamic bayesian based assessment. 

 
Some fundamental studies such as review of the state of the art risk and reliability assessment related 

work, verification of risk assessment or QRA will be addressed to ensure that the uncertainties identified 

are treated during the assessment. The outcome of this thesis will help users to overcome uncertainties 

by taking into account all necessary parameters in the quantifications. This will allow higher confidence 

in the result and improve process safety related decisions made based on the results. 

Based on the main objective and the research challenges, the more specific objectives are: 

 Statistical interpretation of data and use of advanced frequency based models for leak data analysis. 

 Propose a model for lack of accident data uncertainty and its treatment. 

 Verification of risk and reliability quantifications using Aging/Life parameter method. 

 Improvement in risk and reliability quantification using Bayesian update process. 

 Propose a risk based inspection methodology to avoid under and over estimation of inspection times 

for hydrogen storage process. 

 Propose a methodology to analyse liquid hydrogen leak incidents in the fueling station with respect 

to human factors as the root causes. 

The above objectives will be individually addressed in Part II of the thesis.  

 
Case analysis 1 proposes leak rate estimation using time based evaluation methods that utilize historical 

HRS accident information. In addition, leak frequency estimates from the other two methods i.e. non-

parametric based and leak hole-size based were examined. In non-parametric approach, the leak 

frequency is estimated based on Bayesian update. Thereafter, a comparison of these three approaches 

were made to understand the trend of leak rate data. 

 
Case analysis 2 discusses the accident data uncertainty has not been so well‐established, partly due to 

low probabilities involved and partly due to the complexity of such accidents (Threadgold, 2011). For 

this purpose, we have introduced a study on the accident data uncertainty based on time correlation 

model. This article estimates the uncertainty and accident rate by time correlation model that is 
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fundamental to the challenge of lack of data. This new way of dealing with and interpreting accident 

information can be utilized to evaluate new systems such as HRS in the future. 

 
Case analysis 3 discusses verification of appropriate parameters in failure estimation and its influence 

on the reliability assessment to offset the limitations associated with data scarcity and QRA uncertainty 

problems. The selection of the appropriate parameter in reliability assessment can be one of the possible 

ways to verify and validate the accuracy of QRA results. Accordingly, the objectives of this paper are 

as follows: 

i. To estimate the failure rate based on the number of fillings and survival time of HRS. 

ii. To employ a non-parametric approach to estimate cumulative failure as a function of the 

number of fillings. 

iii. To use a parametric approach to estimate cumulative failure as a function of survival time. 

iv. To compare both parameters to choose correct life parameter for reliability quantification. 

 
Case analysis 4 draws conclusions on how failure rates and failure probability can be controlled in 

practice. New technology, such as hydrogen failure data has serious challenges with extremely limited 

failure data. One possible way is to use surrogate failure data from other settings such as commercial 

nuclear power plants, chemical plants, and offshore oil and natural gas platforms. This article proposes 

Bayesian framework that addresses the requirements by allowing industry knowledge about failure rates 

to be incorporated in a prior gamma distribution and periodic updating process with new survival data 

as it becomes available. Monte Carlo simulation is adopted which makes it practical to solve uncertainty 

in the failure rate estimation and update these models with many trials in seconds. 

 
In case analysis 5, a probabilistic graphical model, based on an acceptable level of risk, is proposed to 

avoid under and over estimation of inspection time interval. It presents an advanced risk-based 

inspection (RBI) methodology to optimize inspection time in relation to the risks. Bayesian Network 

(BN) is applied to model the risk and the associated uncertainty. 

 
Case analysis 6 discusses about human factor analysis in liquid hydrogen leak incident using 

probabilistic graphical model. It proposes a methodology in order to analyse liquid hydrogen leak 



35 
 

(transfer leak) incidents in the refueling station with respect to human factors as the root cause. A semi-

quantitative graphical method of human factor analysis for the refueling station liquid hydrogen releases 

helps to prioritise the causes that need to be analyzed first and/or in the greatest level of detail, based 

upon the degree of anticipated risk that they pose. 

 
1.6 Outline of the thesis 

This thesis has two main parts: 

 Part I Core Concept: Part I focuses on general concept of risk and reliability, accident analysis, 

safety classification of new technology (hydrogen) system. This part presents the background, the 

challenges and research questions, literature review as well as the objectives and the scope of this 

thesis, and then proceeds to a discussion of the research methodology and approach. Finally, the 

main results are summarized and the possible areas for future research are indicated. 

 Part II Case Analysis: Part II is concerned about various technical safety and risk uncertainties 

and adopts modelling techniques to reduce the uncertainties. This part includes six case studies 

published or prepared during the thesis. These analysis consist of the main work and achievements. 

Part I Core Concept will be presented in the form of sections addressing current problems and research 

review related to risk and reliability quantifications in the process industry. Part I of the thesis will 

comprise of 6 sections in total. Section 1 focuses on the concept of risk and accident modelling is 

detailed in this chapter. It provides research background, concept, motivation, objectives. Chapter 2 

outlines current research areas with shortcomings (problem statement). Chapter 3 outlines literature 

reviews with detailing information about the research study associated with this research theme (refer 

to Fig.2). Chapter 4 explains the research concept, design and framework. Chapter 5 presents 

contributions based on the results and discussions made. Chapter 6 lists the references. 
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Figure 2. Structure of the thesis 

Part II Case analysis consists of six case studies. Case study 1 presents leak frequency analysis for HRS 

using frequency-based risk evaluation methods. Case study 2 presents evaluating uncertainty in accident 

rate estimation at HRS using time correlation model. Case study 3 addresses verification of life 

parameters in risk and reliability quantifications of process hazards. Case study 4 addresses 

improvement in reliability quantification to support BS EN 61511 failure probability analysis. Case 

study 5 proposes risk based inspection model for hydrogen storage process using bayesian network. 

Case study 6 addresses human factor analysis for liquid hydrogen leak incident using probabilistic 

graphical model. 
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2.  PROBLEM STATEMENT 

The main purpose of the thesis is to address specific issues related to risk and reliability quantifications. 

In total, six key issues related to the existing risk quantification approach have been identified and listed 

down in this section. The Ph.D. thesis will be presented in the form of case analysis addressing problems 

related to risk and reliability quantifications in the process industry. The problems related to risk and 

reliability in the process sector are listed below with solutions in detail in Part II Case study 1-6. 

 
 Problem Statement 1: Leak frequency Analysis and Unrevealed leak time estimation 

Leak frequency analysis is a method of understanding the characteristics of risks at HRSs. However, 

hydrogen failure data for leak frequency is extremely limited. Additionally, the unrevealed leak time is 

an important function of the leak frequency. Unrevealed leak time can reveal key safety characteristics 

for hydrogen sensor to detect leak. 

Solution: To address the above issue, a leak rate estimation using time-based evaluation methods is 

developed that utilize historical HRS accident information. In addition, leak frequency estimates from 

another two methods (non-parametric and leak-hole-size) were examined. In the non-parametric 

approach, the leak frequency is estimated based on a Bayesian update. The three approaches were 

compared to understand the trend of leak rate data. For more details on this subject, refer to Part II – 

Case study 1. 

 
 Problem Statement 2: Accident Rate Uncertainty Evaluation due to lack of data 

Collecting data about accidents in the past will provide a hint to understand the trend in the possibility 

of accidents occurrence by identifying its operation time. However, in new technology; accident rate 

estimation can have a high degree of uncertainty due to absence of major accident direct data in the late 

operational period. The uncertainty in the estimation is proportional to the data unavailability, which 

increases over long operation period due to decrease in number of stations. 

Solution: To address this issue, a suitable time correlation model is adopted in the estimation to reflect 

lack (due to the limited operation period of HRS) or abundance of accident data. For more details on 

this subject, refer to Part II - Case study 2. 
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 Problem Statement 3: Verification of QRA through selection of appropriate life parameter 

It is critically important to use the parameter for accurate reliability estimation. The standard “time” 

parameter can be non-suitable sometimes in the sense that it does not represent the actual usage 

conditions. This can lead to large uncertainty in the risk and reliability quantifications. This recognizes 

a need for collecting sufficient and improved reliability parameter for new technology systems 

Solution: Selection of the appropriate parameter in reliability assessment can be one of the possible 

ways to offset the problem with data scarcity or QRA uncertainty problems. A non-parametric approach 

is established to provide verification of appropriate parameter in failure estimation and its influence on 

the reliability assessment. For more details on this subject, refer to Part II - Case study 3. 

 
 Problem Statement 4: Failure data uncertainty in reliability quantification 

The international standard for functional safety BS EN 61511 specifies the usage of credible, realistic 

failure rate data in failure probability analysis and requires that operational data be monitored against 

design data. However, in reality, these requirements have proven difficult for operators because of the 

lack of failure data records and a large amount of sample data required for traditional frequentist 

methods. Lack of failure data leads to uncertainty in risk and reliability quantifications making risk 

assessment decisions weak.  

Solution: The proposed Bayesian framework addresses the requirements by providing a cyclical 

updating process that allows industry knowledge about failure rates to be incorporated in a prior 

distribution and cyclical updated with new data as it becomes available. Uncertainty analysis is 

performed on failure rate (PFD calculation) using Monte Carlo simulation. For more details on this 

subject, refer to Part II - Case study 4. 

 
 Problem Statement 5: Risk based Inspection Model using Bayesian Network 

Inspection Interval has not been addressed for hydrogen-based technology due to limited data. Adequate 

inspection is mandatory at regular intervals to ensure safe operations involving hazardous chemicals 

such as hydrogen. An appropriate inspection routine will also increase the chance of authority’s 

approval and public acceptance which is a pre-requisite for successful implementation and operation of 

new technology systems such as hydrogen stations 
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Solution: To develop risk based inspection model by implementing a BN analysis. Risk level is 

calculated via BN considering the failure probabilities (Pf) and the possible consequences. The 

maintenance plan is determined after setting the evidence that the system operates at the lowest possible 

risk using BN and Influence Diagram. For more details on this subject, refer to Part II - Case study 5. 

 
 Problem Statement 6: Human factor Modelling using probabilistic graphical model 

The accident analysis at refueling stations shows that several factors that influence the initiating cause 

lead to flammable material (fuel) release. One of the evaluations recorded in the High Pressure Gas 

Safety Act (Japan) in terms of accident causes shows that human factor is one of the key causes for 

accidents in Japan. Human factors is an area which has not received as much attention as it deserves. 

This shows the need for a strategy to understand areas of improvement in the field of human factors to 

help prevent accidents.  

Solution: To develop a methodology to analyse a liquid hydrogen transfer leak incident in the refueling 

station with respect to human factors as root causes. For more details on this subject, refer to Part II - 

Case study 6. 

 
2.1 Critical points of research 

 Propose a model for lack of data uncertainty and its treatment. 

 Statistical interpretation of data and use advanced frequency based models for accident and failure 

data analysis. 

 Develop quantitative insights in the study to set performance standards for availability and 

reliability in operation and maintenance of the Hydrogen stations. 

 Verification of risk and reliability quantifications using Aging/Life parameter method. 

 Improvement in risk and reliability quantification using Bayesian update process. 

 Propose a risk based inspection methodology to avoid under and over estimation of inspection times 

for hydrogen storage process. 
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3. LITERATURE REVIEW 

 
This section represents the literature survey for all the studies undertaken as a part of this research. This 

involves risk assessment and its uncertainties, accident analysis and various safety and risk modelling 

techniques implemented on the technology systems such as hydrogen stations. The overall research 

related papers that are referred and reviewed are described in this section. 

 
The initial research activity involves thorough review of the literatures and developed research 

questions. The literature review extend across the body of journals, abstracts, references, published 

reports and recommended practices by industry, and within the scope of reliability qualification, 

hydrogen systems, and other relevant subjects. It is necessary that existing sources of evidence, 

especially systematic reviews, are considered carefully prior to undertaking research. Review of 

literature, ongoing research and development (R&D) reports, and industry practices are carried out in 

order to obtain enough knowledge about the state of the art both in the scientific and the practical point 

of view. In addition, the professional experience from my academic supervisor has contributed valuable 

input in the identification and solution of problems. 

 
To begin with, in regards to hydrogen based technology, academic studies are inadequate, and the 

development of the existing approaches has mainly been done by institutes and industry organizations. 

Risk assessment of hydrogen fueling stations have been reported by several researchers, however most 

of the researchers focus on traditional risk analysis for hydrogen-based technology due to the ease of 

use and verified models available for quantification. These existing literature surveys provide a starting 

point for the research and support for all the further activities. In this section, firstly the concept of risk 

with recent development trends will be discussed, followed by the literature review associated with 

traditional risk assessment for hydrogen based technology and finally the treatment of uncertainties in 

risk assessment and dynamic modelling will be discussed. 

 
The risk concept has many definitions in the scientific risk fields. Quite many definitions can be found 

in journals for e.g. Wood (1964), Crowe and Horn (1967), DFI (2007), Aven and Renn (2009) and Aven 
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et al. (2011), but there are many more. Against this history, we introduce a new risk concept for new 

technology system that adheres to the International Organization for Standardization’s latest risk 

management standards, ISO 31000. In that it defines risk as “the effect of uncertainty”. According to 

this meaning, risk refers to positive as well as negative effects of uncertainty. We believe that defining 

risk for new technology system should explore social science as well as engineering perspectives. 

Whereas existing conceptual limit their scope to safety and risk assessments for specific technological 

innovations, comprehensive social risk additionally focuses on the social implementation of the 

innovation, and emphasizes shared decision-making among the stakeholders (such as people, businesses, 

and public authorities). Under this conceptual model, risk analysis and evaluation follow the principle 

of living with risk. According to this principle, something that generates risk generates value too. For 

example, if a risk is scaled at 0, the accompanying benefit is 0 too; thus, the parties must selectively 

adopt a certain level of risk to gain any benefits. 

 
The initial safety studies on hydrogen energy system can be conducted using traditional risk 

identification approaches.  Various safety related studies such as HAZOP, FMEA, etc. have been 

conducted on the HRS to ensure the risk is acceptable for its use and operation. Nakayama et al. (2016) 

carried out the preliminary hazard identification to a hybrid gasoline-hydrogen fueling station with an 

on-site hydrogen production system using organic chemical hydride. Jones (1984) applied hazard and 

operability study (HAZOP) to liquid hydrogen fueling station. It is important to identify and select 

representative credible accident scenarios for further investigation (Markowski and Siuta, 2017). CEC 

(2004) reported the failure mode and effects analysis (FMEA) for hydrogen fueling systems to the 

California Energy Commission. Kikukawa et al. (2009) performed the FMEA and HAZOP to identify 

possible accident scenarios for liquid hydrogen fueling stations. Pasman and Rogers (2012) performed 

risk assessment for compressed and liquefied hydrogen transportation and tank station by means of 

Bayesian networks. LaChance (2009) performed QRA to determine separation distances for HRSs. 

Matthijsen and Kooi (2006) performed a quantitative risk assessment (QRA) of hydrogen filling stations 

with the generic data taken from references (Redbook, 1997). Tsunemi et al. (2017) estimated the 

consequence and damage caused by an organic hydride HRS numerically. 
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In addition to traditional methods, some advanced probabilistic models have been employed for 

hydrogen energy system by some researchers to quantify the risks. For example, Khalil (2018) provided 

a science-based framework for ensuring a safe use of hydrogen as an energy carrier and an emission-

free transportation fuel. Khalil (2017) employed state-of-the-art visual flowcharting methodology is 

employed to develop a probabilistic model to quantify occupational risks of fire and explosion events 

initiated by leaks that ignite within enclosed spaces. The author demonstrated the functionality of his 

proposed model by a hydrogen refuelling station (HRS) case study in which gaseous hydrogen is 

postulated to leak from its compressor system.  

 
Accident modelling is an important area addressed in this thesis. In the high pressure gas safety act law, 

explosions, fires, spouting or leak, rupture or damage, and loss or burglary are defined as “accidents” 

(KHK, 2015; Yamada, 2015). For example, a small leakage (i.e. leak area is 0.01 % of total flow area) 

at an HRS is recognized as an accident and needs to be reported. In the case of hydrogen fuel, even a 

small leak in a confined space can potentially lead to a catastrophic event. Most accidents at HRSs are 

due to hydrogen leaks. In fact, almost all accidents at HRSs reported in the database are hydrogen leaks 

(KHK, 2012). In this case, the accident rate can be considered to be almost equivalent to the leak rate. 

In this study, the “leakage or leak rate” refers to an “accident”, as defined in the High Pressure Gas 

Safety Act. Thus, in the latter part of the thesis, it is noted that accident and leak estimation is treated 

as equal entity. 

 
Hydrogen energy systems are vulnerable to devastating accidents because they deal with hazardous 

substances at high pressure and/or temperature. Based on the new technology system categorization, 

hydrogen can be characterized as complex systems where a low probability high consequence event 

makes it likely that an accident in a given site causes loss in neighboring facilities, leading to a sequence 

of accidents (Khan and Abbasi, 1998). So, the adoption of safety measures followed by a comprehensive 

social risk assessment is crucial to maintain the risk level within the acceptance criteria. Risk assessment 

methodologies such as quantitative risk analysis (QRA), probabilistic safety analysis (PSA), and 

optimal risk analysis (ORA) comprise different steps among which accident scenario analysis is a 

https://www.sciencedirect.com/science/article/pii/S0957582012000067#bib0085
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/risk-assessment
https://www.sciencedirect.com/topics/engineering/acceptance-criterion
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/scenario-analysis
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common task. Accident scenario analysis includes accident sequence modelling and consequence 

assessment (Khan, 2001). 

 
A review of accident scenario analysis was carried out in the initial phase of the research. Several 

methodologies have been used for accident scenario analysis, each of which benefits from different 

techniques. For example, Sklet (2006) used barrier block diagrams to investigate hydrocarbon release 

accidents on offshore platforms. Delvosalle et al. (2005) used the bow-tie (BT) technique in ARAMIS 

project to identify major and reference accident scenarios in process plants. However, it is difficult to 

find a single technique to completely capture different phases of an accident from the beginning to the 

end, and also being flexible enough to fit a variety of accidents. Nivolianitou et al. (2004) made a 

comparison between some selected techniques such as fault trees, event trees, and Petri nets for accident 

investigation, considering criteria such as event sequence, event dependency, and modelling 

assumptions. There are also other relevant works in the literature such as that of Khan and Abbasi 

(1998), and Sklet (2004), devoted to qualitative comparison among different techniques. 

 
Minor leakages of hydrogen are the common types of accidents and incidents in the hydrogen stations. 

However, some have led to serious consequences such as fire (Sakamoto et al., 2016). The risks 

involved in two types of hydrogen fueling stations were identified using a hazard identification 

(HAZID) study (Nakayama et al. 2016). The leakage of hydrogen due to an accident is important for 

the consequence analysis. Many studies focus on the hydrogen release behavior (Tanaka et al., 2007, 

Kessler et al., 2014, Yamada et al., 2015). It is necessary to evaluate the maximum amount of hydrogen 

released from each facility to conduct the consequence analysis of the worst-case scenario for which 

the consequence is the highest. The risk assessment based on the maximum amount of hydrogen 

released was conducted (Takano et al., 2007, Tanaka et al., 2007, Kessler et al., 2014). Although the 

risk assessments of each component, such as pipes and accumulators, have been conducted, quantitative 

risk assessments considering the entire hydrogen fueling station are lacking. For example, if multiple 

safety measures in a hydrogen fueling station fail simultaneously, it could lead to serious accidents 

(Sakamoto et al., 2018). 

 

https://www.sciencedirect.com/science/article/pii/S0957582012000067#bib0090
https://www.sciencedirect.com/science/article/pii/S0957582012000067#bib0135
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/block-diagrams
https://www.sciencedirect.com/topics/engineering/hydrocarbon-release
https://www.sciencedirect.com/science/article/pii/S0957582012000067#bib0045
https://www.sciencedirect.com/science/article/pii/S0957582012000067#bib0115
https://www.sciencedirect.com/topics/engineering/accident-investigation
https://www.sciencedirect.com/topics/engineering/accident-investigation
https://www.sciencedirect.com/science/article/pii/S0957582012000067#bib0085
https://www.sciencedirect.com/science/article/pii/S0957582012000067#bib0085
https://www.sciencedirect.com/science/article/pii/S0957582012000067#bib0145
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With reference to hydrogen accidents, accident and leak modelling of HRS have been reported by 

several researchers. A comprehensive safety analysis of hydrogen plants in oil refineries was carried 

out by Mohammadfam and Zarei, (2015) to determine risks that may lead to catastrophic accidents. 

Some advanced probabilistic models were employed by some researchers to quantify risks caused by 

leaks. Khalil, (2017) employed state-of-the-art visual flowcharting methodology to develop a 

probabilistic model to quantify occupational risks of fire and explosion events initiated by leaks that 

ignite within enclosed spaces. The author demonstrated the functionality of his proposed model by a 

HRS case study in which gaseous hydrogen is postulated to leak from its compressor system. This Ph.D 

thesis proposes leak rate estimation using time-based evaluation methods that utilize historical HRS 

accident information. In addition, leak frequency estimates from another two methods (non-parametric 

and leak-hole-size) will be examined. In the non-parametric approach, the leak frequency is estimated 

based on a Bayesian update. The three approaches will then be compared to understand the trend of 

leak rate data. The quantitative insights of this study can be used to set performance standards for the 

availability and reliability in the operation and maintenance of HRSs. 

 
The application of various existing techniques for accident modelling is restricted due to scarce data. 

The issue of scarce data is modelled using a precursor data and hierarchical Bayesian methodology 

(Yang et. al., 2013, Gheriani et. al., 2017). However, it is found that the accident data based on actual 

conditions are rare and not realistic. This could add uncertainty in the overall risk estimation. Thus, 

compared to the risk analysis, the accident data uncertainty has not been so well‐established, partly due 

to low probabilities involved and partly due to the complexity of such accidents. For this purpose, we 

have introduced a study on the accident data uncertainty based on time correlation model (refer to case 

study 2). It estimates the uncertainty and accident rate by time correlation model that are fundamental 

to the challenge of lack of data and not been addressed in previous models. Another key characteristic 

is to estimate accident rate based on statistical interpretation. This methods reflects latest data from key 

sources and updates the model to get real time data. Accident rate estimation reveals the trend of 

accident occurrence in the hydrogen system which can be crucial in making critical decisions. 
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Apart from the accident modelling, quantification of risk numerically require use of quantitative risk 

assessment (QRA). The verification and validation of QRA has become a great concern to public 

acceptance of HRSs. The validity of QRA was reviewed by Goerlandt et al. (2016). Generic validity 

approaches such as benchmark tests have been proposed, but it was pointed out that an evidence-based 

approach is needed to support the validity of QRA results.  One of the ways to justify verification is to 

select appropriate reliability (life) parameter in safety and reliability engineering. The life parameter 

should represent actual conditions of the product or equipment under analysis. This requires selection 

of some life parameter other than the traditional mean time to failure (MTTF) approach. 

 
In QRA, risks are calculated from frequencies of scenarios and their consequences. Estimation of failure 

rates provides a key input to QRA quantification. Unfortunately, QRA methods contain a large amount 

of uncertainty due to the lack of field failure data. This recognizes a need for collecting sufficient and 

improved reliability data for new technology systems (Rademaeker et al. 2014). Casamirra et al. (2009) 

used the fault tree analysis (FTA) to determine the frequency of the accident scenarios based on generic 

failure data. However, as most of the traditional risk analysis techniques (such as Fault Tree Analysis 

(FTA) and Event Tree Analysis (ETA)) are static and non-updatable conventional models, they 

regularly fail to fully capture the variation of risks during operation (Paltrinieri and Khan, 2016). 

Besides, conventional techniques use only binary variables and do not represent conditional 

dependencies (Martins et al., 2014). Another way is to employ a Bayesian statistical approach to 

estimate failure rate from prior data. LaChance et al. (2009) developed a Bayesian model to estimate 

leak frequency of various components used in a HRS. Pörn (1996) proposed a “two-stage” update of 

the hierarchical Bayesian process, although the procedure format is quite different since it preceded the 

widespread availability of computerized Bayesian algorithms.  Newer methods for treatments of 

hierarchical Bayes are covered by Droguett et al. (2006).  Hierarchical Bayesian models may also be 

viewed as a special case of a Bayesian Belief Networks. Khakzad and Reniers (2015) proposed a 

Bayesian network (BN) methodology to estimate both on-site and off-site risks posed by major 

accidents in chemical plants. 
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Recently, in the latest 2nd edition of IEC 61511, International functional safety standard specifies use 

of realistic and credible failure data in failure probability analysis.  Unfortunately, new technology, such 

as hydrogen failure data is extremely limited. One possible way is to use surrogate failure data from 

other settings such as commercial nuclear power plants, chemical plants, and offshore oil and natural 

gas platforms. The proposed Bayesian framework in this Ph.D thesis addresses the requirements by 

allowing industry knowledge about failure rates to be incorporated in a prior gamma distribution and 

periodic updating process with new survival data as it becomes available. Monte Carlo simulation is 

adopted which make it practical to solve uncertainty in the failure rate estimation and update these 

models with many trials in seconds. The result shows that the process of updating failure rate with more 

samples of new observations and modelling failure data uncertainty using Monte Carlo simulation can 

be effective in improving reliability quantifications in the existing BS EN 61511 standard. 

 
Meanwhile, from the operation and maintenance point of view, inspection interval is one area that is of 

utmost importance to prevent failures and not addressed in any research papers. Effective inspection 

can influence major accident risk. Routine Inspection is a key means to improve and maintain the 

integrity of HRS. Lack of inspection or erroneous maintenance may cause a sudden or gradual 

deterioration into a system failure. The literature on the definition of inspection in different applications 

is vast. (Bhandari et al., 2015; Garg and Deshmukh, 2006) defines inspection as all the appropriate 

actions for retaining an item or a part of an equipment and restoring it to a given condition. A more 

recent type of inspection is risk-based inspection (RBI) which integrates reliability with safety and 

environmental issues and minimizes the probability of system failure and its consequences related to 

safety, economic, and environment (Khan and Haddara, 2003). As the data set using for failure rate 

calculations through the condition based maintenance (CBM) approaches are mostly limited, RBI have 

been considered as a complement of CBM through the different operational conditions (BahooToroody 

et al., 2019; Abaei et al., 2018). RBI can be adopted to assure the level of risk and its associated cost. 

The base principle of this technique is to prioritize the maintenance of the components based on the 

level of risk. Accordingly, based on BN, Abbassi et al. (2016) presented an RBI methodology, applied 
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to an offshore process facility. In order to address the above issues, an advanced RBI methodology is 

proposed in this Ph.D thesis to decide inspection time in relation to the risks. 

 
In terms of accident causes, the record shows that out of 429 accidents in the year 2015, inadequate 

facility maintenance and management was the cause for 203 (47%) accidents, inadequate facility design 

and fabrication defects was the cause for 87 (20%) accidents, and 46 (11%) were caused by human 

factors, together contributing to 78% of the total accidents. Some studies reveal that organizational and 

human factors account for a considerable proportion of process accidents (Sakamoto et al., 2016; 

Karuiki, 2007) In addition, existing studies report that the leakage at joints in the dispenser is mainly 

due to human error (Sakamoto et al., 2016) With regard to leakage from flexible hose and valve, the 

cause of all the accidents in US is human error. For the same category, human error and natural disaster 

are the leading causes in Japan. 

 
The risk associated with the refueling stations could change the perception of people towards accepting 

hydrogen as a fuel for fuel cell vehicles. Similarly, the process industry has faced some catastrophic 

incidents that are mostly attributed to human factors (Karuiki, 2007). The past study from UK HSE 

shows that human factors have contributed to several major accidents such as Piper Alpha, BP Texas 

refinery, etc. (HSE, 1999; Manca 2012). At the broadest level of categorization, 47% of the identified 

accidents involved human error in one form or another (Bradley, 1999). Past studies show that more 

importance is given to technical aspects of systems in order to reduce the possibility of release (Leva, 

2015). In spite of improvement in the performance of technical systems, it has been noted that accidents 

are on the rise. Thus, the technology has reached to point where the improved safety can only be 

achieved through a better understanding of human error mechanisms (Yamada et al., 2015; Leva et al., 

2015). 
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4. RESEARCH DESIGN 

This section considers the aspects of the research design process that were applied during this research 

project, including the research method, and the selected research approach. 

 
4.1 Research Approach 

The research performed in this thesis is mainly on the development of new frameworks and methods 

for fulfilling the current risk and reliability quantification needs, and forming the basis for further 

research and aiming to meet the dynamic needs of the future. Many of the scientific studies in the field 

of reliability and safety engineering are related to the development of models, methods, and frameworks 

for reliability and safety analysis. As this research focuses on process industries or hydrogen system, it 

aims to develop new frameworks and methods meant for practical applications in this industry. The 

new models, frameworks, and methods have been developed based on the existing literature within 

qualification and reliability assessment. 

 
In this context, verification and validation are not often possible due to a wide range of unsolved issues. 

From a classical point of view, the usefulness of models should be empirically verified, for example, 

by experiments or by collecting field data (Goerlandt et al., 2016). Empirical verification may be 

impossible in the reliability and safety-engineering field, where we deal with analyzing and modelling 

of unexpected events such as failures, accidents and catastrophes. These events occur infrequently. It is 

very costly and time-consuming to carry out experiments and collect data to confirm the models and 

modelling results. Thus, the evaluation and verification of the scientific work and the models must be 

done by approaches other than empirical or experimental methods. 

 
Many of the scientific studies in the field of reliability and safety engineering are related to the 

development of models, methods, and frameworks for reliability and safety analysis. As this research 

focuses on hydrogen energy or a new technology system, it aims to develop new frameworks and 

methods meant for practical applications in this industry. The new models, frameworks, and methods 

have been developed based on the existing literature within risk and reliability assessment. 
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Figure 3. Research basic process flow 

The research will comprise of all the steps shown in Fig.3 in the process. Firstly, the uncertainty scenario 

should be defined. Suitable methods must be selected to ensure that all potential risk uncertainties are 

identified and addressed in a satisfactory manner so that the uncertainties of failure are documented and 

the reliability of the product can be proven. The research makes use of some commonly applied methods 

such as Weibull, failure probability and fault tree analysis.  A simple and creative methodology should 

be defined to introduce a systematic examination of the process. Once the initial statistical or probability 

modelling is conducted using basic methods, the final modelling uses an advanced Bayesian approach 

to assess the dynamic behavior of risk. The dynamic assessment of risks can reduce many problems 

associated with uncertainties in the risks. 

 
The reliability prediction methods adopted in this research is classified into three categories: (1) 

statistical distribution methods, (2) physics-of-failure methods, and (3) top-down similarity analysis 
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methods based on an external failure database combined with Fault tree or Probabilistic Graphical 

method. The first and third category is based on statistical analysis of failure data, while the second 

category is based on physics-of-failure models. Case study 1 and 2 of the research will utilize statistical 

methods, case study 3 will be based on physics-of-failure methods, while case study 4 and 5 will utilize 

external failure database combined with Bayesian. In the past, Foucher et al. (2002) compare these 

methods and conclude that the best prediction is achieved by a combination of different methods, 

depending on the phase of the system’s lifecycle and objectives and assumptions of the manufacturer. 

 
4.2 Research Framework 

The research framework forms the foundation of the research concept.  It is very important to develop 

a solid framework in order to execute the proposed strategy.  The modelling is divided into two main 

categories i.e. initial modelling and Final (advanced modelling). The initial modelling relies on input 

data gathered from several sources. Some data cannot be directly applied to the model and thus require 

some form of refinement or conversion to make it suitable for advanced analysis. Initial modelling 

purpose is to convert or develop data in a format suitable for advanced analysis. There are general 

methods adopted to perform initial modelling.  As explained in previous section, the general methods 

used for initial modelling care categorized as (1) statistical distribution methods, (2) physics-of-failure 

methods, and (3) top-down similarity analysis methods based on an external failure database combined 

with Bayesian.  

1. Statistical distribution method: 

The important thing to note is that there are several problems associated with the prior data. For e.g. 

 There are some months with no accident and the operation period is different for each HRS. 

 Stations with different operation period i.e. uncertainty associated with data over operation period. 

 Extremely limited data. 

Using the prior (input) data, the accident or failure rate for each month is estimated using statistical 

modelling. The statistical modelling can  

 Estimate accident rate for each month by the condition that the adjacent accident rate is similar to 

each other. 
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 Estimate uncertainty associated with data over operation period. 

 
2. Physics-of-failure method: 

Usually, time is a common parameter of reliability measurement. The reliability can also be measured 

using actual loading or plant conditions. The initial data can be available in various units of 

measurement and risk analysts should make a reasonable judgement on which risk metric is more 

realistic. This method adopts a non-time parameter to measure reliability. In this research, the number 

of filling parameter is used as a life parameter to measure reliability based on two conditions i.e. usage 

and physics of failure. 

Physics of Failure: 

 Main Leakage (Internal & External) is the failure mode under consideration 

 Corrosion leakage is due to wear and tear 

 Seal wear and tear is proportional to number of fillings 

Usage: 

 The number of fillings on an average is to be considered 

 The public access to hydrogen station is mainly only to the dispenser. Hence, the hose connection, 

improper joints and supply of hydrogen fuel is the actual usage condition of the hydrogen station. 

 
3. Top-down similarity analysis method: 

Equipment’s reliability prediction is well established and is often based on the parts count and operating 

experiences. This is particularly true in the case of oil and gas industry that has maintained failure and 

maintenance database from various external sources. Initial failure data for critical components are 

collated from industry external sources i.e. SINTEF, OREDA, etc. The data presents critical failure rate, 

repair time and failure probability. It is worth noting that in the external sources, the MTTF of each 

component is collated from various operational experiences and industry experts (SINTEF, 2015). This 

method applies external failure database to top down approaches such as fault tree or probabilistic 

graphical method to analyse failures, starting with a potential undesirable event (accident) called a Top 

event, and then determining all the ways it can happen. Once the initial modelling is performed using 

general methods and initial data, a systematic methodology is applied that uses advanced modelling.
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Figure 4. Research Framework: Accident and Risk and Reliability Quantification 
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The research framework is shown in Fig.4. The input provided to the model is based on the Data analysis. 

Failure data analysis was carried out based on the project report related to hydrogen and accident reports. 

When an accident takes place with respect to the high-pressure gas, a notification report shall be 

submitted to the prefectural governor or police official due to the High Pressure Gas Safety Act. Due to 

the Act, the accident is defined as follows:(i) Explosion, (ii) Fire, (iii) Leak, (iv) Degradation, (v) Others. 

Even if minor leak occurred, that event is treated as an accident related to the Act. Therefore, most of 

the accidents at HRS are leak of hydrogen. In this study, the following two data sources were referred 

to collect failure and operating data. The initial input data for the analysis were taken mainly from two 

data sources: 

1. The Japan Hydrogen and Fuel Cell Demonstration Project 

Data for estimation of failure rate were taken from the reports of the Japan Hydrogen and Fuel Cell 

Demonstration Project (JHFC, 2017). JHFC is a project sponsored by the Minister of Economy, Trade 

and Industry (METI) and started in FY2002. 

2. High Pressure Gas Safety Institute of Japan 

The High Pressure Gas Safety Institute of Japan has collected accidents related to the High Pressure 

Gas Safety Act in Japan from 1965 and published white paper on the review of accidents at HRS (KHK, 

2015). 

 
The failure and accident statistical data collected from these two sources are applied to the model. The 

model is related to the development of methods, techniques and frameworks for reliability and safety 

analysis. It specifically addresses the requirements to overcome uncertainties associated with risk and 

reliability quantifications that mainly can be used by researchers, reliability analysts, design and end 

users in risk assessment. Each of these methods and techniques used in the research model will be 

described in Part II in the form of six case studies. 

 
The input data to the model mainly relies on   KHK and JHFC database in Japan. This is mainly due to 

the nature of the project, funding agency and availability of data.  It is understood that data collection 

and analysis for a new technology system determine the amount of uncertainty in the research output.  

The data selected in this research is limited however thoroughly examined and more realistic. 
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4.3 Research Design Flow 

 

Figure 5. Research Design Flow 
 
It is complicated to adopt one research method that will suit all requirements of the industry. A logical 

and documented design of the research project is the basis for any high quality research. A research 

project is a sequence of tasks or steps that are integrated to achieve a single objective. The research 

starts with defining the basis of the research, research questions and ends up with the research results. 

Fig.5 illustrates research design and process flow used for completing present research study and related 

articles. Research process has four main stages (1) research plan and challenges, (2) literature review, 

(3) model development, and (4) research results. 

4.3.1 Research Plan 

 
At the early stage of the design process, a research plan needs to be developed in order to understand 

current industry limitations, define research challenges and to provide a method for further investigation. 

The research plan describes the principles as a basis for research, stating its importance and 

implementation strategy. The research plan should answer the following questions:  

 What is the ultimate intention of the research?  
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 What is the impact and benefits of the research on the risk society?  

 Recent developments in the risk fields?  

 How to incorporate a solution to address the research questions?  

A typical research plan includes: 

I. Specific aims: The specific aims are statements of the objectives and milestones of a 

research project. The purpose of this part is to clearly and concisely propose the research 

strategy.  

II. Background: The background section states the research problem including the proposed 

rationale, the current state of knowledge and potential contributions and significance of the 

research to the field.  

III. Research design and methods: The research design and methods are describing how the 

research will be carried out. This section is critical in order to demonstrate that the study 

design is developed under a clear, organized and thoughtful scheme. 

4.3.2 Literature Review 

 
The initial research activity has briefly reviewed the literature and developed research questions. The 

literature review spanned the body of journals, abstracts, relevant book sections, published reports and 

recommended practices by industry, and within the scope of reliability qualification, accident analysis, 

and other relevant subjects. Croom (2009) advised a strong emphasis on existing sources of evidence, 

especially systematic reviews that should be considered carefully prior to undertaking research. State 

of the art, ongoing research and development (R&D) reports, and industry practices are carried out in 

order to obtain sufficient knowledge about the latest needs of both in the scientific as well as in the 

practical point of view. Some academic institutions in Japan, mainly Yokohama National University 

has developed comprehensive social risk assessment guidelines that mainly adhere to the needs of 

qualification of new technology system. These guidelines are based on the risk assessment guidelines 

of Yokohama National University’s Center for Creation of Symbiosis Society with Risk. They have 

been adapted for hydrogen fueling stations. 
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The general basis for this study and the topics it addresses have been established through literature 

surveys. These surveys provide a starting point for the research and support all the further activities. In 

addition, the professional experience from my main supervisor has contributed valuable inputs in the 

identification and solution of problems. 

4.3.3 Model development 

 
Risk and reliability engineering has two main aspects. First is to develop a model and second is to input 

failure or relevant data to the model to quantify the risks. Developing models are a good way to start 

refining all the information gathered so far. A risk model can be described as a risk analyst’s attempt to 

represent a system and incorporate methods to address the uncertainties in the system (Parry, 1996). 

The model is therefore strongly dependent on the characteristic of the system and the analyst’s 

competence. The risk analyst has to struggle with the trade-off between the need to simplify and safety. 

Creating model has an iterative process until an appropriate model has been developed. The level of 

detail or suitability of a model is restricted by the time, approximation formulas, distribution models 

and software availability. Models can be classified as statistical or dynamic in nature. The choice of 

model forces the analyst into a system structure that more or less is in accordance with the real life 

system. Due to the limitations in including the natural variability in the real life system, a model most 

likely only be an approximation (NASA, 2002). Model uncertainty to a certain degree will always exist. 

Standards, guidelines and internal company policies may often require or recommend specific types of 

models. In order to achieve the research objectives, a new framework would be developed under specific 

assumptions, aiming to overcome the shortages and challenges have found in the earlier steps. 

4.3.4 Research Results 

 
Research results should include the application area of the developed models, methods, or frameworks, 

discussion about constraints, and suggestions for new perspectives and ideas for future works. In most 

cases, application of case analysis on hydrogen-based technology is used for systematic description of 

the situations regarding how and why events occur and for demonstration of framework/model usability. 

The information acquisition is based on open data. However, in the context of developing a new 

technology system, the industry data is highly confidential and therefore presenting any real case is not 
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possible. In addition, due to data unavailability and complexity, it is difficult to cover all components 

or their failure modes in the case study and into the calculations/models. 

 
The research results are presented to the academia and the industry through publication in international 

journals and proceedings of the conferences with referees and double blind peer review process. In 

addition, the reasoning of the models has been confirmed by sharing research ideas and results at 

international conferences. The purpose of the communication of the research results is both for risk 

communication, and for acquiring comments and feedback from risk experts. It was communicated to 

competent personnel who can further progress the analysis using all the available information and data. 

These principles of risk communication have contributed to the evaluation and quality assurance of the 

research results, since the input from the “outside world” has influenced the research work and thus 

influenced the results presented in this thesis. All the topics that are covered in my case analysis and 

their related areas are subjected to detailed discussion and verification of information from the academic 

and industry professionals. Public authorities should ensure that the outcomes of risk communication 

are incorporated into policies, and businesses should ensure that they are incorporated into their 

business plans. 
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5.  MAIN HIGHLIGHTS, CONTRIBUTIONS AND FINDINGS 

 
This chapter gives a summary of the main results from the research case studies. More specific 

information about the results are presented in the research case studies in part II of the thesis. Six 

research challenges were stated in Section 2. The purpose of this chapter is to evaluate to what extent 

these challenges have been considered. The relationships between the case studies and the research 

challenges are summarized in Table 4. 

Table 4. Research challenges and related contributing case studies 

No. Research Challenges Case Study No. 

1 Leak frequency Analysis and Accident rate estimation 1 

2 Lack of accident data uncertainty modelling 2 

3 Unrevealed Leak time estimation 2 

4 Verification of Risk assessment through appropriate selection of 

reliability parameter 

3 

5 Improvement in reliability quantification 4 

6 Non-constant failure rate of mechanical products 4 

7 Risk based Inspection prediction for new hydrogen-based systems 5 

8 Human Factors influence on hydrogen-based systems 6 

9 Root cause Analysis of hydrogen leak incident 6 

 
5.1 Contribution to Research Challenge 1 

Highlights: 

 Accident at HRSs was analyzed with respect to operation time. 

 Accident rate was modeled using a log-normal and Weibull function over time. 

 The failure probability and unrevealed leak time were calculated for different inspection test 

intervals from the accident rate estimation. 

 Failure probability and availability was modelled using Monte Carlo Simulation. 

 

Contributions and Findings: 

A quantitative based study on leakage-based analysis of accidents in Japan was conducted to understand 

the characteristic of leak rate. Three different models were studied and compared to understand the 

trend. Firstly, time based evaluation methods that utilize historical HRS accident information was 

proposed to estimate the leak rate.  Then the leak frequency estimate from the other two methods i.e. 
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non-parametric based and leak hole size-based was examined. In the non-parametric approach, the leak 

frequency is estimated based on Bayesian update. Thereafter, a comparison of these three approaches 

were made to understand the trend of leak rate data. The results describes the trend of the leak rate; 

increasing or decreasing along the operation time, or peaking and declining.  

 
The leak rate is estimated to be 0.16 per year, 0.20 per year, and 0.42 per year based on the time-based, 

leak-hole-size, and non-parametric methods, respectively. The leak rate data from time-based method 

shows similar trend with leak size based method however, non-parametric method tends to be 

conservative due to high failure observations (new evidence) during Bayesian update. 

 
In addition, unrevealed leak time is calculated as a function of leak rate and inspection interval. For 

example, in the case of the time series method, when the leak rate is 0.16 per year and the inspection 

interval is 24 h (daily inspection), the unrevealed leak time is 19.08 s. It means that hydrogen sensors 

are required to detect minor leaks at short intervals to reduce the unrevealed leak time. It can be 

concluded that if the leak rate is estimated to be high, the inspection interval should be more frequent 

to reduce the unrevealed leak time and increase the process safety. The quantitative insights of this 

study can be used to set performance standards for availability and reliability of safety critical systems 

such as leak detectors in operation and maintenance of the HRS. 

 
5.2 Contribution to Research Challenge 2 

Highlights: 

 Accident at HRSs was analyzed with respect to operation time. 

 Accident rate was modeled using a time correlation model. 

 Uncertainty in the estimation due to the lack of accident data was discussed. 

 Benefits of the model adopted is discussed in comparison to traditional models. 

 

Contributions and Findings: 

This article examined the manner in which accident rate is modelled and described for HRSs. Unlike 

conventional statistical models in which the accident rate changes according to overall time function, 

Conditional autoregressive (CAR) model estimates the accident rate per month, and is constrained by 

the condition that the adjacent accident rate is similar to each other. Another result is that of the intrinsic 
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Gaussian CAR model, which represents the uncertainty in the estimation due to lack of data. The CAR 

result succeeded in showing that the uncertainty in the estimation increases when the operation time is 

long owing to the decreasing data. A model with accident rate following the intrinsic Gaussian 

conditional autoregressive model has the following advantages: 

 Suitable to show if the estimate uncertainty is increasing owing to lack of data 

 Estimates the accident rate per month and thus the graph is continuous without any gaps in 

the data between stations 

 Support in decision making for new process systems 

 
The CAR model is different from the other lifetime distribution models because its main aim is to reveal 

the estimate’s uncertainty. A new system such as HRS has very little accident information, and so future 

predictions are inevitably unreliable. One approach to rectify this problem is to wait until enough data 

have been collected, or utilize the accident data of similar systems to increase its reliability. However, 

the Gaussian conditional autoregressive model does not aim to reduce the uncertainty; rather it discusses 

the effect of lack of information on the estimation. This new way of dealing with and interpreting 

accident information can be utilized to evaluate new systems such as HRS in the future. 

 
5.3 Contribution to Research Challenge 3 

Highlights: 

 Estimate the failure rate based on the number of fillings and survival time of HRS.  

 Employ a non-parametric approach to estimate cumulative failure as a function of number of fillings.  

 Use a parametric approach to estimate cumulative failure as a function of survival time.  

 Compare both parameters to choose correct life parameter for reliability quantification. 

 

Contributions and Findings: 

It is critically important to use the correct parameters for accurate reliability estimation. Field failure 

data of HRS is used as a case study to compare failure analysis based on two parameters i.e. survival 

time vs. number of fillings at the station. A non-parametric approach is used to estimate cumulative 

failure function based on number of fillings. The cumulative hazard using the Nelson-Aalen estimator 

showed a linear relationship with the number of fillings. A parametric approach using 2-parameters (β 
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and η) Weibull distribution function is employed to estimate cumulative probability of failure with the 

survival time. The study demonstrates that the failure rate can vary by a small to large margin based on 

the life parameter chosen for reliability predictions. 

 
The study found that the failure rate estimated as a function of number of fillings is more reliable and 

realistic than the estimation based on survival time. Moreover, the number of fillings is more 

representative of the true failure rate as it considers the actual station’s usage and loading. The survival 

time do not always represent the actual usage of the stations. 

 
Using a case study, it is observed that two stations can have similar survival time but small to large 

difference in the usage (i.e., number of fillings). Thus, if the failure rate is estimated as a function of 

time, the mean failure rate will be roughly the same for both stations. However, if failure rate is 

estimated by number of fillings, the failure rate will vary depending on the actual usage of the station. 

The actual usage conditions are discarded when using the survival time and this may lead to uncertainty 

in the failure estimation. 

 
5.4 Contribution to Research Challenge 4 

Highlights: 

 Introduction of dynamic modelling to IEC 61511 functional safety standard. 

 Application of bayesian technique to IEC 61511 using gate valve as a case study. 

 Modelling failure data uncertainty using Monte Carlo simulation. 

 Sensitivity analysis on failure probability using Monte Carlo method. 

 
Contributions and Findings: 

International functional safety standards such as BS EN 61511 specifies the use of realistic and credible 

failure data in failure probability analysis. The proposed Bayesian framework addresses the 

requirements by allowing industry knowledge about failure rates to be incorporated in a prior gamma 

distribution and periodic updating process with new survival data as it becomes available. Monte Carlo 

simulation is adopted which makes it practical to solve uncertainty in the failure rate estimation and 

update these models with many trials in seconds. The result shows that the process of updating failure 

rate with more samples of new observations and modelling failure data uncertainty using Monte Carlo 
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simulation can be effective in improving reliability quantifications in the existing BS EN 61511 

standard. 

 
The study found that the process of updating failure rate with new observations and modelling failure 

data uncertainty using Monte Carlo simulation will result in lower uncertainty and narrower posterior 

distribution. It is observed that with less number of new observations, the updated failure rate is 

sensitive to generic uncertainty data which does not provide realistic result. In order to improve the 

sensitivity of updated failure rate, more number of observations subject to modelling using Monte Carlo 

method will be beneficial. 

 

5.5 Contribution to Research Challenge 5 

Highlights: 

 Developed advanced RBI methodology to decide inspection time in relation to the risks 

 System-categorized accidents in an HRS by operation time 

 Understand the risk based influence of each critical component on the system 

 Inspection interval estimated based on three risk categories i.e. minor, major and critical 

 

Contributions and Findings: 

A probabilistic graphical model, based on an acceptable level of risk, is proposed to avoid under and 

over estimation of inspection time interval. It presents an advanced RBI methodology to decide 

inspection time in relation to the risks. Bayesian Network (BN) is applied to model the risk and the 

associated uncertainty. Results show that the most critical components are the shut-off valve and 

hose/flow nozzle connection in case of minor risk. In case of major risk, flow gauge has the shortest 

transition from minor to major risk and thus makes it a most critical component. Pipelines have the 

shortest inspection time compared to other components and thus makes it the most critical component 

for critical risk. The developed method can assist the risk analyst and asset managers to work out the 

optimum inspection time for each component according to the risk level. 

 
In addition, accident data evaluation based on operation time and system category revealed that that 

dispenser and accumulator failure was more evident during the early stage of HRS operation period 

whereas compressor and interconnection system had accidents late in the operation period. 
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5.6 Contribution to Research Challenge 6 

Highlights: 

 Developed semi-quantitative graphical method of human factor analysis for the refueling station 

liquid hydrogen releases 

 Deriving causal Bayesian networks from human reliability analysis data 

 High pressure gas accidents analysis in Japan 

 Human task critical analysis are categorized and prioritized based on the risk they possess 

 

Contributions and Findings: 

A methodology is developed to analyse a liquid hydrogen transfer leak incident in the refueling station 

with respect to human factors as root causes. It presents a semi-quantitative graphical method of human 

factor analysis for the refueling station liquid hydrogen releases. The probabilistic graphical method 

helps to prioritise the causes that need to be analyzed first and/or in the greatest level of detail, based 

upon the degree of anticipated risk that they pose. As a result of analysis, events related to safety valve 

failure, improper connection of mechanical components, incompetency and no planning prior to the 

task has been found as some of the key issues in a transfer leak operational incident at a HRS. From the 

study, more awareness of hydrogen system among public, operator training (competency), use of correct 

policies and procedures are emerging as key contributions towards increased safety of the hydrogen 

service stations. In addition, a good performance (high integrity) safety system is required to prevent 

hydrogen releases. 

 
Quantitatively, it is found that the chance of hydrogen leak incident is 15%. However, the leak event 

probability is drastically reduced to 0.03 per year because of the protection layer – safety system. This 

indicates that the current operation of the station is heavily dependent on safety system design and 

operation on demand to reduce the risk likelihood to 0.03 per year. The safety system functions as an 

emergency shutdown system where the primary function is to deactivate the source of release by 

automatically or manually isolating the liquid hydrogen flow. However in this case, most of the 

functions are dependent on human rather than system, appropriate care should be taken knowing that 

there is a possibility of leak in case the procedure is not followed. Standard operating procedure must 

be followed at all times. Assumptions are made at great risk. Risk also increases with complacency. 
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CASE STUDY 1. Leak Frequency Analysis for Hydrogen-based Technology using 

Bayesian and Frequentist Methods 
 
1.1 Introduction 
 

One of the important accident characteristic of hydrogen energy system is the leak occurrence data. 

Leak rate analysis can reveal trend of accident occurrence in the hydrogen-based technology. This 

involves operation start time, failure cause, number of failures, minor to major leaks and consequences. 

This case study is chosen to support the core concept of the research by focusing all three aspects: i.e. 

new technology system, treatment of uncertainties in risk and reliability quantification and bayesian 

dynamic modelling. This case study utilizes the originality of the research through application of 

dynamic modelling for treatment of uncertainties in the field of risk and reliability quantification for 

new technology system. 

 

Focusing on the case study, dealing with hazardous environments such as hydrogen poses considerable 

risks to property, people, and the environment. Leak frequency analysis is a method of understanding 

the characteristics of risks at hydrogen refueling stations (HRSs). Sakamoto et al. (2016) carried out a 

qualitative study on leakage-based analysis of accidents in Japan. In their study, leakage was classified 

based on the components and cause of accident. One of the characteristics of HRS accidents in Japan is 

that a high percentage of leak accidents occur at pipe joint sections. Because there are many joints and 

seals in a hydrogen refueling station, and the station’s hydrogen compressor produces mechanical 

vibrations, small leaks from joints and seals are a major concern at HRSs. The results revealed that the 

main cause of leakage among flanges, valves, and seals is screw joint failure. Leakage associated with 

the filling hose and dispenser is mainly due to human error. Although their study makes an important 

contribution to leakage analysis of HRSs, it is limited to only a qualitative assessment of the leakage 

analysis. 

 

The leak frequency of HRSs has been reported by several researchers. One of the ways to estimate leak 

frequency is based on the hole size. LaChance et al. (2009) developed a Bayesian model for leak 

frequency in various components used in HRSs. The leak frequency is assumed to be a function of the 
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fractional flow area of the leak. The leak frequency was estimated as a function of leak size, which is 

the ratio of the leak area divided by the total cross-sectional flow area. For a leak area of 0.1% of the 

total flow area, the corresponding system leakage frequency would be 0.03 per year and 0.06 per year 

for the 20.7 MPa and 103.4 MPa systems, respectively. Since even a small leak from joints and seals 

are a major concern at HRSs, most leak failures can be classified as a very small leak with leak area of 

0.01% of the total flow area. When the leak area is 0.01% of the total flow area, the system’s leak 

frequency would be 0.2 per year. 

 
A more traditional approach to leak frequency estimation is provided in the Dutch Redbook model 

(Redbook, 1997). The model employs a non-parametric approach using the Nelson–Aalen estimator. 

By using a non-parametric approach, the leak rate can be estimated as a function of the number of 

fillings in the HRS. The relationship between the cumulative hazard and the number of fillings should 

be understood and equated to calculate the leak rate of the system. The method developed is quite 

generic, and is often implemented in the oil and gas industry where more traditional approaches using 

constant failure rates are widely adopted in leak and failure analysis. However, the characteristics of 

HRSs are different from those of the oil and gas industry. For example, in the oil and gas industry, 

accidents can occur due to a wide range of causes resulting in leaks, toxic effect, fire, and/or explosions. 

However, in HRSs, fire and/or explosions are not observed on a large scale. As mentioned earlier, 

leakage is a major event in accidents reported in HRSs. 

 
Focusing on the HRS operation time from its start may reveal characteristics of leak occurrence. In 

other words, collecting data about leaks from the past will allow better understanding of the trend in the 

possibility of leaks by identifying its operation time. Under such circumstances, time-based evaluation 

is important. Studies have been performed on HRS accidents or leak frequency by organizations such 

as Sandia National Laboratories (LaChance et al., 2009). However, only a few studies have been 

conducted on the time series effect. This is one of the reasons why the operation time is given more 

importance and is discussed at length in this study. 
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Fig.6 summarizes various methods that are currently adopted in the leak frequency estimation of HRS. 

The leak-rate estimation methods can be classified as follows: 

1. Qualitative method 

a. Leakage-type-based analysis (Sakamoto al., 2016) 

2. Quantitative method 

a. Leak-hole-size method (LaChance et al., 2009) 

b. Non-parametric method (Redbook, 1997) 

c. Time-based method (this study) 

Note: All of the above quantitative methods employ Bayesian update for leak data evaluation 

 
In this study, the models described above are analyzed to identify trends. Failure and operating data of 

HRSs are collected and analyzed in detail to estimate the leak rate using frequency (time series effect) 

and Bayesian based evaluation methods. The results will describe trends in the leak rate: whether they 

increase or decrease over operation time, or whether they are peaking and declining. Leak frequency 

estimations from various methods are examined with the present method to understand the different 

ways of modelling leak frequency. The algorithm based model implemented through statistical 

interpretation and WINBUGS tool provides a new way of dealing with accident data in safety and   risk 

management. The study results will help asset managers make an engineering judgement on the 

appropriate leak rate data of systems. 
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In addition, unrevealed leak time is calculated as a function of leak rate and inspection interval. 

Unrevealed leak time is one area within safety and risk management of hydrogen stations that has not 

yet been addressed in any research study. The authors believe that in addition to process safety time, 

unrevealed leak time is an equally critical parameter that needs to be considered in the engineering 

safety designs. It determines the time period when the leak exists at the installation due to an unrevealed 

leak failure. This is considered to be an important characteristic of HRSs. The quantitative insights of 

this study can be used to set performance standards for the availability and reliability of safety critical 

systems, such as leak detectors, during the operation and maintenance of the HRS. 

 
1.2 Leak data analysis 

 
1.2.1 Leak data evaluation at HRSs based on operation time 

 
In this case, the number of accidents (leaks) at an HRS over time was determined from the start of its 

operation. The term “leak rate” is used in this study in reference to the accident occurrence per unit time 

per HRS. “HRS operation start” denotes the start of HRS operation used in either test research or 

commercial operation. The operation start time of the HRS does not include the construction time of 

the HRS infrastructure. “Through operation time” indicates that the data is treated with the time elapsed 

from the start of operation. The accident count is based on the events listed in the high-pressure gas 

incidents database of The High-Pressure Gas Safety Institute of Japan (KHK, 2012). Operation time is 

the period between the operation start month and the accident occurrence month. In this study, a “month” 

signifies a unit of time measurement. 

 
Kodoth et al. (2018) has already collated data based on the events listed in the high-pressure gas 

incidents database (KHK, 2012) to determine the data uncertainty in accident rate estimation. The same 

data will be referred to in this paper, because the data source is common to both studies. In total, 26 

accidents were reported for these HRSs. The data source is limited to 35 MPa and 70 MPa systems. The 

original data contains information on when the station operated and when an accident happened for 

each HRS. The length of time that elapsed from the operation start time to the accident occurrence is 

calculated using these data. Although the starting periods differ among the stations, they are assumed 
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to be the same point for accident analysis. The unit of time is “month”. The accident count for each 

month is estimated as “[Event count per station-month]”. 

 
However, the data collated from the database by Kodoth et al. (2018) contain many no-accident months. 

The statistical model that will be introduced in Sections 1.3.2.1 and 1.3.2.2, in which the function f(x) 

describes each month’s accident rate, is not suitable for the original data, which contains many no-

accident months. Consequently, the input data were modified as follows: if the first accident occurred 

in the second operation month, it is distributed evenly over the first and second operation months, 

resulting in the input accident count for each month being 0.5 [event per (station-month)]. In brief, the 

number of accidents in an operation month is divided by the length of the non-accident period starting 

from the earlier accident and is estimated as the average accident input data over the period. 

 
The converted input data are shown in Fig.7. A relatively large value for the input data corresponds to 

accidents in rapid succession, whereas a relatively small value for the input data corresponds to 

accidents occurring over a long period. Although the data presented in Fig.7 are similar to the original 

data collated by Kodoth et al. (2018), note that there is no zero-accident month in Fig.7. This study 

emphasis lack of data treatment and re-organizing them to make it suitable for the model. 
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1.3 Methods for estimation and interpretation of leak rate 
 

In this section, two statistical models (Lognormal and Weibull) are applied to the time series station 

events data in order to understand their characteristics. As each model has a different application, 

suitable care should be taken to apply the correct model to the data.  

1.3.1 Flow of accident rate analysis as a function of time 

The flow of accident rate analysis by function of time is shown in Fig.8. The analysis flow is divided 

into the two parts. Part 1 is related to organizing data in the format suitable to the model. The input data 

(referring to accident data in Fig 7) is analyzed by operation time (mean). Input data is given as an input 

to Part II. Part II performs statistical analysis based on the model described in Section 1.3.2. The output 

from the model is the posterior data. 

1. Part I: Input data preparation for statistical analysis software - Data processing is needed in accident 

analysis using either the log-normal function or the Weibull function of time. The prior distribution 

for the dataset is represented in Fig.7. The prior data reported is given as an input to the model. 

2. Part II: Statistical analysis using WINBUGS software (Ntzoufras, 2009) - Using the prior (input) 

data, the accident rate for each month is estimated. The model in WINBUGS is written in a series 

of commands as shown in Appendix A/B. 

 

Figure. 8. Flow of analysis using the log-normal function or Weibull function of time 
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1.3.2 Estimation of leak rate based on time function 

In the early stages of a hydrogen station’s operation, human factors can cause accidents because workers 

may not operate or maintain the system well, and this may cause frequent accidents. During the 

intermediate stages of the operation, equipment component failures may cause leaks. Thus, the leak rate 

can be considered to be variable. This is similar to the bathtub curve used in reliability engineering. It 

is intuitively supposed that when computing leak data, as shown in Fig.7, the result of the early 

operation period is reliable, but the estimation of the late operation period is not very convincing. The 

conditionally autoregressive (CAR) model described in Kubo (2014), which is often used to describe 

spatial correlations, is suitable for application to these data (Barua, 2014). 

 
It should be noted that the question is not whether the leak rate is constant. Perhaps, the method of 

estimation and modelling of the leak rate leads to the differences. The non-parametric method presented 

in Redbook treats “leak rate” as a constant value. However, the leak rate under certain conditions can 

change with time, which will not be taken into account in that method. If the constant value is 

sufficiently appreciated, time series analysis need not be conducted. To estimate the leak rate change 

over time, two time-based methods are adopted in this study. Both methods use statistical models to 

describe the leak rate as a function of time (NIST, 2012). 

1.3.2.1 Leak rate description by function of time: A log-normal function 

First, a log-normal function is introduced that models the time-changing leak rate. The variable has a 

log-normal distribution if the logarithm of the variable follows the normal distribution. The probability 

density function for log-normally distributed positive x is shown in Eq. (1): 
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where, 

µ - Log-normal distribution mean value parameter 

σ - Log-normal distribution standard deviation parameter 

x - Positive random variable 

 

The accident rate f(x) is described by multiplying the function in Eq. (1) by a coefficient a: 
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In Eq. (2), coefficient a is multiplied by the original distribution. The operation time and leak rate 

correspond to x and f(x), respectively. A detailed explanation of estimation is presented in Appendix A. 

1.3.2.2 Leak rate description by function of time: Weibull function 

Weibull distribution can take a more flexible shape of a graph than the log-normal distribution, even a 

nearly constant one. In this case, estimation is conducted with the Weibull function instead of the log-

normal function. The probability density function for Weibull distributed positive x is shown in Eq. (3): 
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where, 

α - Weibull distribution shape parameter 

β - Weibull distribution scale parameter 

x – Positive random variable 

The equation applied to estimate the leak rate using the Weibull function model is shown below: 
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This is the function in Eq. (3) multiplied by coefficient a. As in Eq. (2), operation time and leak rate 

correspond to x and f (x), respectively. A detailed explanation of estimation is presented in Appendix B. 

1.4 Results and Discussions 
 

1.4.1 Leak rate estimation by time function: log-normal function 

The result of leak rate estimation via the log-normal function is shown in Fig.9. Although the estimated 

values are individual points for each month, they are represented using a smooth curve, as shown in the 

figure. 
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The horizontal axis in the graph of Fig.9 is the operation time from the beginning of the HRS. The 

vertical axis is the leak rate, i.e., the average number of accidents per station per month. In the graph 

legend, the expected value of the estimate (shown in black) is the value that the leak rate is expected to 

follow, and the 95% interval is the range within which the leak rate is likely to lie with a 95% credibility. 

For example, from the graph, the estimated 10th operation month’s expected value of leak rate is 0.0194 

[event per (station-month)]. In addition, because the lower bound of the 95% credible interval in the 

10th month is 0.01336 [event per (station-month)] and the upper bound is 0.0284 [event per (station-

month)], there is a 95% probability of the leak rate having a value between these two bounds. As shown 

in the graph, the peak of the expected value of estimation falls on the 10th and 11th month. The leak 

estimate of 0.0132 [event per (station-month)] is estimated by the lognormal type function. This equates 

to 0.16 leaks per year. 

1.4.2 Leak rate estimation by time function: Weibull function 

The result of the Weibull type function estimation is shown in Fig.10. The input data used are the same 

as that for log-normal function estimation. As with the log-normal curve, this estimation resulted in a 

smooth curve for the overall time. 
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From Fig.10, it can be observed that the expected value of estimation is virtually constant. Compared 

to the log-normal distribution, Weibull distribution’s form is flexible in accordance with the parameter 

value. Thus, the steady result may suggest that the leak rate does not increase or decrease gradually but 

has a virtually constant value. It should be noted that the selected input data might have an impact on 

the expected value estimated, as there are many periods with equal input data, for example, the data 

from the 5th to the 19th month. Processing of the input data may affect the result. A leak estimate of 

0.0134 [event per (station-month)] is estimated by the Weibull type function. 

1.4.3 Total leak rate estimation using a non-parametric approach with the Bayesian update 

A non-parametric approach was employed by Kodoth et al. (2019) to estimate the failure data of the 

HRS. It adopted a non-parametric analysis to estimate the leak frequency as a function of the number 

of fillings using JHFC data for 35 MPa systems (JHFC, 2011). To be consistent with the time-based 

approach, the non-parametric failure analysis results for the 35 MPa systems will be used as the initial 

data and succeeded by the Bayesian update approach for the 70 MPa systems in this study. Bayesian 

update is used to update the initial failure information and provide updated failure data based on new 

observations and evidences. This study employs the Bayesian update in accordance with the Dutch 

model (Redbook, 1997). The probability density function of gamma distribution takes the form, 

𝑓(𝑥) =
𝛽𝛼

Γ(𝑥)
𝑥𝛼−1𝑒−𝛽𝑥   for 𝑥 > 0                                                     (5) 
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Here, α and β of the parameters can be determined by the mean and variance of the prior failure rate. 

𝛼 =
𝐸(𝜆)2

𝑉(𝜆)
                                                                        (6) 

𝛽 =
𝐸(𝜆)

𝑉(𝜆)
                                                                        (7) 

The total failure rate 𝐸(𝜆) of 6.7 × 10−4 per day and its variance 𝑉(𝜆) of 6.0 × 10−8 per day estimated 

from Kodoth et al.’s (2019) findings will be used as prior knowledge in the Bayesian update. 

Substituting these figures in Eq. (6) and Eq. (7), the initial values of α and β are calculated to be 7.48 

and 11166, respectively. Bayesian update is performed by calculating the parameters of posterior 

distribution, α’ and β’ based on new observations summarized in Table 5. The parameters can be updated 

as follows: 

𝛼′ = 𝛼 + 𝑛𝑓                                                                       (8) 

𝛽′ = 𝛽 + 𝑇𝑠                                                                      (9) 

Here, nf is the number of failures and Ts is the observed time. By using Eq. (6–9), the posterior 

distribution’s mean and variance can be obtained from the updated parameters. Table 5 summarizes the 

number of accidents in the 70 MPa stations based on new observations. The observed time and number 

of leaks are collected from January 2011 to December 2015 extracted from the literature (KHK, 2015). 

Table 5. Accidents in the 70 MPa hydrogen refueling stations in Japan from 2011 to 2015 

 

 

 

 

 

 

 

Table 5 shows the updated leak rate and its variance for each station. Since the number of leaks for each 

station is one or two, Bayesian update depends on the prior distribution. When the total number of leaks 

and observed time are used as specific data for the 70 MPa stations, the updated leak rate is 1.1×10-3 

per day, which is about twice the leak rate estimated from other methods. 

ID Observed  
time [days] 

Number of  
leaks 

Leak rate [day-1] 
E(λ) V(λ) 

1 30 2 8.4×10-4 7.5×10-8 
2 50 1 7.5×10-4 6.7×10-8 
3 11 2 8.4×10-4 7.5×10-8 
4 409 1 7.3×10-4 7.0×10-8 
5 126 1 7.5×10-4 6.6×10-8 
6 2374 2 7.0×10-4 1.0×10-8 
7 1678 1 6.6×10-4 5.1×10-8 
8 1585 2 7.4×10-4 5.8×10-8 
9 71 1 7.5×10-4 6.7×10-8 

Sum. 6334 13 1.1×10-3 6.6×10-8 
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1.4.4 Summary of results from three methods 

The results from time series method can be verified with those of the other two methods to make an 

engineering judgement on the leak rate estimation. The obtained results are summarized as follows: 

1. Time-based method: The leak rate follows lognormal distribution with a mean value of 1.84×10-5 

per hour. The estimated leak rate as a function of time is 0.16 per year. 

2. Non-parametric (Bayesian) method: The leak frequency is estimated from failure data by means of 

Bayesian update. The total leak rate using the non-parametric approach is estimated to be 1.1×10-

3 per day, which is equivalent to 0.42 per year. This value is conservative and almost twice the leak 

rate compared to the results from other two methods. It should be noted that the initial data used in 

this approach and time based method is same however, the evidence (posterior data) of 70MPa for 

bayesian update is different from the time-based method. Based on the evidence, the result can vary 

by small to large margin. 

3. Leak-hole-size method: The observed failure data (collated from the JHFC project report) is 

associated with leaks from threaded joints and seals. Under such conditions, it is assumed that the 

failure rate is equivalent to the leak frequency. Most of the failures are classified as “very small 

leak” of which the leak area is 0.01% of the total flow area, and the system frequency can be 

estimated to be 0.20 per year in line with the study by LaChance et al. (2009). 

 
1.5 Unrevealed leak time forecast based on leak frequency estimation 
 

In general, an odorant is added to the gas (such as natural gas), to make it easy to detect leaks. However, 

pure hydrogen is used for FCV and it is not easy to detect a hydrogen leak. Then, the sensors used to 

detect hydrogen are used to detect leaks. Unrevealed leaks can occur at HRSs. There are two 

possibilities for hydrogen leak: either the leak will be detected by the hydrogen leak sensor within the 

inspection interval or the leak will not be revealed until the next scheduled inspection interval, as shown 

in Fig.11. Based on these two possibilities, the parameter of interest from a safety point of view is 

unrevealed leak time. 
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Figure 11. Inspection cycle for revealed and unrevealed leaks 

For unrevealed failures, the failures become obvious only after regular inspection. Unrevealed leak time 

is the difference from the point when the unrevealed leak occurs and the next inspection time. Failure 

probability is the measure of unreliability of the installation. The unavailability is the downtime of the 

process when the sensor detects the leak resulting in station shutdown. 

1.5.1 Unrevealed leak time based on leak rate estimate 

Using the leak estimate per station-month given by the lognormal type function from the previous 

section, the unrevealed leak time 𝑡𝑈𝐿 is obtained from the failure rate 𝜆 and inspection interval 𝑡𝑖. 

𝑡𝑈𝐿 = ∫ 𝜆(𝑡𝑖 − 𝑡)𝑑𝑡 =
1

2
𝜆𝑡𝑖

2 
𝑡𝑖

0
                                                      (10) 

The leak rate estimated value from the previous section is used as a basis for 𝜆. The unrevealed leak 

time forecast based on leak rate estimation and inspection interval is presented in Table 6. 

Table 6. Unrevealed leak time forecasts based on leak rate and inspection interval 

Methods Leak Rate (per year) Inspection Interval Unrevealed leak time  
Log-Normal (time-based) 0.16 Daily  19.08 s 
Weibull (time-based) Monthly 17043 s 
Non-parametric Analysis  0.42 Daily  49.70 s 

Monthly 44738 s 
Leak-Hole-Size Approach 0.20 Daily  21304 s 

Monthly 23.67 s 
 

The unrevealed leak time is directly proportional to the leak rate and inspection interval. For example, 

in the case of the time series method, when the leak rate is 0.16 per year and the inspection interval is 

24 h (daily inspection), the unrevealed leak time is 19.08 s. It means that hydrogen sensors are required 

                         𝑡𝑈𝐿           
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𝑡𝑖 
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to detect minor leaks at short intervals to reduce the unrevealed leak time. The unrevealed leak time 

using the non-parametric approach is estimated to be 49.70 s, which is conservative and almost twice 

the value compared to the results from other two methods. Perhaps this is due to the influence of 

evidence posterior data used in the non-parametric method for 70 MPa system. In leak hole size method, 

most of the failures are classified as “very small leak” of which the unrevealed leak time is estimated 

to be 23.67 s, which is significantly lower than the non-parametric method. In addition, for each method, 

the unrevealed leak time can increase drastically if the inspection interval is moved from daily to 

monthly routine. All these factors should be taken into account during the leak rate analysis and design 

of hydrogen sensors. The leak rate and unrevealed leak time data estimated with respect to inspection 

test in the paper can provide useful insights to engineers working in the reliability quantification of 

hydrogen energy system. 

 
1.6 Conclusions 

This study examined the manner in which the leak rates are modelled using various methods. A time-

based Bayesian estimate method was proposed, in which leak rates were modeled using operating time 

data on HRSs. One of the main results is that for the log-normal and Weibull models, the leak rate 

changes according to the time function. Parameters for the two statistical models were determined based 

on a Bayesian update. Even if accident events are rare, two statistical models can provide a range of 

leak rates as a function of time. The results from the time series method were then examined with other 

two methods to make an engineering judgement on the leak rate estimation. 

 

To summarize, the leak rate is estimated to be 0.16 per year, 0.20 per year, and 0.42 per year based on 

the time-based, leak-hole-size, and non-parametric methods, respectively. It can be observed that even 

though the values do not exactly match, there is no large margin between the results obtained by the 

time-based and leak-hole-size methods. However, the leak rate obtained from the non-parametric 

method is the most conservative among the three. Perhaps, this is because of the more frequent failures 

observed in the new evidences for the 70 MPa system. The leak rate data from the time-series method 

shows a similar trend with the non-parametric and leak-hole-size method. The asset manager can select 
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appropriate leak rate data based on the accident data and method availability. One of the possible 

solutions is to consider a conservative value for the design, in which case, the non-parametric model 

leak rate of 0.24 per year can be used. The base value selected can be used in design to set performance 

standards for the availability and reliability in the operation and maintenance of HRSs. 

 
Unrevealed leak time was assessed from the estimated leak frequency. It can be concluded that if the 

leak rate is estimated to be high, the inspection interval should be more frequent to reduce the 

unrevealed leak time and increase the process safety. The unrevealed leak time can be used to the 

specification of hydrogen sensors to detect leaks of hydrogen. This will ensure the component and 

process both meet the requirements in the performance standard, leading to increased process safety in 

HRSs. 
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Appendix 

Appendix A.  Detailed explanation of estimation using a log-normal time function 
 
This appendix gives a detailed explanation of Section 1.3.2.1. In order to calculate accident rate over time, 

each parameter in Eq. (2) is estimated to describe the accident data. In Eq. (2), parameters a, σ, and μ are 

considered random variables. Bayesian statistics estimate a parameter’s value by updating its distribution by 

some data; thus, each parameter is first given prior distribution. If prior information is available about these 

parameters, the prior distribution reflects this information and is usually called “informative prior” (e.g., 

(Bedrick, 1996)). In contrast, when there is no prior information, prior distribution with little information 

(e.g., normal distribution with mean zero and variance 104) is used as a “non-informative prior.” In this case, 

no prior information is available, and thus, a non-informative prior is used.  

 

The value for each parameter was estimated using the Bayesian statistics supporting software WinBUGS. 

To calculate the posterior distribution by updating the prior distribution with the accident data, WinBUGS 

uses Markov Chain Monte Carlo simulation, and it needs an initial value for each parameter. An appropriate 

initial value was chosen by judgement or automatically selected by software, and it was checked for 

calculation errors.  

 

For this estimation, the following Bayesian model is introduced. Note that other methods such as least 

squares fitting can also suffice and so there is no special reason to use the Bayesian model. However, using 

the Bayesian model often enables complex modeling and utilization of other information in addition to the 

observed data. The time-series accident rate is described by following logical relationship: 
 
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where, 

𝜆𝑗: expected value of accident rate for the jth month 

a: coefficient 

σ, μ: parameters of the log-normal function 

tj: jth operation time 

j: index of the operation time 
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Each month’s accident rate is considered as a random variable following the log-normal distribution below: 

λj ~ LN(μ2, j,τ)      (A2) 

where, 

λj: accident rate of the jth operation time tj 

LN(μ2, j,τ): log-normal distribution with mean μ2, j and inverse square of standard deviation τ 

µ2, j: expected value of the log-normal distribution of the accident rate for the jth operation month 

τ: inverse square of the standard deviation of the log-normal distribution 

To connect Eq. (A1) and (A2), the relation between parameter µ2, j and the expected value of accident rate 

𝜆𝑗 is utilized as follows: 
 




2
1ln,2  jj

      (A3) 

Prior distribution (“non-informative prior”) of each parameter is set as follows: 

a ~ Gamma(1,1) 

τ ~ Gamma(1,1) 

σ ~ Unif (0,10) 

μ ~ Unif (0,10) 

where, 

Gamma(a,b): gamma distribution with shape parameter a and rate parameter b 

Unif (a,b): uniform distribution with lower bound a and upper bound b 

Using this statistical model and the accident data, the accident rate was estimated as shown in Fig.9. 
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Appendix B.  Detailed explanation of estimation using a Weibull time function 

This appendix gives a detailed explanation of Section 1.3.2.2. It differs from Appendix A in its description 

of the time-series accident rate and each parameter’s prior distribution and initial value, but the flow of 

modeling and estimation are virtually the same as in Appendix A. Firstly, the time-series accident rate is 

described by following logical relationship: 
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     (B1) 

where, 

𝜆𝑗: expected value of the accident rate for the jth month 

a: coefficient 

α, β: parameters of the Weibull function 

tj: jth operation time 

j: index of the operation time 

 
Each month’s accident rate is considered as a random variable following the log-normal distribution below: 

λj ~ LN(μ2, j,τ)     (B2) 

where, 

λj: accident rate of operation time tj 

LN(μ,τ): log-normal distribution with mean μ and inverse square of standard deviation  τ 

µ2, j: expected value of the log-normal distribution of accident rate for jth operation month 

τ: inverse square of the standard deviation of the log-normal distribution 

 
To connect Eq. (B1) and (B2), the relation between parameter µ2, j and the expected value of accident rate 𝜆𝑗 
is utilized as follows: 

 



2
1ln,2  jj

     (B3) 

Prior distribution (“non-informative prior”) of each parameter is set as follows: 

a ~ Gamma(1,0.00001) 

α ~ Gamma(0.1,0.00001) 

β ~ Gamma(0.1,0.00001) 

τ ~ Gamma(1,0.00001) 

where, 

Gamma(a,b): gamma distribution with shape parameter a and rate parameter b 

Using this statistical model and the accident data, the accident rate was estimated, as shown in Fig.10. 
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CASE STUDY 2. Evaluating Uncertainty in Accident Rate Estimation at Hydrogen 

Refueling Station using Time Correlation Model 
 

2.1 Introduction 
 

Collecting data about accidents in the past will provide a hint to understand the trend in the possibility 

of accidents occurrence by identifying its operation time However, in new technology; accident rate 

estimation can have a high degree of uncertainty due to absence of major accident direct data in the late 

operational period. The uncertainty in the estimation is proportional to the data unavailability, which 

increases over long operation period due to decrease in number of stations. This case study utilizes the 

originality of the research through treatment of uncertainties due to lack of data in risk and reliability 

quantification for new technology system. To address this issue, a suitable time correlation model is 

adopted in the estimation to reflect lack (due to the limited operation period of HRS) or abundance of 

accident data.  

 
There is a possibility of abnormal events occurring at an HRS due to increased activities and operations 

performed at the HRS. In Japan, as HRSs store and dispense hydrogen are at a relatively high pressure, 

they are controlled by the High Pressure Gas Safety Act. Accident information such as hydrogen leakage 

at an HRS is available in the high-pressure gas incidents database of The High Pressure Gas Safety 

Institute of Japan (KHK, 2016). This database contains a compilation of high-pressure gas accidents, 

including the accident information for HRSs. In the law, explosions, fires, spouting or leak, rupture or 

damage, and loss or burglary are defined as “accidents” (METI, 2017). One of the characteristics of 

HRS accidents in Japan is that a high percentage of leak accidents occur at the joint section of the pipe 

(Sakamoto et al., 2016). Note that even a small leakage has to be reported based on the guidelines 

described in the High Pressure Gas Safety Act. This is because in the case of hydrogen fuel, even a 

small leak can lead to catastrophic events. In this study, “accident” refers to that defined in the High 

Pressure Gas Safety Act. Considering the accident statistics of natural gas stations, there are concerns 

that HRS accidents may increase as more HRSs are implemented in the future (Yamada et al., 2015). 
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Focusing on the HRS operation time from its start may reveal important characteristic of accident 

occurrence. In other words, collecting data about accidents in the past will provide a hint to understand 

the trend in the possibility of accidents occurring by identifying its operation time. However, the 

estimation of accident rate is only as good as the data availability. Under such circumstances, addressing 

uncertainty in the statistical data through time series effect is important. In this study, a suitable time 

correlation model is adopted in the estimation to reflect lack (due to the limited operation period of 

HRS) or abundance of accident data, which is not well supported by conventional approaches. The 

model adopted in this study shows that the uncertainty in the estimation increases when the operation 

time is long owing to the decreasing data. 

 
2.1.1 Relevant safety studies 

 
There are recent quantitative risk assessment (QRA) studies on hydrogen refueling stations and storage 

infrastructure to consider the application of accident scenario modelling (Dadashzadeh et al., 2018). 

The first step in the risk analysis is to conduct hazard and operability (HAZOP) study to liquid hydrogen 

fueling station (Jones, 1984). Failure mode and effects analysis (FMEA) is then reported for hydrogen 

fueling systems to understand component failures and their effects on the system. These two techniques 

are used in a study that performed the FMEA and HAZOP to identify possible accident scenarios for 

liquid hydrogen fueling station (Kikukawa et al., 2009). Pasman and Rogers (2012) performed risk 

assessment for compressed and liquefied hydrogen transportation and tank station by means of Bayesian 

networks. Nakayama et al. (2016) carried out the preliminary hazard identification to a hybrid gasoline-

hydrogen fueling station with an on-site hydrogen production system using organic chemical hydride. 

 

Studies have also been performed on HRS accident and leak frequency by major organizations such as 

Sandia National Laboratories (LaChance et al., 2009a). There are few research studys discussing on the 

application of accident scenario frequency modelling in risk analysis (Esmaeil et al., 2017; Nima et al., 

2014; Ali et al., 2014). Accident rate estimation can provide a crucial input to Quantitative risk 

assessment (QRA) to quantify risks numerically. Matthijsen et al. (2006) performed risk assessment of 

hydrogen filling stations with the generic data taken from references (Schüller et al., 1997). LaChance 
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et al. (2009b) performed QRA to determine separation distances for hydrogen refueling stations. 

Tsunemi et al. (2017) estimated consequence and damage caused by an organic hydride hydrogen 

refueling station numerically. 

 
Risks are measured from the combination of frequencies and consequences of the scenarios. Estimation 

of accident rates provides a key input to reliability and risk assessment quantification. Unfortunately, 

however, hydrogen failure data is extremely limited. One possible way is to use surrogate failure data 

from other settings such as commercial nuclear power plants, chemical plants, and offshore oil and 

natural gas platforms (Schüller et al., 1997). A study uses the fault tree analysis (FTA) to determine 

frequency of the accident scenarios based on generic failure data (Casamirra et al., 2009). Another way 

is to employ a Bayesian statistical approach to estimation of failure rate from prior accident data. A 

study developed a Bayesian model to estimate leak frequency leading to accidents in various 

components used in a hydrogen refueling stations (LaChance et al., 2009a). 

 
2.2 Objective 

 

Accident rate estimation plays a vital role in the determination of the occurrence frequency of the 

accidental scenarios. The work can conclude whether the refueling station taken into consideration is 

safe enough from frequency point of view or any additional refined studies are required. However, a 

drawback in the analysis could be lack of experience and the scarcity of the relevant data collection 

(Casamirra et al., 2009). The data scarcity drawback can be solved by understanding the uncertainty in 

the estimation due to data unavailability. 

 

Compared to the risk analysis, the accident data uncertainty has not been so well‐established, partly due 

to low probabilities involved and partly due to the complexity of such accidents (Nima et al., 2014). 

For this purpose, we have introduced a study on the accident data uncertainty based on time correlation 

model. This is also one of the reasons for using operation time as the basis of analysis in this study. This 

study estimates the uncertainty and accident rate by time correlation model that are fundamental to the 

challenge of lack of data, and not been addressed in previous models. This new way of dealing with and 

interpreting accident information can be utilized to evaluate new systems such as HRS in the future. 
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2.2.1 Accident data evaluation at HRSs based on operation time 
 

The accident data for HRS is collected and counted based on the events listed in the high-pressure gas 

incidents database (KHK, 2016). The number of accidents at an HRS over time from the start of its 

operation is determined. “HRS operation start” denotes the start of operation of the HRS used in either 

test research, or commercial operation. The operation start time of the HRS does not include the time 

the HRS infrastructure was built. Operation time is the period between the operation start month and 

the accident occurrence month. This study uses “month” as the unit of time measurement. 

 

Thirty-four HRSs operating from 2002 to 2014 in Japan, including onsite and offsite type, for test 

research and commercial use, were investigated. The operation start time for all HRSs is considered 

together at the same time in the analysis. The overall number of accidents recorded for these HRSs is 

26. Out of these 26 accidents, 23 accidents resulted in leakage, 3 accidents resulted in explosion. Further 

details on the operating time and accident information for each of the 26 accidents is provided in 

Appendix C. 

 

Firstly, the accident data for each HRS were investigated with respect to operation time and summed 

for total accidents, as shown in Fig. 12. 
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Figure 12. Accidents in HRS by operation time (total count)
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The graph in Fig. 12 can be categorized into the following three cases: 

 Case I: Events occurred in the short period. Looking across the operation time, some event occurred 

in short period (i.e., 10 accidents in the first 24 months). 

 Case II: Events occurring at the intermediate operation time. This includes 10 accidents that 

occurred between the 25th month and the 85th month. 

 Case III: Events occurring at the later operational time. This includes 6 accidents that occurred 

between the 86th month and the 144th month. 

 

Note that the length of operation for each station differs; hence, the number of stations differ at each 

operation time (Fig.13). For example, there are 15 stations at the 50th month, but only 7 remaining at 

the 100th month. Fig.13 shows the number of existing stations at each operation month. It can be 

concluded from the below chart that the data availability is decreasing with increasing operation period. 

 

Figure 13. Number of stations operating in each month 

 

The next step is to divide accident counts by the number of existing stations. Dividing the accident 

count by the number of existing stations results in the mean accident count shown in Fig.14. The trend 

in Fig.14 is an increase in accidents in the later operation time, but this is because the number of stations 

has decreased. The accident data is available up to 122 months based on the high-pressure gas incident 

database (KHK, 2016). However, this study analyses data up to 144 months. 
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There are several drawbacks in the data represented in Fig.14. These are: 

1. The data availability is decreasing over time due to less number of existing stations. This 

introduces large uncertainty in the estimation at the late operational period. 

2. The data collected from multiple HRSs is that each station has dissimilar operation period. The 

availability of data varies for two stations with different operating hours. For e.g. a station 

operated for 1 year will have limited data compared to the station operated for 10 years. This 

implies that the data are all mixed and not based on common requirements. This leads to a large 

uncertainty in the result after modelling theory is applied. 

3. There is no accident data between some months. For e.g. there is no accident data between 

25thmonth to 38th month. 

 
2.3 Method of uncertainty evaluation 

 
2.3.1 Application of intrinsic CAR model to estimate Uncertainty  

 

In order to address the above issue, conditionally autoregressive (CAR) model is applied (Kubo, 2012). 

Conditional autoregressive (CAR) model is a graphical or network model designed to specifically 

model spatially auto correlated data based on neighborhood relationships (Barua et al., 2014). Due to 

its benefit to describe spatial correlations, it is suitable for application to accident data such as in Fig.14. 

As observed in Fig.14, there are missing data for several months which can lead to uncertainty in 

accident rate estimation. Prediction of random variable in off-sample (missing) areas using is 
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Figure 14. Accidents in an HRS by operation time (mean)
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unambiguous since it is not obvious how to specify the adjacent structure of just the in-sample 

(observed) areas ignoring the off-sample areas. As illustrated by Banerjee et al. (2004) for the case of a 

CAR model fitted to point level (rather than area) data, prediction at a missing location can be achieved 

by constructing a CAR model for the full set of observed and missing location. In this study, a CAR 

model is specified for the full set of spatial random variable in the in-sample and off-sample areas, and 

simply treat the response data in the off-sample areas as missing. This leads to a modified set of full 

conditional distributions for the spatial random effects in off-sample areas in the Markov Chain Monte 

Carlo (MCMC) scheme used to estimate the posterior distribution (Kubo, 2012). This study utilizes this 

method to estimate uncertainty in the accident data. The accident rate is estimated to have similar value 

to the adjacent month by utilizing the intrinsic Gaussian CAR model. The variable under observation 

are assumed to follow Poisson, and autocorrelation is modelled by a set of random effects that are 

assigned a CAR prior distribution (Bedrick et al., 1996) 

 
2.3.2 Accident rate description using time correlation model 
 

The problem that arises when using time series data collected from multiple HRSs is that each station 

has dissimilar operation period. The availability of data varies for two stations with different operating 

hours. For e.g. a station operated for 1 year will have limited data compared to the station operated for 

10 years. It is intuitively supposed that when computing accident data shown in Fig.13, the result of the 

early operation period is reliable, however the estimation of the late operation period is not very 

convincing. 

 

In order to address the above issue, CAR model is applied. Firstly, in the case of the 34 HRSs with 

accident data, the start operation time for all stations are considered together. However, the numbers of 

accidents for the stations are not summed; instead, they are treated separately for each station. Accident 

occurrence is modelled using Poisson distribution for each month per station. Poisson distribution has 

been found advantageous for describing count data (i.e., 0, 1, 2 …) for each month and each station 

(Fairos et al., 2010). Thus, accident rate on ith month for jth station is considered as a random variable 

following the Poisson distribution: 
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                                       Yi, j ~ Poisson (λi) (11) 

where, 

Yi,j: accident occurrence for each month per station 

i:    operation time index  

j:  station index 

λi:  expected value of the Poisson distribution of the accident rate for each month 

 
In addition, to make changes with time, the mean of the Poisson distribution is considered and described 

using two parameters, β and ri. The β parameter considers the overall-time accident rate whereas the ri 

parameter considers only the individual month’s accident rate. It takes the form of the generalized linear 

model shown in Eq. (12), where the left-side function is called the logarithmic link function and the 

right side is called the linear predictor. 

 
Here, the expected value of the accident rate λi is described by generalized linear model below: 

                                           Log (λi) = β + ri (12) 

where, 

Log (λi): logarithmic link function of λi 

Β: global parameter and 

ri:: local parameter 

 
The characteristic of this model is such that the accident rate may change; however, the value is 

relatively similar to the adjacent month. Time correlation was set to the statistical model by utilizing 

the intrinsic Gaussian CAR model. In this model, each local parameter ri does not take a value 

independently. To connect each local parameter ri, their prior distribution must be described by Eq. (13). 

The local parameter ri follows the prior distribution given that μi is true. μi is calculated as equal to the 

mean of two values, ri-1 and ri +1, of the adjacent operation time. Parameter s represents the overall 

dispersion. If s is small, ri does not vary widely and the accident rate is smooth overall. Conversely, if 

s is large, ri varies widely and the accident rate fluctuates significantly. Equations (13) and (14) are 

applied to estimate the accident rate using the time correlation model. In the simplest form, the density 
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of an intrinsic CAR model for r = (r1…rn) is 
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where, 

μi is the mean of the value of the two local parameters  ri -1 and ri +1 

s is the parameter representing overall dispersion. It is the precision parameter that determines the 

amount of smoothing and it is commonly estimated from data 

 

In other words, the prior distribution of the ith local parameter ri should be a normal distribution with 

mean μi and standard deviation 𝑠 √𝑛𝑖⁄ . The prior distribution (“non-informative prior”) of the other 

parameter is set as follows: 

β ~ N (0,0.0001) 

s ~ Unif (0, 10000) 

 

where, 

N(μ,τ): normal distribution with mean μ and inverse square of its standard deviation τ 

Unif (a,b): uniform distribution with lower bound a and upper bound b 

 
2.3.3 Flow of accident rate analysis using the conditional autoregressive model 
 
The flow of accident rate analysis using the conditional autoregressive model is shown in Fig.15. The 

analysis flow is divided into the two parts. Part 1 is related to organizing data in the format suitable to 

the model. Part II performs statistical analysis based on the model described in Section 2.3.2. 
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Figure 15. Flow of analysis using conditional autoregressive model 

 
Part I: Input data preparation for statistical analysis software - Unlike accident rate analysis using 

traditional method, data processing is not needed in the conditional autoregressive model. This means 

the statistical data shown in Fig.14 can be directly used as an input data to CAR model without any data 

processing. The prior distribution for the dataset is represented in Fig.14. The prior (input) data reported 

is given as an input to the model. However, the important thing to note is that there are several problems 

associated with the prior data. There are some months with no accident and operation period is different 

for each HRS. 

 

Part II: Statistical analysis using WINBUGS software - Using the prior (input) data, the accident rate 

for each month is estimated. To calculate the accident rate through updating of the prior distribution 

with the accident data, WinBUGS uses Markov Chain Monte Carlo simulation, and it needs an initial 

value for each parameter. The model in WINBUGS is written in a series of commands. The statistical 

model used in this study will overcome the problems by: 

1. Estimating accident rate for each month by the condition that the adjacent accident rate is 

similar to each other 

2. Estimating uncertainty associated with data over operation period 
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The model output is obtained from the WINBUGS and is represented in the form posterior distribution. 

The posterior distribution is further analyzed to understand the uncertainty associated with the data. 

Fig.16 shows a posterior output from the model and thereafter several comparisons and conclusions are 

made. 

2.4 Results - Accident rate Estimation and Uncertainty Analysis 
 

The interpretation from the outcome of this model is important. The accident rate estimation provided 

by the time correlation model is based on the interpretation of the reality. The accident rate estimation 

using the lognormal type function or Weibull function estimates the accident rate change over time. 

This model estimates the accident rate per month, and is constrained by the condition that the adjacent 

accident rate is similar to each other. 

 

In Fig.16 the results of accident rate for each month have been plotted. The distribution shows the 

expected (mean) value of the accident rate for each month. In addition to the mean value, the upper 

bound and lower bound of 95% credible interval are plotted in the same distribution.   The three peaks 

obtained in Fig.16 can be related to the 3 cases described in section 2.2. Peak 1 is a result of events 

occurring in the short period. i.e., seven accidents in the first four months. Peak 2 is a result of events 

occurring at intermediate operation time. Finally, Peak 3 is a result of events occurring at late 

operational time. This model approximates accident data for some months that originally does not have 

any accident data. The estimated accident data for each month is adjacent to its predecessor month 

thereby obtaining non-discrete distribution. 

 

In addition to the uncertainty estimation, the graph in Fig.16 has two main differences compared to 

Fig.14. Firstly, the bar graph in Fig.14 shows only discrete values whereas in Fig.16, the graph is 

continuous without any gaps in the data between each stations. Secondly, no-accident months exist in 

Fig.14, whereas in Fig.16, each month has a positive value. Thirdly, in Fig.14, the bar graph does not 

define the probability of accident occurrence. 
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It can also be noticed that the credible interval is narrower during the start operation period of the HRS. 

Remarkably, the credible interval tends to expand as the operation time elapses. This is because the 

amount of available data decreases as the operation time increases, as mentioned in Section 2.2.  There 

is a wider distortion between the expected value and lower/upper bound credible interval at the late 

operational period for e.g. after 80th operating month. The wider the credible interval, the higher 

uncertainty in the accident rate estimation. In order to demonstrate this numerically, we have assigned 

an error factor (EF) which is the difference between the upper bound and lower bound. Error factor as 

defined in the red book on probability estimation is given by (Schüller et al., 1997): 

                         𝐸𝐹 =  √
x’0.95

x’0.05
                                                                        (15) 

Where, 

x’0.95 = upper bound of 95% credible interval 

x’0.05 = lower bound of 95% credible interval 
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Figure 16. Results - Accident rate in an average HRS across its operation 
time, estimated using the intrinsic Gaussian conditional autoregressive model
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Figure 17. Result and Interpretation – Evaluation of Uncertainty by means of Error Factor 

 
The result of the error factor starting from 1st month till 144th month is shown in Fig.17. The lower 

bound and upper bound of accident rate for each month can be calculated from Fig.16. The plotting of 

error factor vs operation month is shown in Fig.17. As the original data has random data for each month 

with some months having no data, the graph is non-uniform. The operation time is divided into early, 

intermediate, late operation period based on the 3 cases categorized in section 2.2. An interpretation of 

the results is developed using approximate curve as shown by solid line. The solid line is taken as the 

linear smooth curve from the plotted points. This shows an increasing trend for error factor over the 

operation month. The error factor can be related to decreasing data over the longer operation period. 

The average error factor is less than 10 from the beginning of the operation period until the mid-

operation month i.e. till 72th month approximately. However in the late operation period, it can be 

noticed that the error factor shoots well above 10 pointing towards higher uncertainty in the data as a 

result of no enough data available during that period. 

 

Furthermore, using CAR model offers some advantageous such as it can directly use accident data of 

HRS with different lengths of operation month without any data processing. In CAR model, the total 

number of HRSs is not considered. Even though the number can be more or less than reality, the result 

is not significantly affected. However, less information than target may cause uncertainty in the 

estimation. 

0
2
4
6
8

10
12
14
16
18
20

0 20 40 60 80 100 120 140

Er
ro

r F
ac

to
r

Operation time [month]

Dotted Line: Actual Error factor
Solid Line: Approximated Curve

Early period Intermediate period Late operation period

Error factor = 10 at 72th month



 
 

102 
 

2.5 Conclusions 
 

This study examined the manner in which accident rate is modelled for HRSs. Unlike conventional 

statistical models in which the accident rate changes according to overall time function, CAR model 

estimates the accident rate per month, and is constrained by the condition that the adjacent accident rate 

is similar to each other. Another result is that of the intrinsic Gaussian CAR model, which represents 

the uncertainty in the estimation due to lack of data. The CAR result succeeded in showing that the 

uncertainty in the estimation increases when the operation time is long owing to the decreasing data. 

 
A model with accident rate following the intrinsic Gaussian conditional autoregressive model has 

following advantages: 

 Suitable to show the estimate uncertainty is increasing owing to lack of data 

 Estimates the accident rate per month and thus the graph is continuous without any gaps in the data 

between stations 

 Support in decision making for new process systems 
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Appendix C. Detailed explanation of 26 accidents collated from database (KHK, 2016) 
 

ID 
Acc. Code 

(KHK-ID) 
Accident Name 

Failure 

Date 

Number  of 

elapsed 

months   

1 2005-120 Hydrogen leakage from filling hose 13-05-2005 2 

2 2005-222 Hydrogen leakage at hydrogen station 28-07-2005 4 

3 2005-415 Explosion of hydrogen at hydrogen station 07-12-2005 1 

4 2006-216 Hydrogen leakage at hydrogen station 17-06-2006 39 

5 2006-433 Hydrogen leakage in compressed hydrogen gas 24-10-2006 3 

6 2007-532 Hydrogen gas leakage accident 17-10-2007 55 

7 2007-557 Hydrogen gas leakage accident 07-08-2007 51 

8 2007-574 Hydrogen gas leakage accident 28-09-2007 51 

9 2010-122 Hydrogen leakage from filling hose during filling operation 12-05-2010 2 

10 

2010-135 

Inhalation of hydrogen station, hydrogen leakage from 

discharge valve mounting part 

15-06-2010 

87 

11 2011-066 Hydrogen leakage from dispenser joint due to earthquake 12-03-2011 3 

12 

2012-090 

Hydrogen leakage from the cap nut of the connection part of 

the card 

09-04-2012 

16 

13 2012-224 Hydrogen leakage from hydrogen station pressure gauge 10-07-2012 62 

14 

2012-226 

Leakage from hydrogen station dispenser and hose 

attachment 

18-07-2012 

16 

15 2012-314 Leakage from valve mounting part of hydrogen stand 17-10-2012 22 

16 2012-339 Hydrogen leakage from the valve connection 05-11-2012 114 

17 

2012-362 

Hydrogen leakage from the check screw ground thread 

portion of compressor discharge 

30-10-2012 

112 

18 2013-037 Hydrogen leakage from the accumulator base valve 06-02-2013 119 

19 

2013-063 

Leakage from liquid hydrogen receiving lower valve at 

hydrogen station 

09-03-2013 

117 

20 

2013-115 

Leakage from overflow preventing valve connection of 

hydrogen station 

22-05-2013 

1 

21 2014-173 Hydrogen leakage from the shutoff valve 03-07-2014 52 

22 

2014-182 

Hydrogen leakage from filling hose after completion of 

filling test 

17-07-2014 

52 

23 

2014-299 

Hydrogen leakage from the connecting part of the 

compressor unit 

24-10-2014 

43 

24 2014-349 Explosion during inspection of opening of accumulator 09-12-2014   45 

25 2013-356 Hydrogen leakage from suction valve of compressor 31-07-2013 122 

26 2013-376 Rupture of hydrogen filled hose during filling test 03-12-2013 45 

http://www.khk.or.jp/activities/incident_investigation/hpg_incident/pdf/2005-415.pdf
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CASE STUDY 3. Verification of appropriate life parameters in risk and reliability 

quantifications of process hazards 
 
3.1 Introduction 
 

Verification of QRA can be performed in several ways. One of the method is to verify the selection of 

appropriate parameters in risk assessment. This case study is chosen to support the core concept of the 

research by focusing on mainly two aspects: i.e. new technology system and verification of uncertainties 

in risk and reliability quantification. This case study utilizes the originality of the research through 

treatment of uncertainties in the field of risk and reliability quantification by verification of appropriate 

parameters for new technology system. 

 
QRA methods contain a large amount of uncertainty due to the lack of field failure data. This recognizes 

a need of collecting sufficient and improved reliability data for new technology systems (Rademaeker 

et al., 2014) .The verification and validation of QRA has become a great concern to public acceptance 

of HRSs. The validity of QRA was reviewed by Goerlandt et al. (2016). Generic validity approaches 

such as benchmark tests have been proposed, but it was pointed out that an evidence-based approach is 

needed to support the validity of QRA results. 

 
Moreover, failure frequency estimation is one of the important measures of risk quantification. In 

traditional reliability assessment, mean time to failure (MTTF) is one of the most common approaches 

to field failure data analysis. MTTF is a unit of measuring reliability that treats failure as a constant 

value. It can lead to uncertainty because process failures are not always constant in nature. For example, 

gradual deterioration of process vessel, cylinder corrosion or erosion of pipelines are non-constant 

failures in reality. This kind of failures should not be measured using MTTF concept which at the 

moment not all industries follow. This makes it critically important to use the correct parameters for 

accurate reliability estimation. 

 
In the past, Sandia National Laboratories reported on hydrogen leak frequency for HRSs (LaChance et 

al., 2009). They used the Bayes approach for statistical modeling to determine hydrogen leak frequency 

data in refueling facilities. In the report, leak frequency is determined through a functional relationship 
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between leak size and leak frequency. In other words, a part of a pipe is likely to have more small hole 

leaks than a large hole leak (Sakamoto et al., 2016). The present study uses a different approach 

compared to the leak size approach as it expresses failure rate with respect to survival time and number 

of fillings. 

This study discusses verification of appropriate parameter in failure estimation and its influence on the 

reliability assessment to offset the limitations associated with data scarcity and QRA uncertainty 

problems. Selection of the appropriate parameter in reliability assessment can be one of the possible 

ways to verify and validate the accuracy of QRA results. Field failure data of hydrogen refueling stations 

(HRS) is used as a case study to compare failure analysis based on two parameters i.e. survival time vs. 

number of fillings at the station. A non-parametric approach is used to estimate cumulative failure 

function based on number of fillings. The cumulative hazard using the Nelson-Aalen estimator showed 

a linear relationship with the number of fillings. A parametric approach using 2-parameters (β and η) 

Weibull distribution function is employed to estimate cumulative probability of failure with the survival 

time. The present study demonstrates that the failure rate can vary by a small to large margin based on 

the life parameter chosen for reliability predictions. Accordingly, the objectives of this study are as 

follows: 

1) Estimate the failure rate based on the number of fillings and survival time of HRS. 

2) Employ a non-parametric approach to estimate cumulative failure as a function of no. of fillings. 

3) Use a parametric approach to estimate cumulative failure as a function of survival time. 

4) Compare both parameters to choose correct life parameter for reliability quantification. 

 

3.2 Analysis of failure data 
 

Analysis of failure data has been carried out based on the hydrogen and accident reports. When an 

accident takes place with respect to the high-pressure gas, a notification report shall be submitted to the 

prefectural governor or law enforcement pursuant to the High Pressure Gas Act (METI, 2017). 

According to the law, the accident is classified as follows:(i) Explosion, (ii) Fire, (iii) Leak, (iv) 

Degradation, (v) Others. In this study, the Japan Hydrogen and Fuel Cell Demonstration Project (JHFC) 

data source was used to collect failure and operating data. JHFC demonstration project was mainly 

carried on 35MPa systems built to study HRS related accidents. Thus, accidents reported during the 
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demonstration phase of HRSs is related to 35MPa systems. It should be noted that the estimated failure 

rate depends on failure data of 35 MPa systems and not 70 MPa commercial systems. 

3.2.1 Description of the Japan Hydrogen and Fuel Cell (JHFC) Demonstration Project 
 

Data for estimation of failure rates are taken from the reports of the Japan Hydrogen and Fuel Cell 

Demonstration Project (JHFC). JHFC is a demonstration project sponsored by the Minister of Economy, 

Trade and Industry (METI) and started in Fiscal year (FY) 2002 (JHFC, 2011). HRS is a relatively new 

technology and thus the failure data is extremely limited. The data collected from the demonstration 

project report considers a total of 28 stations. These 28 stations, which includes three corporation 

stations, were established and operated to collect operating data from FY2002 to FY2013 (NEDO, 

2014). Seventeen failure data (i.e.17 failure events) were collected from FY2002 to FY2013. The 

number of fillings and survival days to failure are calculated from the failure date. Censored data are 

also collected from the stations without a failure until the end of FY2013. The failure data of all 28 

stations collated from JHFC report is listed in Appendix D. 

 
3.3 Methods 
 

In this section, various parameter-based models are applied to refueling stations’ accident data to 

understand their characteristics. As each model has a different application, care should be taken to apply 

the correct model to the data. For this reason, the models are compared. 

3.3.1 Estimation of failure rate, (t), based on assumed constancy over time 
 

Herein, the failure rate is estimated based on the assumption that it remains constant over time. 

Accordingly, the failure rate () is calculated by dividing the total number of failures by the total 

survival time. Here, the sum of all failures that occurred, (namely, 17 failure events) in 28 hydrogen 

fueling stations (S1, S2… S28) represents the total failure count ‘Y’, and the whole survival time for 

each station is summed up to give the total survival time ‘T’. The total failure count ‘Y’ is divided by 

the total survival time ‘T’ to yield the average failure rate (λ) as described by Eq. (16): 

              λ(𝑡)=  
𝑌

𝑇
 =

17 [failure events]
127.69 [survival years]

 = 0.13 [failure events/(station-year)]       (16) 

In Eq. (16), the calculated value of 0.13 can be viewed as the average value for all 28 stations. Assuming 
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that this failure rate is constant over time, the number of failures can be predicted. In this case, it is 

about one failure in 7.69 years. 

 
One of the studies associated with constant failure over time was conducted by JANSI (2009) that 

focused on an estimation method for failure rate calculated the equipment failure rates of a Japanese 

nuclear power plant from its probabilistic risk assessment (PRA). Japan Nuclear Technology Institute 

employed the Bayesian methodology to enable the uncertainty band of failure rate to be updateable with 

data storing, which until then had a fixed value (JANSI, 2017). This methodology is also used in the 

latest report (Jones, 1984). The report by Jones (1984) considers the failure rate to be constant over time 

and the probabilistic variance is updated by new data. In addition, the observation probability {p} is 

taken into account for the purpose of failure rate estimation. In cases where abundant and reliable field 

failure data and operating time data are available and operating time, then  Eq. (16) can be applied to 

calculate the failure rate. 

 

3.3.2 Non-Parametric Distribution Analysis using Nelson-Aalen estimate 
 

Total failure rate of components and systems in HRS was estimated from JHFC data (NEDO, 2014). 

JHFC reported not only failure data but also operating data such as the total number of fillings per 

month. The easiest method to apply this non-parametric approach is to divide the total number of 

failures by the total number of fillings. Here, the sum of all failures that occurred, i.e. 17, in 28 hydrogen 

fueling stations defines the total failure count ‘Y,’ and the total number of fillings for each station is 

summed up into a total number of fillings ‘N.’ The total failure count Y is then divided by the total 

number of fillings N to calculate the average failure rate per fillings ‘f (n)’ as described by Eq. (17). 

𝑓(𝑛) = 
Y
N

 =
17 [failure events]

24063 [number of fillings]
 = 0.0007 [failure events/(filling)]               (17) 

 

The number of fillings and survival time data can be collated to understand the number of fillings 

performed per day at a station. The number of fillings per day is calculated as described by Eq. (18). 

𝑛𝑎 =
24063 [number of fillings]

47549 [survival time]
 = 0.5 [fillings/day]                                            (18) 
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The cumulative failure function as a function of number of fillings is obtained by Nelson-Aalen estimate. 

The maximum likelihood estimation (MLE) and variance of the cumulative failure function is obtained 

by Nelson-Aalen estimate (Nelson, 2000). The Nelson-Aalen estimator for the cumulative failure 

function takes the form shown in Eq. (19). 

𝐹(𝑡) = ∑
𝑑𝑗

𝑟𝑗
𝑡𝑗≤𝑡

                                                                                    (19) 

Where 𝑑𝑗 is the number of individuals who failed at 𝑡𝑗 and 𝑟𝑗 is the number of individuals at risk just 

prior to 𝑡𝑗. The variance of the estimator is also defined by Eq. (20). 

   𝑉[𝐹(𝑡)] = ∑
𝑑𝑗

𝑟𝑗
2

𝑡𝑗≤𝑡

                                                                                    (20) 

In this study, the number of fillings, N was employed instead of time, t since the number of fillings per 

day depends on the station. The result of this analysis is shown in section 3.4.1. 

 
3.3.3 Parametric Distribution Analysis using Weibull Plot 
 

The primary advantage of using Weibull Analysis is the ability to obtain more flexible distribution even 

with small number of samples. The 2-parameter Weibull distribution can take a more flexible shape of 

a graph to estimate failure rate, even a nearly constant one. The cumulative distribution function (CDF) 

for a two parameter Weibull distributed positive x is given by Eq. (21): 

 𝐹(𝑥)  =  1 − 𝑒
−( 

𝑥 

 𝜂
 )𝛽

     (21) 

 

Where β is the slope parameter (shape parameter), η is the characteristic life (or the scale parameter) 

and x is a positive random variable. 

 
The slope of the 2-parameter Weibull plot, beta, β, determines which member of the family of Weibull 

failure distributions best fits or describes the data. The Weibull plot is the CDF plotted against the 

survival time. The horizontal axis is the age to failure, i.e., survival time. The vertical axis of the plot is 

the CDF, describing the percentage that will fail at any given age. The complement of the CDF scale, 

(100 - CDF) is reliability. The characteristic life η is defined as the age at which 63.2% of the units will 

have failed, the (indicated on the plot with a horizontal dashed line). Strictly speaking, for β = 1, the 

mean-time to-failure (MTTF) is equal to η. For β > 1.0, MTTF and η are almost equivalent. 
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The survival time data was used for all 28 stations from the JHFC project. The Weibull function 

estimates the two parameters β and η. Once the two parameters are determined, the CDF plot can be 

obtained using Eq. (21). The result of this analysis is shown in section 3.4.2. 

 
3.4 Results and discussion 

 
3.4.1 Failure rate estimation as a function of number of fillings (Non-parametric analysis) 
 

Figure 13 shows the cumulative failure rate, F, plotted against the number of fillings, N, using Eq. (19). 

Seventeen failure data are plotted by using the Nelson-Aalen estimator. As can be seen from Fig.18, the 

cumulative hazard shows linear relationship with the number of fillings and the failure rate can be 

estimated as slope of the linear approximation of plotted data. 

 
Figure 18. Total failure rate of hydrogen refueling stations in Japan 

 

Total failure rate, λ, is the slope of the cumulative failure vs. number of fillings and its value is 

approximated 6.7 × 10−4 per filling. This value is almost equal to the value of 7.0 × 10−4 failures per 

filling estimated from dividing the total number of failures by the total number of fillings. The value of 

6.7 × 10−4 per filling is equivalent to 1 failure in 1490 fillings. Considering an average of 0.5 fillings 

performed per day at a station per Eq. (18), it can be stated that one failure is likely to happen in 2980 

days at a station based on the number of fillings. This valve is equivalent to one failure per 8 years 

which equates to a failure rate of 0.12 per year for small leak. 
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If the cumulative failure function, F (N), is assumed to be a linear function, the variance of failure rate 

is obtained as follows: 

    𝑉(𝜆) =  
1

𝑁2 𝑉[𝐹(𝑁)]                                                                           (22) 

 

Fig.19 shows the variance of failure rate, V(λ), calculated by the above equation. The plotted data 

converges to a constant value of about 6x10-8 for N > 500. This observation demonstrates that the failure 

rate, λ, assumes a constant value for N > 500. 

 
Figure 19. Variance of failure rate of hydrogen refueling stations in Japan 

 

All observed failure events are related to hydrogen leaks. In such cases, it can be assumed that the 

failure rate is equivalent to leak frequency. LaChance et al. (2009) estimated the total leak frequency 

for two types of hydrogen refueling stations. The leak frequency was estimated as a function of leak 

size, which is the ratio of the leak area divided by the total cross-sectional flow area. For a leak area of 

0.1 % of total flow area, the corresponding system leakage frequency would be 0.03 per year and 0.06 

per year for the 20.7 MPa and 103.4 MPa systems, respectively. 

 
Eleven of 17 failures plotted in Fig.18 represent leaks from threaded joints and four failures are leaks 

from the seals. Since many joints and seals are typically used the hydrogen refueling station and the 

station’s hydrogen compressor produces mechanical vibrations, small leak from joints and seals are 

major concern at HRSs (Sakamoto et al., 2016). Accordingly, most of the leak failures can be classified 
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as very small leak with leak area of 0.01 % of total flow area (LaChance et al., 2009). When the leak 

area is 0.01 % of total flow area, the system’s leak frequency would be 0.2 per year. 

3.4.2 Failure rate estimation as a function of time (Parametric Analysis) 
 

The survival time data for all 28 stations (S1, S2…, and S28) are used as an input data to the 2-Parameter 

Weibull Analysis. The collated data are taken from the JHFC project (JHFC, 2011). The field data of n 

units (28 stations herein) consists of the failure times for the failed units and the running times 

(censoring) times for the units with no failures. The ‘n’ sample were ordered from smallest to largest 

without regard to whether they are censoring or failure times. A censored data was used to distinguish 

failure times from the censoring times (units without failures), which are marked “0”. In total, there 

were 17 failures observed. 

 
The 2-parameter Weibull plot for the given age to failure data is shown in Fig.20. The seventeen failures 

are plotted on the graph and Weibull parameters (β and η) are graphically estimated on plot papers using 

Minitab 16 software (Minitab, 2010). The β value of 1.41 suggests that the stations have failure rates 

that increase with age; that is, they have a wear out pattern and safety critical components should be 

replaced or repaired at some age to prevent wear out failures. The age of failure is represented as a 

survival time in days. Thus, the horizontal scale is the age to failure, i.e., survival time in days. The 

vertical scale is the cumulative failure probability plot in percent. 

 
Figure 20. The 2-parameter Weibull Probability plot for age to failure 
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The Weibull plot in produced with a 95% confidence interval as shown in Fig.20. The censoring 

information was used to distinguish failed and units without failures. A total of 17 failures were obtained. 

The β and η parameters of the Weibull distribution from the given JHFC dataset is provided in Table 7. 

Table 7. Characteristics of the 2-parameter Weibull distribution based on JHFC dataset 

Characteristics of 
Distribution 

Estimate 95.0% Confidence Interval 
Lower Upper 

Shape parameter (β) 1.41 0.96 2.08 
Scale parameter (η) 2158.77 1516.53 3073.01 
Mean time to failure (MTTF) 1964.08 1398.61 2758.17 
Standard deviation 1406.39 891.209 2219.38 

 
The results of the Weibull based estimation is shown in Fig.21. The employed input data is the same as 

those used with the Nelson-Aalen estimator, with the exception of using the survival times in lieu of 

number of number of fillings. The mean time to failure (MTTF) is estimated to be 1964 days. The 

characteristic life (η) is equal to 2158 days. The lower bound and upper bound of the estimates are 

generated with a 95% confidence interval. 

 
Figure 21. Cumulative failure plot for age to failure 

 
The cumulative failure plot for the given age to failure data using Weibull distribution is shown in 

Fig.21. An estimate of the population of percentage failing for a given age can be obtained from this 

figure. For example, the estimate of the percentage of station failing by 1480 days is 44% based on the 

data collated for 28 stations (S1, S2… S28) from JHFC project report (JHFC, 2011; NEDO, 2014). The 

characteristic life (η) represents an age at which 63.2% of the total population must have failed and as 
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Fig.21 shows, 63.2% of the units would have failed at the time of 2158 days. In 2-parameter Weibull 

distribution, when β > 1, the characteristic life (η) is almost equivalent to mean life. The failure rate is 

estimated to be 0.17 based on the mean life of 2158 days. 

3.4.3 Comparison of estimation methods: Survival time vs. number of fillings  
 

To numerically demonstrate the difference between the two estimation methods, Station S4 and Station 

S11 are used as an example. In the JHFC input data, S4 and S11 have similar survival times, but they 

have a large difference in the usage (i.e. number of fillings). S4 has 2385 fillings in 2678 days whereas 

S11 has 662 fillings in 2738 days. The comparison between the two estimation methods is summarized 

in Table 8. The failure rate as a function of time to failure (Weibull) is estimated using the mean failure 

rate calculated in Section 3.4.2. The failure rate by number of fillings (Nelson-Aalen) is estimated using 

the cumulative failure calculated in Section 3.4.1. 

Table 8. Failure rate data for Station S4 and S11 using both methods 

Station Number of 
Fillings 

Survival Time Failures by survival 
time (Weibull) 

Failures by number of 
fillings (Nelson-Aalen) 

S4 2385 2678 days 1.24 1.67  
S11 662 2738 days 1.27 0.46  

 

From Table 8, it can be seen that there is a difference in the failure rate estimation from both methods. 

The failure rate estimated as a function of survival time is almost same for both stations, i.e. around 

1.24 failures. However, failure rate estimated by number of fillings could be more or less conservative 

depending on the number of fillings. Based on the assumption of 0.5 fillings per day, the failure rate is 

found to be conservative for S4 (namely, 1.67 failures) in comparison to S11 (namely, 0.46 failures) as 

S4 has much higher number of fillings then S11. 

 
3.5 Conclusions 
 

This study provides failure rate estimation methodology for hydrogen refueling stations in Japan using 

two parameters, namely, survival time and number of fillings. The generated results can be summarized 

as follows: 

1. The non-parametric approach suggests that the cumulative failure, F (N), can be estimated as a 

linear function of number of fillings (N). The estimated failure rate seems to converge to a constant 
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value for N > 500. Considering an average of 0.5 fillings per day, the estimated failure rate is 0.12 

per year. 

2. In parametric approach, the cumulative failure is estimated from the failure and survival data using 

the 2-paramter Weibull Analysis. The 28 HRS are assessed using the number of failures and survival 

time data. The Weibull probability plot and cumulative failure plot are obtained to estimate mean 

failure rate. The estimated failure rate as a function of time is 0.17 per year. 

3. The observed failure data (collated from the JHFC project report) is associated with leaks from 

threaded joints and seal. Under such conditions, it is assumed that the failure rate is equivalent to 

leak frequency. Also, most of the failures are classified as “very small leak” of which the leak area 

is 0.01 % of total flow area and the system frequency can be estimated to be 0.2 per year in line 

with the study by LaChance et al. (2009). 

 
Using a case study, it is observed that two stations can have similar survival time but small to large 

difference in the usage (i.e., number of fillings). Thus, if the failure rate is estimated as a function of 

time, the mean failure rate will be roughly the same for both stations. However, if failure rate is 

estimated by number of fillings, the failure rate will vary depending on the actual usage of the station. 

The actual usage conditions are discarded when using the survival time and this may lead to uncertainty 

in the failure estimation. 

 
The study concludes that the failure rate estimated as a function of number of fillings is more reliable 

and realistic than the estimation based on survival time. Moreover, the number of fillings is more 

representative of the true failure rate as it considers the actual station’s usage and loading. The survival 

time do not always represent the actual usage of the stations. 
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Appendix D 
Detailed explanation on 17 failure accidents collated from database with censored failure data (JHFC, 2011; 

NEDO, 2014) 

Station ID Failed Date 
Failure 

Frequency 

Total 

Survival 

Time (days) 

Total 

Survival 

Time (years) 

S1 18-07-2012 1 1094 3.00 

S2 17-06-2006 1 929 2.55 

S3 No failure  0 4136 11.33 

S4  No failure  0 2678 7.34 

S5 15-06-2010,06-02-2013 2 3651 10.00 

S6  No failure  0 417 1.14 

S7 17-10-2007 1 4016 11.00 

S8  No failure  0 1095 3.00 

S9 05-11-2012 1 2036 5.58 

S10 07-08-2007,30-07-2013 2 3998 10.95 

S11  No failure  0 2738 7.50 

S12 No failure   0 1795 4.92 

S13 No failure   0 2435 6.67 

S14 No failure   0 2372 6.50 

S15 28-07-2005 1 240 0.66 

S16 13-05-2005 1 240 0.66 

S17 24-10-2006 1 1551 4.25 

S18 10-07-2012 1 2572 7.05 

S19 No failure   0 1218 3.34 

S20 No failure   0 849 2.33 

S21 No failure   0 394 1.08 

S22 No failure   0 394 1.08 

S23 30-10-2012, 09-03-2013 2 1465 4.01 

S24 09-04-2012, 17-10-2012 2 1094 3.00 

S25 No failure    0 1095 3.00 

S26 No failure    0 1095 3.00 

S27 22-05-2013 1 344 0.94 

S28 No failure    0 667 1.83 

 

Note: Total Stations: 28, Total failures: 17, Total Survival time (in years): 127.69 
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CASE STUDY 4. Improvement in reliability quantification to support BS EN 61511 

failure probability analysis 
 

4.1 Introduction 
 
Functional safety engineers are actively involved in safety and reliability engineering applications of 

various facilities to conform with IEC 61508/11 standard. These standards are used as a best practice 

in the design and implementation of safety systems in process applications. In order to improve the 

requirements of the standard, a dynamic risk based approach is recommended to be integrated into the 

standard in order to bring improvement to the existing static approach. Hence, the core concept of this 

research is utilized in practical aspects of IEC 61511 in this case study, where transformation from static 

to dynamic approach is suggested.  

 
Probabilistic risk assessment (PRA) has been widely adopted within the process industries to provide 

performance based design of the safety instrumented systems (SIS). PRA gained widespread attention 

since the introduction of the ANSI / ISA S84 (1996) standard. To ensure that the probabilistic 

calculations in the PRA and SIS design are relevant and meaningful, validation of PRA is necessary. 

The international standard for functional safety BS EN 61511 (2016) specifies for using credible, 

traceable and realistic failure rate data in failure probability analysis. However, in reality, these 

requirements have proven difficult for end-users because of the lack of failure data records and large 

amount of sample data required for frequentist methods. Lack of failure data leads to uncertainty in risk 

and reliability quantifications making risk assessment decisions weak. 

 
In BS EN 61511 reliability assessment, mean time to failure (MTTF) is one of the most common 

approaches to field failure data analysis.  MTTF and similar metrics are used for situations with a 

constant failure rate. In other words a piece of equipment has the same chance to failure at any point in 

time i.e. the chance of failing at 11th hour and the chance of failing at 110th hour is the same. However, 

this is generally not true for systematic failures encountered in hazardous sites. The most common 

mechanism of failures in the industry is erosion, corrosion, fatigue, cracks etc. When the right conditions 

exist, corrosion starts, grows and eventually over time leads to failures. Mahmoodian (2014) describes 
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the older the equipment the more likely it will fail due to corrosion, thus not a constant failure rate. This 

shows that an overall MTTF may alter the risk assessment results. Over the past several decades, enough 

information has been collected on MTTF from several sources to estimate failure rates.  OREDA (2015), 

one of the largest data source, combines data from multiple sources. The OREDA data distribution is 

very wide and uncertainty intervals span 1 or 2 orders of magnitude. One reason for the variability in 

rates is that these datasets include variations on the environment and service conditions. 

 
Moreover, new technology or major accident hazards with low probability has limited or no failure 

data.  Under such circumstances, traditional methods are not of much benefit. Even the life data 

distribution to model the time to failure is not of much use because the time to failure data is not 

available for new systems. Under such condition, the users are constrained from using traditional 

approach to reliability engineering. 

 
This study draws conclusions on how failure rates and failure probability can be controlled in practice. 

The proposed Bayesian framework addresses the above requirements by providing a periodic updating 

process that allows industry knowledge about failure rates to be incorporated in a prior distribution and 

cyclical updated with new survival data as it becomes available.  A sensitivity analysis is further carried 

out to perform uncertainty modelling on failure rate using Monte Carlo simulation. The outcome of this 

work would help to predict maintenance intervals. The results can be integrated with predictive and 

preventive maintenance strategies as suggested by Abbassi et al. (2016) whilst maintaining overall 

system availability and safety. 

4.2 Estimation and interpretation of failure rate using statistical model 
 
The BS EN 61511 standard recognizes the impact of lack of quality reliability data on the PRA result. 

Justification of failure data is an important measure to provide verification of risk analysis as proposed 

as reviewed by Goerlandt et al. (2016). The standard demands that: 

“Reliability data used in quantifying effect of random failures should be credible, 

traceable, documented and justified based on field feedback” 
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BS EN 61508- Part 2 (2010) states that: 

“The reliability data uncertainties shall be taken into account when calculating the 

target failure measure” 

 
There are basically two types of model that can be applied to reliability modelling. Frequentist approach 

is commonly used in reliability calculation but one disadvantage is that they do not consider prior 

knowledge. The Bayesian approach is adopted in this study to provide more benefits and will be 

discussed in detail hereafter. As each model has a different application, suitable care should be taken to 

apply the correct model to the data. 

4.2.1 Estimation of failure rate based on Gamma approximation (Bayesian method) 

 
In reference to the note in Clause 11.9.2 of BS EN 61511-1 regarding confidence in reliability data, 

mean time to failure (MTTF) is typically determined by recording the number of failures (n) which 

occur in a sample of components during an accumulated number of operating hours (T). However, the 

failure data can be extremely limited, which in this case, will not be taken into account and can lead to 

uncertainty in reliability modelling. Japan Nuclear Technology Institute (2017) introduced the Bayesian 

method to enable the uncertainty width of failure rate to be updateable with data storing, which until 

then had a fixed value. The nuclear report considers the failure rate as constant over time and the 

probabilistic variance is updated by new data. Similar approach is adopted in this study for BS EN 

61511 application and discussed in detail hereafter. 

 
Data scarcity and constant failure rate uncertainty problem can be addressed using gamma 

approximation with Bayesian inference to estimate the failure rate. The model presented uses gamma 

approximation to produce prior distribution with uncertainty. The likelihood function (new observation) 

is modelled using Poisson function. Based on the joint likelihood of Poisson distribution and the 

parameters of the gamma approximation, Bayesian inference is established to analyze survival data.  

The sensitivity analysis is then performed on the updated failure rate to reduce the uncertainty to as low 

as possible. 
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4.2.2 Prior Distribution 
 
There are many techniques and considerations to be taken when selecting a prior distribution. For the 

purpose of this study, the main focus is on feasibility, simplicity and mathematical traceability for 

engineers. For these reasons, a Gamma approximation was chosen as the prior distribution. Prior 

knowledge will be assigned from external industry data sources. The parameters 𝛼 and 𝛽 are estimated 

using Dutch red book model (1997) as: 

                           𝛼 =  
𝘹²

𝑉𝑎𝑟
                                                                  (23) 

                    𝛽 =  
𝘹

𝑉𝑎𝑟
                                                                  (24) 

Where,   𝘹 - Positive random variable, 𝑉𝑎𝑟 - Variance of the sample data 

4.2.3 Likelihood (evidences) 
 
In reality, BS EN 61511 reliability calculations are typically based on the exponential distribution, 

which is a special case (i.e. where 𝘹 = 0) of the more general Poisson distribution.  The Gamma 

distribution is a “conjugate prior” of the Poisson likelihood function which enables Bayesian equation 

to be solved analytically and elegantly. Given a constant failure rate (𝜆), the Poisson distribution gives 

the probability of failures (𝘹) per time (t), as shown below. 

𝑃(𝘹𝘪 , 𝘵𝘪 |𝜆) = 𝑒−𝜆𝑡 (𝜆𝑡)𝑥

𝑥 !
                                                 (25) 

In the completed model, the variables x and t will take the place of the evidence 𝑓 (𝑇₁ | 𝜆) in Eq. (26). 

The survival time and number of failures data will be obtained through new observations from failure 

records. 

4.2.4 Sampling of Survival Data using Bayesian Inference 
 
Based on the Bayes' theorem, the relationship between the prior, the posterior, and the likelihood 

function is written as: 

f (𝜆 | T₁) = 𝑓 (𝑇₁ | 𝜆) ∗ 𝑓₀ (𝜆)

∫ 𝑓 (𝑇₁ |𝜆) ∗ 𝑓₀ (𝜆)
∞

0   
                                             (26) 

Note: T₁ is the first occurrence of failure or survival time. In Eq. (26), 𝜆 is the unknown parameter of 

interest distributed with posterior f (𝜆 |𝑇₁), 𝑓₀ (𝜆) is the prior distribution of 𝜆. Subsequently, 𝑓 (𝑇₁ | 𝜆) 
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is the likelihood function that updates a prior distribution. Using the standard equation of Bayesian 

update from the Dutch Red book (1997), the gamma parameter update is given by, 

𝛼′ = 𝛼 + 𝑛𝑓 ,                                                                (27) 

𝛽′ = 𝛽 + 𝑇𝑠,                                                                 (28) 

Where, 𝑛𝑓 is number of failures and 𝑇𝑠 is survival time.  

The updated mean and variance can be calculated using Maximum Likelihood method (MLE) with the 

formula: 

𝘹 =  
𝛼′

𝛽′                                                                       (29) 

 𝑉𝑎𝑟 =  
𝛼′

𝛽′²
                                                                    (30) 

Using Eq. (27), (28), (29) and (30), the posterior distribution mean can be expressed as  

E {f (λ | T₁) =  𝛼
′

𝛽′                                                                (31) 

In other words, 𝛼 parameter can be converted to number of failures, 𝛽 can be converted to the total 

survival time. The initial prior parameters are denoted as 𝛼₀ and 𝛽₀. After the first update of these 

parameters based on new observation, the parameters are called 𝛼′ and 𝛽′. 

4.3 Practical application of proposed model to BS EN 61511 
4.3.1 Estimating Initial value of Gamma parameters 
 
The prior value of gamma parameters 𝛼₀ and 𝛽₀ should be carefully chosen as they have large impact 

on Bayesian updating process. To make this selection, data for valve failure rates was gathered from a 

variety of industry data sources such as OREDA (2016). A total of 20 independent dangerous failures 

for operating valves were collected to produce prior distribution and obtain values for ₀ , 𝛽₀. These data 

are only used as informative prior to establish prior distribution. Based on the 20 independent failure 

data for valves, the mean and variance is calculated as: 

 Mean (𝘹) = 0.0335 failures / year,  

 Variance = 0.0015 

Now, the initial values, 𝛼₀ and 𝛽₀ are calculated using Eq. (23) and Eq. (24) as 𝛼₀ = 0.75, 𝛽₀ = 22.33. 
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4.3.2 Bayesian Update 
 
After describing how to calculate Bayesian model in Section 4.3, we are presenting some examples to 

illustrate the application of this model for case specific scenarios. We have obtained case specific data 

from the Japan Hydrogen and Fuel Cell Demonstration Project – Phase 2 (2011) and Phase 3 (2014). 

The project analyzed 17 failures that were observed in the various Hydrogen stations operated from 

FY2002 to FY2013. 6 out of 17 failures were related to process valves. The survival time data chosen 

are for 6 process valves. The data on valve failures were further analyzed and reliability related 

information were extracted for use in this study. The data extracted from the JHFC Phase 2 (2011) 

project is shown below: 

Table 9. Valve survival data from JHFC report 
ID Component Start Date Failure 

Date  
Survival 
(days)  

Survival 
(years) 

KHK - ID 

1 Check Valve 2003/2/7 2010/6/15 T1 = 2685 7.4  2010-135 
2 Suction 

Valve 
2007/8/8 2013/7/30 T2 = 2183 6.0 2013-356 

3 Gate Valve 2003/4/1 2007/10/17 T3 = 1660 4.5 2007-532 
4 Gate Valve 2010/6/16 2013/2/6 T4 = 966 2.6 2013-037 
5 Gate Valve 2012/4/9 2012/10/17 T5 = 191 0.5 2012-314 
6 Check Valve 2013/4/19 2013/5/22 T6 = 33 0.1 2013-115 

 
The survival data chosen to demonstrate different aspects of updating in chronological order is: 7.4, 6.0, 

4.5, 2.6, 0.5, and 0.1. The six survival time (in years) reported occurs independently and are assumed 

to follow Poisson distribution (Likelihood function). As illustrated in Section 4.3.2, the Gamma 

parameters Alpha and beta are converted to number of failures and survival time respectively. Bayesian 

update is performed by calculating the parameters of posterior distribution, 𝛼′ and 𝛽′. Table 10 also 

shows the updated 𝛼′, 𝛽′, posterior mean and variance for each component based on Eq. (27) and Eq. 

(28). 

Table 10. Bayesian update result 
Component 
ID 

Component Survival  
(in years) 

𝛂′ 𝛃′ Updated 
variance 

Updated failure  
rate 𝝀 (per hour) 

1 Check Valve 7.4 1.75 29.73 2.26 x10-7 6.72 x10-6 
2 Suction Valve 6.0 1.75 28.33 2.49 x10-7 7.05 x10-6 
3 Gate Valve 4.5 1.75 26.83 2.78 x10-7 7.45 x10-6 
4 Gate Valve 2.6 1.75 24.93 3.21 x10-7 8.01 x10-6 
5 Gate Valve 0.5 1.75 22.83 3.83 x10-7 8.75 x10-6 
6 Check Valve 0.1 1.75 22.43 3.97 x10-7 8.91 x10-6 
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From Table 10, it can be noticed that there is no significant difference in the failure rates for all six 

components. All failure rates are within the same order of magnitude.  One of the reason could be the 

updated failure rate is sensitive to generic data uncertainty due to less number of new observation. In 

order to obtain more realistic data, more observations should be analyzed in order to improve the 

sensitivity of updated failure rate. For this reason sensitivity analysis using Monte Carlo is performed. 

Gate valve has minimum three data cases (shown in Table 10) which is chosen as an example for 

illustration purpose. In total, three failures occurred at 4.5, 2.6 and 0.5 years respectively. The new 

values of 𝛼’, β’ and 𝜆 is calculated as: 

𝛼’ = 3.75            β’ = 29.93         𝜆 = 1.43 x10-5 

4.4 Sensitivity analysis on failure probability using Monte Carlo method 
 
The initial values of 𝛼₀ and 𝛽₀ can result in uncertainty in the distribution of failure rate due to generic 

data and therefore a Monte Carlo simulation is adopted in this study for the uncertainty analysis on the 

failure rate. In the field of reliability engineering, BS EN 61511 (Ed.2 2016) commonly uses probability 

of failure on demand (PFD) metric for understanding the performance of safety. The PFD is calculated 

from the failure rate based on equation in the BS EN 61508 (2010). The uncertainty analysis on 1oo2 

valve system for PFD is shown below: 

4.4.1 Failure Probability Modelling for 1oo2 Final elements Configuration (Valve) 

 
Figure 22. 1oo2 Configuration of final element (Gate valve) 

In the process sector industry, the safety function PFD is dominated by the final elements due to 

relatively higher failure rate and architectural constraint. With 1oo2 valve configuration, the PFD is 

calculated as: 

PFD1oo2 = (1 - 𝐶𝐶𝐹)  𝜆
2 .  𝑡𝑖

2

３
+  

𝐶𝐶𝐹 .  𝜆 .  𝑡𝑖

２
                                             (32) 

Where,   𝜆 - Failure rate, CCF - Common cause factor (Beta), 𝑡𝑖 - Inspection interval in hours 
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The total failure rate for gate valve is estimated to be 1.43×10-5 failures per hour. The lambda 𝜆 is 

assigned gamma distribution with Mean: 1.43×10-5, Variance: 4.77×10-7. The inspection interval 𝑡𝑖 is 

assigned triangular distribution with minimum value of 8400, likeliest value of 8760 and maximum 

value of 9000. The inspection period is 8760 hours (annual test). The CCF is assigned uniform 

distribution with minimum value of 0.01 and maximum value of 0.04. This means the CCF ranges 

between 1% and 4%. The failure probability calculation computed using Eq. (32) in Monte Carlo 

simulation after 1000 trials is shown below: 

Table 11. Failure probability on demand calculation 
Parameter Value Distribution Comment 
𝜆 1.43×10-5 Gamma  Failure rate of dangerous undetected failures (per hour) 
M 1 NA Minimum number of component failures causing system 

failure 
N 2 NA Number of redundant "channels" of sub function 
CCF 0.02 Uniform Common cause factor 
𝑡𝑖 8760 Triangular Inspection interval in hours 
PFD(1oo2) 2.51×10-3 Output Total failure probability on demand 

 

 

The PFD forecasts using the Monte Carlo simulation is executed for 1000 number of trials for 

acceptable uncertainty analysis on failure rate. The blue area in the graph is the certainty range for the 

estimated value of PFD. The red area is the uncertainty range. Fig.23 shows the PFD certainty range is 

from 1.00×10-3 to 1.00×10-2 (SIL 2) based on annual inspection and certainty level of 90%. The base 

value of PFD for this configuration is estimated to be 0.00251. This is equivalent to SIL 2 classification 

as per BS EN 61511 SIL classification. The forecasts of failure probability for different inspection 

intervals is presented is Table 12. 
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Figure 23. PFD Uncertainty Analysis using Monte Carlo
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Table 12. Valve Failure Probability Forecast based on failure rate estimation 
Failure rate,  
λ (per hour) 

Inspection Interval Inspection 
Interval 
(hours) 

Failure Probability  
on demand 

BS EN 61508 
SIL Class 
[Achieved]  

 Monthly 720 2.06×10-4 SIL 3 
1.43×10-5 

(Gamma function) 
Quarterly 2160 6.18×10-4 SIL 3 
6 months 4320 1.24×10-3 SIL 2 

 Yearly 8760 2.51×10-3 SIL 2 
 
The Montel Carlo simulation allows to model failure probability for all possible values of 𝜆 and 𝑡𝑖 put 

together in the calculation. The final PFD certainty range is estimated to be in SIL 2 range with base 

value of 0.00251 based on 1 year inspection interval and 90% certainty level. 

4.5 Conclusion 
 
The Bayes framework expands on the single-stage model and allows data from available sources to be 

leveraged in the updating process. The Bayesian methodology provides a flexible, coherent framework 

for managing failure rate data for any component. Monte Carlo simulation make it practical to solve 

uncertainty in the failure rate estimation and update these models in seconds. The process of updating 

failure rate with new observations and modelling failure data uncertainty using Monte Carlo simulation 

will result in lower uncertainty and narrower posterior distribution. It is observed that with less number 

of new observations, the updated failure rate is sensitive to generic uncertainty data which does not 

provide realistic result. In order to improve the sensitivity of updated failure rate, more number of 

observations subject to modelling using Monte Carlo method will be beneficial. The final PFD certainty 

range for 1oo2 gate valve is estimated to be in SIL 2 range with base value of 0.00251 based on 1 year 

inspection interval and 90% certainty level. In order to achieve failure probability in the range of SIL 

3, the inspection interval on valve across installations should be carried out at least once in 3-6 months 

interval. The appropriate base value can be used in design set performance standards for availability 

and reliability in operation and maintenance of the component. 
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CASE STUDY 5. A Risk Based Inspection Model for Hydrogen Storage Process using 

Bayesian Network 

      
5.1 Introduction 
 
The safety integrity of the technology system should be maintained through routine inspection and 

maintenance programme. In case of hydrogen energy systems, an appropriate inspection routine will 

also increase the chance of authority’s approval and public acceptance, which is a pre-requisite for 

successful implementation and operation of new technology systems. Therefore, a probabilistic 

graphical model, based on an acceptable level of risk, is proposed to avoid under and over estimation 

of inspection time interval. This case study presents an advanced Risk-based Inspection (RBI) 

methodology to decide inspection time in relation to the risks through dynamic graphical modelling. 

Bayesian Network (BN) is applied to model the risk and the associated uncertainty. 

 
Meanwhile, BN has been popularly used in significant areas where safety assessments are involved. 

Pasman and Rogers performed risk assessment for compressed and liquefied hydrogen transportation 

and tank station by means of BN (Pasman and Rogers, 2012). A bayesian statistical approach is also 

employed in the estimation of failure rate from prior data. LaChance developed a bayesian model to 

leak frequency in various components used in a hydrogen refueling station (LaChance, 2009). As most 

of the traditional risk analysis techniques (e.g. fault tree analysis (FTA) and event tree analysis (ETA)) 

are static and non-updatable conventional model, they regularly fail to fully capture the variation of 

risks during operation (Paltrinieri and Khan, 2016). Besides, conventional techniques use only binary 

variables and do not represent conditional dependencies (Martins et al., 2018). Based on BN, Abbassi 

et al. presented a RBI methodology, applied to an offshore process facility (Abbassi et al., 2016).    

 
Results show that the most critical components are the shut-off valve and hose/flow nozzle connection 

in case of minor risk. In case of major risk, flow gauge has the shortest transition from minor to major 

risk and thus makes it a most critical component. Pipelines has the shortest inspection time compared 

to other components and thus makes it the most critical component for critical risk.
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Despite all these ongoing efforts made on operational process, inspection interval forecast is one area 

within safety and risk management of HRS which has not received enough attention in research areas. 

The application of bayesian in the field of operation and maintenance is scarce due to complication. 

However an approach is highly desired for setting inspection test interval using BN. As a result, a risk-

based methodology for inspection scheduling is developed in this work and demonstrated through an 

application of case study. The objective of this approach is to develop risk based inspection model by 

implementing a BN analysis. In this study, risk level is calculated via BN considering the failure 

probabilities (Pf) and the possible consequences. The inspection plan is determined after setting the 

evidence that the system operates at the lowest possible risk using BN and influence diagram. 

 
5.2 Background 
 
In this section, the accidents that occurred in an HRS are categorized with respect to systems. In order 

to categorize systems, the information in the columns “system” and “accident brief description” were 

divided into hydrogen dispenser, compressor, accumulator, and interconnection system. The accidents 

are categorized according to Table 13. 

Table 13. Accident categorization by system 

System Site of accidents 
Dispenser Coupling, Hose, O ring 
Compressor Piping, Connecting, Valve 
Accumulator Pressure vessel, Interconnections, Valve 
 Interconnection  Piping, Valve, Seal, Others 

 
A graph for accident categorization by system is shown in Fig.24. Note that the data is the mean number 

for a station. The event data observed in Fig.24 was obtained for a total operation time of 144 months. 

The event data is obtained from database maintained by the High Pressure Gas Institute of Japan (KHK, 

2017). It can be noted that dispenser failure was more significant during the initial 52 months. 

Accumulator failure resulted in accidents during the initial 45 months. Conversely, the compressor and 

interconnection system had accidents late in the operation period, especially from the 112th months to 

the 122nd months. 
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Figure 24. System-categorized accidents in an HRS by operation time (mean)
 

Up to this point, this study has discussed the accident information of Japanese HRSs in terms of 

operation time and system failure. Categorizing accidents by system gives a hint as to when a specific 

piece of system tends to fail. However, understanding failure characteristics of critical components 

within the hydrogen system is vital and should not be overlooked. The inspection interval for each 

critical components should be individually defined and this requires a methodology to carry out relevant 

analysis. The proposed methodology to solve this issue is shown in next section. 

 
5.3 Proposed Methodology 
 
The methodology developed in this study is based on the model that emphasizes on the scenario. The 

sequence of the proposed methodology for RBI in this study is illustrated in Table 14. Fig.25 shows the 

proposed methodology flowchart. In the first step, the system is defined and divided into its components. 

The relationship among the critical components is determined in step 2. Next, the associated FT is built. 

The top event (system failure) is broken down into sub events until all the primary events (events that 

could not be expanded further) are found. The scenario used as a case study is “hydrogen storage 

process”. 

Table 14. Proposed steps in RBI Methodology 

Step Step description 
1 Develop hydrogen scenario risk model and identify critical components 
2 Develop FTA for the model 
3 Mapping fault tree into quantitative BN graphical 
4 Estimate mean time to failure and annual failure probability using BN 
5 Calculate inspection interval 
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Figure 25. Proposed dynamic risk based methodology for HRS applying Bayesian Network 

 

In the next step, mean time to failure (MTTF) of each component are found using available data. 

Subsequently, the annual probability of failure is worked out then. The probability table of root nodes 

in the BN can be filled with the irrespective failure probabilities. A risk matrix can be used to specify 

the consequences of system failure (top event) and risk of the operation. The level of risk can be defined 

in different approaches. Herein, it is divided in three categories: 

1) Minor risk that is a low level of risk and it is considered acceptable in order to operate safely;  

2) Major risk that is a higher level of risk that comprehends consequences that may bring damages to 

environment or to human beings;  

3) Critical risk that is the highest level of risk and it has to be avoided. 

Based on present RBI the optimum maintenance time of components is revised through probability 

updating. Setting the evidence that minor risk has occurred at 100% probability, a backward analysis is 

conducted on the BN to point out the updated probabilities of the roots (e.g. the probabilities of failure 

of the components when the system operates at the lowest risk possible). Finally, based on the updated 

probabilities the inspection interval is calculated. 
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5.4 Application of risk based inspection (RBI) 
 
In order to demonstrate the applicability of the developed RBI methodology, it is applied to hydrogen 

storage process (HSP) as a case study. The main functions of a HSP are measuring the gas compression, 

storage and smooth transfer to the subsequent dispenser. A typical model of a HSP is shown in Fig.26. 

The compressed hydrogen gas at a higher pressure is contained in the cylinders (accumulator) at 82Pa. 

The compressed hydrogen is then passed through series of check valves and shut-off valves to the 

dispenser. Dispenser consists of pre-cooler, shut-off valves and hose/nozzle connections. The 

compressed hydrogen is used as per the requirement from the user. Dealing with high-pressure 

hazardous material inherently increases the risk due to leakage and fire and/or explosion. 

 

Figure 26. Hydrogen Storage Process Flow Diagram 
 

Loss of containment is a high risk of concern with possibility of major/minor injuries. Thus, the leak is 

considered as a failure event in this case study. The leak equipment and location identified are as 

follows: 

 Dispenser components such as pre-cooler, flow gauge, shut-off valve etc. 

 Hose and flow nozzle connection for dispenser 

 Check valve-overflow prevention valve 

 Accumulator main body (high pressure, low pressure)  

 Connection pipe for hydrogen holder (hydrogen purifier outlet valve to compressor inlet 

valve) 

 Compressor and connection piping etc. (compressor inlet-check valve, outlet valve) 
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A HSP has four critical groups of different components that can lead to a failure of the system as shown 

in Table 15. The case study is simplified and only critical key components are analyzed in the study to 

demonstrate the methodology adopted. 

Table 15. Critical components of HSP 
Group Component 

Dispenser Flow gauge 

Shut-off valve 

Hose and flow nozzle connection 

Compressor Compressor 

Storage (Accumulator) Tank (Cylinders) 

Interconnection system Pipelines 

Check valve 

Shut-off valve 

 
Initial failure data for above components are collated from industry external sources i.e. SINTEF. The 

data presents critical failure rate, repair time and failure probability. It is worth noting that the MTTF 

of each component provided in SINTEF is collated from various operational experiences and industry 

experts (SINTEF, 2015). These values and corresponding failure rate are shown in Table 16.  

Table 16. Failure rate of critical components of HSP 

 

 

 

 

 

 

Based on reported MTTF and failure rate, the probability of failure in a year is calculated. In order to 

consider the randomness of failures events, exponential distribution is adopted for the estimation of 

maintenance intervals. So the annual probabilities of failure would be achieved by Eq. (33):                       

                                                                (33) 

where P(t) is the annual probability of failure when t is set equal to 8760 hour (a year) and is the failure 

rate expressed in failure per hour given by Eq. (34): 

Components MTTF  
(in hours) 

Failure rate  
(per hour) 

Flow gauge 270270 3.70 x 10-6 
Shut-off valve 344827 2.90 x 10-6 
Hose nozzle conn. 135135 7.40 x 10-6 
Check valve 147275 6.79 x 10-6 
Tank (Cylinders) 92592 10.8 x 10-6 
Pipelines 132450 7.55 x 10-6 
Compressor 182149 5.49 x 10-6 
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                                                                     (34) 

Fault tree representation of the model is represented in the form of BN. The developed BN for a HSP 

incorporating the failure of critical components is illustrated in Fig.27. The primary events are linked 

to four major intermediate events (i.e. dispenser failure, accumulator failure, check valves and 

compressor failure) which consequently may lead to top event i.e. system failure. 

Table 17. Adopted Risk matrix for developing RBI 
 

 

 

 

 

 

The risk of operation consisting of three aforementioned levels is integrated into the network (shown in 

Fig.28). In Table 17, the terms low, medium, high and extreme refers to the risk category. In addition 

to the fault tree, the upper part of the BN is extended to include ignition probability and leakage to 

consider the output effects. The output effects are classified into noise, mechanical damage, 

environmental impact and fire/explosion. 

 
Figure 27. Fault tree of a HSP 

 

The prior Pf of critical components calculated by Eq. (33) was assigned to root node as prior probability. 

The conditional probability (CP) of intermediate nodes represents the contribution factors of root nodes 

in the intermediate nodes. The Yes/No and Safe/Fail state of each node is assigned CP of risks using a 
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 SCALE OF SEVERITY  
Minor  Major  Catastrophic  

Not Likely Low Low Medium 
Possible Low Medium Medium 
Probable Low Medium High 

Likely Medium High High 
Certain Medium High Extreme 
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risk matrix shown in Table 13. It should be noted that the conditional dependencies and probability 

figures are based on generic data and expert judgement. Based on the assumed ignition probability of 

14%, leakage of 10% probability and conditional dependencies between nodes, the physical output 

effects and three risk outputs are calculated.  

 

Figure 28. Developed Bayesian Network for a HSP 

After mapping the possible consequences into the BN (Fig.28) using GeNIe 2.1 software, the system 

results to operate in minor risk with probability of 91%, in major risk with probability of 8% and in 

critical risk with probability of 1%. In order to generate the posterior probability of the components, the 

risk level of 100% minor risk was targeted. In the light of new evidence and based on posterior 

probability, the inspection interval is calculated as:  

  (35) 
 

Where TI is the inspection interval, Pf is the posterior probability of failure, (ln) stands for natural 

logarithm and λ is the previous failure rate estimated by Eq. (34). Similarly, 100% major and critical 

risk were targeted to observe the influence of posterior probability as reported in Table 18. 
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5.5 Results and Discussion 
 

Based on the relationship between the nodes conditional dependencies and probabilities the three risk 

outputs are calculated. Table 18 lists posterior probabilities and inspection interval of HSP components 

for minor, major, critical risk. 

5.5.1 Minor risk level: 

 

Figure 29. Minor risk posterior result 

The calculations depicted that the most critical components are determined as the shut-off valve and 

hose/flow nozzle connection with the shortest TI of 290 and 288 days respectively. Thus, in case of 

shut-off valve, if the TI is 290 days, a 100% minor risk event will occur with a probability of 0.02. On 

the contrary, the most reliable components are the flow gauge and pipelines, which have the longest TI 

of 343 and 341 days respectively. For e.g. in case of flow gauge, if the TI is 343 days, a 100% minor 

risk event will occur with a probability of 0.03. Frequent usage of hose connection from operator will 

increase the minor risk. 
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5.5.2 Major risk level: 

 

Figure 30. Major risk posterior result 

In case, the policies of the system accept and tolerate major risks, the TI can be extended to wider time 

interval. The inspection action is required for tank before 588 days to avoid transition from minor to 

major risk. In case of flow gauge, the transition time from minor to major risk is the shortest i.e. 474 

days. The calculation prioritize flow gauge as more critical due to shortest TI of 817 days.  It should be 

noted that based on the influence diagram, conditional dependencies and probability, there is no change 

in major risk level and critical risk level TI for flow gauge. 

 
5.5.3 Critical risk level: 

 
The proportion of critical risk from the overall HSP risks is 1%, however critical risk with low 

probability can lead to high consequences. It can be noticed that compared to major risk, there is no 

significant difference in TI as critical risk. In case of pipelines, the transition time from minor to critical 

risk is the shortest i.e. 427 days compared to other components. The pipelines also has a relatively short 

inspection time compared to other components and thus becomes more critical under this category. If 
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the inspection period for pipeline is 768 days, a 100% critical risk event will occur with a probability 

of 0.13. The pipelines are associated with all major system installed in the HSP.  A small to large leak 

on high-pressure system can release a huge amount of hydrogen thereby resulting in flammable air/gas. 

 

Figure 31. Critical risk posterior result 

Table 18. Failure probabilities (Pf) and Inspection Interval (TI) of HSP critical components

Components Prior Pf 100% minor risk 

level  

100% major risk 

level 

Escalation 

time from 

minor to 

major risk 

100% critical risk 

level 

Posterio

r (Pf) 

TI 

(days) 

Posterio

r (Pf) 

TI 

(days) 

Posterio

r (Pf) 

TI 

(days) 

Flow gauge 0.0319 0.03 343 0.07 817 474 days 0.07 817 

Shut-off Valve 0.0250 0.02 290  0.06 889 599 days 0.05 736 

Hose and flow nozzle  0.0627 0.05 288  0.14 849 561 days 0.12 719 

Check Valve 0.0577 0.05 314 0.14 925 611 days 0.12 784 

Tank (Cylinders) 0.0902 0.08 321  0.21 909 588 days 0.19 812 

Pipelines 0.0640 0.06 341 0.15 896 555 days 0.13 768 

Compressor 0.0470 0.04 309 0.11 884 575 days 0.10 800 
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Results show that the most critical components are the shut-off valve and hose/flow nozzle connection 

in case of minor risk. In case of major risk, flow gauge has the shortest transition from minor to major 

risk and thus makes it a most critical component. Pipelines has the shortest inspection time compared 

to other components and thus makes it the most critical component for critical risk. 

 
5.6 Conclusion 
 
This study presents a simple and creative RBI methodology to optimize the inspection test on the 

hydrogen system operation to model the associated risks using a BN. HSP was chosen as a case study 

to illustrate the methodology and its advantages. This study divides the risks in three different categories. 

By these categories, the inspection time is determined given that a component is overpassing the minor, 

major or critical level of risk. The most critical components were determined based on inspection time. 

In addition, accident data evaluation based on operation time and system category revealed that that 

dispenser and accumulator failure was more evident during the early stage of HRS operation period 

whereas compressor and interconnection system had accidents late in the operation period. 

 
This methodology will be beneficial to understand the risk based influence of each critical component 

on the system, thereby allow prioritizing their inspection interval. In addition, the quantitative results 

on failure probabilities and risk based TI can be used to plan and optimize test interval for safety critical 

components. It should be noted that the TI calculation is based on the initial failure data assumed from 

external sources.  
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CASE STUDY 6. Human Factor Analysis of Safety in Liquid Hydrogen Leak Incident 

using Probabilistic Graphical Model 

 
6.1 Introduction 
 
The human factors is of major concern and should be considered when implementing technology system. 

The High Pressure Gas Safety Institute of Japan (KHK, 2015) is a key organization that keeps record 

of high-pressure gas incidents (Yamada, 2015). This institute treats incidents, as accidents with 

explosion, leakage, and other ordinary disasters. The accident analysis at refueling stations carried out 

by the institute shows several factors that influence the initiating cause lead to flammable material (fuel) 

release. The chart in Fig.32 describes the statistics for the year 2015 for accident causes as recorded by 

the High Pressure Gas Safety Act (Yamada, 2015). In terms of accident causes, the record shows that 

out of 429 accidents in the year 2015, inadequate facility maintenance and management was the cause 

for 203 (47%) accidents, inadequate facility design and fabrication defects was the cause for 87 (20%) 

accidents, and 46 (11%) were caused by human factors, together contributing to 78% of the total 

accidents. This case study presents human error assessment through application of probabilistic 

graphical modelling.  

 
Figure 32. High Pressure as Accident Statistics in Japan 2015 

 
Some studies reveal that organizational and human factors accounts for a considerable proportion of 

process accidents (Sakamoto et al., 2016; Karuiki, 2007) In addition, existing studies report that the 

leakage at joints in dispenser is mainly due to human error (Sakamoto et al., 2016) With regards to 

leakage from flexible hose and valve, the cause of all the accidents in US is human error. For the same 
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category, the human error and natural disaster are the leading causes in Japan. Human factors is an area 

which has not received as much attention as it deserves. This shows the need of a strategy to understand 

areas of improvement in the field of human factors to help prevent accidents. 

 
The risk associated with the refuelling stations could change the perception of people towards accepting 

hydrogen as a fuel for fuel cell vehicles. Similarly, the process industry has faced some catastrophic 

incidents that are mostly attributed to human factors (Karuiki, 2007). The past study from UK HSE 

shows that human factors have contributed to several major accidents such as Piper Alpha, BP Texas 

refinery etc. (HSE, 1999; Manca 2012). At the most broad level of categorization, 47% of the identified 

accidents involved human error in one form or another (Bradley, 1999). Past studies show that more 

importance is given to technical aspects of systems in order to reduce the possibility of release (Leva, 

2015). In spite of improvement in the performance of technical systems, it has been noted that accidents 

are on the rise. Thus, the technology has reached to a point where the improved safety can only be 

achieved through better understanding of human error mechanisms (Yamada and Leva, 2015). 

 
The International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA) in collaboration 

with research institutes is currently focusing on identifying and quantifying human influence on 

operational safety of hydrogen infrastructure (IEA, 2014). The hydrogen safety task requires a 

framework to model human factor issues for hydrogen safety. Thus, the focus of the study is to establish 

a framework to address human factor issues at hydrogen fuel station. Many quantitative approaches 

towards human error modelling have been developed in the past. Techniques such as SHERPA (Embrey, 

2012), and THERP (Swain, 1983) were modelled to account for human factors. However, these 

techniques were mainly modelled for nuclear plants, chemical plants or medical devices and they do 

not address the human activity influence factors other than those provided in the technique itself. In 

addition, some quantitative methods do not thoroughly consider the factors that are suspected to 

contribute to human reliability (Hallbert, 2004). A new technology such as a Hydrogen Station poses a 

huge amount of risk due to human errors. However, the risk assessment for this station does not take 

into account the human factors issue as of now (Yamada, 2015). At present, there is limited research on 
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human factor analysis framework and classification for the hydrogen refuelling stations. Hence, the 

importance of this study lies on addressing human factor issues and providing solutions to quantify 

human error probabilities. A human factor analysis framework designed specifically for hydrogen 

refuelling stations would therefore be advantageous. 

 
The purpose of this study is to develop a methodology to analyse a liquid hydrogen transfer leak incident 

in the refuelling station with respect to human factors as root causes. This study presents a semi-

quantitative graphical method of human factor analysis for the refuelling station liquid hydrogen 

releases. The probabilistic graphical method helps to prioritise the causes that need to be analysed first 

and/or in the greatest level of detail, based upon the degree of anticipated risk that they pose. This study 

draws some conclusion and recommendations on multiple root causal relationships leading to gas 

releases focusing on human factor (HF) issues. 

 
6.2 Research Methodology 
 
The research methodology developed in this study is based on the model that emphasises on the scenario. 

The scenario used as a case study is “liquid hydrogen refuelling station transfer leak incident”. A case 

study of liquid hydrogen release during bulk transfer process is undertaken as a scenario to analyse 

human related issues associated with the incident. The Human Factor Modelling (HFM) presented in 

this study consists of main steps as shown in Table 19. 

Step Step description 

i Development of a Hydrogen Scenario Risk Model – (Human Factor related causes only) 

ii Human Factor – Failure Mode and Effect Analysis (FMEA) 

iii Modelling the Human Factor Causes using a Fault Tree Analysis 

iv Compiling Fault tree into Probabilistic Graphical Model (PGM) 

v Human Error Probability Modelling (HEPM) 

vi Quantitative Modelling using Probabilistic Graphical Model 

vii Analysis Result 

Table 19. Human Factor Modelling Process Steps 
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Describe a Accident scenario 
(Human Factor Issue)

Initial Modelling using Fault 
Tree Analysis

Identify  Performance 
Conditions

Weighting HEI 
Calculation

Confidence 
Factor

Incident Leak Likelihood 
Estimation (Probability) 

 Analysis Result

Quantitative Modelling using 
Probabilistic Graphical Model

Step1:
Risk Model

Compiling Fault Trees into 
Probabilistic graphical model 

for Reliability Analysis

Develop a Risk Model

Step2:
Fault Tree Diagram

Perform Human Factor 
Assessment

Step3:
Probabilistic 

Graphical model

Step4:
Human Error 

Probability Modelling

Step5:
Human Error Probability Update 
and Leak Probability Estimation

 HEI: Human Error Index score
 HECF: Human Error Contributing Factor

Figure 33. Human Factor Modelling Framework 

A human factor modelling framework has been developed to understand the main steps involved in the 

process. As shown in Fig.33, the first step in the process is to develop a risk model for the scenario 

under investigation. Once the scenario is properly defined with all relevant information, the process 

makes use of multiple probability assessment techniques to model human error. The process uses 

probabilistic graphical model as a basis for quantitative analysis of human error. The steps involved in 

the assessment process are explained in detail in section 6.3 with an example of their application for a 

case study scenario. 

 
6.2.1 Process Description 
 
Liquid Hydrogen (LH2) transfer is a critical task because it involves large amounts of hydrogen. A tank 

truck is used to deliver LH2 to the refuelling station. A simple schematic diagram of the process is 

shown in Fig.34. The delivered liquid is stored in one or more storage tanks (cylinders) at temperatures 
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below -250°C. The operator initiates the transfer process and the supervisor is supposed to be 

monitoring his work. The hydrogen is transferred from the tank truck to the LH2 tank through a shut-

off valve using hose pipe connection. In the later process, the hydrogen passes through a pump and is 

stored in pressure vessels. The shut-off valve is used for safety and isolation purposes. The hose pipe 

has to be correctly secured and verified in order to ensure smooth transfer of the LH2. 

 

 

 
 
 
 

 

Figure 34. Liquid hydrogen delivery process 

Previous study on hydrogen fuel station accidents reveals that leakage at joints is caused by human error 

and natural disaster in Japan (Sakamoto et al., 2016). Thus, this study attempts to focus on the process 

hazards from the human factor point of view, apply relevant safety methods to measure and prevent 

human error by fuel cell vehicle users. 

 
6.3 Research Process and Case Study 

 
6.3.1 Development of a hydrogen release scenario – Risk model  
 
The first step in the research process is to extract more information about the scenario such as the causes 

of failure, root causes, protective layer, etc. The development of the set of release scenario will generate 

more information about human factors and specific conditions introduced to prevent hydrogen releases. 

The risk model for the scenario used as a case study is described in detail in Table 20. 
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Case Study Scenario:- Liquid Hydrogen Refuelling Operational Incident (Reported date: 29 Jan 2007) 

Hydrogen Type Liquid 
Probable Cause 
Identified  

Failure to follow standard operating procedure. 

Root cause Communication, Human Error, Individual Action, Situational Awareness, Mechanical 
failure 

Root Cause 
Categorization 

Human and Operational Error / Procedural Failure / Mechanical Integrity 

Operation Mode Normal Operation 
Detected by Operator after the incident occurred / Detection Systems 
Damage Minor injury (The man was burned on his hands and on his stomach.) 
Protective Layer  Follow the operating procedure 
Purpose of Protective 
Layer 

To ensure the steps in the procedure is not omitted while undergoing the tasks  

Causes of failure Distraction, time pressure, training, competency, procedure quality 

What the industry 
needs to do in the 
future to avoid such 
failures 

A. Hydrogen Safety Management  
 Facilities to establish Guidelines for the bulk transfer of liquid hydrogen from tank 

truck to the storage tanks. 
B. Engineering Design 
 Use of close coupled instrumentation design to avoid leaks through valve 

connections 
 Correct material selection for valves  
C. Human factors Engineering 
 Human reliability to be considered 
 Ensure standard operating procedures are followed 

Table 20. Hydrogen Release scenario - Risk Model 
 
6.3.2 Human Factor - FMEA 
 
To identify human error related issues associated with hydrogen fuelling stations, bulk transfer incidents 

at such stations in Japan were analysed considering the failure mode, failure causes and effect analysis. 

Usually FMEA process is applied to mechanical equipment or component only (Gandhi, 1992). 

However, this study extends application of FMEA to identify human related issues. Human factor 

FMEA is a new area of research and this study makes an attempt to modify original FMEA to draw 

some conclusions. Human Factor FMEA emphasize on failure mode and failure cause for relevant 

process components such as hose, tank truck, shut-off valve an storage tank. The potential failure modes 

and their applicable HF related failure causes are captured in Table 21. 

 

 

 

 

https://h2tools.org/lessons-learned-contributing-factors/communication
https://h2tools.org/lessons-learned-contributing-factors/human-error
https://h2tools.org/lessons-learned-contributing-factors/individual-action
https://h2tools.org/lessons-learned-contributing-factors/situational-awareness
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Key Process 
Step 

Potential Failure 
Mode 

Potential Failure 
Effects 

Potential Causes (human 
error) Current Controls 

Emergency 
shutdown 
system 

Shutdown failure 
on transfer leak 

Potential 
Fire/explosion 

Gas alarm not recognized by 
the operator - human error  

Leak detector, visual 
detection by the 
public 

    Potential 
Fire/explosion 

Emergency shutdown not 
initiated by the supervisor or 
the operator - human error  

Leak detector, visual 
detection by the 
public 

    Potential 
Fire/explosion 

Emergency shutdown not 
initiated by the supervisor or 
the operator - human error  

Leak detector, visual 
detection by the 
public 

Transfer 
Hose 

Hose connection 
leak during 
unloading 

Leak with potential 
of fire. Cryogenic 
burn 

Mechanical failure of the hose Inspection routines 

    Leak with potential 
of fire. Cryogenic 
burn 

Improper connection from the 
operator - human error  

Quality 
Procedure/Checklist
s 

  Release from hose 
prior to disconnect 
(not vented 
properly) 

Minor Leak with 
potential of 
Cryogenic burn 

Hose not vented prior to 
disconnect - human error 

  

    Minor Leak with 
potential of 
Cryogenic burn 

Operator did not follow the 
right procedure and unloading 
checklists - human error 

Quality 
Procedure/Checklist
s 

Liquid H2 
Tank Truck 
Leak 

Liquid H2 Tank 
Truck Leak 

Potential 
Fire/explosion 

Mechanical failure due to road 
vibration 

  

    Potential 
Fire/explosion 

Truck collision damages 
hydrogen piping 
while unloading - human error 
(collision either due to the 
movement of the truck itself or 
the nearby vehicle impact to 
truck) 

Driver puts warning 
signs and caution 
cones near the truck 
and at the site  

Liquid H2 
shut-off 
valve Failure 
(stuck open) 

Liquid H2 shut-
off valve Failure 
(stuck open) 

Potential Fire Mechanical failure of valve -  
(stuck open) 

Leak detector, visual 
detection by the 
public 

    Potential Fire Operator assume the valve 
was closed 

Leak detector, visual 
detection by the 
public 

  Failure to Stop 
release by closing 
stuck open valve 
on the trailer 

Potential Fire Operator not trained to stop 
liquid release  

Leak detector, visual 
detection by the 
public 

    Potential Fire No planning to handle liquid 
release situation was done 
before the task 

Leak detector, visual 
detection by the 
public 

Bulk storage 
tank leak 

Gas leakage from 
a liquid outlet 
valve  

Potential Fire Mechanical failure of the 
valve (stuck open) 

Safety valve, Leak 
detector, Level 
Gauge, visual 
detection 

  Potential Fire Improper connection prior to 
unloading 

Safety valve, Level 
Gauge, Leak 
detector, visual 
detection  

Table 21. Human Factor FMEA 
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6.3.3 Scenario fault tree modelling 
 

In order to analyse the human factors it is necessary to model the scenario using some modelling 

techniques. In this study, fault tree is introduced to model the scenario. The probability modelling makes 

use of several techniques such as FMEA, Fault tree analysis in risk assessment process. The failure 

analysis traceability can be improved by combining FMEA with Fault tree (Peeters, 2018). This is the 

method being utilised, which helps to analyse the failure causes and their root causes from the potential 

failure modes already identified through Human Factor FMEA. The fault tree model for the scenario 

“liquid hydrogen refuelling station leak incident” is presented in Appendix E. The causal relationship 

between basic events are linked using “AND” or “OR” gates. The human factor related basic events are 

identified as “operator” or “supervisor” in blue marks. The fault tree developed for the scenario will 

then be mapped to probabilistic graphical model to take advantage of several benefits offered by 

graphical model over conventional fault trees (Hamza, 2015; Khakzad, 2013). 

The top event (T) i.e. the scenario “liquid hydrogen refuelling station leak incident” occurs when: 

  P (T) = P (1) AND P (2) 

The structure data of the tree and minimal cut sets are determined for evaluation of large fault trees. The 

minimal cut sets for the fault tree is obtained using deterministic approach (Kohda, 2006). All events in 

the fault tree are numbered as shown in Appendix E. The minimal cut sets for fault tree are: 

- Set 1: E (1.1) E (2.1.1) 
- Set 2: E (1.1) E (2.1.2) 
- Set 3: E (1.1) E (2.2.1.1) E (2.2.1.2) E (2.2.2.1) 
- Set 4: E (1.1) E (2.2.2.2) E (2.2.1.1) E (2.2.1.2) 
- Set 5: E (1.1) E (2.3.2.1) E (2.3.2.2) E (2.3.1.1) 
- Set 6: E (1.1) E (2.3.1.2) E (2.3.2.1) E (2.3.2.2) 
- Set 7: E (1.1) E (2.4.1) 
- Set 8: E (1.1) E (2.4.2)  
- Set 9: E (1.2.1) E (1.2.2) E (2.1.1) 
- Set 10: E (1.2.1) E (1.2.2) E (2.1.2) 
- Set 11: E (1.2.1) E (1.2.2) E (2.2.1.1) E (2.2.1.2) E (2.2.2.1) 
- Set 12: E (1.2.1) E (1.2.2) E (2.2.2.2) E (2.2.1.1) E (2.2.1.2) 
- Set 13: E (1.2.1) E (1.2.2) E (2.3.2.1) E (2.3.2.2) E (2.3.1.1) 
- Set 14: E (1.2.1) E (1.2.2) E (2.3.1.2) E (2.3.2.1) E (2.3.2.2) 
- Set 15: E (1.2.1) E (1.2.2) E (2.4.1)  
- Set 16: E (1.2.1) E (1.2.2) E (2.4.2) 

 

Where E = Event. For event numbering refer to Appendix E. 

Thus, the top event could occur if any of the set events is TRUE. 
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6.3.4 Compiling fault tree into probabilistic graphical model 
 
Due to certain limitations fault tree cannot be used in dynamic risk analysis environment, where the 

probability needs to be updated on real time basis. Fault tree does not allow incorporating new 

knowledge or evidence into the system thereby making it inflexible to dynamic risk modelling 

(Paltrinieri, 2016; Hamza, 2015). The modelling possibilities offered by fault tree can be extended by 

relying on probabilistic graphical networks. Therefore, fault tree is mapped into a graphical diagram 

(Fig.35) to relax the limitations of fault tree and improve risk assessment process (Khakzad, 2013a, 

2011b; Bobbio, 2001).  

 

Figure 35. Hydrogen Liquid Transfer Leak Scenario Modelling using Probabilistic Graphical Model 

The probabilistic graphical model was developed using software GeNIe 2.0 (Horny, 2014). The 

graphical model demonstrates a set of basic events (random variables) and their conditional 
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dependencies in the form of a directed acyclic graph (Zarei, 2017). The oval shaped node from which 

the arc is linked is called parent node while the node to which the arc is linked is called child node. The 

Fig.30 shows the relationship between various nodes leading to the top event. The relationship between 

different nodes are marked as “AND” or “OR”. The graphical model is an exact replica of the fault tree 

represented in Appendix E. The top event can be identified by the black rectangle mark. In the latter 

part of this study, each root cause node (also known as fault node) will be provided with a human error 

probability based on the assessment performed in Section 6.3.5. The joint probability distribution for 

each child node is calculated using the equation: 

P (X) = ∏ P(Xi |Pa (Xi))n
i=1                                                                  (36)                                                       

Where, 

i = 1 to n; 

P (X) is the joint distribution probability;  

Pa (Xi) is the parent set of Variable Xi. 

 
The causal relationship between basic events helps to identify the most critical basic events leading to 

the top event (Khakzad, 2013). The model serves as a basis for identifying human factor related critical 

events. The nature of this structure and its ability to better model causal relationship between nodes 

(variables) make risk modelling more effective, transparent, and flexible (Zarei, 2017). More complex 

algorithms such as discrete and continuous distribution can be plotted using graphical model. However, 

this study limits the use of graphical model to conditional probability only.   

6.3.5 Human Error Probability Modelling (HEPM) 
 

This section of the study explains a method to estimate the human error probability for the failure events 

identified in FMEA. Firstly, it is difficult to analyse human error probability due to the random 

behaviour of humans. Practically, any activity performed by an operator can depend on several 

performance conditions such as training, distraction, performance, experience, stress, time pressure etc. 

The performance conditions that could be applicable for possible failure modes are shown in Fig.36. 

The human failure modes are primarily categorized as personal, group or management factors. The 

performance conditions are then decided based on the task activity. For example, an operator opening 

the wrong valve will be categorized under “Action” performance conditions. Furthermore, there are 
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several guidewords under each performance condition to help analyse each performance conditions in 

depth. The possible list of guidewords to analyse relevant performance conditions are listed in Appendix 

F. 

Figure 36. Human Failure mode grouping 

 
The failure modes captured through FMEA should be reviewed by a team of experts and analysts should 

link each failure mode to its most applicable performance conditions. Thereafter, applicable guidewords 

should be extracted for each performance conditions. The Human Error Index (HEI) is calculated by 

adding together the products of the relative importance weights and the assessed confidence factor for 

each of the Performance conditions (DiMattia, 2005). 

 
Figure 37. Human error probability modelling 
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Fig.37 shows HEPM for one of the failure mode i.e. “Gas Alarm not recognized by the operator” 

identified using the Human Factors - FMEA. This failure mode has seven performance conditions 

associated with it. Each performance conditions may be assigned a Weight from -100 to +100 and a 

confidence factor from 0 to +100. The confidence factor (shown in Box 2 marked in Orange) is a 

numerical value provided by the analyst which reflects the state of each performance condition in the 

model. This is normally on a scale from 1 (corresponding to worst-case conditions) to 100, 

(corresponding to best-case conditions). For some performance conditions (called reverse scales) such 

as time pressure or distractions, increasing the confidence factor (e.g. from low time pressure, rating 10 

to high time pressure, rating 90) will increase the error probability. For these types of performance 

conditions, the values are subtracted from 100 in order to reverse direction of the scale. The HEPM for 

other failure modes are listed under Appendix G. 

 
In case of weighting values shown in Box 1, high level of Monitoring Information is something positive 

and will increase the Human Error Index (HEI) value and decrease the probability of error - it therefore 

has a positive weight with a value of 100.  In contrast, a high level of Distraction is a negative thing and 

will decrease HEI and increase the probability of error - it therefore has a negative weight with a value 

of -100.  The model may be fine-tuned by adjusting the weights.  For example, Training may be 

considered twice as important as Quality of Procedures so the later performance conditions may have a 

weight of +50 rather than +100. 

 
The products of confidence factor and its corresponding weight for each performance conditions are 

then added to give a human error index score (the HEI) for the failure mode, which is then rescaled to 

fall within the range 0 - 1. This is the number shown in the bottom left hand window (0.46) of Fig.37. 

The HEI is obtained through a simple mathematical calculation as follows: 

 
HEI=[(25/100)+(1−(50/100))+(50/100)+(50/100)+(1−(50/100))+(1−(50/100))+(1−(50/100))]×(1/7) 
 
HEI=[(0.25)+(1−0.50)+0.5+0.5+(1−0.5)+(1−0.50)+(1−0.50))]×(1/7) = 0.46                                                      
  
Note the correction for reversed scales for 3 performance conditions is marked to -100.  
 



 

155 
 

The HEI score can be transformed to a Human error Probability HEP (the value of 0.0536 shown in the 

adjacent window in Fig.37) by means of a calibration relationship. Substituting the calculated HEI value 

of 0.46 (at the top of the failure modes of Fig.35) into Equation (37) gives a predicted HEP of 0.0536 

for this failure event. The relationship between HEI and HEP are shown below:  

HEP= -0.0999 * HEI + 0.1                                                                (37) 

 
Note the HEI range from 0 to 1.0 is calibrated against HEP range of 0 to 0.1 because a proportion of the 

top event (leak incident) is caused due to human error. So a base factor of 10% human factor 

contribution leading to the top event is assumed in this study. In reality, this figure could be much higher 

and the calibration scale will then need to be changed accordingly. HEI and HEP values for the 

remaining human factor related failure modes are shown in Appendix G.  

Note: In the case of a hazardous top event to be calculated is a frequency (1/time), Event 1.1 and 1.2.1 

are converted to frequency.  

6.3.6 Quantitative Modelling using Probabilistic Graphical Model 
 
The graphical model in Fig.35 is used as a base for quantitative (probability) determination. The 

relationship between different nodes is represented through AND/OR gates based on the fault tree 

diagram drawn at the initial stage. Numerically, it represents the joint probability distribution among 

them. This distribution is described efficiently by exploring the probabilistic independences among the 

modelled variables (Khakzad, 2013). Each node is described by a probability distribution conditional 

on its direct predecessors.  
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Figure 38. Human Factor Modelling of Leak Incident using Probabilistic Graphical Model 

 
The final step is to determine the top event (gas release) probability. In the present work, the graphical 

modelling is simulated and run in GeNIe 2.0 software (Horny, 2014). Fig.38 shows the probabilistic 

graphical diagram equivalent of fault tree drawn (Hamza, 2015; Pearl, 2005; Groth, 2012). The mapped 

model is able to consider the common causes failures and conditional dependency among events. Once 

new observations are made such as new failure numbers, slip or misses of basic events, estimated top 

event likelihood can be updated through probability updating by means of the developed Graphical 

Model. It is to be noted that the probability figures estimated through the graphical model are slightly 

different from the values estimated through fault trees. This is because of the inclusion of conditional 

dependency.  

 



 

157 
 

The calculation sheet for the human error probability of all events, whose values were used to predict 

the scenario occurrence probability by means of probabilistic graphical model, is shown in Appendix 

G. Scenario (top event) frequency is equal to 0.03 per year after taking credit for safety system. This 

shows that the current operation of the station is heavily dependent on safety system design and its 

operation on demand in order to reduce the risk likelihood to 0.03/year. 

 
6.4 MAIN FINDINGS AND RESULTS 
 
One of the objectives of this study is to analyse critical events from safety point of view. This requires 

a coarse risk screening exercise to prioritise the causes to be analysed first and/or in the greatest level 

of detail, based upon the degree of anticipated risk that they pose. The graphical model developed in 

Fig.38 helps the analyst to understand the conditional probability distribution for each basic events to 

its child node. The graphical model describes the joint probability distribution efficiently by exploring 

the probabilistic independences among the modelled variables. Thus, the intermediate events having 

more influence on the top event are prioritised from Fig.38 and their relevant basic causes are further 

assessed based on the calculations of HEP and conditional probability distribution shown in Fig.38. A 

human factor analysis result is presented in the form of a table in Appendix H.  

 
The approach used is useful to apply a coarse and relatively rapid screening process in order to focus 

the causal analysis on those causes that constitute the greatest source of risk. This reduce the time and 

effort required to reach to conclusions and also improves the quality of decision making process. 

 
The underlying three failure events are identified as contributing to poor performance from the HEPM 

assessment (Appendix H): 

1. Improper connection to hose from operator 

2. Improper connection to liquid outlet valve prior to unloading 

3. Liquid filling Vehicle collision impact damages hydrogen piping system 
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 Improper connection to hose from operator 
Conditions Recommendations that should be considered in Scope 
Training Training exercise should cover hose connection checks prior to the start of the 

process. 
Checklist The use of checklists should be clearly defined and understood by all personnel 

involved in the design, installation, maintenance, operation of bulk transfer 
process and the associated mechanical components. 

Standard Operating 
Procedure & Policy 

Standard procedure must be followed in all cases. A policy for use on hose and 
its connections should be developed, documented and implemented for new or 
existing installation. 

Task based risk 
assessment 

It is recommended to perform a task based risk assessment to identify potential 
cause of failures prior to the bulk transfer process. 

Awareness Program Good awareness program is essential to identify and record potential threats to 
piping’s and fittings associated with the safety valves. 

Clothing Prescribed clothing must be worn at all times. 
Supervision A supervision should be mandated for hose connection checks prior to the start 

of the process. 
 

 
 Improper connection to liquid outlet valve prior to unloading 

Conditions Recommendations that should be considered in Scope 
Training Training exercise should cover safety valve checks prior to the start of the process. 

Checklists The use of checklists should be clearly defined and understood by all personnel 
involved in the design, installation, maintenance, operation of bulk transfer 
process and the associated safety valves. 

Standard Operating 
Procedure & Policy 

Standard procedure must be followed in all cases. A policy for use on safety device 
and minimization of the fitting and piping’s should be developed, documented and 
implemented for new or existing installation. 

Task based risk 
assessment 

It is recommended to perform a task based risk assessment to identify potential 
cause of failures prior to the bulk transfer process. 

Awareness Program Good awareness program is essential to identify and record potential threats to 
piping’s and fittings associated with the safety valves. 

Clothing Prescribed clothing must be worn at all times. 
Supervision A supervision should be mandated to cover safety valve checks prior to the start 

of the process. 
  

 Liquid filling Vehicle collision impact damages hydrogen piping system 
Conditions Recommendations that should be considered in Scope 
Guardrail The hydrogen dispenser area should have a guardrail system to prevent any 

collision with external vehicles. 
Training Staff should supervise the position of the vehicles and maintain safe distance from 

the dispenser. Staff should be trained on how to deal with minor fuel spillages in 
case of hazardous scenario.  

Station layout There should be an identified boundary between refuelling operation area and 
ancillary service area that will reduce the travel movement of the vehicles within 
the premises. 

Fire Extinguisher Each Dispenser should be equipped with one or more portable dry powder fire 
extinguishers 

Standard Operating 
Procedure & Policy 

Standard procedure must be followed in all cases. A policy for use on safety device 
and minimization of the fitting and piping’s should be developed, documented and 
implemented for new or existing installation. 

Task based risk 
assessment 

It is recommended to perform a task based risk assessment to identify potential 
cause of failures prior to the bulk transfer process. 
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Probabilistic graphical model shown in Fig.38 shows that the chance of hydrogen leak incident is 15%. 

However, the leak event probability is drastically reduced to 0.03 per year because of the protection 

layer – safety system. This indicates that the current operation of the station is heavily dependent on 

safety system design and operation on demand to reduce the risk likelihood to 0.03 per year. The safety 

system functions as an emergency shutdown system where the primary function is to deactivate the 

source of release by automatically or manually isolating the liquid hydrogen flow. However in this case, 

most of the functions are dependent on human rather than system, appropriate care should be taken 

knowing that there is a possibility of leak in case the procedure is not followed. Standard operating 

procedure must be followed at all times. Assumptions are made at great risk. Risk also increases with 

complacency. 

 
6.5 CONCLUSION 
 
As a result of analysis, events related to safety valve failure, improper connection of mechanical 

components , incompetency and no planning prior to the task has been found as some of the key issues 

in a transfer leak operational incident at a hydrogen refuelling station. In the final part of this study, a 

quantification technique using a probabilistic graphical model quantifies the top event (gas release) 

probability using the HEP data. The frequency of a hydrogen leak incident is 0.03/year provided all 

necessary safety measures are in place. From the study, more awareness of hydrogen system among 

public, operator training (competency), use of correct policies and procedures are emerging as key 

contributions towards increased safety of the hydrogen service stations. In addition, a good performance 

(high integrity) safety system is required to prevent hydrogen releases. 
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Appendix E – Scenario Fault Tree modelling (expanded) 

i) Top event 

Liquid Hydrogen 

Refuelling Operation 

Incident 

AND

0

Fm 0

Liquid Hydrogen 

Leak

2

OR

Liquid H2 Tank 

Truck Leak

Liquid H2 shut off valve 

was partially open
Transfer Hose Leak

Fm 2

2.1 2.2 2.3

Bulk storage tank 

Gas leakage from 

liquid outlet valve 

2.4

Emergency 

Shutdown failure

1

OR

Fm 1

Gas Alarm not 

recognised by the 

Operator

1.1

Emergency 

Shutdown not 

Inititated

1.2

AND

Emergency 

Shutdown action 

omitted by the 

Operator

Emergency 

Shutdown not 

initiated by the 

Supervisor

Fm 1.2

1.2.1

Station Operator

1.2.2

Station Supervisor

Station Operator

 

ii) Leak event modelling (1)

Liquid H2 Tank 

Truck Leak

OR

Mechanical failure 

due to

road vibration

Truck collision 

damages

hydrogen piping

while unloading

Liquid H2 shut off valve 

was partially open 

AND

Liquid H2 shut-off 

valve Failure (stuck 

open)

AND

Operator assume 

the valve was 

closed

Mechanical failure 

of valve -  (stuck 

open)

Failure to Stop 

release by closing 

stuck open valve 

on the trailer

OR

Operator not 

trained to handle 

in this situation

No planning to  

handle in such 

situation was done 

before the task

2.1

Fm 2.1

2.1.1 2.1.2

2.2

Fm 2.2

2.2.1

Fm 2.2.1

2.2.1.1

Station Operator

2.2.1.2

2.2.2

Fm 2.2.2

2.2.2.1

Station Operator

2.2.2.2
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iii) Leak event modelling (2) 

Transfer Hose Leak

OR

Hose connection 

leak during 

unloading

OR

Mechanical failure 

of the hose

Improper 

connection from 

the operator

Release from

connecting hose

AND

Hose not vented 

prior to

disconnect — 

human error 

(Driver)

Operator did not 

follow the right 

procedure and 

unloading 

checklists

2.3

Fm 2.3

2.3.1

Fm 2.3.1

2.3.1.1 2.3.1.2

Station Operator

2.3.2

Fm 2.3.2

2.3.2.1

Truck Driver

2.3.2.2

Station Operator

Bulk storage tank 

Gas leakage from 

liquid outlet valve 

2.4

OR

Mechanical failure 

of the valve (stuck 

open)

Improper 

connection prior to 

unloading

Fm 2.4

2.4.1 2.4.2

Station Operator

 
 
Appendix F – Key guidewords for performance conditions 

 
 

Planning Errors Situation evaluation / diagnosis Selection 

1 Incorrect or no plan formulated 1 SA omitted 1 Selection omitted 
2 Insufficient resources allocated to 
activity 2 SA incorrect 2 Selection incorrect 

3 Insufficient time allocated 3 SA too late   

4 Contingencies not considered     
5 Roles and responsibilities not 
defined     

Actions Checking Information  

1 Action omitted 1 Check omitted 1 No Information  

2 Right action wrong object 2 Check too late/early 2 Wrong information obtained 

3 Action incomplete 3 Wrong object or action checked 3 Information incomplete 

4 Action too early/late 4 Wrong check 4 Information content not 
checked/verified 

5 Action too fast/slow     

6 Action too little/too much     

Supervision Communication Monitoring 

1 Supervision omitted 1 Information not communicated 1 Monitoring omitted 

2 Wrong person or process supervised 2 Wrong information communicated 2 Wrong person or process monitored 
3 Supervision incomplete or 
interrupted (e.g. following a shift 
change) 

3 Ambiguous information communicated 
3 Monitoring incomplete or 
interrupted (e.g. following a shift 
change) 

  4 Incomplete information communicated 4 Incorrect variables monitored 
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Appendix G – Human error probability assessment 
Event 
ID 

Failure mode Failure 
Mode HEP 

Failure event Description  Individual 
HEP 

Frequency 
in per year 

1.1 Shutdown failure on transfer 
leak 

0.19 per 
year 

Gas alarm not recognized by the operator  0.0536 Approx. 
0.1 

1.2.1     Emergency shutdown not initiated by the 
supervisor or the operator - human error  

0.0584 Approx. 
0.1 

1.2.2     Emergency shutdown not initiated by the 
supervisor or the operator - human error  

0.0584 -- 

2.3.1.1 Hose connection leak during 
unloading 

0.0809 Mechanical failure of the hose 0.0401 -- 

2.3.1.2     Improper connection from the operator  0.0426 -- 
2.3.2.1 Release from hose prior to 

disconnect(not vented 
properly) 

0.0019 Hose not vented prior to 
disconnect - human error 

0.0501 -- 

2.3.2.2     Operator did not follow the right procedure 
and unloading checklists - human error 

0.0378 -- 

2.1.1 Liquid H2 Tank Truck Leak 0.0785 Mechanical failure due to road vibration 0.0401 -- 
2.1.2     Truck collision damages 

hydrogen piping while unloading - human 
error (collision either due to movement of 
truck itself or nearby vehicle impact to truck) 

0.0401 -- 

2.2.1.1 Liquid H2 shut-off valve 
Failure (stuck open) 

0.0071 Operator assume the valve was closed 0.0711 -- 

2.2.1.2     Mechanical failure of valve (stuck open) 0.1 -- 
2.2.2.1 Failure to Stop release by 

closing stuck open valve on 
the trailer 

0.1432 Operator not trained to stop liquid release 0.08 -- 

2.2.2.2     No planning to  handle liquid release situation 
was done before the task 

0.0688 -- 

2.4.1 Storage Tank Gas leakage 
from liquid outlet valve 

0.0809 Mechanical failure of the valve (stuck open) 0.0401 -- 

2.4.2     Improper connection prior to unloading 0.0426 -- 
  Top Event Likelihood  0.03 / year frequency with safety system credit  

Note: In the case of a hazardous top event to be calculated is a frequency (1/time), Event 1.1 and 1.2.1 are 

converted to frequency.  

Appendix H – Human factor analysis result 
 

Event 
ID 

Failure events 
(excludes safety system failure) 

HEP % Contribution to 
Intermediate 

Event – Top Event 

Performance level 

2.3.1.1 Mechanical failure of the hose 0.0401 1% Low effect 
2.3.1.2 Improper connection from the operator - human 

error  
0.0426 4% Poor 

2.3.2.1 Hose not vented prior to disconnect 0.0501 0% - 
2.3.2.2 Operator did not follow the right procedure and 

unloading checklists - human error 
0.0378 0% - 

2.1.1 Mechanical failure due to road vibration 0.0401 1% Low effect 
2.1.2 Truck collision damages hydrogen piping while 

unloading - human error  
0.0401 4% Poor 

2.2.1.1 Operator assume the valve was closed 0.0711 0% - 
2.2.1.2 Mechanical failure of valve (stuck open) 0.1 0% - 
2.2.2.1 Operator not trained to stop liquid release 0.08 0% - 
2.2.2.2 No planning to  handle liquid release situation was 

done before the task 
0.0688 0% - 

2.4.1 Mechanical failure of the valve (stuck open) 0.0401 1% Low effect 
2.4.2 Improper connection prior to unloading 0.0426 4% Poor 
Note: The intermediate event having more influence on the top event are prioritized and its relevant basic 

causes are further assessed using probabilistic graphical model. 
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7.  MAIN CONCLUSIONS AND FUTURE WORK 

 

The PhD initially addresses the core concept relating to risk review, safety categorization of new 

technology and accident analysis. At first, the term “risk” is defined for this PhD as “probability 

uncertainty” and the concept of the risk is reviewed in detail in Section 1.2.1. Due to the nature of the 

new technology, it should be categorized based on the classification and qualification in terms of safety 

as explained in Section 1.2.2 and 1.2.3. The qualification of a hydrogen system is classified under 

Category 3 due to limited knowledge of the application and extremely limited data on accidents/failures. 

Performance criteria for the product and/or the technologies must be specified by the developer based 

on various safety and reliability measure. The accident characteristic is studied to understand the trend 

of accident occurrence and impact of lack of data on the uncertainty in results in new systems. 

 
A dynamic approach for addressing uncertainty in accident and risk assessment, based on the evaluation 

of the hydrogen system is implemented. The case study addressed several uncertainties areas in the risk 

and reliability quantification of hydrogen station. Research results include developed models for 

organizing, processing and analyzing accident data.  A general systematic process flowchart is 

developed in Fig.3 and framework in Fig.4. The reliability prediction methods adopted in this research 

were classified into three categories: (1) statistical distribution methods, (2) physics-of-failure methods, 

and (3) top-down similarity analysis methods. The first and third category is based on statistical analysis 

of failure data, while the second category is based on physics-of-failure models. Case study 1 and 2 of 

the research deployed statistical methods, case study 3 deployed physics-of-failure method, while case 

study 4, 5 and 6 utilized external failure database combined with Bayesian. 

 
In the initial phase of the research, time based evaluation methods using Weibull and log normal 

function were proposed for leak rate estimation using operating time data on HRSs. Even if accident 

events are rare, two statistical models can provide a range of leak rates as a function of time. This is 

found to be beneficial in case of lack of data issue. In addition, leak frequency estimates from the other 

two methods i.e. non-parametric based and leak hole-size based were examined. The leak rate obtained 

from the non-parametric method was found to be the most conservative among the three. Perhaps, this 
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is because of the more frequent failures observed in the new evidences for the 70 MPa system. One 

possible solution is to consider a conservative value for the design of HRS, in which case, the non-

parametric model leak rate of 0.24 per year can be used. The base value selected can be selected in 

design to set performance standards for the availability and reliability in the operation and maintenance 

of HRSs. 

 
Unrevealed leak time was assessed from the estimated leak frequency. It can be concluded that if the 

leak rate is estimated to be high, the inspection interval should be more frequent to reduce the 

unrevealed leak time and increase the process safety. The unrevealed leak time can be used to the 

specification of hydrogen sensors to detect leaks of hydrogen. This will ensure the component and 

process both meet the requirements in the performance standard, leading to increased process safety in 

HRSs. Further work can be carried out to set the performance requirement of hydrogen sensor based on 

the unrevealed leak time. 

 
For accident data uncertainty assessment, we have introduced a study on the accident data uncertainty 

based on time correlation model (CAR model). The model estimates the uncertainty and accident rate 

by time correlation model that is fundamental to the challenge of lack of data. The CAR model is 

different from the other lifetime distribution models because its main aim is to reveal the estimate’s 

uncertainty. A new system such as HRS has very little accident information, and so future predictions 

are inevitably unreliable. One approach to rectify this problem is to wait until enough data have been 

collected, or utilize the accident data of similar systems to increase its reliability. However, the Gaussian 

conditional autoregressive model does not aim to reduce the uncertainty; rather it discusses the effect 

of lack of information on the estimation. This new way of dealing with and interpreting accident 

information can be utilized to evaluate new systems such as HRS in the future. 

 
Verification of QRA is vital topic in the field of process safety and was found necessary to choose 

appropriate parameters in failure estimation and understand its influence on the reliability assessment 

to offset the limitations associated with data scarcity and QRA uncertainty problems. Failure of 

hydrogen system was estimated using time function and number of filling function. The study concludes 
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that the failure rate estimated as a function of number of fillings is more reliable and realistic than the 

estimation based on survival time. Moreover, the number of fillings is more representative of the true 

failure rate as it considers the actual station’s usage and loading. The survival time do not always 

represent the actual usage of the stations. The study brings to light the importance of verifying the 

appropriate life parameters and their associated influence on reliability assessment. The verification of 

appropriate parameters reveal the true estimates of failure rate for HRS. If the reliability parameter is 

selected based on usage and actual conditions of the HRS, it will lead to accurate estimation of risks 

and improved critical business decisions. Further work can be carried out to find other suitable ways 

for verification and validation of QRA. 

 
For improvement in reliability assessment, a dynamic modelling was integrated to IEC 61508 functional 

safety standard to conclude on how failure rates and failure probability can be controlled in practice. A 

Bayesian framework was implemented that addressed the requirements by allowing industry knowledge 

about failure rates to be incorporated in a prior gamma distribution and periodic updating process with 

new survival data as it becomes available. It is observed that with less number of new observations, the 

updated failure rate is sensitive to generic uncertainty data which does not provide realistic result. In 

order to improve the sensitivity of updated failure rate, more number of observations subject to 

modelling using Monte Carlo method will be beneficial. Further work can be carried out to generate 

appropriate base value for all hydrogen station components that can be used in design set performance 

standards for availability and reliability in operation and maintenance of the component. 

 
A simple and creative RBI methodology was implemented to optimize the inspection test on the 

hydrogen system based on the associated risks using a BN. The study divides the risks in three different 

categories. By these categories, the inspection time is determined given that a component is overpassing 

the minor, major or critical level of risk. The most critical components were determined based on 

inspection time and risk category. In addition, accident data evaluation based on operation time and 

system category revealed that that dispenser and accumulator failure was more evident during the early 

stage of HRS operation period whereas compressor and interconnection system had accidents late in 



 

168 
 

the operation period. Further work can be carried out to implement a decision support tool for integrity 

management using comprehensive and real failure data to reduce uncertainty and improve accuracy. 

 
A probabilistic graphical model is proposed for human factor analysis in liquid hydrogen leak incident. 

From the study, more awareness of hydrogen system among public, operator training (competency), use 

of correct policies and procedures are emerging as key contributions towards increased safety of the 

hydrogen service stations. In addition, a good performance (high integrity) safety system is required to 

prevent hydrogen releases. It is found that such semi-quantitative graphical method of human factor 

analysis for the refueling station liquid hydrogen releases helps to prioritise the causes that need to be 

analyzed first and/or in the greatest level of detail, based upon the degree of anticipated risk that they 

pose. Further work can be carried out within to identify prior probability of human causes across the 

entire hydrogen refuelling station. This research can be further extended to accomplish standardisation 

of HEP data with the ultimate objective of producing an engineering database for human error risk 

assessment. 
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