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Abstract

Many researchers have worked on developing quantum computers which use
quantum mechanics to perform computations. On the other hand, the stan-
dardized cryptosystems such as RSA encryption and elliptic curve cryptosys-
tems are theoretically broken by utilizing quantum computing if sufficiently
large-scale quantum computers are realized. Hence, it is important to de-
sign constructions of post-quantum cryptography or quantum-resistant cryp-
tography, which is cryptography resistant to quantum computing. In fact,
NIST (National Institute of Standards and Technology) has promoted the
post-quantum cryptography (PQC) standardization project, and the develop-
ment of post-quantum public key encryption and digital signatures has been
advanced actively.

In this thesis, we aim at constructing quantum-secure cryptographic schemes
of encryption, authentication, and cryptography with both properties of en-
cryption and authentication. Quantum security means security against quan-
tum computing in a quantum security model in which an adversary can commit
a quantum computation in a black-box way. The properties of encryption and
authentication are confidentiality and integrity of data, respectively. These
are fundamental security notions in cryptology. In addition, quantum security
models capture situations in which quantum computers are widespread and
available to many users. Hence, it is important to consider confidentiality and
integrity in a quantum security model.

First, we focus on public key encryption (PKE) satisfying selective open-
ing (SO) security in quantum security models. Concretely, we prove that two
PKE schemes from key encapsulation mechanism (KEM) constructions sat-
isfy SO security against chosen ciphertext attacks (SO-CCA security) in the
quantum random oracle model (QROM) or the quantum ideal cipher model
(QICM). One is constructed from any KEM schemes meeting indistinguisha-
bility against chosen ciphertext attacks (IND-CCA security) and any data
encapsulation mechanism (DEM) meeting both simulatability and integrity,
and it satisfies SO-CCA security in the QICM. The other is constructed from
a KEM scheme based on Fujisaki-Okamoto transformation and any message
authentication code (MAC) meeting strong unforgeability, and it satisfies SO-
CCA security in the QROM. We can obtain concrete SO-CCA secure PKE
schemes from any KEM constructions meeting the security which standard-
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ized KEM/PKE schemes are required to achieve (i.e., IND-CCA security) by
combining with standardized DEM or MAC schemes.

Second, we deal with the quantum security of message authentication codes
(MACs) with aggregation, which are called aggregate MAC (AMAC) and se-
quential AMAC (SAMAC). We formalize the quantum security of AMACs
for the first time, and show that an existing AMAC scheme satisfies our
security. In addition, we also formalize the quantum security of SAMACs
and show that existing SAMAC schemes are broken in our security model.
Then, we present two SAMAC schemes satisfying our security. One is con-
structed from any quantum-secure pseudorandom function, and the other is
constructed from any randomized pseudorandom generator. To realize con-
crete AMAC/SAMAC schemes with the quantum security, we can apply exist-
ing cryptographic primitives including standardized ones. Hence, our schemes
are useful in terms of practicality and security.

Third, we propose constructions of public key cryptography with both
confidentiality and integrity, which is called signcryption. We present two
schemes satisfying the security in the QROM or the standard model where
there does not exist (quantum) random oracles and (quantum) ideal ciphers.
One is based on lattice problems which are computationally hard problems
even for quantum computers and satisfies the security of signcryption in the
standard model. The other is a generic construction starting from any PKE
scheme meeting a weaker security than IND-CCA security and any lossy iden-
tification scheme with several properties. By applying schemes submitted to
the PQC standardization project, it is possible to construct concrete sign-
cryption schemes in the QROM. In addition, we show that the key-size and
ciphertext-size of our schemes are shorter than those of existing ones.
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Chapter 1

Introduction

1.1 Quantum Algorithms against Cryptosystems

In recent years, many researchers have worked on developing quantum com-
puters, which leverage quantum mechanics to perform computations, because
we can obtain various applications by utilizing quantum computations. De-
pending on applied principles, quantum computers are classified as follows:
Universal quantum computers with logical operations (which are called quan-
tum gates) aiming at solving any computational problems, and quantum com-
puters aiming at solving specific optimization problems, such as quantum an-
nealers. In order to carry out large quantum computations by using a univer-
sal quantum computer, it is necessary to correct errors throughout quantum
computations. It seems that it will take a long time to realize large-scale
quantum computers with fault-tolerance functionality though there are some
experiments which have demonstrated universal sets of quantum gates with
high fault-tolerance [33]. NIST (National Institute of Standards and Tech-
nology) has shown an opinion that it seems that a quantum computer which
can break 2000-bit RSA encryption could be built by 2030 [33]. Regarding
quantum annealers, it is reported that factoring problem can be solved by us-
ing quantum computers with quantum annealing though quantum annealing
requires super-polynomial time [79].

On the other hand, since Diffie and Hellman introduced the notion of
public key cryptography in 1976 [37], many (public key) cryptosystems based
on number theoretic problems have been proposed. (e.g., RSA cryptosys-
tems [114], ElGamal cryptosystems [50], Goldwasser-Micali encryption [56],
Paillier encryption [109], elliptic-curve cryptosystems [103, 86].) However, if
sufficiently large-scale (universal) quantum computers are realized in the fu-
ture, these cryptosystems are broken theoretically. This is because there exist
quantum polynomial-time algorithms solving number theoretic problems used
in the cryptographic schemes while polynomial-time classical algorithms solv-
ing these problems have not been known. As for symmetric key cryptography,
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Chapter 1. Introduction

it is also known that several standardized schemes are theoretically broken in
a quantum security model where many users use quantum computers.

Concretely, Shor presented quantum polynomial-time algorithms which
solve number theoretic problems such as factoring and discrete logarithm
[121, 122]. Thus, by using Shor’s algorithms, it is possible to break public
key cryptosystems based on number theoretic problems like RSA, factoring,
discrete logarithm Diffie-Hellman, and more cryptosystems. As for symmetric
key cryptography, there exists a general attack using Grover’s algorithm [57],
which can find an n-bit secret key with time-complexity O(2n/2). The measure
against this attack is to double the bit-length of secret key-sizes. However, in
quantum security models, several well-known schemes are broken in quantum
polynomial-time even though we prevent the attack with Grover’s algorithm.
In 2013, Boneh and Zhandry introduced a quantum security model of message
authentication codes (MACs) and proved that in this security model, there ex-
ist quantum polynomial-time algorithms which break the existing MACs [24].
In 2016, by utilizing Simon’s quantum algorithm [123], Kaplan et al. pre-
sented quantum attacks breaking several well-known and classical symmetric
key cryptosystems including standardized schemes, such as three-round Feis-
tel scheme, CBC-MAC, PMAC, and GMAC [80] in the security models which
were introduced in [24, 25]. In addition, other quantum attacks against several
cryptosystems have been researched [10, 130, 70, 71, 75, 69].

In 2016, from the factors above, NIST called for proposals of standards
of post-quantum cryptography: public key encryption, digital signatures, and
key-establishment algorithms [106]. Since then, it has advanced post-quantum
cryptography (PQC) standardization project actively [107]. In addition, Eu-
ropean Telecommunications Standards Institute (ETSI) also have considered
the road-map related to transforming to post-quantum cryptosystems. Notice
that in this thesis, if we describe a post-quantum cryptography (or cryptosys-
tem), the cryptography is resistant to quantum computing in a security model
where adversaries can utilize quantum computations.

Therefore, it is essential to develop cryptographic primitives secure against
attacks using quantum computers, and consider post-quantum ones with small
time-complexity and small communication-complexity so that post-quantum
primitives can be used in the real world. In the future, the following situations
can be considered: (i) There is no threat of attacks utilizing quantum compu-
tations, (ii) An adversary can utilize quantum computing and the other users
just use classical computing, (iii) all users including adversaries can leverage
quantum computing. Notice that we do not consider that cryptosystems with
quantum algorithms are used in these situations. In this thesis, we focus on
situation (iii) because it is natural to assume situation (iii) in a quantum
world where quantum computers are finally widespread and available to many
users. In addition, from an academic viewpoint, establishing a post-quantum
cryptography in situation (iii) is the most challenging, and the solutions in
situation (iii) will be applicable even in other situations (i) and (ii). Regard-
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1.2 Quantum Security of Cryptography

ing the other situations, it is unlikely to consider situation (i) since many
researches have paid much attention to the development of quantum comput-
ers, and it is predicted that quantum computers are realized in the near or
distant future. Although situation (ii) may be natural as a situation in a few
decades, we are interested in cryptography secure in a world where many users
can use quantum computers.

1.2 Quantum Security of Cryptography

There are the following approaches to design cryptographic systems secure
against quantum attacks:

• One is to construct a post-quantum cryptosystem in a classical secu-
rity model where the adversary against the post-quantum cryptosystem
can use quantum computing and only classical oracles which, given a
classical query, returns the response. For example, we consider a post-
quantum public key encryption scheme secure against chosen ciphertext
attacks in a classical security model. We assume that this one is based
on (computationally) hard problems even for quantum computers, such
as lattice problems and error-correcting codes. The scheme is secure
against attacks using quantum computing and accessing a decryption
(classical) oracle which, given a ciphertext, returns the decrypted value.

• The other is to construct a post-quantum cryptosystem in a quantum
security model where the adversary against the post-quantum cryptosys-
tem can use not only quantum computing but also quantum oracles
which, given a quantum superposition of queries (quantum query), re-
turns the quantum superposition of the responses. For example, we
consider a post-quantum public key encryption scheme secure against
quantum chosen ciphertext attacks. This one is secure against attacks
using quantum computing and accessing a decryption oracle which, given
a quantum superposition of ciphertexts, returns the superposition of the
decrypted values.

In this thesis, quantum security denotes security against attacks using quan-
tum computation in a quantum security model. Notice that we do not con-
sider the security model in which cryptographic primitives use quantum com-
puting (e.g., [108]). This is because we are interested in how to construct
post-quantum protocols starting from existing (standardized) cryptographic
primitives with classical algorithms.

Regarding main post-quantum cryptography in a classical/quantum secu-
rity model, there are cryptosystems based on the hardness of lattice problems,
error-correcting codes, and solving systems of multivariate polynomials. These
ones are based on the hardness of NP-hard problems or approximating these

3



Chapter 1. Introduction

problems, and resistant to attacks using quantum computing. This is be-
cause it is expected that the classes P and NP are not identical, and NP-hard
problems cannot be solved in polynomial-time by using classical computers.
Moreover, it is also believed that NP-hard problems cannot be solved in quan-
tum polynomial-time even if quantum computers are utilized. In particular,
of all post-quantum cryptosystems, ones based on lattice problems, which are
called lattice-based cryptosystems, have been researched actively, because lat-
tice problems or computational ones related to lattice problems are more suit-
able for applying to cryptography than other NP-hard problems. In addition,
lattice problems can provide many cryptosystems with advanced functional-
ity. As promising problems related to lattices, we can consider the problems of
learning with errors (LWE) and small integer solution (SIS), which are focused
on recently in constructions of lattice-based cryptography. So far, various and
important constructions of cryptographic schemes have been proposed based
on the problems: public key encryption [113, 111, 112, 90], and digital sig-
natures [26, 53, 31, 97, 115, 96, 41, 42, 21, 139, 27]. In addition, there are
constructions of key encapsulation mechanism [110, 31], identity-based en-
cryption [53, 31, 3, 133, 139, 27, 134], identification schemes [94, 83, 95], and
collision-resistant hash functions [54, 102].

Concerning quantum security models, the following models were formal-
ized: Boneh et al. introduced the concept of the quantum random oracle model
in 2011 [23], and Boneh and Zhandry formalized the quantum security models
of message authentication codes (MACs), digital signatures (DSs), symmetric
key encryption (SKE), and public key encryption (PKE) in 2013 [24, 25]. The
quantum ideal cipher model was formalized by Hosoyamada and Yasuda in
2018 [72].

Regarding the quantum random oracle model (QROM), many works have
aimed at presenting cryptosystems and security proofs in this security model.
The (classical) random oracle model (ROM), which was formalized by Bellare
and Rogaway in 1993 [18], is a security model in which a cryptosystem uses
ideal random functions, and any adversary against the cryptosystem has access
to the ideal random functions as oracles which are called random oracles. The
QROM is a model in which any adversary is allowed to issue quantum queries
to random oracles which are called quantum random oracles. In a real world,
cryptosystems secure in the ROM/QROM use cryptographic hash functions
as random oracles. It is natural to focus on designing post-quantum cryp-
tosystems in the QROM. In fact, the security of standardized cryptosystems
such as RSA-OAEP and Diffie-Hellman key exchange are proven in the ROM,
and those of most schemes submitted to the PQC standardization project
are guaranteed in the QROM. Since the QROM was introduced, many works
have been studied about cryptosystems secure in the QROM as follows: PKE
schemes [23, 127, 64, 116, 76, 73, 77, 78], DSs [131, 84, 91, 39], identity-based
public-key encryption schemes [137, 81], the general proof techniques in the
QROM [129, 9], and more works.
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1.3 Overview of Our Contributions

In addition, the classical/quantum ideal cipher model is a model where
any adversary has access to ideal ciphers E as oracles (i.e., Ek : X → X is
an ideal random permutation for each key k). Concerning a work related to
quantum ideal cipher model (QICM), it is proven that there exists a quantum
one-way function if the underlying block cipher is a quantum ideal cipher [72].

The security of MACs in a quantum security model was introduced by
Boneh and Zhandry [24]. In this security model, any adversary against a
MAC scheme is allowed to issue quantum queries to a tagging oracle which,
given a message, returns the tag on the message while in the classical security
model, it is allowed to issue only classical queries. Furthermore, they showed
that some existing MAC schemes such as Carter-Wegman MAC [132] and a
one-time secure MAC from a pair-wise independent hash function, which are
secure in the classical security model, can be broken in the security model.
Moreover, they proposed constructions satisfying the quantum security. In
addition, they also formalized the security of DSs, SKE, and PKE in the
quantum security model and proposed generic constructions of these crypto-
graphic protocols with the quantum security [25]. As described before, in 2016,
Kaplan et.al presented quantum algorithms breaking several SKE schemes in
the security models of [24, 25]. In particular, standardized MAC and authen-
ticated encryption schemes such as CBC-MAC and GCM can be broken in the
quantum security model. Hence, it is important to consider quantum security
of cryptographic systems.

1.3 Overview of Our Contributions

In this thesis, we propose quantum-secure cryptosystems. We consider quan-
tum security of (1) encryption, (2) authentication, and (3) cryptography with
both properties of encryption and authentication. Encryption schemes guaran-
tee confidentiality and prevent data from being compromised. Authentication
schemes guarantee integrity and prevent data from being substituted. Cryp-
tography with both properties of encryption and authentication guarantees
both confidentiality and integrity.

We describe the overview of our contributions in (1), (2), and (3) as follows.

(1) Encryption

We aim at proving that hybrid encryption schemes satisfy selective-opening
security (SO security) in the QROM or the QICM. Hybrid encryption is PKE
which consists of public key cryptography and symmetric key cryptography,
which are called key encapsulation mechanism (KEM) and data encapsulation
mechanism (DEM), respectively. SO security, of which concept was introduced
by Bellare, Hofheinz, and Yilek in 2009 [15], guarantees the confidentiality of
ciphertexts whose messages and randomness are not compromised even though
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Chapter 1. Introduction

adversaries get secret information such as messages and randomness of several
ciphertexts.

Our main motivation is to construct SO-CCA secure PKE schemes from
any IND-CCA secure KEM/PKE schemes which were submitted to the PQC
standardization project. Indistinguishability against chosen ciphertext attacks
(IND-CCA security) has been studied actively as one of the most important
security of PKE, and NIST requires that standardized schemes satisfy this se-
curity. However, IND-CCA security may not be enough in the multi-user set-
ting of selective-opening security against chosen ciphertext attacks (SO-CCA
security). It is proven that IND-CCA secure PKE schemes do not necessarily
fulfill SO-CCA security in [14, 67, 66]. Namely, there are counterexamples
such as IND-CCA secure PKE constructions which are broken in the security
model of SO-CCA security. All submitted schemes just guarantee IND-CCA
security. Moreover, in fact, there are many situations where messages and
randomness of ciphertexts are leaked because of weakness in system’s design,
even though cryptosystems are not broken theoretically. Therefore, it is im-
portant to consider how to construct SO-CCA secure PKE schemes from the
submitted KEM/PKE constructions.

Our contribution is to prove that two hybrid encryption schemes from
IND-CCA secure KEM/PKE schemes satisfy SO-CCA security in the QROM
or the QICM, for the first time. One is a PKE scheme included in the stan-
dard KEM/DEM framework which was designed in [35]. We require that the
underlying KEM meets IND-CCA security and the underlying DEM scheme
meets both simulatability and integrity which were formalized in [61] and [17],
respectively. This one satisfies SO-CCA security in the QICM. The other is
constructed from any FO-based KEM scheme which is a generic construction
of IND-CCA secure KEM, and any MAC with strong unforgeability. This
construction satisfies SO-CCA security in the QROM. Notice that FO-based
KEM schemes include most constructions submitted to the PQC standardiza-
tion project. The differences between these hybrid encryption schemes are as
follows:

• We can apply any IND-CCA secure KEM to the scheme in the standard
KEM/DEM framework while the underlying KEM in the other one is a
particular KEM scheme which was categorized in [64].

• The underlying DEM in the KEM/DEM framework must meet both
integrity and a particular property (simulatability) which has been dealt
only in [61] while the underlying MAC in the other scheme just needs to
fulfill a well-known security (strong unforgeability) which standardized
(deterministic) MACs meet.

Notice that PKE is a stronger cryptography than KEM. Namely, if a PKE
scheme meets IND-CCA security, then it also satisfies the IND-CCA security
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1.3 Overview of Our Contributions

of KEM. Thus, we can apply any IND-CCA secure KEM/PKE scheme to
either SO-CCA secure hybrid encryption.

(2) Authentication

Our purpose is to propose quantum-secure MACs with aggregation. Specifi-
cally, we deal with aggregate MAC (AMAC) and sequential aggregate MAC
(SAMAC) in quantum security models. In the ordinary MAC, a sender gen-
erates a tag (MAC-tag) on a message by using its secret key, and a receiver
verifies a message/MAC-tag pair by using the corresponding key. In the case
in which multiple senders with distinct keys generate MAC-tags on their local
messages, an AMAC compresses the multiple MAC-tags into a tag (aggregate
tag), and a receiver with the corresponding keys verifies whether a pair of
multiple messages and an aggregate tag is valid or not. SAMAC is AMAC
which can verify not only messages but also the order of sequential messages.

Our main motivation is to construct quantum-secure AMACs and SAMACs.
This is because when multiple senders send messages simultaneously, AMACs
and SAMACs are widely used since it is possible to reduce the size of MAC-tags
over channels. Thus, it is possible to utilize AMACs/SAMACs for applications
using resource-constrained devices such as audit-logging systems, wireless net-
work sensors, data-partitioning, and other applications. Furthermore, existing
AMACs/SAMACs may be broken in quantum security models. In fact, it is
known that several existing ordinary MACs including standardized schemes
are broken in a quantum security model [24, 80]. However, there is no work
which researches the quantum security of AMACs/SAMACs.

Our contribution is to formalize the quantum security of AMACs/SAMACs
and present generic constructions with our security. More details are as follows:

• We formalize the quantum security of AMACs. Our definition is rea-
sonable since this is the extension of the existing security [82] in the
classical security model. Furthermore, we prove that an existing AMAC
constructed from any MAC [82] satisfies our security if the underlying
MAC scheme meets unforgeability in the quantum security model of
[24]. Notice that it is possible to construct concrete AMAC schemes
satisfying our security because several MACs [136, 24, 124] meet the
quantum security of [24]. In particular, we can construct the AMACs
from standardized MAC schemes [124].

• We formalize the quantum security of SAMACs, which is the extension
of the existing security [44] in the classical security model. Besides, we
show that existing SAMAC schemes [44, 128] are broken in our security
model by using existing quantum attacks of [24, 80]. We present two
generic constructions satisfying our security. One is constructed from
any quantum-secure pseudorandom function (QPRF), and the other is
constructed from any randomized pseudorandom generator (randomized
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PRG). The difference between these schemes is that we can apply de-
terministic pseudorandom functions to the SAMAC from QPRF while
we can apply randomized PRGs to the other one. This means that con-
crete constructions from QPRFs can be realized by applying well-known
and practical MAC schemes such as NMAC/HMAC [124] while we can
realize concrete ones from randomized PRGs which are based on compu-
tationally hard problems for quantum computers such as learning parity
with noise (LPN) problem.

(3) Encryption and Authentication

Our goal is to propose quantum-secure signcryption schemes with short key-
size and ciphertext-size. Signcryption is a public key cryptography satisfying
both properties of PKE and DSs. Concretely, we construct two schemes with
both confidentiality and integrity against inside adversary in a multi-user set-
ting. Inside adversaries and the multi-user setting mean the following:

• Inside adversaries against a signcryption scheme can use either senders’
or receivers’ secret keys in order to break the scheme in a security game
while outside adversaries use only public parameters and public keys.
Thus, inside adversaries are stronger than outside adversaries.

• In the multi-user setting of signcryption, multiple senders and multi-
ple receivers communicate one another while in the two-user setting, a
sender and a receiver communicate each other. In particular, in the se-
curity model of the multi-user setting, the (inside) adversary against a
signcryption scheme can generate receivers’ or senders’ key-pairs at any
time and use them to break the scheme in a security game while in the
two-user setting, the (inside) adversary generates only one receiver’s or
sender’s key-pair at the beginning of a security game.

Hence, one of desirable security of signcryption is security against inside adver-
sary in the multi-user setting. Notice that signcryption schemes obtained by
combining PKE and DS constructions in the straightforward way do not neces-
sarily satisfy both confidentiality and integrity in the security model [11, 100].

Our motivation is to construct quantum-secure signcryption schemes with
short key-size and ciphertext-size. Concerning existing post-quantum sign-
cryption schemes, there are constructions obtained by applying concrete lattice-
based primitives to generic constructions of [34, 104]. However, the key-size
and ciphertext-size of these signcryption schemes are much longer than those
of constructions based on number theoretic problems. Moreover, by using
signcryption schemes, we can realize secure channels guaranteed both confi-
dentiality and integrity from insecure ones such as the Internet. Hence, it is
significant to develop efficient cryptographic systems with both confidentiality
and integrity in a quantum world.

8



1.3 Overview of Our Contributions

Our contribution is to propose two quantum-secure signcryption schemes
satisfying both confidentiality and integrity against inside adversaries in the
multi-user setting:

• One is a lattice-based construction with the securities in the standard
model which is a model without (quantum) random oracles and (quan-
tum) ideal ciphers. Concretely, this one is based on the well-known
computationally hard problems for quantum computers: Learning with
errors (LWE) problem [113] and small integer solution (SIS) problem
[102], which are related to lattice problems.

• The other is a generic construction in the QROM. This one is basically
obtained by combining a PKE scheme based on Fujisaki-Okamoto trans-
formation [48] and a DS scheme based on Fiat-Shamir transformation
[46].

The reason for presenting two schemes is as follows: The standard model is
a stronger security model than the QROM while constructions in QROM are
more efficient than those in the standard model in terms of key-size, ciphertext-
size, and time-complexity, generally. Therefore, the lattice-based construction
is important in terms of security while the construction in the QROM is sig-
nificant in terms of efficiency.

Furthermore, we show that the key-size and ciphertext-size of our schemes
are shorter than those of existing ones, which are obtained by applying suitable
lattice-based primitives to existing generic constructions of [34, 104]. These
existing ones of [34, 104] satisfy both confidentiality and integrity against
inside adversary in the multi-user setting.
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Chapter 2

Preliminaries

2.1 Notations

We denote the set of integers by Z, the set of real numbers by R, and the set of
complex numbers by C. For a set S, let |S| be the cardinality of S. For a set

S, the sampling of a uniformly random element x ∈ S is denoted by x
U← S.

For a positive integer n, let [n] := {1, 2, . . . , n}. For a set S, let {x}x∈S be
a set of all elements in S. In particular, for a positive integer n and values
x1, . . . , xn, let {xi}i∈[n] = {x1, x2, . . . , xn} denote a set of x1, . . . , xn, and let
(xi)i∈[n] = (x1, x2, . . . , xn) denote a sequence of x1, . . . , xn.

Vectors are in column forms and written as bold italic letters x. For a
vector x, let xi be the i-th component of x, and x⊤ be the row vector of x.
Matrices are written as bold italic capital letters X, and for a matrix X, let
xi be the i-th column vector of X. ‖ · ‖ denotes the Euclidean norm. For a
matrix X, let ‖X‖ := maxi ‖xi‖. For a matrix X, let s1(X) := maxu(Xu),
where u is a unit value.

We write that a function f(λ) is negligible in λ (or f is a negligible function
in λ) if f(λ) < 1/g(λ) for a polynomial g and sufficiently large λ. A negligible
function in λ is denoted by negl(λ). A polynomial of λ is denoted by poly(λ).

The statistical distance between two distributions X ,Y over a finite domain
D is defined as ∆(X ,Y) := 1

2

∑
w∈D |X (w)− Y(w)|.

For a randomized algorithm A and the input x of A, A(x; r) denotes a
deterministic algorithm, where r is a random coin used by A. “Probabilistic
polynomial-time” and “quantum polynomial-time” are abbreviated as PPT
and QPT, respectively.

2.2 Quantum Computation

Quantum Systems. A quantum system is defined as a complex Hilbert space
with an inner product. The state of a quantum system is denoted by a vector
|φ〉 ∈ H such that 〈φ|φ〉 = 1, where φ is a label for the vector, 〈φ| is a dual

11
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vector of |φ〉, and 〈φ|φ′〉 is an inner product between two vectors |φ〉 and |φ′〉.
A single qubit is denoted by |φ〉 = ψ0 |0〉 + ψ1 |1〉 ∈ C2 with an orthonormal
computational basis {|0〉 , |1〉} (e.g., |0〉 = (1, 0)⊤, |1〉 = (0, 1)⊤) and ampli-
tudes ψ0, ψ1 ∈ C such that ψ2

0+ψ
2
1 = 1. An n-qubit state is defined as a linear

combination |φ〉 =
∑

x∈{0,1}n ψx |x〉, where {|x〉}x∈{0,1}n is an orthonormal
computational basis of an n-dimensional Hilbert space with an inner product,
and ψx ∈ C (x ∈ {0, 1}n) are amplitudes such that

∑
x∈{0,1}n |ψx|2 = 1.

For different quantum systemsHA andHB, the composite quantum system
is defined as the tensor product space HA ⊗HB. For |φA〉 ∈ HA and |φB〉 ∈
HB, the tensor product state is denoted by |φA〉 |φB〉 = |φA〉 ⊗ |φB〉.
Measurement. If |φ〉 =

∑
x∈{0,1}n ψx |x〉 is measured in the computational basis

{|x〉}x∈{0,1}n , |φ〉 collapses to a classical state |x〉 with probability |ψx|2. More
generally, information can be obtained from a quantum superposition state |φ〉
by using positive-operator valued measure (POVM) M = {Mi}i∈[m], where
M1, . . . ,Mm are positive semi-definite matrices such that

∑
iMi = I. When

we measure a state |φ〉, outcome i is obtained with probability 〈φ|Mi|φ〉.
Evolution of Quantum Systems. When a state |φ〉 ∈ H is transformed into
another state |φ′〉 ∈ H, a unitary transformation is applied. Namely, |φ〉 =
U |φ〉, where U is a unitary matrix over H.
Oracle Access For a quantum oracle O : X → Y, issuing a quantum query∑

x∈X ,y∈Y ψx,y |x, y〉 to O (quantum access to O) is written as

∑
x∈X ,y∈Y

ψx,y |x, y〉 7→
∑

x∈X ,y∈Y
ψx,y |x, y ⊕ O(x)〉 .

2.2.1 Quantum Random Oracle Model

In the random oracle model, we assume that there exists an ideal random
function H, and all parties can access this function. The quantum random
oracle model (QROM) is defined as the model in which any quantum adversary
can submit quantum queries to random oracles.

The quantum ideal cipher model (QICM), which was introduced in [72], is
defined as follows: A block cipher with a key space K and a message space X is
defined as a mapping E : K×X → X which is a permutation over X for any key
in K. In the QICM, quantum adversaries are allowed to issue quantum queries
to oracles E+ : K × X → X and E− : K × X → X . For any k ∈ K and any
y ∈ X , the response of E−(k, y) is x such that E+(k, x) = y. For any k ∈ K,
we write oracles (permutations over X ) Ek(·) = E(k, ·), E+

k (·) = E+(k, ·), and
E−

k (·) = E−(k, ·).
In this thesis, QROM (resp. QICM) denotes the security model where

quantum adversaries are allowed to issue quantum queries to random oracles
(resp. ideal ciphers), but submit only classical queries to the other oracles.

12
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2.2.2 Semi-Classical Oracle

We describe semi-classical oracle which was introduced in [9] and utilize this
oracle for our security proofs. We consider quantum access to an oracle with
a domain X . A semi-classical oracle OSC

S for a subset S ⊆ X uses an indicator
function fS : X → {0, 1} with the subset S which evaluates 1 if x ∈ S
is given, and evaluates 0 otherwise. When OSC

S is given a quantum query∑
x∈X ψx |x〉 |0〉 with the input register Q and the output register R, it maps∑

x∈X
ψx,z |x〉 |0〉 7→

∑
x∈X

ψx |x〉 |fS(x)〉 ,

and measures the register R. Then, the quantum query
∑

x∈X ψx |x〉 |0〉 col-
lapses to either

∑
x∈X\S ψ

′
x |x〉 |0〉 or

∑
x∈S ψ

′
x |x〉 |1〉. Let Find be the event

that OSC
S returns

∑
x∈S ψ

′
x |x〉 |1〉 for a quantum query

∑
x∈S ψx |x〉. For a

quantum oracle H with domain X and a subset S ⊆ X , let H\S be an oracle
which first queries OSC

S and then H.

By using semi-classical oracles, [9] proved the following propositions. We
notice that for query depth d and the number of queries q, we use q such that
q ≥ d in the same way as Theorem 2.8 in [73] or Lemma 3 in [78].

Proposition 2.1 (Theorem 1 in [9]). Let S ⊆ X be random. Let H : X → Y,
G : X → Y be random functions such that H(x) = G(x) for all x ∈ X\S,
and let z be a random bit-string (S, H, G and z may have an arbitrary joint
distribution). Let A be any quantum algorithm issuing at most q quantum
queries to oracles. Then, it holds that∣∣∣Pr[1← AH(z)]− Pr[1← AG(z)]

∣∣∣ ≤ 2
√
q · Pr[Find | 1← AH\S(z)].

Proposition 2.2 (Corollary 1 in [9]). Let A be any quantum algorithm issuing
at most q quantum queries to a semi-classical oracle with domain X . Suppose
that S ⊆ X and z ∈ {0, 1}∗ are independent. Then, it holds that Pr[Find |
AOSC

S (z)] ≤ 4q · Pmax, where Pmax = maxx∈X Pr[x ∈ S].

2.2.3 Generic Search Problem

We describe lemmas related to generic (quantum) search problems [10, 74].

Let Berγ be the Bernoulli distribution with bias γ ∈ (0, 1). Namely, for a
bit b ← Berγ , Pr[b = 1] = γ, and Pr[b = 0] = 1 − γ. For some finite set X
and a real number γ ∈ [0, 1], let F : X → {0, 1} be an oracle such that for
x ∈ X , F (x) is distributed following Berγ . Let N be an oracle such that for
x ∈ X , N(x) = 0. The generic search problem is to determine whether the
given oracle is F or N .

The following lemma related to generic search problem holds:
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Lemma 2.1 (Generic Search Problem [10, 74]). Let γ ∈ [0, 1] be a real number,
X be a finite set, q ≥ 0 be an integer, and F : X → {0, 1} be the following
function: For each x ∈ X , F (x) = 1 with probability γ, and F (x) = 0 else.
Let N be the function with ∀x ∈ X : N(x) = 0. For any QPT algorithm A
issuing at most q queries, then∣∣Pr[AF → 1]− Pr[AN → 1]

∣∣ ≤ 2q
√
γ.

Furthermore, concerning the variant of the generic search problem, which is
called generic search problem with bounded probabilities [64, 84], the following
lemma holds:

Lemma 2.2 (Generic Search Problem with Bounded Probabilities [64, 84]).
Let γ ∈ [0, 1] be a real number, X be a finite set, q ≥ 0 be an integer, and
F : X → {0, 1} be the following function: For each x ∈ X , F (x) = 1 with
probability γ, and F (x) = 0 else. For any QPT algorithm A = (A0,A1) issuing
at most q queries, then we have

Pr[Expgspbγ,A → 1] ≤ 8γ(q + 1)2,

where Expgspbγ,A is defined as follows:

1. (γ(x))x∈X ← A0.

2. If ∃x ∈ X : γ(x) > γ, return 0.

3. ∀x ∈ X , F (x)← Berγ(x).

4. x← AF
1 .

5. Return F (x).

2.3 Lattice Background

We define lattices, discrete Gaussian distributions, and computational prob-
lems related to lattices. As cryptographic tools, we describe lattice-based
trapdoor functions and some algorithms using these trapdoor functions.

2.3.1 Lattices

For a positive integer n, let a basis B = {b1, . . . , bn} (bi ∈ Rn for i ∈ [n])
denote a set of n linearly independent vectors in Rn. The n-dimensional lattice
L generated by the basis B is defined as

L = L(B) =

∑
i∈[n]

xibi | xi ∈ Z for i ∈ [n]

 .
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Notice that in this thesis, we consider the full-rank lattices above. For a
lattice L, the successive minimum λi(L) is the smallest radius r such that L
has i linearly independent lattice vectors of norm at most r. In particular,
λ1(L) denotes the length of the shortest nonzero vector in L. (i.e., λ1(L) =
minx∈L ‖x‖.)

Furthermore, we define integer lattices. For positive integers n and q, a
matrix A ∈ Zn×m

q , and a vector u ∈ Zn
q , m-dimensional q-ary lattices are

defined as

Λ(A) := {z | ∃s ∈ Zn
q , z = A⊤s mod q}

Λ⊥(A) := {z | Az = 0 mod q}
Λ⊥
u(A) := {z | Az = u mod q}

We can view Λ⊥
u(A) as the shifted lattice of Λ⊥(A).

2.3.2 Gaussian

Let m be a positive integer, and Λ be a subset of Zm. For any real vector
c ∈ Rm and real number σ ∈ R, let

ρσ,c = exp(−π‖x− c‖2/σ2) ∈ Rm

be the Gaussian function with a center c and a parameter σ. The discrete
Gaussian distribution over Λ with a center c and a parameter σ is defined by

∀y ∈ L, DΛ,c,σ(y) =
ρσ,c(y)

ρσ,c(L)
,

where ρσ,c(Λ) =
∑

x∈Λ ρσ,c(x). In this thesis, DΛ,0,σ is abbreviated as DΛ,σ.
Regarding the Gaussian distribution, the following lemma holds.

Lemma 2.3 ([102]). For any L with basis T , c ∈ Rm and Gaussian parameter
σ ≥ ‖T ‖ · ω(

√
logm), we have Pr[‖x− c‖ > σ

√
m | x← Dm

Z,c,σ] < negl(n).

2.3.3 Computational Problems

We define some lattice problems and computational problems such as learning
with errors (LWE) problem and small integer solution (SIS) problem.

Lattice Problems

We define shortest vector problem (SVP), which is one of well-studied lattice
problems.

Definition 2.1 (Shortest Vector Problem (SVP)). Given a basis B of a lattice
L = L(B), find a non-zero vector v ∈ L such that ‖v‖ = λ1(L).
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We define two lattice problems GapSVPγ and SIVPγ which are related to
LWE and SIS problems. These are parameterized by an approximation factor
γ = γ(n) ≥ 1, where n is the dimension of a lattice. Informally, GapSVPγ is the
decisional approximate SVP, and short independent vectors problem (SIVP) is
a problem which, given a basis of a lattice, finds a short basis of the lattice.
Concretely, these problems are defined as follows.

Definition 2.2 (GapSVPγ). Given a basis B of a lattce L = L(B) and a real
number r > 0, return 1 if λ1(L) ≤ r, and return 0 if λ1(L) > γ · r.

Definition 2.3 (SIVPγ). Given a basis B of a full-rank n-dimensional lattice
L = L(B), find a set S = {si}i∈[n] ⊂ L of n linearly independent lattice
vectors where ‖si‖ ≤ γ · λn(L) for all i ∈ [n].

Learning with Errors (LWE)

LWE problem was introduced by Regev in [113]. As cryptosystems based on
LWE, it is possible to realize cryptomania such as trapdoor functions, public
key encryption, oblivious transfer, and cryptography with advanced function-
ality.

Let n, q be positive integers. First, we define Os,χ as an oracle which, given
a vector s ∈ Zn

q and a distribution χ over Zq, returns (a, s⊤a + e) ∈ Zn+1
q ,

where a
U← Zn

q and e ← χ. Besides, OU is an oracle which returns (a, u) ∈
Zn+1
q , where a

U← Zn
q and u

U← Zq.

Then, the LWE assumption is defined as follows.

Definition 2.4 (LWEn,q,χ assumption). Let n be a positive integer, q = q(n)
be a prime, and χ be a probabilistic distribution over Zq. The LWEn,q,χ as-
sumption holds if for any PPT algorithm D solving LWEn,q,χ, the advantage

Adv
LWEn,q,χ

D (λ) :=
∣∣∣Pr[DOs,χ(1λ)→ 1]− Pr[DOU (1λ)→ 1]

∣∣∣
is negligible in λ, where s

U← Zn
q and χ is a distribution over Zq.

Small Integer Solution (SIS)

SIS was introduced by Ajtai in [5] and is related to lattice problems such
as GapSVPγ and SIVPγ . This problem provides one-way functions, pseudo-
random functions, collision-resistant hash functions, identification schemes,
digital signatures, and more cryptographic primitives. SIS was formalized by
Micciancio and Regev in [102] and defined as follows.

Definition 2.5 (SISn,q,β,m assumption). Let n be a positive integer, q = q(n)
be a prime, β = β(n) be a positive real number, and m = m(n) be a positive
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integer. The SISn,q,β,m assumption holds if for any PPT algorithm F, the
advantage

Adv
SISn,q,β,m

F (λ) := Pr

 Ae = 0 mod q ∧
‖e‖ ≤ β ∧
e 6= 0

∣∣∣∣∣∣ A
U← Zn×m

q ;

e← F(1λ,A, β)


is negligible in λ.

The following theorems, which were proved in [113] and [102], show the
hardness of LWE and SIS problems.

Theorem 2.1 ([113]). Let n be a positive integer, q = poly(n) be a positive
integer, χ be (discrete) Gaussian distribution χ with a parameter α ∈ (0, 1)
such that αq > 2

√
n. If there exists a polynomial-time algorithm that solves

LWEn,q,χ, then there exists a quantum polynomial-time algorithm that approx-
imates GapSVPÕ(n/α) and SIVPÕ(n/α).

Theorem 2.2 ([102]). Let n be a positive integer, β > 0 be a real num-
ber, q = β · poly(n) be a prime, and m = Θ(n log n) be an integer. If there
exists a polynomial-time algorithm that solves SISn,q,β,m, then there exists a
polynomial-time algorithm that approximates GapSVPÕ(β

√
n) and SIVPÕ(β

√
n).

2.3.4 Lattice-based Trapdoor

Briefly, a one-way function is a function which is easy to compute, but hard
to invert. A trapdoor function is a one-way function which is easy to invert
by using a secret called a trapdoor, but hard to invert without the trapdoor.
A lattice-trapdoor notion with a gadget matrix G, which was introduced in
[101], is defined as follows:

Definition 2.6 (Definition 5.2 in [101]). Let A ∈ Zn×m
q and G ∈ Zn×w

q be

matrices with m ≥ w ≥ n. A G-trapdoor for A is a matrix T ∈ Z(m−w)×w

such that A

[
R
I

]
= HG for some invertible matrix H ∈ Zn×n

q . H can be

viewed as a tag or a label. The quality of the trapdoor is measured by its
largest singular value s1(T ).

By utilizing this lattice-trapdoor, it is possible to realize injective trapdoor
functions and preimage sampleable trapdoor functions (regarding the defini-
tion of trapdoor functions, see Section 2.5), and the following proposition
holds.

Theorem 2.3 (Theorem 5.1 in [101]). There is an efficient randomized algo-
rithm TrapGen(1n, 1m, q) that, given any integers n ≥ 1, q ≥ 2 and sufficiently
large m = O(n log n), outputs a parity-check matrix A ∈ Zn×m

q and a trapdoor
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T such that the distribution of A ∈ Zn×m
q is negl(n)-close to the uniform dis-

tribution in Zn×m
q . Moreover, there are efficient algorithms, denoted by Invert

and SampleD, which do the following with overwhelming probability over all
random choices:

• For b⊤ = s⊤A+e⊤ ∈ Zm
q , where s ∈ Zn

q and either ‖e‖ < q/O(
√
n log q)

or e ← DZm,αq for 1/α ≥
√
n log q · ω(

√
log n), the deterministic algo-

rithm Invert(T ,A, b) outputs s and e.

• For any u ∈ Zn
q , and large enough s = O(

√
n log q), the randomized

algorithm SampleD(T ,A,u, s) outputs samples from a distribution which
is negl(n)-close to DΛ⊥

u (A),s·ω(
√
logn).

2.4 Pseudorandom Generator and Pseudorandom
Function

First, we define k-wise independent hash functions. A function f : X → Y is a
k-wise independent hash function if ∀y1, . . . , yk ∈ Y and distinct x1, . . . , xk ∈
X ,

Pr[f(x1) = y1 ∧ f(x2) = y2 ∧ . . . ∧ f(xk) = yk] =
1

|Y|k
.

Pairwise independent hash functions denote 2-wise independent hash func-
tions.

Consider a function G : X → Y , where for a security parameter λ, X =
X (λ) is a domain, and Y = Y(λ) is a range. And, we assume that |x| < |y|
holds for all x ∈ X and all y ∈ Y , where |x| and |y| are the bit-lengths of x
and y, respectively. Then, G is said to be a pseudorandom generator (PRG),
if for any PPT algorithm A, the following AdvprgG,A(λ) is negligible in λ:

AdvprgG,A(λ) :=
∣∣∣Pr[A(G(x))→ 1 | x U← X ]− Pr[A(y)→ 1 | y U← Y ]

∣∣∣ .
In addition, a PRG G : X → Y with a randomness space R is called

a randomized PRG, if for any PPT algorithm A, the following AdvprgG,A(λ) is
negligible in λ:

AdvprgG,A(λ) :=
∣∣∣Pr[A(G(x; r))→ 1 | x U← X ; r ←R]− Pr[A(y)→ 1 | y U← Y ]

∣∣∣ .
Note that for a randomized PRG G with a randomness space R and any

seed x ∈ X , we write G(x; r) as a deterministic function, where randomness
r ∈ R is not sampled uniformly.

A function PRF : K × X → Y , where for a security parameter λ, K =
K(λ) is a key space, X = X (λ) is a domain, and Y = Y(λ) is a range, is a
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pseudorandom function (PRF), if the following AdvprD,PRF(λ) is negligible for
any PPT algorithm,

AdvprPRF,D(λ) :=
∣∣∣Pr [DPRFk(·)(1λ)→ 1

]
− Pr

[
DRF(·)(1λ)→ 1

]∣∣∣ ,
where PRFk(·) is an oracle which, on input x ∈ X , outputs PRF(k, x), and
RF(·) is an oracle which, on input x ∈ X , outputs a value RF(x) of a random
function RF : X → Y .

In addition, a quantum-secure PRF (QPRF) is defined in a similar way
as above by assuming that D is any QPT algorithm allowed to issue quantum
superposition of queries to oracles.

2.5 Trapdoor Function

A family {ga : D(λ) → R(λ)} of trapdoor functions is denoted by a tuple
of polynomial-time algorithms (TrapGen,Eval, Invert), where λ is a security
parameter, a is a parameter of a function g, D(λ) is a domain, and R(λ) is a
range.

Trapdoor Generation TrapGen is a randomized algorithm which, on input
a security parameter 1λ, outputs a parameter a and a trapdoor t.

Evaluation Eval is an algorithm which, on input a parameter a and s ∈ D(λ),
evaluates the function ga(s) ∈ R(λ).

Inversion Invert is a deterministic algorithm which, on input a trapdoor t
and b ∈ R, outputs s ∈ D(λ).

As the correctness, it is required that TDF = (TrapGen,Eval, Invert) meet
the following: For all (a, t) ← TrapGen(1λ) and all s ∈ D(λ), we have s =
Invert(t, b) with overwhelming probability, where b← Eval(a, s).

As the security of trapdoor functions, one-wayness is defined as follows:

Definition 2.7 (One-wayness). A family {ga : D(λ) → R(λ)} of trapdoor
functions which is given by TDF = (TrapGen,Eval, Invert) meets one-wayness
if for any PPT algorithm A, the following advantage of A is negligible in λ:

Advone-waynessTDF,A (λ) := Pr

s = s′

∣∣∣∣∣∣
(a, t)← TrapGen(1λ);

s
U← D(λ); b← Eval(a, s);
s′ ← A(1λ, a, b)

 .
In addition, we define preimage sampleable trapdoor functions. A family

{fa : D(λ)→R(λ)} of preimage sampleable trapdoor functions is denoted by
a tuple of polynomial-time algorithms (TrapGen,Eval, Sample, SampleD), where
λ is a security parameter, a is a parameter of a function f , D(λ) is a domain,
and R(λ) is a range.
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Trapdoor Generation TrapGen is a randomized algorithm which, on input
a security parameter 1λ, outputs a parameter a and a trapdoor t.

Evaluation Eval is an algorithm which, on input a function index a and
x ∈ D(λ), evaluates the function fa(x) ∈ R(λ).

Domain Sampling Sample is a randomized algorithm which, on input a se-
curity parameter λ, samples x from some distribution over D(λ) such
that fa(x) is uniform over R(λ).

Preimage Sampling SampleD is a randomized algorithm which, on input a
trapdoor t and y ∈ R(λ), samples from the distribution x ∈ Sample(λ)
conditioned on fa(x) = y.

As the security of preimage sampleable trapdoor functions, we define one-
wayness, preimage min-entropy, and collision-resistance.

Definition 2.8 (One-wayness). A family {fa : D(λ) → R(λ)} of trapdoor
functions which is given by PSF = (TrapGen,Eval, Sample, SampleD) satisfies
one-wayness if for any PPT algorithm A, the following advantage of A is
negligible in λ:

Advone-waynessPSF,A (λ) := Pr

x′ ∈ f−1
a (y)

∣∣∣∣∣∣
(a, t)← TrapGen(1λ);

x← Sample(λ); y ← Eval(a, x);
x′ ← A(1λ, a, y)

 .
Definition 2.9 (Preimage Min-entropy). For every y ∈ R(λ), the conditional
min-entropy of x← Sample(1λ) given fa(x) = y is at least ω(log 1λ).

Definition 2.10 (Collision-Resistance). A family {fa : D(λ) → R(λ)} of
trapdoor functions which is given by PSF = (TrapGen,Eval, Sample, SampleD)
satisfies collision-resistance if for any PPT algorithm A, the following advan-
tage of A is negligible in λ:

AdvcrPSF,A(λ) := Pr

[
fa(x) = fa(x

′) ∧ x 6= x′
∣∣∣∣ (a, t)← TrapGen(1λ);

(x, x′)← A(1λ, a)

]
.

2.6 Encryption

In this section, we define the models and securities of public key encryp-
tion, key encapsulation mechanism, and data encapsulation mechanism. These
schemes guarantee confidentiality.

2.6.1 Public Key Encryption

A public key encryption (PKE) scheme consists of three polynomial-time al-
gorithms (KGen, Enc, Dec): For a security parameter λ, letM =M(λ) be a
message space.
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Key Generation KGen is a randomized algorithm which, on input a security
parameter 1λ, outputs a public key pk and a secret key sk.

Encryption Enc is an algorithm which, on input a public key pk and a mes-
sage m ∈M, outputs a ciphertext ct.

Decryption Dec is a deterministic algorithm which, on input a secret key sk
and a ciphertext ct, outputs a message m ∈M or an invalid symbol ⊥.

A PKE scheme (KGen, Enc, Dec) meets δ-correctness if for all (pk, sk) ←
KGen(1λ), and all m ∈ M, we have Dec(sk, ct) 6= m with at most probability
δ, where ct ← Enc(pk,m). Then, it is required that PKE schemes meet δ-
correctness for a negligible δ in λ.

As security of PKE, we define the following.

Definition 2.11 (OW-CPA security). A PKE scheme PKE = (KGen,Enc,Dec)
meets OW-CPA security if for any PPT adversary A against PKE, the advan-
tage Advow-cpa

PKE,A (λ) := Pr[A wins] is negligible in λ, where [A wins] is an event
that A wins in the following game:

Key Generation: A challenger generates (pk, sk)← KGen(1λ).

Challenge: The challenger returns ct∗ ← Enc(pk,m∗), where m∗ U←M.

Output: A outputs m′ ∈M. A wins if m∗ = m′.

Definition 2.12 (IND-CPA security). A PKE scheme PKE = (KGen,Enc,Dec)
meets IND-CPA security if for any PPT adversary A against PKE, the advan-
tage Advind-cpaPKE,A (λ) := |2 · Pr[A wins]− 1| is negligible in λ, where [A wins] is
an event that A wins in the following game:

Key Generation: A challenger generates (pk, sk)← KGen(1λ).

Challenge: When A submits (m0,m1) such that |m0| = |m1|, the challenger

returns ct∗ ← Enc(pk,mb), where b
U← {0, 1}.

Output: A outputs the guessing bit b′ ∈ {0, 1}. A wins if b = b′.

Definition 2.13 (IND-CCA security). A PKE scheme PKE = (KGen,Enc,Dec)
meets IND-CCA security if for any PPT algorithm A against PKE, the advan-
tage Advind-ccaPKE,A (λ) := |2 · Pr[A wins]− 1| is negligible in λ, where [A wins] is
the event that A wins in the following game:

Key Generation: A challenger generates (pk, sk)← KGen(1λ).

Queries 1: Given a ciphertext ct, a decryption oracle DEC returns Dec(sk, ct).

Challenge: When A submits (m0,m1) such that |m0| = |m1|, the challenger

returns ct∗ ← Enc(pk,mb), where b
U← {0, 1}.
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Expreal-so-ccaPKE,A

I ← ∅

(pk, sk) ← KGen(1λ)

(MD, st) ← A0(pk)

(m1, . . . ,mn) ← MD

(r1, . . . , rn) ← R

∀i ∈ [n], cti = Enc(pk,mi; ri)

out ← A
OPEN,DEC

1 (st, ct1, . . . , ctn)

return R(MD,m1, . . . ,mn, I, out)

OPEN(i)

I ← I ∪ {i}

return (mi, ri)

DEC(ct)

if ct ∈ {cti}i∈[n], return ⊥

m ← Dec(sk, ct)

return m ∈ M∪ {⊥}

Expideal-so-ccaPKE,S

I ← ∅

(MD, st) ← S0(1
λ)

(m1, . . . ,mn) ← MD

out ← S
OPEN

1 (st, |m1|, . . . , |mn|)

return R(MD,m1, . . . ,mn, I, out)

OPEN(i)

I ← I ∪ {i}

return mi

Figure 2.1: Experiments in Real-SIM-SO-CCA and Ideal-SIM-SO-CCA Games

Queries 2: Given a ciphertext ct, a decryption oracle DEC returns Dec(sk, ct).
A is not allowed to issue ct∗.

Output: A outputs the guessing bit b′ ∈ {0, 1}. A wins if b = b′.

Definition 2.14 (SIM-SO-CCA security). A PKE scheme PKE = (KGen,Enc,Dec)
meets SIM-SO-CCA security if for any PPT algorithms A = (A0,A1), S =
(S0, S1) and any relation R, the advantage Advsim-so-cca

PKE,A,S,R(λ) is negligible in λ.

Advsim-so-cca
PKE,A,S,R(λ) is defined as follow:

Advsim-so-cca
PKE,A,S,R(λ) :=

∣∣∣Pr[Expreal-so-ccaPKE,A → 1]− Pr[Expideal-so-ccaPKE,S → 1]
∣∣∣ ,

where the two experiments Expreal-so-ccaPKE,A and Expideal-so-ccaPKE,S are defined in Figure
2.1.

2.6.2 Key Encapsulation Mechanism

A key encapsulation mechanism (KEM) scheme consists of three polynomial-
time algorithms (KGen, Encap, Decap): For a security parameter λ, let K =
K(λ) be a key space.

Key Generation KGen is a randomized algorithm which, on input a security
parameter 1λ, outputs a public key pk and a secret key sk.
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Encapsulation Encap is an algorithm which, on input a public key pk, out-
puts a ciphertext ct and a key k ∈ K.

Decapsulation Decap is a deterministic algorithm which, on input a secret
key sk and a ciphertext ct, outputs a key k ∈ K or an invalid symbol ⊥.

A KEM scheme (KGen, Encap, Decap) meets δ-correctness if for all (pk, sk)←
KGen(1λ), we have Decap(sk, ct) 6= k with at most probability δ, where (ct, k)←
Encap(pk). It is required that KEM schemes meet δ-correctness with a negli-
gible function δ for λ.

As a security of KEM schemes, we define IND-CCA security.

Definition 2.15 (IND-CCA security). A KEM scheme KEM = (KGen,Encap,Decap)
meets IND-CCA security if for any PPT adversary A against KEM, the advan-
tage Advind-ccaKEM,A(λ) := |2 · Pr[A wins]− 1| is negligible in λ, where [A wins] is
the event that A wins in the following game:

Setup: A challenger generates (pk, sk)← KGen(1λ) and sends pk to A.

Oracle Access: A is allowed to access the following oracles:

• Challenge(): Given a challenge request, the challenger computes
(ct∗, k0) ← Encap(pk) and chooses k1 ∈ K uniformly at random.

It returns (ct∗, kb), where b
U← {0, 1}.

• DEC(ct): Given a ciphertext query ct, a decapsulation oracle DEC(ct)
returns k′ ← Decap(sk, ct) ∈ K ∪ {⊥}. A is not allowed to submit
ct∗ to DEC(·).

Output: A outputs the guessing bit b′ ∈ {0, 1}. A wins if b = b′.

2.6.3 Data Encapsulation Mechanism

A data encapsulation mechanism (DEM) scheme consists of two polynomial-
time algorithms (Enc,Dec) with a key space K = K(λ) and a message space
M =M(λ) for a security parameter λ.

Encryption Enc is an algorithm which, on input a secret key k ∈ K and a
message m ∈M, outputs a ciphertext ct.

Decryption Dec is a deterministic algorithm which, on input a secret key
k ∈ K, a ciphertext ct, outputs a message m ∈ M or an invalid symbol
⊥.

We require that DEM schemes meet correctness as follows: A DEM scheme
(Enc,Dec) meets correctness if for any k ∈ K and any m ∈ M, it holds that
m = Dec(k, ct), where ct← Enc(k,m).

As security of DEM, we define indistinguishability against one-time attacks
(IND-OT security), one-time integrity of chosen ciphertext attacks (OT-INT-CTXT
security [17]), and simulatability [61].
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Definition 2.16 (IND-OT security). A DEM scheme DEM = (Enc,Dec) with
a key space K meets IND-OT security if for any PPT adversary A against
DEM, the advantage Advind-otDEM,A(λ) := |Pr[A wins]− 1/2| is negligible in λ,
where [A wins] is the event that A wins in the following game.

Setup: A challenger chooses k ∈ K uniformly at random.

Challenge: When A submits (m0,m1) such that |m0| = |m1|, the challenger
chooses b ∈ {0, 1} uniformly at random and returns ct∗ ← Enc(k,mb).

Output: A outputs b′ ∈ {0, 1}. A wins if b = b′.

Definition 2.17 (OT-INT-CTXT security). A DEM scheme DEM = (Enc,Dec)
with a key space K meets OT-INT-CTXT security if for any PPT adversary
A against DEM, the advantage Advint-ctxtDEM,A (λ) := Pr[A wins] is negligible in λ,
where [A wins] is the event that A wins in the following game:

Setup: A challenger chooses a key k ∈ K uniformly at random, and sets
win← 0 and Lct ← ∅.

Oracle Access: A is allowed to access the following oracles:

• ENC(m): If Lct 6= ∅, an encryption oracle ENC(m) returns ⊥. Oth-
erwise, it returns ct← Enc(k,m), and sets Lct ← Lct ∪ {ct}.
• VRFY(ct): Given a ciphertext query ct, a verification oracle VRFY(ct)
runs m′ ← Dec(k,m). If m′ 6= ⊥ and ct /∈ Lct, it sets win ← 1. It
returns 1 if m′ 6= ⊥, and returns 0 otherwise.

Final: A wins if win = 1.

Furthermore, in order to define simulatability, we regard DEM as block
cipher-based DEM which uses a block cipher as a black-box. In addition, we
view the key space K of DEM schemes as a product set K = K′ × K′′, where
K′ is the key space of a block cipher, and K′′ is the key space of encryption
using a block cipher as a black-box.

To define simulatable DEM, oracle DEM and permutation-driven DEM
are defined following [61].

Definition 2.18 (Oracle DEM). A DEM scheme (O.Encπ,O.Decπ) with a key
space K and a message space M is an oracle DEM scheme for a domain X
if (O.Enc,O.DEM) has access to a permutation π on D, and if for all permu-
tations π : X → X , all k ∈ K, and all m ∈ M, it holds that m = Decπ(k, ct),
where ct← Encπ(k,m), as the correctness of the DEM (O.Encπ,O.Decπ).

Definition 2.19 (Permutation-Driven DEM). A DEM scheme DEM = (Enc,Dec)
with a key space K = K′×K′′ and a message spaceM is a (K×X )-permutation-
driven DEM if the following conditions hold:
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• DEM is an oracle DEM (O.Encπ,O.Decπ) for a domain X with a block
cipher {Ek′ : X → X}k′∈K′ as the permutation π over X .

• For any key (k′, k′′) ∈ K, any message m ∈ M, and any ciphertexts ct,
it holds that Enc((k′, k′′),m) = O.EncEk′ (k′′,m) and Dec((k′, k′′), ct) =
O.DecEk′ (k′′, ct).

Then, the simulatability of oracle DEM [61] is defined as follows.

Definition 2.20 (Simulatability of Oracle DEM). Let DEM = (Enc,Dec) with
a key space K = K′ × K′′ and a message space M be an oracle DEM scheme
for a domain X . And, we assume that DEM has the following algorithms Fake
and Make:

• Fake: A randomized algorithm which, given a key k′′ ∈ K′′ and the bit-
length |m| of messages, outputs a ciphertext ct and a state st.

• Make: A randomized algorithm which, given a state st and a message
m ∈M, outputs a relation π̃ ∈ X ×X which has functions π̃+ : X → X
and π̃− : X → X such that if (α, β) ∈ π̃, α = π̃+(β) and β = π̃−(α)
hold.

The oracle DEM scheme DEM meets ϵ-simulatablility if for all k = (k′, k′′) ∈
K, all m ∈M, and the set Πm

k′′ := {π̃ | (ct, st)← Fake(k′′, |m|); π̃ ← Make(st,m)},
the following conditions hold:

• The set Πm
k′′ can be extended to a set of uniformly distributed permuta-

tions on X .

• For any permutation π extended Πm
k′′ , it holds that Pr[ct 6= O.Encπ(k′′,m)] ≤

ϵ, where ct← Fake(k′′, |m|).

• The time-complexity of algorithms Fake(k′, |m|) and Make(st,m) does not
exceed the time-complexity of algorithm Enc(k,m) without counting that
of oracles which is accessed by Enc(·).

2.7 Authentication

Authentication schemes achieve integrity. We define the models and securities
of authentication schemes such as digital signatures, identification schemes,
and message authentication codes.

2.7.1 Digital Signature

A digital signature consists of the following three polynomial-time algorithms
(KGen,Sign,Vrfy): For a security parameter λ, let M = M(λ) be a message
space.
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Key Generation KGen is a randomized algorithm which, on input a security
parameter 1λ, outputs a public key pk and a secret key sk.

Signing Sign is a randomized or deterministic algorithm which, on input a
secret key sk and a message m ∈M, outputs a signature σ.

Verification Vrfy is a deterministic algorithm which, on input a public key
pk, a message m ∈M, and a signature σ, outputs 1 or 0.

It is required that digital signatures meet correctness as follows: For all
(pk, sk)← KGen(1λ) and all m ∈M, we have Vrfy(pk,m, σ) = 1, where Sign←
Sign(sk,m).

As a security of digital signatures, existential unforgeability against chosen
message attacks (EUF-CMA security) and strong unforgeability against chosen
message attacks (sUF-CMA security) are defined as follows:

Definition 2.21 (EUF-CMA security). A digital signature scheme DS = (KGen,
Sign,Vrfy) meets EUF-CMA security if for any PPT adversary A against DS,
the advantage Adveuf-cma

DS,A (λ) := Pr[A wins] is negligible in λ, where [A wins] is
the event that A wins the following game:

Setup: A challenger generates a key pair (pk, sk)← KGen(1λ) and sets LSign ←
∅.

Oracle Access: A is allowed to access the following oracle:

• SIGN(m): Given a message query m ∈M, it returns σ ← Sign(sk,m)
and sets LSign ← LSign ∪ {m}.

Output: A outputs (m∗, σ∗). A wins if Vrfy(pk,m∗, σ∗) = 1 and m∗ /∈ LSign.

Definition 2.22 (sUF-CMA security). A digital signature scheme DS = (KGen,
Sign,Vrfy) meets sUF-CMA security if for any PPT adversary A against DS,
the advantage Advsuf-cma

DS,A (λ) := Pr[A wins] is negligible in λ, where [A wins] is
the event that A wins the following game:

Setup: A challenger generates (pk, sk)← KGen(1λ) and sets LSign ← ∅.

Oracle Access: A is allowed to access the following oracle:

• SIGN(m): Given a message query m ∈M, it returns σ ← Sign(sk,m)
and sets LSign ← LSign ∪ {(m, σ)}.

Output: A outputs (m∗, σ∗). A wins if Vrfy(pk,m∗, σ∗) = 1 and (m∗, σ∗) /∈
LSign.
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2.7.2 Identification Scheme

An identification scheme consists of the following four polynomial-time algo-
rithms (KGen,P,C,V):

Key Generation KGen is a randomized algorithm which, on input a security
parameter 1λ, outputs a public key pk and a secret key sk.

Prover P = (P1,P2) is split into the following two polynomial-time algo-
rithms P1 and P2:

• P1 is a randomized algorithm which, on input a secret key sk, out-
puts a commitment W ∈ W and a state st.

• P2 is a randomized algorithm which, on input a secret key sk, a
commitment W ∈ W , a challenge c ∈ C, and a state st, outputs a
response Z ∈ Z.

Verifier V is a deterministic algorithm which, on input a public key pk, a
commitment W ∈ W , a challenge c ∈ C, and a response Z ∈ Z, outputs
1 or 0.

We define the transcript oracle Transids(sk) of identification schemes by
following [1]. Namely, given a secret key sk, it returns a transcript (W, c,Z) ∈
W ×C ×Z ∪ {(⊥,⊥,⊥)}. It computes a transcript by using a real interaction
between a prover P and a verifier C, and returns (⊥,⊥,⊥) if Z = ⊥. Concretely,
Transids(sk) does the following:

1. (W, st)← P1(sk).

2. c
U← C.

3. Z← P2(sk,W, c, st).

4. If Z = ⊥, return (⊥,⊥,⊥).

5. Return (W, c,Z).

An identification scheme meets δ-correctness if for all (pk, sk)← KGen(1λ),
the following holds:

• For all (c, st) ← P1(sk), all c ∈ C, and all Z ← P2(sk,W, c, st) such that
Z 6= ⊥, we have 1← V(pk,W, c,Z).

• We have Pr[Z = ⊥ | (W, c,Z)← Transids(sk)] ≤ δ.

As properties of identification schemes, we define the following.
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Definition 2.23 (Commitment-Recoverable). An identification scheme IDS =
(KGen,P, C,V) is commitment-recoverable if for any (pk, sk)← KGen(1λ), any
c ∈ C, and any Z ∈ Z, there exists a unique W ∈ W such that V(pk,W, c,Z) =
1. This unique W can be publicly computed using a polynomial-time algorithm
Rec which, on input pk, c ∈ C, and Z ∈ Z, outputs the unique W ∈ W.

Definition 2.24 (Non-Abort Honest-Verifier Zero-Knowledge). An identifi-
cation scheme IDS = (KGen,P, C,V) meets εzk-perfect naHVZK if there exists a
PPT algorithm S which, on input a public key pk, outputs a transcript (W, c,Z)
such that

• The difference between distributions of (W, c,Z)← S(pk) and (W′, c′,Z′)←
Trans(sk) is at most εzk.

• The distribution of c from (W, c,Z) ← S(pk) with c 6= ⊥ is uniformly
random in C

Definition 2.25 (Min-Entropy). If the most likely value of random variables
W chosen from a distribution D occurs with probability 2−α for a random
value W, we write min-entropy(W | W ← D) = α. An identification scheme
IDS = (KGen,P, C,V) meets α bits min-entropy if for all (pk, sk)← KGen(1λ),
it holds that Pr[min-entropy(W | (W, st)← P1(sk)) ≥ α] ≥ 1− 2−α.

Definition 2.26 (Computational Unique Response (CUR)). An identification
scheme IDS = (KGen,P,C,V) meets CUR property if for any PPT adversary
against A, the advantage AdvcurIDS,A(λ) is negligible in λ, where AdvcurIDS,A(λ) is
defined as follows:

AdvcurIDS,A(λ) := Pr

 V(pk,W, c,Z) = 1∧
V(pk,W, c,Z′) = 1∧
Z 6= Z′

∣∣∣∣∣∣ (pk, sk)← KGen(λ);
(W, c,Z,Z′)← A(pk)

 .
In addition, we define lossy identification scheme which was introduced

by Abdalla et al. in [1]. An identification scheme IDS = (KGen,P, C,V) is a
lossy identification scheme if there exists a PPT algorithm LossyKGen which,
on input a security parameter 1λ, outputs a public key pkls. In this thesis, we
refer to LIDS = (KGen, LossyKGen,P, C,V) as a lossy identification scheme.

Then, two security notions of lossy identification schemes are defined as
follows:

Definition 2.27 (Key-Indistinguishability). A lossy identification scheme LIDS =
(KGen, LossyKGen,P, C,V) meets key-indistinguishability if for any PPT adver-

sary A against LIDS, the advantage Advkey-indLIDS,A (λ) is negligible in λ, where

Advkey-indLIDS,A (λ) is defined as follows:

Advkey-indLIDS,A (λ) :=
∣∣∣Pr[A(pk)→ 1 | (pk, sk)← KGen(1λ)]

− Pr[A(pkls)→ 1 | pkls ← LossyKGen(1λ)]
∣∣∣ .
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Definition 2.28 (Lossy-Soundness). A lossy identification scheme LIDS =
(KGen, LossyKGen,P, C,V) meets εls-lossy-soundness if for any PPT adversary

A against LIDS, Pr[Explossy-imp
LIDS,A → 1] ≤ εls holds, where the experiment Explossy-imp

LIDS,A
is defined as follows:

Step 1. pkls ← LossyKGen(1λ)

Step 2. (W∗, st)← A(pkls), c
U← C, Z∗ ← A(st, c).

Step 3. Return V(pkls,W
∗, c,Z∗).

2.7.3 Message Authentication Code

A message authentication code (MAC) consists of two polynomial time algo-
rithms (Tag,Vrfy) with a key space K = K(λ) and a message spaceM =M(λ)
for a security parameter λ.

Tagging Tag is an algorithm which, on input a secret key k ∈ K and a message
m ∈M, outputs a tag t.

Verification Vrfy is a deterministic algorithm which, on input a secret key
k ∈ K, a message m, and a tag t, outputs 1 or 0.

It is required that MAC schemes meet correctness as follows: A MAC
scheme MAC = (Tag,Vrfy) with a key space K and a message spaceM meets
correctness if for all k ∈ K and all m ∈ M, we have Vrfy(k,m, t) = 1, where
t← Tag(k,m).

Strong unforgeability against one-time chosen message attacks (sUF-OT-CMA
security) of MACs is defined as follows.

Definition 2.29 (sUF-OT-CMA security). A MAC scheme MAC = (Tag,Vrfy)
with a key space K meets sUF-OT-CMA security if for any PPT adversary A
against MAC, the advantage Advsuf-cma

MAC,A := Pr[A wins] is negligible in λ, where
[A wins] is the event that A wins in the following game:

Setup: A challenger chooses a key k ∈ K uniformly at random and sets Lt ←
∅ and win← 0.

Oracle Access: A is allowed to access the following oracles:

• TAG(m): If Lt 6= ∅, a tagging oracle TAG(m) returns ⊥. Otherwise,
it returns t← Tag(k,m) and sets Lt ← Lt ∪ {(m, t)}.
• VRFY(m, t): Given a message and a tag (m, t), a verification oracle

VRFY(m, t) returns b ← Vrfy(k,m, t). If b = 1 and (m, t) /∈ Lt, it
sets win← 1.

Final: A wins if win = 1.
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2.8 Encryption and Authentication

We defined signcryption which is cryptography with both functionalities of
PKE and DSs.

A signcryption scheme consists of five polynomial-time algorithms (Setup,
KGenR, KGenS ,SC,USC): For a security parameter λ, let M = M(λ) be a
message space.

Setup Setup is an algorithm which, on input a security parameter 1λ, outputs
a public parameter pp.

Receiver’s Key Generation KGenR is a randomized algorithm which, on
input a public parameter pp, outputs a receiver’s public key pkR and a
receiver’s secret key skR.

Sender’s Key Generation KGenS is a randomized algorithm which, on in-
put a public parameter pp, outputs a sender’s public key pkS and a
sender’s secret key skS .

Signcryption SC is an algorithm which, on input a public parameter pp,
a receiver’s public key pkR, a sender’s secret key skS , and a message
m ∈M, outputs a ciphertext ct.

Unsigncryption USC is a deterministic algorithm which, on input a public
parameter pp, a sender’s public key pkS , a receiver’s secret key skR, and
a ciphertext ct, outputs a message m ∈M or an invalid symbol ⊥.

We require that signcryption schemes meet correctness: A signcryption
scheme (Setup,KGenR,KGenS ,SC, USC) meets correctness if for all pp← Setup(1λ),
all (pkR, skR) ← KGenR(pp), all (pkS , skS) ← KGenS(pp), and all m ∈ M, we
have m = USC(pp, pkS , skR, ct) with overwhelming probability, where ct ←
SC(pp, pkR, skS ,m).

Definition 2.30 (MU-IND-iCCA security). A signcryption scheme SCS =
(Setup, KGenR,KGenS,SC,USC) meets MU-IND-iCCA security if for any PPT
adversary A, the advantage Advmu-ind-icca

SCS,A (λ) := |Pr[A wins]− 1/2| is negligible
in λ, where [A wins] is the event that A wins in the following game.

Setup: A challenger generates pp← Setup(1λ) and (pkR, skR)← SetupR(pp),
and sends (pp, pkR) to A.

Queries 1: Given a sender’s public key and a ciphertext (pkS , ct), the unsign-
crypt oracle USCO returns m/⊥ ← USC(pp, pkS , skR, ct).

Challenge: When A submits (m0,m1, pk
∗
S , sk

∗
S) such that |m0| = |m1|, the

challenger chooses b ∈ {0, 1} uniformly at random and returns a chal-
lenge ciphertext ct∗ ← SC(pp, pkR, sk

∗
S ,mb),
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Queries 2: Given a sender’s public key and a ciphertext (pkS , ct), USC
O re-

turns m/⊥ ← USC(pp, pkS , skR, ct). A is not allowed to issue a query
(pkS , ct) such that (pkS , ct) = (pk∗S , ct

∗)

Output: A outputs the guessing bit b′ ∈ {0, 1}. A wins if b = b′.

Definition 2.31 (MU-sUF-iCMA security). A signcryption scheme SCS =
(Setup, KGenR,KGenS,SC,USC) meets MU-sUF-iCMA security if for any PPT
adversary A, the advantage Advmu-suf-icma

SCS,A (λ) := Pr[A wins] is negligible in λ,
where [A wins] is the event that A wins in the following game.

Setup: A challenger generates pp← Setup(1λ) and (pkS , skS)← KGenS(pp),
and sets LSC ← ∅. It sends (pp, pkS) to A.

Queries: Given a receiver’s public key and a message (pkR,m), the sign-
crypt oracle SCO returns ct← SC(pp, pkR, skS ,m) and sets LSC ← LSC∪
{(pkR,m, ct)}.

Output: A outputs (pk∗R, sk
∗
R, ct

∗). A wins if USC(pp, pkS , sk
∗
R, ct

∗) → m∗ 6=
⊥ and (pk∗R,m

∗, ct∗) /∈ LSC hold.
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Chapter 3

Quantum-Secure Public Key
Encryption

3.1 Background of Selective Opening Security

The security model of selective-opening (SO) security captures a situation
in which an adversary gets secret information of many ciphertexts. In fact,
there are cases in which adversaries obtain messages and randomness of ci-
phertexts because of side-channel attacks and weakness in system’s design or
implementation. This security is one of the most important securities of PKE
in the multi-user setting. There are the following works related to SO secu-
rity: Generic constructions of PKE [15, 59, 60], number theory-based PKE
[45, 63, 65], hybrid encryption [92, 61, 93], identity-based encryption [19, 87],
and lattice-based PKE [28, 89].

Furthermore, SO security is roughly classified as simulation-based SO
(SIM-SO) security and indistinguishability-based SO (IND-SO) security. In
this paper, we consider SIM-SO security against chosen ciphertext attacks
called SIM-SO-CCA security, since it seems that it is harder to achieve SIM-
SO security [20, 65] and several works have aimed at proposing SIM-SO-CCA
secure PKE schemes [45, 60, 92, 61, 89, 93]. Hence, it is natural to consider
SIM-SO-CCA security as our goal in the multi-user setting.

3.2 Contribution

Our goal is to present SIM-SO-CCA secure PKE schemes obtained from KEM
schemes in the quantum random oracle model (QROM) or the quantum ideal
cipher model (QICM). Our main motivation is that we would like to transform
any PKE/KEM schemes submitted to the post-quantum cryptography stan-
dardization to SIM-SO-CCA secure PKE without loss of efficiency in terms of
key-size, ciphertext-size, and time-complexity. To the best of our knowledge,
there is no work which researched quantum-secure PKE with (SIM-)SO-CCA
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security.

In the classical random oracle model, classical ideal cipher model, or the
standard model (i.e., the model without random oracles or ideal ciphers), sev-
eral SIM-SO-CCA secure PKE schemes constructed from KEM schemes have
been studied. Liu and Paterson proposed a SIM-SO-CCA secure PKE scheme
constructed from any KEM scheme secure against tailored constrained cho-
sen ciphertext attacks and any strengthened cross authentication code (XAC)
[92]. Heuer et al. proposed a SIM-SO-CCA secure construction by combining
any KEM secure against plaintext checking attacks and any one-time secure
message authentication code (MAC) [60]. Heuer and Poettering proved that a
PKE scheme in the KEM/DEM framework meets SIM-SO-CCA security in the
classical ideal cipher model if the underlying KEM satisfies IND-CCA security
and the underlying DEM satisfies both of simulatability and one-time integrity
of chosen ciphertext attacks, which is called OT-INT-CTXT security [61]. Lyu
et al. proposed a tightly secure PKE starting from any KEM scheme meeting
both of multi-encapsulation pseudorandom security and random encapsulation
rejection security, and any strengthened XAC [93]. Table 3.1 shows the above
primitives and security models of the existing constructions.

In the QROM or QICM, how to construct PKE schemes meeting SIM-SO-
CCA security is not obvious because of the following reason: In the classical
random oracle model or classical ideal cipher model, the security proof of
existing schemes [92, 61] utilize the lists of query/response pairs submitted to
random oracles or ideal ciphers. In the QROM and QICM, we cannot use such
lists, since it is impossible to record query/response pairs in principle due to
the quantum no-cloning theorem. Hence, it is worth to consider secure PKE
schemes in the models where quantum queries are issued.

As for the PKE schemes obtained from KEM schemes in the standard
model [92, 93], ciphertext-size and time-complexity of encryption and de-
cryption algorithms linearly depend on the bit-length of messages. Since we
are aiming at constructing practical PKE schemes, we do not focus on these
schemes in this paper due to the lack of efficiency in terms of ciphertext-size
and time-complexity.

In this paper, we propose two constructions of SIM-SO-CCA secure PKE
schemes from KEM schemes and symmetric key encryption (SKE) schemes.
The details are explained as follows:

1. The first scheme PKEhy
1 is the KEM/DEM scheme [35]. We prove that

this scheme meets SIM-SO-CCA security in the QICM if the underly-
ing KEM scheme satisfies IND-CCA security, and the underlying DEM
scheme satisfies both of simulatability [61] and one-time integrity of cho-
sen ciphertext attacks (OT-INT-CTXT security) [17]. The advantage of
this scheme is that we can apply any IND-CCA secure KEM scheme
such as any PKE/KEM schemes submitted to the post-quantum cryp-
tography standardization, and we can obtain a SIM-SO-CCA secure PKE
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Scheme Primitives Security Model

[92] IND-tCCCA secure KEM Standard Model
XAC

[60] OW-PCA secure KEM Random Oracle Model
sUF-OT-CMA secure MAC

[61] IND-CCA secure KEM Ideal Cipher Model
Simulatable DEM

[93] mPR-CCCA and RER secure KEM Standard Model
XAC

PKEhy
1 IND-CCA secure KEM Quantum

Simulatable DEM Ideal Cipher Model

PKEhy
2 FO-based KEM Quantum

(from IND-CPA secure PKE) Random Oracle Model
sUF-OT-CMA secure MAC

Table 3.1: SIM-SO-CCA secure PKE constructed from KEM schemes: IND-
tCCCA means indistinguishability against tailored constrained chosen cipher-
text attacks. IND-PCA means indistinguishability against plaintext check-
ing attacks. mPR-CCCA means multi-encapsulation pseudorandom security
against constrained chosen ciphertext attacks. RER means random encapsu-
lation rejection security. XAC means cross authentication code. IND-CPA
means indistinguishability against chosen message attacks. FO-based KEM
means FO̸⊥, FO̸⊥

m, QFO̸⊥, and QFO̸⊥
m. Standard model denotes the security

model without random oracles and ideal ciphers.

schemes in the QICM. In addition, almost all standardized DEM schemes
satisfy simulatability and OT-INT-CTXT security. Hence, we can realize
concrete PKE schemes in the QICM.

2. The second one PKEhy
2 is a concrete scheme constructed from any FO-

based KEM scheme such as FO̸⊥, FO̸⊥
m, QFO̸⊥, and QFO̸⊥

m, which are
categorized in [64], and any MAC meeting strong unforgeability against
one-time chosen message attacks called sUF-OT-CMA security. The un-
derlying KEM scheme is FO-based KEM with implicit rejection. That
is, these schemes output a random key which is not encapsulated if
a given ciphertext is invalid. We require that the underlying PKE in
FO̸⊥, FO̸⊥

m, QFO̸⊥, or QFO̸⊥
m is injective and satisfies indistinguishability

against chosen plaintext attacks called IND-CPA security. In addition,
many KEM schemes submitted to the NIST post-quantum cryptography
standardization are classified as FO̸⊥, FO̸⊥

m, QFO̸⊥, or QFO̸⊥
m. Hence,

the advantage of PKEhy
2 is that a lot of PKE/KEM schemes submitted

to the post-quantum standardization can satisfy SIM-SO-CCA security
without demanding any special property such as simulatability, for the
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underlying SKE.

The difference between PKEhy
1 and PKEhy

2 is given as follows:

• Any IND-CCA secure KEM resistant to quantum computing can be ap-
plied to PKEhy

1 while a particular KEM scheme (i.e., FO̸⊥, FO̸⊥
m, QFO̸⊥,

or QFO̸⊥
m) are applied to PKEhy

2 .

• PKEhy
1 requires that the underlying DEM scheme satisfies a special prop-

erty such as simulatability while PKEhy
2 does not require that the under-

lying MAC satisfies any special property.

In Sections 3.3 and 3.4, we describe concrete primitives which can be applied
to PKEhy

1 and PKEhy
2 , respectively.

3.3 KEM/DEM framework

In this section, we focus on hybrind encryption scheme PKEhy
1 with the KEM/DEM

approach [35], which is constructed from any IND-CCA secure KEM and any
DEM with both simulatability and OT-INT-CTXT security, and prove that
PKEhy

1 meets SIM-SO-CCA security in the QICM. This security proof is based
on the proof of Theorem 2 in [61]. However, it is not obvious that it satisfies
SIM-SO-CCA security in the QICM because the proof in [61] uses the list of
query/response pairs issued to ideal cipher oracles and we cannot apply this
technique due to the quantum no-cloning theorem. To resolve this problem,
we utilize a semi-classical oracle to check whether quantum queries meeting a
condition are submitted to ideal cipher oracles or not, instead of using the list
of ideal cipher oracles.

It is possible to construct concrete SIM-SO-CCA secure PKE schemes in the
QICM because several DEM schemes such as CTR-DEM, CBC-DEM, CCM-
DEM, and hidden-shift CBC-DEM meet simulatability [61, 8]. As a quantum
(ideal) block cipher, hidden-shift Even-Mansour ciphers in [8] may be used.

To construct PKEhy
1 with a message spaceM, we use the following primi-

tives: Let KEM = (KGenasy,Encap,Decap) be a KEM scheme with a key space
K = K′ ×K′′ and a randomness space Rasy. Let DEM = (Encsym,Decsym) be
a DEM scheme with a key space K = K′ ×K′′ and a message spaceM.

The PKE scheme PKEhy
1 = (KGen,Enc,Dec) is described as follows:

• (pk, sk)← KGen(1λ): Generate (pkasy, skasy)← KGenasy(1λ) and output
pk := pkasy and sk := skasy.

• ct← Enc(pk,m): Encrypt a message m ∈M as follows:

1. (e, k)← Encap(pkasy), and d← Encsym(k,m).

2. Output ct := (e, d).
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• m/⊥ ← Dec(sk, ct): Decrypt a ciphertext ct = (e, d) as follows:

1. k← Decap(skasy, e).

2. Output m′ ← Decsym(k, d) if k 6= ⊥, and output ⊥ otherwise.

Theorem 3.1. If a KEM scheme KEM meets IND-CCA security, and a (K,X )-
permutation-driven DEM scheme DEM with an oracle DEM scheme (O.Enc,
O.Dec) for a domain X and a block cipher E meets both of ϵsim-simulatability

and OT-INT-CTXT security, then PKEhy
1 satisfies SIM-SO-CCA security in the

quantum ideal cipher model.

Proof. Let A be a QPT adversary against PKEhy
1 . Let qd be the number of

accessing DEC(·), and qe be the total number of accessing E+(·) and E−(·).
For J ⊆ [n], let K ′

J := {k′j | j ∈ J}. We write Ek′(·) = E(k′, ·) for an ideal
cipher E with a key k′.

For each i ∈ {0, 1, 2, 3, 4}, we consider a security game Gamei, and let Wi

be the event that A outputs out such that R(MD,m1, . . . ,mn, I, out) = 1 in
Gamei.

Game0: This game is the same as Real-SIM-SO-CCA security game. We have
Pr[Expreal-so-cca

PKEhy ,A
→ 1] = Pr[W0].

Game1: This game is the same as Game1 except that DEC oracle returns ⊥ if
a query (e, d) such that e ∈ {ei}i∈[n]\I is submitted.

We show |Pr[W0]− Pr[W1]| ≤ n · (Advind-ccaKEM,D1
(λ) + Advint-ctxtDEM,F (λ)). Let Bad

be the event that A submits a ciphertext query (e, d) such that e ∈ {ei}i∈[n]\I
and Dec(sk, (e, d)) 6= ⊥. Unless Bad occurs, Game1 is identical to Game0.
Besides, we consider the following events: Let Bad1 be the event that Bad
happens in Game0, and let Bad2 be the same event as Bad1 except that for
i ∈ [n]\I, keys ki are chosen uniformly at random.

To show |Pr[Bad1]− Pr[Bad2]| ≤ n · Advind-ccaKEM,D1
(λ), we construct a PPT

algorithm D1 breaking the IND-CCA security of KEM in the following way: At
the beginning of the security game, D1 takes pkasy as input. It sets i∗

U← [n]
and chooses a random polynomial fE of degree 2qe−1 over GF (2κ) uniformly
at random as a 2qe-wise independent hash function, where κ is the bit-length
of elements in K′ ×X . Then, it sets I ← ∅ and sends pk := pkasy to A. When
A submitsMD, it does the following for each i ∈ [n]:

1. If i = i∗, request a challenge (ei∗ , ki∗) in IND-CCA game. Otherwise,
compute (ei, ki)← Encap(pk; ri), where ri ∈ Rasy is sampled at random.

2. di ← Encsym(ki,mi), where mi ←MD.

Then, it returns ((ei, di))i∈[n] to A. D1 simulates oracles as follows:

• E+(k′, α): Return fE(k
′, α).
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• E−(k′, β): Compute the set R of all roots of the polynomial fE(k
′, ·)−β

and return α ∈ R.

• DEC(ct): Take ct = (e, d) as input. In the case of e = ei∗ , halt and
output 1 if ⊥ 6= Decsym(ki∗ , d), and return ⊥ otherwise. In the case of
e 6= ei∗ , submit e to the given decapsulation oracle and receive k. Return
⊥ if k = ⊥, and return Decsym(k, d) if k 6= ⊥.

• OPEN(i): Set I ← I ∪ {i}. Abort if i = i∗. Return (mi, ri) if i 6= i∗.

Note that quantum ideal ciphers E+ and E− can be simulated by using 2qe-
wise independent hash functions from Theorem 6.1 in [137].

When A outputs out, D1 outputs 0 if Bad does not happen. D1 simulates
the view of A completely. If A submits a decryption query meeting the condi-
tion of Bad, it can distinguish the two games, and D1 breaks IND-CCA security
with at least probability |Pr[Bad1]− Pr[Bad2]| /n. Thus, we get the bound.

To show Pr[Bad2] ≤ n · Advint-ctxtDEM,F (λ), we construct a PPT algorithm F
breaking OT-INT-CTXT security as follows: It is given the two oracles ENC(·)
and VRFY(·) in OT-INT-CTXT game. At the beginning of the security game,
F generates (pk, sk) ← KGen(1λ) and chooses i∗ ∈ [n] uniformly at random.
When A submitsMD, it does the following for each i ∈ [n]:

1. (ei, ki)← Encap(pk; ri), where ri ∈ Rasy is sampled at random.

2. mi ←MD.

3. If i = i∗, di∗ ← ENC(mi∗). Otherwise, di ← Encsym(ki,mi).

Then, it returns ((ei, di))i∈[n]. F simulates oracles E+(·, ·), E−(·, ·), and OPEN(·)
in the same way as the above algorithm D1. DEC(·) is simulated as follows: If
e = ei∗ for a given ct = (e, d), it submits (e, d) to VRFY(·). F halts if it returns
1, and returns ⊥ otherwise. If e 6= ei∗ , F computes k ← Decap(skasy, e) and
returns Decsym(k, d) ∈ M∪ {⊥}. When A outputs out, F aborts this game if
Bad does not happen.

The success condition of F is identical to the condition that Bad occurs.
Hence, F wins in OT-INT-CTXT game if A outputs a ciphertext query (e, d)
such that e = ei∗ and oracle VRFY(d) returns 1. The success probability of F
is at least Pr[Bad2]/n.

Therefore, we have |Pr[W0]− Pr[W1]| ≤ n·(Advind-ccaPKEhy ,D1
(λ)+Advint-ctxtDEM,F (λ))

in the straightforward way.

Ë+ (resp. Ë−) is an ideal cipher oracle such that Ë+(k′, α) (resp. Ë−(k′, β))
is sampled from X uniformly at random if k′ ∈ {k′i}i∈[n]\I , and Ë+(k′, α) =

E+(k′, α) (resp. Ë−(k′, β) = E−(k′, β)) holds otherwise.

Game2: This game is the same as Game1 except that at the beginning of
the security game, the challenger computes (ei, ki) ← Encap(pk) for i ∈ [n]
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(ki = (k′i, k
′′
i )), and oracles E+ and E− are replaced by Ë+\S and Ë−\S for

S = {k′i}i∈[n]\I , respectively.

We show |Pr[W1]− Pr[W2]| ≤ 2
√
nq · Advind-ccaKEM,D2

(λ) + 4q
√
n/ |K′|. Let

Bad′ be the event that a semi-classical oracle OSC
S returns |1〉 when A submits

a query to an oracle E+(·, ·) or E−(·, ·). Besides, we consider the following
events: Let Bad′1 be the event that Bad′ happens in Game1, and let Bad′2 be
the same event as Bad′1 except that for i ∈ [n]\I, keys ki are chosen uni-
formly at random. From Proposition 2.1 and the hybrid argument, we have

|Pr[W1]− Pr[W2]| ≤ 2
√
q · Pr[Bad′1] ≤ 2

√
q
∣∣Pr[Bad′1]− Pr[Bad′2]

∣∣+ q · Pr[Bad′2].
We show

∣∣Pr[Bad′1]− Pr[Bad′2]
∣∣ ≤ n ·Advind-ccaKEM,D2

(λ) by constructing a PPT
algorithm D2 breaking IND-CCA security. Notice that running (ei, ki) ←
Encap(pk; ri) at the beginning of the game is a conceptual modification. D2

is constructed as follows: Given (pkasy, e∗, k∗), it chooses i∗ ∈ [n] uniformly
at random, sets (ei∗ , ki∗) := (e∗, k∗), and generates (ei, ki) ← Encap(pkasy; ri)
for all i ∈ [n]\{i∗}, where ri is sampled from Rasy at random. And then, it
sets I ← ∅ and sends pk := pkasy to A. When A submits MD, it samples
mi ←MD and computes di ← Encsym(ki,mi) for i ∈ [n]. And then, it returns
((ei, di))i∈[n] to A. When A issues a quantum query

∑
k′∈K′,x∈X ψk′,x |k′, x〉

to E+ or E−, D2 submits
∑

k′∈K′,x∈X ψk′,x |k′, x〉 |0〉 to a semi-classical oracle

OSC
S . It halts and outputs 1 if OSC

S returns a quantum superposition state∑
k′∈K′,x∈X ψ

′
k′,x |k′, x〉 |1〉. It returns a quantum state by accessing E+ or E−

otherwise. In addition, D2 simulates the following oracles:

• DEC(ct): Take ct = (e, d) as input. If e ∈ {ei}i∈[n]\I , return ⊥. If
e /∈ {ei}i∈[n]\I , submit e to the given decapsulation oracle and receive k.
Return ⊥ if k = ⊥, and return Decsym(k′, d) if k 6= ⊥.

• OPEN(i): Set I ← I ∪ {i}. If i = i∗, abort this game. If i 6= i∗, set
Ek′i
← ∅ and return (mi, ri) if i 6= i∗.

When A outputs a value out, D2 aborts this game if Bad′ does not occur.
Then, D2 simulates the environment of A completely. If A submits a quantum
query including the valid key ki of ei to E

+ or E−, A can distinguish the two
games, and D2 breaks the IND-CCA security of KEM. The success probability
of D2 is at least

∣∣Pr[Bad′1]− Pr[Bad′2]
∣∣ /n.

In addition, we have Pr[Bad′2] ≤ 4nqe/ |K′| from Proposition 2.2. There-
fore, we obtain the following inequality

|Pr[W1]− Pr[W2]| ≤ 2

√
qe

(
n · Advind-ccaKEM,D2

(λ) +
4qen

|K′|

)
≤ 2

√
nqe · Advind-ccaKEM,D2

(λ) + 4qe

√
n

|K′|
,

and the proof is completed.
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Game3: This game is the same as Game2 except that the game is aborted if
the challenger generates (ei, (k

′
i, k

′′
i )) ← Encap(pk) such that k′i ∈ K ′

[i−1] for

i ∈ [n].

The probability of choosing k′i ∈ K ′
[i−1] by running Encap(pk) for i ∈ [n] is

at most n2/|K′|. Thus, we have |Pr[W2]− Pr[W3]| ≤ n2/|K′|.

Game4: This game is the same as Game3 except that for all i ∈ [n], we replace
Encsym algorithm by (Fake,Make). Namely, the process of the challenger and
OPEN oracle is modified as follows: GivenMD, the challenger runs (di, sti)←
Fake(k′′i , |mi|) and returns (ei, di) for each i ∈ [n]. In addition, OPEN oracle is
modified as follows:

1. I ← I ∪ {i}.

2. mi ←MD.

3. π̃ ← Make(sti,mi) and oracles Ë+(k′i, ·), Ë−(k′i, ·) follow this relation π̃.

4. Abort this game if di 6= O.Enc
Ek′

i (k′′i ,mi).

5. Return (mi, ri).

We show |Pr[W3]− Pr[W4]| ≤ n · ϵsim. From the simulatability of DEM,
A cannot distinguish di in the two games. In the process of OPEN oracle,
we can define a relation π̃ in this phase since A cannot find k′i ∈ {k′i}i∈[n]\I
from the game-hop of Game2. In addition, for each i ∈ [n], the probability
that the aborting event happens in OPEN oracle is negligible in λ from the
simulatability of DEM. Hence, we have the inequality.

Finally, we prove Pr[Expideal-so-cca
PKEhy ,S

→ 1] = Pr[W4]. We construct a simula-

tor S in the following way: It is given OPEN oracle in Ideal-SIM-SO-CCA game.
At the beginning of the security game, S generates (pk, sk) ← KGen(1λ) and
(ei, ki)← Encap(pk; ri) for i ∈ [n]. When A submitsMD, it receives |mi| from
the challenger of Ideal-SIM-SO-CCA game, generates di ← Fake(k′′i , |mi|) for
i ∈ [n], and returns ((ei, di))i∈[n]. In the same way as the game-hop of Game4,

S simulates Ë+ and Ë− by using a 2qe-wise independent hash function and
algorithms (Fake,Make). It simulates oracles DEC(·) and OPEN(·) as follows:

• DEC(ct): Take ct = (e, d) as input and do the following.

1. Return ⊥ if e ∈ {ei}i∈[n]\I .
2. k← Decap(sk, e).

3. Return ⊥ if k = ⊥. Return Decsym(k, d) ∈M∪ {⊥} otherwise.

• OPEN(i): Take i ∈ [n] as input and do the following:

1. I ← I ∪ {i}.
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2. Receive mi ← OPEN(i).

3. π̃ ← Make(sti,mi) and oracles Ë+(k′i, ·), Ë−(k′i, ·) follow this rela-
tion π̃.

4. Abort this game if di 6= O.Enc
Ek′

i (k′′i ,mi).

5. Return (mi, ri).

When A outputs out, S halts and outputs R(MD,m1, . . . ,mn, I, out).
S completely simulates Game4 by using only the given oracle OPEN. Thus,

we have Pr[Expideal-so-cca
PKEhy

1 ,S
→ 1] = Pr[W4].

Therefore, we obtain the following advantage

Advsim-so-cca
PKEhy

1 ,A,S,R
(λ) ≤ n · Advind-ccaKEM,D1

(λ) + 2
√
nqe · Advind-ccaKEM,D2

(λ) + n · Advint-ctxtDEM,F (λ)

+n · ϵsim + 4qe

√
n

|K′|
+

n2

|K′|
.

From the discussion above, the proof is completed.

3.4 PKE from FO-based KEM schemes

We describe a PKE scheme PKEhy
2 constructed from an FO-based KEM FO̸⊥

and any sUF-OT-CMA secure MAC, and prove that this scheme meets SIM-SO-CCA
security in the QROM. As FO-based KEM schemes, we can apply not only
FO̸⊥ but also other FO-based schemes FO̸⊥

m, QFO̸⊥, and QFO̸⊥
m, which are

classified in [64]. In this paper, we select FO̸⊥ to construct PKEhy
2 because

FO̸⊥ is used to construct many KEMs submitted to the PQC standardization
project. Besides, it does not have to append additional hash [127, 64] to ci-
phertexts while QFO̸⊥ and QFO̸⊥

m need additional hash. Notice that in the
same way as the security proof of PKEhy

2 (Theorem 3.2), it is possible to prove

the security of PKEhy
2 using FO̸⊥

m, QFO̸⊥, or QFO̸⊥
m, instead of FO̸⊥.

Concretely, we can apply CRYSTALS-Kyber, SABER, SIKE, and LEDAkem
to the KEM scheme FO̸⊥, and apply FrodoKEM, NewHope, ThreeBears,
and more other schemes [107] to FO̸⊥

m, QFO̸⊥, or QFO̸⊥
m. As concrete MAC

schemes, we can use deterministic MACs standardized by NIST.
To construct PKEhy

2 with a message spaceM, we use the following prim-
itives: Let PKEasy = (KGenasy,Encasy,Decasy) with δ-correctness be a PKE
scheme with a message spaceMasy, a randomness spaceRasy, and a ciphertext
space Casy. Let MAC = (Tag,Vrfy) be a MAC scheme with a key space Kmac.
Let H :Masy × Casy → Ksym × Kmac, G :Masy → Rasy be random oracles,
where Ksym =M is a key space. PKEhy

2 = (KGen,Enc,Dec) is constructed as
follows:

• (pk, sk) ← KGen(1λ): Generate (pkasy, skasy) ← KGenasy(1λ) and s
U←

Masy. Then, output pk := pkasy and sk := (skasy, s).
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• ct← Enc(pk,m): Encrypt m ∈M as follows:

1. r
U←Masy.

2. e← Encasy(pkasy, r;G(r)).

3. (ksym, kmac)← H(r, e).

4. d← ksym ⊕m, t← Tag(kmac, d).

5. Output ct := (e, d, t).

• m/⊥ ← Dec(sk, ct): Decrypt ct = (e, d, t) as follows:

1. r′ ← Decasy(skasy, e).

2. (ksym, kmac)← H(s, e) if e 6= Encasy(pkasy, r′;G(r′)).

3. (ksym, kmac)← H(r′, e) otherwise.

4. Output m := d ⊕ ksym if Vrfy(kmac, d, t) = 1, and output ⊥ other-
wise.

As the security of PKEhy
2 , Theorem 3.2 holds.

Theorem 3.2. If a PKE scheme PKEasy with δ-correctness meets IND-CPA
security, and a MAC scheme MAC meets sUF-OT-CMA security, then PKEhy

2

satisfies SIM-SO-CCA security in the quantum random oracle model.

(pk, sk) ← KGen(1λ)

1 : (pkasy, skasy) ← KGen
asy(1λ).

2 : s
U

← M
asy

.

3 : return pk := pk
asy

and sk := (skasy, s)

(e, k) ← Encap(pk)

1 : r
U

← M
asy

2 : e ← Enc
asy(pkasy, r;G(r))

3 : k ← H(r, e)

4 : return (e, k)

k ← Decap(sk, e)

1 : r
′

← Dec
asy(skasy, e)

2 : if e 6= Enc
asy(pk, r′;G(r′)) :

return k := H(s, e)

3 : return k := H(r′, e)

Figure 3.1: KEM scheme FO̸⊥ in PKEhy
2

Proof. Let A be a QPT adversary against PKEhy
2 . Let qd be the number of

accessing DEC(·), qh be the number of accessing H(·), qg be the number of
accessing G(·). For a subset J ⊆ [n], let Ksym

J := {ksymj | j ∈ J}. Notice that

we can view FO̸⊥ in Figure 3.1 as the underlying KEM scheme in PKEhy
2 .

For i ∈ {0, 1, . . . , 9}, we consider a security game Gamei, and let Wi be the
event that A outputs out such that R(MD,m1, . . . ,mn, I, out) = 1 in Gamei.
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3.4 PKE from FO-based KEM schemes

Game0: This game is the same as Real-SIM-SO-CCA security game. Thus, we
have Pr[Expreal-so-cca

PKEhy
2 ,A

→ 1] = Pr[W0].

Game1: This game is the same as Game0 except that DEC oracle computes
(ksym, kmac)← H′

q(e) instead of (ksym, kmac)← H(s, e) if e 6= Encasy(pk, r′;G(r′)),
where H′

q : Casy → Ksym × Kmac is a random oracle. By using Lemma 4 in

[76], we have |Pr[W0]− Pr[W1]| ≤ 2qh/
√
|Masy|.

We define G′ :Masy →Rasy as a random oracle which, on input r ∈Masy,
returns a value sampled from the uniform distribution over a set of “good” ran-
dom coins Rasy

good(pk
asy, skasy, r) = {r̂ ∈ Rasy | Decasy(skasy,Encasy(pk, r; r̂)) =

r}. Let δ(pkasy, skasy, r) = |Rasy\Rasy
good(pk

asy, skasy, r)|/|Rasy| denote the frac-
tion of bad random coins, and let δ(pkasy, skasy) = maxr∈Masy δ(pkasy, skasy, r).
And then, we have δ = E[δ(pkasy, skasy)] as the expectation of δ(pkasy, skasy),
which is taken over (pkasy, skasy)← KGenasy(1λ).

Game2: This game is the same as Game1 except that we replace the random
oracle G(·) by G′ :Masy →Rasy.

In the same way as the proof of Theorem 1 in [78], we can apply Lemma
2.1. Namely, G and G′ can be viewed as F and N oracles in the generic search
problem, respectively. Thus, we get |Pr[W1]− Pr[W2]| ≤ 2qg

√
δ.

Game3: This game is the same as Game2 except that the random oracle H(r, e)
returns Hq(Enc

asy(pk, r;G′(r))) if e = Encasy(pk, r;G′(r)), and returns H′(r, e)
otherwise. Hq : Casy → Ksym × Kmac and H′ :Masy × Casy → Ksym × Kmac

are random oracles.

Since G′(·) oracle returns “good” random coins, Encasy(pk, ·;G′(·)) is injec-
tive. Hence, we can view Hq(Enc

asy(pk, ·;G(·))) as a perfect random oracle,
and Pr[W3] = Pr[W2] holds.

Game4: This game is the same as Game3 except that DEC oracle is modified as
follows: Take ct = (e, d, t) as input and compute (ksym, kmac)← Hq(e). Then,
return m← ksym ⊕ d if Vrfy(kmac, d, t) = 1, and return ⊥ otherwise.

In the case where e = Encasy(pk, r;G′(r)) holds, both Decap algorithms of
Figure 3.1 in Hybrid3 and Hybrid4 return the same value. In the case where
e 6= Encasy(pk, r;G(r)) holds, A cannot distinguish Game3 and Game4 since
both H oracles in the two games return uniformly random values. Thus, we
have Pr[W4] = Pr[W3].

Game5: This game is the same as Game4 except that we replace the random
oracle G′(·) by G(·). In the same way as the game-hop of Game2, we have
|Pr[W4]− Pr[W5]| ≤ 2qg

√
δ.

We define G̈ (resp. Ḧ) as a random oracle such that for i ∈ [n], the value
G̈(ri) (resp. Ḧ(ri, e)) is sampled from Rasy (resp. Ksym × Kmac) uniformly
at random and patches the uniformly random value, and for r /∈ {ri}i∈[n]\I ,
G̈(r) = G(r) (resp. Ḧ(r, e) = H(r, e)) holds.
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Game6: This game is the same as Game5 except that at the beginning of the
security game, the challenger computes (ei, ki) for i ∈ [n], and oracles H and G
are replaced by Ḧ\S and G̈\S for S = {ri}i∈[n]\I , respectively, before A queries
to OPEN oracle.

In the similar way as the proof of Theorem 1 in [78], the following lemma
holds.

Lemma 3.1. For any QPT algorithm A against PKEhy
2 that makes at most

qg queries to G and at most qh queries to H, there exists a PPT algorithm D
against PKEasy such that

|Pr[W5]− Pr[W6]| ≤ 2
√
n(qg + qh)Adv

ind-cpa
PKEasy ,D(λ) + 4(qg + qh)

√
n

|Masy|
.

Proof. We use the same notations defined in the proof of Theorem 3.2. For
i ∈ {0, 1, . . . , 4}, we consider games Hybridi, and let Hi be the event that
A outputs out such that R(MD,m1, . . . ,mn, I, out) = 1 in Hybridi, Findi be
the event that a semi-classical oracle OSC

S returns
∑

x∈S,y∈Y ψ
′
x,y |x, y〉 |1〉 for

a quantum query
∑

x∈Masy ,y∈Y ψx,y |x, y〉 to the random oracle G (resp. H),
where S = {ri}i∈[n]\I and Y = Rasy (resp. Y = Casy × Ksym × Kmac). In

addition, in the same way as the proof in Theorem 3.2, random oracles G̈ and
Ḧ are defined.

Hybrid0: This game is the same as Game5 in the proof of Theorem 3.2. Then,
we have Pr[H0] = Pr[W5].

Hybrid1: This game is the same as Hybrid0 except that we replace G and H by
G̈\S and Ḧ\S, respectively, where S = {ri}i∈[n]\I .

From Proposition 2.1, we have |Pr[H0]− Pr[H1]| ≤ 2
√
(qg + qh) Pr[Find1].

Notice that we also have Pr[H1] = Pr[W6].

Hybrid2: This game is the same as Hybrid1 except that for all i ∈ [n], we

replace r̂i
U←Rasy and (ksymi , kmac

i )
U← Ksym ×Kmac instead of r̂i ← G(ri) and

(ksymi , kmac
i ) ← H(ri, ei), respectively. We have Pr[Find2] = Pr[Find1] because

we do not focus on the output of A.

Hybrid3: This game is the same as Hybrid2 except that we replace G̈ and Ḧ by
G and H, respectively. Because there is no difference between the view of A in
the two games by this change, Pr[Find3] = Pr[Find2] holds.

Hybrid4: This game is the same as Hybrid3 except that we replace ri by r
′
i for

all i ∈ [n]. Notice that we do not replace the set S = {ri}i∈[n]\I by {r′i}i∈[n]\I .
We show |Pr[Find3]− Pr[Find4]| ≤ n ·Advind-cpaPKE,D (λ) by constructing the fol-

lowing PPT algorithm D breaking IND-CPA security of PKEasy: Given a public
key pkasy, D chooses i∗ ∈ [n], ri∗ , r

′
i∗ ∈Masy uniformly at random. It submits

(ri, r
′
i) to the challenger in IND-CPA game and receives ei∗ . And then, it com-

putes ei ← Encasy(pk, ri;G(ri)) and ki ← Hq(ei) for i ∈ [n]\{i∗}. In order to
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3.4 PKE from FO-based KEM schemes

simulate a random oracle G (resp. Hq), D chooses a 2qg-wise independent hash
function (resp. a 2qh-wise independent hash function) uniformly at random.
It sets I ← ∅ and sends pk := pkasy to A.

When A submitsMD, D chooses mi
U←MD and computes di ← ksymi ⊕mi

and ti ← Tag(kmac
i , di) for i ∈ [n]. Then, it returns ((ei, di, ti))i∈[n].

D simulates oracles in the following way: When A issues a quantum query∑
r∈Masy ,y∈Y ψr,y |r, y〉 to the random oracle G (resp. H) for Y = Rasy (resp.

Y = Casy × Ksym × Kmac), D submits
∑

r∈Masy ,y∈Y ψr,y |r, y〉 |0〉 to a semi-

classical oracle OSC
S . It halts and outputs 1 if OSC

S returns the quantum
superposition state

∑
r∈Masy ,y∈Y ψ

′
r,y |r, y〉 |1〉. It returns a quantum state by

accessing G (resp. H) otherwise.

• DEC(ct): Take ct = (e, d, t) as input and do the following.

1. (ksym, kmac)← Hq(e).

2. Return m← ksym ⊕ d if Vrfy(kmac, d, t) = 1. Return ⊥ otherwise.

• OPEN(i): Set I ← I ∪ {i}. Abort if i = i∗. Return (mi, ri) otherwise.

When A outputs a value out and halts, D outputs 0. D simulates the view of
A in Game3 (resp. Game4) if the challenger chooses ri (resp. r

′
i). Then, the

success probability of D is at least |Pr[Find3]− Pr[Find4]| /n, and we have the
inequality.

In addition, we get Pr[Find4] ≤ 4(qg + qh)/|Masy| for each i ∈ [n], from
Proposition 2.2.

Therefore, from the union bound, we obtain

|Pr[Find3]− Pr[Find4]|+ Pr[Find4] ≤ n · Advind-cpaPKE,D (λ) +
4n(qg + qh)

|Masy|
.

From the discussion above, we obtain the following inequality

|Pr[W5]− Pr[W6]| ≤2
√

(qg + qh) Pr[Find1]

≤2

√
n(qg + qh)Adv

ind-cpa
PKE,D (λ) + 4n

(qg + qh)2

|Masy|

≤2
√
n(qg + qh)Adv

ind-cpa
PKE,D (λ) + 4(qg + qh)

√
n

|Masy|
.

Therefore, we complete the proof.

|Pr[W5]− Pr[W6]| is negligible in λ if PKEasy meets IND-CPA security.

Game7: This game is the same as Game6 except that DEC oracle returns ⊥ if
a query (e, d, t) such that e ∈ {ei}i∈[n]\I is submitted.

45



Chapter 3. Quantum-Secure Public Key Encryption

Let Bad be the event that A submits a ciphertext query (e, d, t) such that
e ∈ {ei}i∈[n]\I and Vrfy(kmac, d, t) = 1. Besides, we consider the following
events: Let Bad1 be the event that Bad happens in Game6, and let Bad2 be
the same event as Bad1 except that keys ki are chosen uniformly at random
for all i ∈ [n].

Then, Game6 and Game7 are identical until Bad1 occurs. The modification
of Bad2 is conceptual from the game-hop of Game6. Thus, we have Pr[Bad1] =
Pr[Bad2].

Next, we show Pr[Bad2] ≤ n·Advsuf-cma
MAC,F (λ). We construct a PPT algorithm

F breaking sUF-OT-CMA security as follows: It is given oracles TAG and VRFY
in sUF-OT-CMA game. At the beginning of the security game, F generates
(pk, sk) ← KGen(1λ) and chooses i∗ ∈ [n] uniformly at random. Then, it sets
I ← ∅ and sends pk to A. When A submitsMD, it does the following for every
i ∈ [n]:

1. ei ← Encasy(pk; ri;G(ri)), where ri ∈Masy is sampled at random.

2. mi ←MD and (ksymi , kmac
i )← H(ri, ei).

3. If i = i∗, choose di∗
U← Ksym and let ti∗ := TAG(di∗). Otherwise, di ←

ksymi ⊕mi and τi ← Tag(kmac
i , di).

Then, it returns {(ei, di, ti)}i∈[n]. F simulates oracles in the following way:
From Theorem 6.1 in [137], random oracles H and G can be simulated by using
a 2qh-wise pairwise independent hash function and a 2qg-wise independent
hash function, respectively. The other oracles are simulated as follows:

• DEC(ct): Take ct = (e, d, t) as input. If e = ei∗ , submit (d, t) to VRFY
oracle. Halt if VRFY returns 1, and return ⊥ otherwise. If e 6= ei∗ ,
return Dec(sk, ct) ∈M∪ {⊥}.

• OPEN(i): Set I ← I ∪ {i}. Abort this game if i = i∗. Return (mi, ri) if
i 6= i∗.

Finally, when A outputs out, F aborts if Bad does not occur. Then, the
success condition of F is identical to the condition that Bad occurs. Hence, F
wins in sUF-OT-CMA game if A submits a ciphertext query (e, d, t) such that
e = ei∗ and VRFY(d, t) returns 1, and the success probability of F is at least
Pr[Bad2]/n. From the union bound, we have Pr[Bad2] ≤ n · Advsuf-cma

MAC,F (λ).
Therefore, we obtain

|Pr[W6]− Pr[W7]| ≤ n · Advsuf-cma
MAC,F (λ).

|Pr[W6]− Pr[W7]| is negligible in λ if MAC meets sUF-OT-CMA security.

Game8: This game is the same as Game7 except that the game is aborted if
for i ∈ [n], the challenger chooses ri ∈ Masy such that ksymi ∈ Ksym

[i−1], where

(ksymi , kmac
i ) = H(ri, ei).
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The probability of choosing ksymi ∈ Ksym
[i−1] is at most n2/|Ksym| from the

collision resistance of random oracles.

Game9: This game is the same as Game8 except that the challenge phase and
OPEN oracle are modified as follows: When A submits MD, the challenger
chooses di ∈ Ksym and kmac

i ∈ Kmac uniformly at random, computes ti ←
Tag(kmac

i , di), and returns (ei, di, ti) for i ∈ [n]. In addition, OPEN oracle does
the following:

1. I ← I ∪ {i}.

2. mi ←MD.

3. Let H(ri, ei) := (di ⊕mi, k
mac
i ).

4. Return (mi, ri).

Game9 is identical to Game8. Any QPT adversary A cannot distinguish di
in the two games since both ciphertexts in these games are uniformly random
and A cannot find r ∈ {ri}i∈[n]\I before querying OPEN oracle. For this reason,
it is possible to define H(ri, ei) when A submits i to OPEN oracle. Hence, we
have Pr[W9] = Pr[W8].

Finally, we prove Pr[Expideal-so-cca
PKEhy

2 ,S
→ 1] = Pr[W9] by constructing a sim-

ulator S in the following way: It is given OPEN oracle. At the beginning
of Ideal-SIM-SO-CCA security game, S generates (pk, sk) ← KGen(1λ) and ei
for i ∈ [n]. And then, it sets I ← ∅ and sends pk to A. When A submits
MD, it chooses di ∈ MD and kmac

i ∈ Kmac uniformly at random, and com-
putes ti ← Tag(kmac

i , di) for i ∈ [n]. And then it returns ((ei, di, ti))i∈[n].
It simulates random oracles by using a 2qh-wise independent hash function
and a 2qg-wise independent hash function. Oracles DEC(·) and OPEN(·) are
simulated as follows:

• DEC(ct): Take ct = (e, d, t) as input and do the following.

1. Return ⊥ if e ∈ {ei}i∈[n]\I .
2. (ksym, kmac)← Hq(e).

3. Return m← ksym ⊕ d if Vrfy(kmac, d, t) = 1. Return ⊥ otherwise.

• OPEN(i): Take i ∈ [n] as input and do the following:

1. I ← I ∪ {i}.
2. Receive mi by accessing the given OPEN(i).

3. Let H(ri, ei) := (di ⊕mi, k
mac
i ).

4. Return (mi, ri).
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When A outputs out, S halts and outputs R(MD,m1, . . . ,mn, I, out). Because
S can simulate the view of A only with OPEN oracle, we have Pr[Expideal-so-cca

PKEhy
2 ,S

→
1] = Pr[W9].

From the discussion above, we obtain

Advsim-so-cca
PKEhy

2 ,A,S,R
(λ) ≤2

√
n(qg + qh)Adv

ind-cpa
PKEasy ,D(λ) + n · Advsuf-cma

MAC,F (λ)

+ 4(qg + qh)

√
n

|Masy|
+

2qh√
|Masy|

+ 4qg
√
δ +

n2

|Ksym|

≤2
√
n(qg + qh)Adv

ind-cpa
PKEasy ,D(λ) + n · Advsuf-cma

MAC,F (λ)

+ (4qg + 6qh)

√
n

|Masy|
+ 4qg

√
δ +

n2

|Ksym|
,

and complete the proof.
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Chapter 4

Quantum-Secure Message
Authentication with
Aggregation

4.1 Background of (Sequential) Aggregate MAC

Message authentication code (MAC) is a fundamental and important primitive
in symmetric cryptography for message authentication by generating MAC
tags on messages. In addition, there are works which researched message au-
thentication schemes with advanced functionalities, such as aggregate MACs
(AMACs) [82, 44], homomorphic message authenticators [32, 52, 47], and blind
MACs [2, 105]. In this chapter, we focus on AMACs which can compress mul-
tiple MAC tags on multiple messages into a short tag (aggregate-tag). The
reasons are as follows: When many MAC tags are sent to a receiver via a
network, AMACs are effective since it is possible to reduce the total size of
MAC tags. In addition, concrete AMACs can be constructed from standard-
ized MACs such as CMAC and HMAC, and it is easy to implement AMAC
schemes without replacing ordinary MACs implemented in devices [82, 44]
while practical homomorphic message authenticators [32] and blind MACs
[2, 105] are not standardized, and we have to replace implemented ordinary
MACs (e.g., CMAC and HMAC) by the homomorphic or blind message au-
thentication schemes in implementing these ones.

We describe the existing works related to AMACs. In [82], Katz and
Lindell formalized the model and security of AMACs for the first time, and
proposed a generic construction starting from any MAC. Sequential aggre-
gate MAC (SAMAC) is AMAC which can verify the validity of the order of
sequential messages. We can consider several applications of SAMACs such
as audit-logging systems and wireless network sensor systems, and others for
resource-constrained devices. In [44], Eikemeier et al. defined the model and
security of SAMACs, and proposed a generic construction from any MAC and
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pseudorandom permutation. In [62], Hirose and Kuwakado formalized forward
security of SAMACs and proposed a generic construction from any pseudo-
random function (PRF) and any pseudorandom generator. Tomita et al. [128]
defined sequential aggregate authentication codes with information-theoretic
(one-time) security, and they proposed constructions of SAMACs meeting this
security.

Recently, quantum algorithms breaking the existing cryptosystems have
been proposed and the development of quantum computers has been pro-
moted. In fact, post-quantum cryptosystems have been studied in both areas
of public key cryptography and symmetric key cryptography. In symmetric
key cryptography, we focus on the security model where adversaries are al-
lowed to submit quantum superposition states of queries (quantum queries)
to oracles since we would like to establish quantum secure systems in a stronger
sense. It is known that there exist quantum attacks against MAC schemes such
as CBC-MAC, PMAC, and Carter-Wegman MAC in this model [24, 80]. In
prior work, various MAC schemes satisfying the security in the quantum query
model have been proposed. In [24], Boneh and Zhandry defined the security
of MACs in this model for the first time. They also proposed several MAC
schemes meeting this security: a variant of Carter-Wegman MAC, pseudoran-
dom functions meeting the quantum security defined in [136], and a q-time
MAC scheme, where q is the number of classical/quantum queries to the tag-
ging oracle. In [124], Song and Yun showed that NMAC and HMAC met the
quantum security of pseudorandom functions defined in [136], if the underlying
pseudorandom functions meet the quantum security. However, no paper re-
ports about MACs with advanced functionality of compressing multiple tags,
AMACs and SAMACs. Notice that there is no work which researched the
quantum-security of homomorphic message authenticators and blind MACs.

4.2 Contribution

Our purpose is to propose AMAC/SAMAC schemes meeting quantum security,
namely AMAC/SAMAC schemes secure in quantum security models. To the
best of our knowledge, the security of AMACs/SAMACs in this model has
not been dealt with in the literature. We formalize the model and security
of AMACs/SAMACs in the quantum security model. Then, we show that
generic constructions of AMAC/SAMAC schemes that satisfy the security in
the quantum security model. Specifically, the contribution is described as
follows.

1. In Section 4.4, we formalize the security of AMACs in the quantum secu-
rity model. In addition, we show that the generic construction of AMAC
from any MAC, which was proposed by Katz and Lindell [82], fulfills our
security, if the underlying MAC meets the post-quantum security defined
in [24].
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2. In Section 4.5, we formalize the quantum security of SAMACs. Our
security formalization includes the existing security definition [44] in the
classical security model, and hence our formalization is considered to be
reasonable. In terms of quantum security, we analyze security of known
SAMACs, and the results are summarized in Table 4.1. In particular,
we can break the security of SAMACs of [44, 128] by using quantum
algorithms proposed in [24, 80].

3. In Section 4.5.3 and 4.5.4, we propose two generic constructions of
SAMACs, SAMAC1 and SAMAC2. SAMAC1 is constructed from any
quantum-secure pseudorandom function (QPRF), which is formalized in
[136], while SAMAC2 is constructed from any randomized pseudorandom
generator (PRG) and any classical PRF. The features of those construc-
tions are explained as follows.

SAMAC1 uses a deterministic PRF satisfying the quantum security for-
malized in [136]. In particular, we can apply the quantum secure PRFs
of [136, 124] to SAMAC1, since those are deterministic. More specif-
ically, we can apply NMAC/HMAC to SAMAC1 as a quantum-secure
PRF, since these MACs are shown to be quantum-secure PRFs in [124].

SAMAC2 uses a randomized function (i.e., randomized PRG). The ad-
vantage of using randomized primitives lies in constructing quantum
secure SAMAC schemes based on computationally hard problems even
for quantum computers such as the learning parity with noise (LPN)
problem. Since LPN-based cryptography has been studied in construct-
ing various cryptographic systems such as public key encryption [40, 85],
oblivious transfer [36], symmetric key encryption [12], MACs [38], and
randomized PRGs/PRFs [135, 12], it is even interesting to consider
quantum-secure SAMACs from LPN-based primitives. LPN-based prim-
itives consist of randomized algorithms, and hence, those can be applied
to SAMAC2. In particular, we can apply randomized PRGs [135, 12]
based on the LPN problem to SAMAC2.

4.3 Existing Quantum Security of MAC

We describe the quantum security of MACs (i.e., EUF-qCMA (existential
unforgeability against quantum chosen message attacks) security) following
[24] in order to show that our quantum security of AMACs is an expansion
of the security definition of [24]. Concerning the model of MACs, see Section
2.7.3.

Definition 4.1 (EUF-qCMA security [24]). A MAC scheme MAC = (Tag,
Vrfy) with a key space K meets EUF-qCMA security, if for any QPT adversary
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Scheme Primitive Quantum Security Attacking algorithm

[44] MAC Quantum algorithm
insecure against CBC-MAC

PRP (see Section 5.1 in [80])

[128] Scheme 1 A-code Quantum algorithm
insecure (see the proof of

[128] Scheme 2 A-code Lemma 6.3 in [24])

SAMAC1 QPRF secure n/a

SAMAC2 RPRG secure n/a
PRF

Table 4.1: Security of SAMAC Schemes in the Quantum Query Model: The
term “Primitive” means cryptographic primitives required in the generic con-
structions, “Quantum Security” means security in the quantum query model,
and “Attacking algorithm” means a quantum algorithm which makes the tar-
get scheme insecure in the quantum query model. PRP means a pseudorandom
permutation, A-code means an authentication code with information theo-
retic (one-time) security, (Q)PRF means a (quantum) pseudorandom func-
tion, RPRG means a randomized pseudorandom generator, and PIH means
pairwise independent hashing.

A against MAC, Adveuf-qcma
MAC,A (λ) := Pr[A wins] is negligible in λ, where [A wins]

is an event that A wins in the following game:

Setup: A challenger chooses a secret key k
U← K.

Queries: When A submits a quantum query (i.e., a superposition of mes-
sages) |ψ〉 =

∑
m∈M,t∈T ,z ψm,t,z |m, t, z〉 to the tagging oracle, it chooses

randomness r used in Tag algorithm, where it does not need to choose
randomness r if Tag is deterministic. Then, it returns∑

m∈M,t∈T ,z

ψm,t,z |m, t⊕ Tag(k,m; r), z〉 .

Let q be the number of queries which A submits to the tagging oracle.

Output: A outputs (q + 1) message/tag pairs (m1, t1), . . . , (mq+1, tq+1). A
wins if the following holds:

• 1← Vrfy(k,mi, ti) for all i ∈ [q + 1].

• mi 6= mj for any distinct i, j ∈ [q + 1].
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4.4 Quantum-Secure AMAC

4.4.1 Quantum Security of AMAC

In this section, we formalize the quantum security of AMACs by taking into ac-
count the quantum security of MACs in [24] and (classical) security of AMACs
in [82].

First, we describe the model of AMACs which is an existing one of [82]. An
AMAC scheme consists of four polynomial-time algorithms (KGen, Tag, Agg,
AVrfy): Let λ be a security parameter, and let n = poly(λ) be the number of
tagging users. ID = {idi}i∈[n] ∈

(
{0, 1}O(λ)

)n
is an ID space, K = K(λ) is a

key space,M =M(λ) is a message space, and T = T (λ) is a tag space.

Key Generation. KGen is a randomized algorithm which, on input a security
parameter 1λ and an ID id ∈ ID, outputs a secret key kid ∈ K. We write
kid ← KGen(1λ, id).

Tagging. Tag is an algorithm which, on input a secret key kid ∈ K and a
message m ∈M, outputs a tag t ∈ T . We write t← Tag(kid,m).

Aggregation. Agg is a deterministic algorithm which, on input a set of ar-
bitrary ℓ pairs of IDs and tags T = {(idσ(i), ti)}i∈[ℓ] (ℓ ≤ n), outputs an
aggregate tag τ . We write τ ← Agg(T ).

Verification. AVrfy is a deterministic algorithm which, on input a set of secret
keys K = {kidi}i∈[n], a set of arbitrary ℓ pairs of IDs and messages
M = {(idσ(i),mi)}i∈[ℓ], and an aggregate tag τ , outputs 1 (accept) or 0
(reject). We write 1/0← AVrfy(K,M, τ).

We require that AMAC schemes (KGen,Tag,Agg,AVrfy) meet correctness
as follows: For any set K = {kidi}i∈[n] of secret keys (∀idi ∈ ID, kidi ←
KGen(1λ, idi)), and any setM of ID/message pairs, we have 1← AVrfy(K,M, τ),
where τ ← Agg({idσ(i), ti}i∈[ℓ]), where ti ← Tag(kidσ(i)

,mi) for i ∈ [ℓ] (1 ≤ ℓ ≤
n).

Next, we define the quantum security of AMACs: aggregate unforgeability
against quantum chosen message attacks, which we call aggUF-qCMA security,
as follows.

Definition 4.2 (aggUF-qCMA security). An AMAC scheme AMAC = (KGen,
Tag, Agg, AVrfy) meets aggUF-qCMA security, if for any QPT adversary A

against AMAC, Advagguf-qcma
AMAC,A (λ) := Pr[A wins] is negligible in λ, where [A wins]

is the event that A wins in the following game:

Setup: Generate secret keys kidi ← KGen(1λ, idi) for all idi ∈ ID. Set a list
LCor ← ∅.

Queries: A is allowed to submit queries to the following oracles OCor,OTag:
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• OCor: Given a query id ∈ ID, a corrupt oracle OCor returns the
corresponding key kid and sets LCor ← LCor ∪ {id}.
• OTag: Given an ID id ∈ ID and a quantum superposition of mes-
sages |ψ〉 =

∑
m∈M,t∈T ,z ψm,t,z |m, t, z〉, a tagging oracle OTag chooses

randomness r used in Tag algorithm, where it does not need to
choose randomness r if Tag is deterministic. Then, it returns∑

m∈M,t∈T ,z ψm,t,z |m, t⊕ Tag(kid,m; r), z〉. Let q be the number of
issued queries to OTag, such that id /∈ LCor.

Output: A outputs q ID/message/tag triplets (id(1),m(1), t(1)), . . ., (id(q),m(q), t(q))
and (M, τ), where id(i) ∈ ID (i ∈ [q]), and M = {(idσ(i),mi)}i∈[ℓ]
(1 ≤ ℓ ≤ n) is a set of arbitrary ℓ pairs of IDs and messages and τ
is an aggregate tag. Then, A wins if the following holds:

• 1← AVrfy(kid(i) , (id
(i),m(i)), t(i)) for all i ∈ [q], and 1← AVrfy(K,M, τ).

• There exists some (id,m) ∈M such that id /∈ LCor and
(id,m) /∈ {(id(1),m(1)), . . . , (id(q),m(q))}.

Definition 4.2 is regarded as an extension from both security notions of the
quantum security of MACs in [24] and (classical) security of AMACs in [82]
from the following reasons:

• Consider a special case n = ℓ = 1 in Definition 4.2. Suppose that,
in the aggUF-qCMA security game, a QPT adversary A finally outputs
q ID/message/tag triplets (id(1),m(1), t(1)), . . . , (id(1),m(q), t(q)) for the
same ID, and (M, τ), where M = {m} is a set consisting of a single ele-
ment and τ is a single tag. Then, A wins, if 1← AVrfy(kid(1) , (id

(1),m(i)), t(i))

for all i ∈ [q] and 1← AVrfy(kid(1) ,m, t), and m 6∈ {m
(1), . . . ,m(q)}. This

is the same as Definition 4.1, and hence Definition 4.2 is regarded as an
extension from quantum security of MACs in [24].

• Consider a special case where PPT algorithm A obtains valid q triplets
(id(1),m(1), t(1)), . . . , (id(q),m(q), t(q)) by having access to the oracle OTag

with classical queries (id(1),m(1)), . . . , (id(q),m(q)). Suppose that, in the
aggUF-qCMA security game, A outputs q ID/message/tag triplets
(id(1),m(1), t(1)), . . . , (id(1),m(q), t(q)) which he obtained, and (M, τ), where
M = {(idσ(i),mi)}i∈[ℓ] (1 ≤ ℓ ≤ n) is a set of arbitrary ℓ pairs of
IDs and messages and τ is an aggregate tag. Then, A wins, if 1 ←
AVrfy(K,M, τ) and there is some (id,m) ∈ M such that id /∈ LCor and
(id,m) /∈ {(id(1),m(1)), . . . , (id(q),m(q))}. This is the same as the security
definition of AMACs in [82], and ours is an extension of it.

4.4.2 Katz-Lindell Construction

We show that the Katz-Lindell construction [82] of AMACs meets aggUF-qCMA
security. Let MAC = (TagMAC,VrfyMAC) be a deterministic MAC scheme with
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a key spaceK. The Katz-Lindell construction AMACKL = (KGen,Tag,Agg,AVrfy)
is described as follows:

• kid ← KGen(1λ, id): Output kid
U← K for an ID id ∈ ID.

• t← Tag(kid,m): Output t← TagMAC(kid,m) ∈ T on a message m ∈M.

• τ ← Agg({(idσ(1), t1), . . . , (idσ(ℓ), tℓ)}): Output τ := t1 ⊕ · · · ⊕ tℓ ∈ T .

• 1/0 ← AVrfy(K,M, τ): Verify an ID/message set M = {(idσ(i),mi)}i∈[ℓ]
and an aggregate tag τ in the following way:

1. τ̃ ← Agg({(idσ(1), t̃1), . . . , (idσ(ℓ), t̃ℓ)}), where t̃i ← Tag(kidσ(i)
,mi).

2. Output 1 if τ = τ̃ , and output 0 otherwise.

We show the following theorem which states quantum security of the con-
struction AMACKL.

Theorem 4.1. If a deterministic MAC meets EUF-qCMA security, AMACKL

satisfies aggUF-qCMA security.

Proof. Let A be a QPT adversary against AMACKL. We prove the theorem
by constructing a PPT algorithm F breaking the EUF-qCMA security of MAC,
in the following way: Given a tagging oracle in EUF-qCMA game, it chooses
id∗ ∈ ID uniformly at random and generates kid for all id ∈ ID and a list
LCor ← ∅. When A submits queries to OCor and OTag, it simulates these
oracles as follows:

• OCor: Take id as input. Abort this game if id = id∗. Return the corre-
sponding key kid and set LCor ← LCor ∪ {id} if id 6= id∗.

• OTag: Take (id,
∑

m∈M,t∈T ,z ψm,t,z |m, t, z〉) as input. If id = id∗, submit
the given quantum query to the tagging oracle and return the received
quantum superposition. If id 6= id∗, return

∑
m,t,z ψm,t,z |m, t⊕ Tag(kid,m), z〉.

When A outputs (id(1),m(1), t(1)), . . . , (id(q),m(q), t(q)) and (M, τ), where M =
{(idσ(i),mi)}i∈[ℓ], then F checks the following:

• For all id(i) 6= id∗ (i ∈ [q]), we have 1← AVrfy(kid(i) , (id
(i),m(i)), t(i)), and

• there exists some ID/message pair (id∗,m∗) ∈ M such that (id∗,m∗) /∈
{(id(1),m(1)), . . . , (id(q),m(q))}.

If the output of A meets these conditions, F sets t∗ ← τ and computes t∗ ←
t∗ ⊕ Tag(kidσ(i)

,mi) for all (idσ(i),mi) ∈ M\{(id∗,m∗)} (i ∈ [q]). Then, it

outputs (m∗, t∗) and all (m, t) such that (id∗,m, t) ∈ {(id(i),m(i), t(i))}i∈[q]. If
the output of A does not meet the conditions above, F aborts this game.
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The output of F is a forgery in EUF-qCMA security game, since the one-
more forgery (m∗, t∗) is not in {(m(1), t(1)), . . . , (m(q), t(q))} and the other pairs
can be obtained in the straightforward way. Besides, the probability that A
wins without finding a forgery for MACs is at most 1/|T |. Thus, we obtain

Advagguf-qcma
AMACKL,A

(λ) ≤ n · Adveuf-qcma
MAC,F (λ) + 1/|T |, and the proof is completed.

4.5 Quantum-Secure SAMAC

We define a model of history-free SAMACs and formalize the security in the
quantum security model because all existing SAMACs [44, 62, 128] are history-
free. The ordinary SAMACs generate each aggregate tag depending on the
local message of a tagging user, a sequence of previous messages, and an
aggregate-so-far tag. On the other hand, history-free SAMACs generate each
aggregate tag depending only on a local message and an aggregate-so-far tag.

4.5.1 Quantum Security of SAMAC

First, we define the model of SAMACs which was formalized in [44]. An
SAMAC scheme consists of a tuple of three polynomial-time algorithms (KGen,
STag, SVrfy): Let λ be a security parameter, let n = poly(λ) be the number
of tagging users, and a permutation σ : [n] → [n] denotes order information.
ID = {idi}i∈[n] ∈

(
{0, 1}O(λ)

)n
is an ID space, K = K(λ) is a key space,

M =M(λ) is a message space, and T = T (λ) is a tag space.

Key Generation. KGen is a randomized algorithm which, on input a security
parameter 1λ and an ID id ∈ ID, outputs a secret key kid ∈ K. We write
kid ← KGen(1λ, id).

Tagging. STag is an algorithm which, on input a secret key kid ∈ K, a message
m ∈ M, and an aggregate-so-far tag τ ′ ∈ T , outputs an aggregate tag
τ ∈ T . We write τ ← STag(kid,m, τ

′). Note that the first tagging user
generates an aggregate tag on a local message and an empty symbol
∅τ ∈ T as an aggregate-so-far tag.

Verification. SVrfy is a deterministic algorithm which, on input a set of se-
cret keys K = {kidi}i∈[n], a sequence of arbitrary ℓ ID/message pairs
M = ((idσ(i),mi))i∈[ℓ], an aggregate-so-far tag τ ′ ∈ T , and an aggre-
gate tag τ ∈ T , outputs 1 (accept) or 0 (reject). We write 1/0 ←
SVrfy(K, (M, τ ′), τ).

We require that SAMAC schemes (KGen, STag, SVrfy) meet correctness
in the following way: For any set K = {kidi}i∈[n] of secret keys (∀idi ∈ ID,
kidi ← KGen(1λ, idi)), any sequenceM = ((idσ(i),mi))i∈[ℓ] of ID/message pairs,
and any aggregate-so-far tag τ ′ ∈ T , it holds that 1 = SVrfy(K, (M, τ ′), τ),
where τ ← STag(kidσ(ℓ)

,mℓ, STag(. . . STag(kidσ(1)
,m1, τ

′) . . .)).
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Next, we define the quantum security of SAMACs: sequential aggregate un-
forgeability against quantum chosen message attacks, which we call saggUF-qCMA
security.

We define a sequential aggregation algorithm SeqAggK and a closure Closure
in order to define saggUF-qCMA security. For an SAMAC scheme SAMAC =
(KGen, STag, SVrfy), a deterministic or randomized algorithm SeqAggK with
secret keys K = {kidi}i∈[n] is defined as follows:

Definition 4.3 (Sequential Aggregation Algorithm). Given a permutation
σ : [n] → [n], a sequence m = (m1, . . . ,mℓ) of messages, an aggregate-so-far
tag τ ′ ∈ T , and a sequence r = (r1, . . . , rℓ) of random coins, a sequential
aggregation algorithm outputs the aggregate tag

τ ← STag(kidσ(ℓ)
,mℓ, STag(. . .m2, STag(kidσ(1)

,m1, τ
′; r1) . . .); rℓ)

on the given messages/tag sequence ((m1, . . . ,mℓ), τ
′; r). Then, we write τ ←

SeqAggK(σ,m, τ ′) as the sequential aggregation algorithm.

And, we define Closure in the same way as the closure defined in [44].

Definition 4.4 (Closure). We define a set Trivial to formalize Closure. Let
LTag be a set of pairs ((M, τ ′), τ), where M = ((idσ(i),mi))i∈[ℓ] is a sequence
of ID/message pairs, τ ′ is an aggregate-so-far tag, and τ is an aggregate tag
on (M, τ ′). Let LCor be a set of corrupted IDs. Trivial is defined as follows:

TrivialLTag,LCor
(M, τ) :={M} ∪

⋃
((M̂,τ),τ̂)∈LTag

TrivialLTag,LCor
(M ‖ M̂, τ̂)

∪
⋃

∀m̄∈M,τ̄∈T ,
id∈LCor

TrivialLTag,LCor
(M ‖ (id, m̄), τ̄).

Closure is defined as follows: Let ∅m be an empty symbol inM and let ∅τ be
an empty symbol in T , then let Closure(LTag,LCor) := {TrivialLTag,LCor

(∅m, ∅τ )}.

Then, we define saggUF-qCMA security by using SeqAggK and Closure.

Definition 4.5 (saggUF-qCMA security). An SAMAC scheme SAMAC =
(KGen, STag, SVrfy) meets saggUF-qCMA security, if for any QPT algorithm

A against SAMAC, Advsagguf-qcma
SAMAC,A (λ) := Pr[A wins] is negligible, where [A wins]

is the event that A wins in the following game:

Setup: Generate secret keys kidi ← KGen(1λ, idi) for all idi ∈ ID. Set a list
LCor ← ∅.

Corrupt: When A submits a query id ∈ ID, a corrupt oracle OCor returns
the corresponding key kid and sets LCor ← LCor ∪ {id}.
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Tagging: A submits a permutation σ : [n]→ [n] (classical data) and a super-
position of message/previous-tag pairs∑

m∈Mℓ,τ ′∈T ,t∈T ,z

ψm,τ ′,t,z |(m, τ ′), t, z〉

to tagging oracle OTag, where ℓ is an integer such that 1 ≤ ℓ ≤ n,
a permutation σ : [n] → [n] is order-information of IDs, and m =
(mi)i∈[ℓ] is a sequence of messages. Then, OTag chooses randomness
r = (r1, . . . , rℓ) used in STag algorithm, where it does not need to choose
r if STag is deterministic, and returns∑

m∈Mℓ,τ ′∈T ,t∈T ,z

ψm,τ ′,t,z |(m, τ ′), t⊕ SeqAggK(σ,m, τ ′; r), z〉 .

A submits at most q queries to OTag and it is not allowed to issue queries
to OCor after querying to OTag.

Output: A outputs (q + 1) tuples of ID/message sequences, aggregate-so-far
tags, and aggregate tags ((M1, τ

′
1), τ1), . . . , ((Mq+1, τ

′
q+1), τq+1). A wins

if the following holds:

• For all i ∈ [q + 1], 1← SVrfy(K, (Mi, τ
′
i), τi) holds.

• For all i ∈ [q + 1], (Mi, τ
′
i) /∈ Closure(L

(i)
Tag,LCor) holds, where

L
(i)
Tag :=

{
((Mj , τ

′
j), τj)

}
j∈[q+1]

\{((Mi, τ
′
i), τi)}.

We explain that Definition 4.5 can be viewed as an extension from both
security notions of [24] and [44].

• Consider a special case where the number of IDs is 1 (i.e., n = 1) in
Definition 4.5. Suppose that, in the saggUF-qCMA security game, a
QPT adversary A outputs q tuples of ID/message pairs, aggregate-so-far
tags, and aggregate tags ((id1,m1), τ

′
1, τ1), . . ., ((id1,mq+1), τ

′
q+1, τq+1)

for the same ID id1. Then, A wins if 1 ← SVrfy(kid1 , (mi, τ
′
i), τi) and

((id1,mi), τ
′
i) /∈ Closure(L

(i)
Tag, ∅τ ) for all i ∈ [q+1], where Closure(L

(i)
Tag, ∅τ ) =

{(id1,mj), τ
′
j)}j∈[q+1]\{(id1,mi), τ

′
i)}. This is the same as Definition 4.1

since we can view mi‖τ ′i as messages for all i ∈ [q + 1], and the out-
putted messages mi‖τ ′i are different one another. Hence, Definition 4.5
is regarded as an extension of the quantum security of MACs in [24].

• Consider a special case where PPT algorithm A obtains valid q tuples of
ID/message pairs, aggregate-so-far tags, and aggregate tags ((M1, τ

′
1), τ1),

. . ., ((Mq, τ
′
q), τq) by having access to the oracle OTag with classical

queries (M1, τ
′
1), . . . , (Mq, τ

′
q). Suppose that, in the saggUF-qCMA se-

curity game, a PPT algorithm A finally outputs q tuples of ID/message
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pairs, aggregate-so-far tags, and aggregate tags ((M1, τ
′
1), τ1), . . ., ((Mq, τ

′
q), τq)

which he obtained, and ((Mq+1, τ
′
q+1), τq+1), whereMq+1 = ((idσ(i),mi))i∈[ℓ]

(1 ≤ ℓ ≤ n) is a sequence of arbitrary ℓ pairs of IDs and messages and
τq+1 is an aggregate tag on (Mq+1, τ

′
q+1). Then, A wins if we have 1 ←

SVrfy(K, (Mq+1, τ
′
q+1), τq+1) and (Mq+1, τ

′
q+1) /∈ Closure(L

(q+1)
Tag ,LCor). This

is the same as the security definition of SAMACs in [44], and ours is an
extension of it.

In terms of quantum security mentioned above, we analyze security of
known SAMACs, and the results are summarized in Table 4.1. In particular,
we can break the security of SAMACs of [44, 128] by using quantum algorithms
proposed in [24, 80]. In the next section, we propose secure constructions of
SAMACs in terms of quantum security mentioned above.

We propose two generic constructions SAMAC1 and SAMAC2 of (history-
free) SAMACs and show that these constructions meet saggUF-qCMA security.

4.5.2 Quantum Algorithms against Existing SAMACs

We describe the attack against the existing sequential aggregate authentication
schemes of [44, 128].

The Attack against the Scheme of [44]

The algorithm breaking the scheme of [44] follows the quantum attack against
CBC-MAC of [80]. First, we define Simon’s algorithm used by the one against
the scheme of [44]. Simon’s algorithm is a quantum algorithm solving the
following problem.

Definition 4.6 (Simon’s Problem). Given a Boolean function f : {0, 1}n →
{0, 1}n and the promise that there exists s ∈ {0, 1}n such that for any (x, y) ∈
{0, 1}n, [f(x) = f(y)]⇔ [x⊕ y ∈ {0n, s}], the goal is to find s.

Simon’s algorithm is as follows:

1. Set the following 2n-qubit: 1√
2n

∑
x∈{0,1}n |x〉 |0〉.

2. Submit a quantum query 1√
2n

∑
x∈{0,1}n |x〉 |f(x)〉 to the function f .

3. Measure the second register in the computational basis and obtain a
value f(z). Then, from the promise f(x) = f(x⊕ s), the first register is
as follows:

1√
2
(|z〉+ |z ⊕ s〉).

4. Apply the Hadamard transformation to the first register and get

1√
2

1√
2n

∑
y∈{0,1}n

(−1)y·z(1 + (−1)y·s) |y〉 .
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5. Measure the register and obtain a vector y.

The obtained vector y meets y · s = 0 since if the amplitude of y such that
y ·s = 1 is 0. By replying the above process, we have O(n) vectors y such that
y · s = 0. Therefore, we can recover s.

Let ε(f, s) := maxt∈{0,1}n\{0,s} Prx[f(x) = f(x ⊕ t)] for a function f :
{0, 1}n → {0, 1}n meeting the promise of Simon’s algorithm (f(x⊕ s) = f(x)
for all x). From [80], the success probability of Simon’s algorithm is as follows.

Proposition 4.1 (Theorem 1 in [80]). Let f : {0, 1}n → {0, 1}n be a function
such that f(x⊕ s) = f(x) for all x, and let c be a positive integer. If ε(f, s) ≤
p0 < 1 holds for probability p0, then Simon’s algorithm returns s with cn

queries, with probability at least 1−
(
2
(
1+p0
2

)c)n
.

Moreover, the following existing result shows that if we select a suitable
random value t, f(x⊕ t) = f(x) holds with high probability.

Proposition 4.2 (Theorem 2 in [80]). After cn steps of Simon’s algorithm,
if t is orthogonal to all vectors ui returned by each step of the algorithm, then

Prx[f(x⊕ t) = f(x)] ≥ p0 with probability at least 1−
(
2
(
1+p0
2

)c)n
.

Next, we describe the SAMAC scheme SAMACex = (KGen, STag, SVrfy)
of [44] as follows: Let (Tag,Vrfy) be a deterministic MAC with a key space
KMAC and a tag space T , and let PRP : KPRP × T → T be a pseudorandom
permutation.

• kid ← KGen(1λ, id): Generate keys kMAC
U← KMAC and kPRP

U← KPRP.
Output kid := (kMAC, kPRP).

• τ ← STag(kid,m, τ
′):

Compute t← Tag(kMAC,m), and then output τ ← PRP(kPRP, t⊕ τ ′).

• 1/0← SVrfy(K, (M, τ ′), τ):
Compute τ̃ ← STag(kidσ(ℓ)

,mℓ, STag(. . . , STag(kidσ(1)
,m1, τ

′) . . .)). Out-
put 1 if τ = τ̃ , or output 0 otherwise.

Finally, we describe the attack against SAMACex. We fix two arbitrary
messages m0,m1 ∈ M (m0 6= m1), and the function of Simon’s problem is
defined as follows:

f : {0, 1} ×M→ T
(b, τ ′) 7→ PRP(kPRP, τ

′ ⊕ Tag(kMAC,mb))

For s = 1 ‖ Tag(kMAC,m0)⊕Tag(kMAC,m1), the function f meets the promise
of Simon’s problem:

f(0, τ ′) = PRP(kPRP, τ
′ ⊕ Tag(kMAC,m1)),
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f(1, τ ′) = PRP(kPRP, τ
′ ⊕ Tag(kMAC,m0)),

f(b, τ ′) = f(b⊕ 1, τ ′ ⊕ Tag(kMAC,m0)⊕ Tag(kMAC,m1)).

Then, we can generate the following forgery against SAMACex:

1. Fix m0,m1 as the messages of a message block, and let a previous tag
τ ′ = 0n ∈ T denote a n-bit string of 0.

2. Submit a classical query m0 ‖ 0n to the tagging oracle of saggUF-qCMA
security game, and receive the aggregate tag τ .

3. By using Simon’s algorithm with O(n) quantum queries, obtain s =
Tag(kMAC,m0)⊕ Tag(kMAC,m1).

4. Output a forgery (m1 ‖ Tag(kMAC,m0) ⊕ Tag(kMAC,m1), τ) as a valid
aggregate tag.

The above forgery is valid, since m1 ‖ Tag(kMAC,m0) ⊕ Tag(kMAC,m1) has
never been queried.

The Attack against the Scheme of [128]

We describe two schemes presented in [128]. Let Fp be a finite field with a
prime power p. The first construction is as follows:

• kid ← KGen(1λ, id): Output a secret key kid := (a, b)
U← F2

p.

• τ ← STag(kid,m, τ
′): On input a message m ∈ Fp and an aggregate-so-far

tag τ ′ ∈ Fp, output a tag τ := a ·m+ b+ τ ′ ∈ Fp.

• 1/0← SVrfy(K, (M, τ ′), τ):
Compute τ̃ ← STag(kidσ(ℓ)

,mℓ, STag(. . . , STag(kidσ(1)
,m1, τ

′) . . .)). Out-
put 1 if τ = τ̃ , or output 0 otherwise.

And, the second construction is described as follows:

• kid ← KGen(1λ, id): Output a secret key kid := (a, b, c)
U← F3

p.

• τ ← STag(kid,m, τ
′): On input a message m ∈ Fp, an ID id ∈ Fp, and

an aggregate-so-far tag τ ′ = (s′, t′) ∈ F2
p, output a tag τ := (a ·m+ b+

s′, a · id+ c+ t′) ∈ F2
p.

• 1/0← SVrfy(K, (M, τ ′), τ):
Compute τ̃ ← STag(kidσ(ℓ)

,mℓ, STag(. . . , STag(kidσ(1)
,m1, τ

′) . . .)). Out-
put 1 if τ = τ̃ , or output 0 otherwise.
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Regarding both schemes, we can view aggregate tags as the values of pair-
wise independent hash functions h(x) = ax+ b with a, b ∈ Fp. In the straight-
forward way, we can apply the quantum algorithm in the proof of Lemma
6.3 in [24]. In this case, adversaries can get secret keys (a, b) ∈ F2

p with non-
negligible probability and generate forgeries obviously even if they submit only
one quantum query. Therefore, the schemes of [128] do not meet the one-time
security formalized in Section 4.5.1.

4.5.3 SAMAC from Quantum-Secure Pseudorandom Function

We construct a generic construction SAMAC1 starting from any QPRF. The
idea is as follows: Regarding [44], it is shown that there exists an SAMAC
if there exists a partial invertible MAC which can recover partial messages
from MAC tags and the other parts of messages. The paper [44] generally
presented a partial invertible MAC from the ordinary MACs and pseudoran-
dom permutations. However, in order to construct SAMACs, it is enough to
use a PRF. This is because it is known that (quantum) PRFs can be used
as EUF-(q)CMA secure MACs [16, 24]. Hence, it is possible to construct a
quantum-secure SAMAC if a PRF meets the quantum security.

Let PRF : K×M×T → T be a QPRF. Then, SAMAC1 = (KGen, STag, SVrfy)
is constructed as follows:

• kid ← KGen(1λ, id): Choose a secret key k ∈ K uniformly at random, and
output kid := k.

• τ ← STag(kid,m, τ
′): Compute τ ← PRF(kid,m ‖ τ ′), and output τ .

• 1/0← SVrfy(K, (M, τ ′), τ): Given a sequence M = ((idσ(i),mi))i∈[ℓ] and
an aggregate-so-far tag τ ′, do the following:

1. τ̃ ← STag(kidσ(ℓ)
,mℓ, STag(. . . STag(kidσ(1)

,m1, τ
′) . . .)).

2. Output 1 if τ = τ̃ , or output 0 otherwise.

Theorem 4.2. If PRF is a quantum-secure pseudorandom function, then
SAMAC1 satisfies saggUF-qCMA security.

Proof. Let A be a QPT adversary against SAMAC1, let |τ | be the bit-length
of aggregate tags, and let q be the number of queries which A issues to OTag.

We consider any QPT adversary A which generates one-more forgery on an
ID/message sequence including a target subsequenceM∗

j,k := ((id∗j ,m
∗
j ), . . . , (id

∗
k,m

∗
k)).

Target subsequence is defined as follows: We assume that A generates a forgery
on a sequence ((Mi∗ , τ

′
i∗), τi∗) (i∗ ∈ [q + 1]). The target subsequence M∗

j,k is
included in Mi∗ and satisfies the following:

• It is not in Trivial
L
(i∗)
Tag ,LCor

(∅m, ∅τ ).

• It contains only not corrupted IDs.
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• There do not exist j′, k′ such that 1 ≤ j ≤ j′ ≤ k′ ≤ k and
((id∗j′ ,mj′), . . . , (id

∗
k′ ,mk′)) ∈ Trivial

L
(i∗)
Tag ,LCor

(∅m, ∅τ ).

• There do not exist j′, k′ such that 1 ≤ j′ ≤ j ≤ k′ and
((id∗j′ ,mj′), . . . , (id

∗
k′ ,mk′)) ∈ Trivial

L
(i∗)
Tag ,LCor

(∅m, ∅τ ).

• There do not exist j′, k′ such that 1 ≤ j′ ≤ k ≤ k′ ≤ ℓ∗ and
((id∗j′ ,mj′), . . . , (id

∗
k′ ,mk′)) ∈ Trivial

L
(i∗)
Tag ,LCor

(∅m, ∅τ ), where ℓ∗ is the max-

imum of the length of an ID/message sequence.

And then, we classify the event that A wins in the security game as some events
by using target subsequence, and prove that the probabilities that these events
occur are negligible. Regarding A’s output {((Mi, τ

′
i), τi)}i∈[q+1], we consider

the following events:

• [Coll]: A outputs {((Mi, τ
′
i), τi)}i∈[q+1] by finding a collision pair (m ‖

τ ′, m̂ ‖ τ̂ ′) of SAMAC1 for an ID id ∈ ID.

• [Suff]: A outputs {((Mi, τ
′
i), τi)}i∈[q+1] such that there exists a target

sequence M∗
j,k in a sequence Mi∗ (i∗ ∈ [q + 1]), which is a suffix of an

ID/message sequence in A’s output.

• [Pref]: A outputs {((Mi, τ
′
i), τi)}i∈[q+1] such that there exists a target

sequence M∗
j,k in a sequence Mi∗ (i∗ ∈ [q + 1]), which is a prefix of an

ID/message sequence in A’s output.

• [New]: A outputs {((Mi, τ
′
i), τi)}i∈[q+1] such that there exists a target

sequence M∗
j,k in a sequence Mi∗ (i∗ ∈ [q + 1]), which is neither suffix

nor prefix of an ID/message sequence in A’s output.

Then, we have the following advantage:

Advsagguf-qcma
SAMAC1,A

(λ) ≤Pr[Coll] + Pr[Suff | ¬Coll]
+ Pr[Pref | ¬Coll ∧ ¬Suff] + Pr[New | ¬Coll ∧ ¬Suff ∧ ¬Pref].

Proof of [Coll]: By using A which outputs a forgery meeting the condition
of [Coll], we construct a PPT algorithm Dc breaking a PRF in the following
way: It is given the oracle OPRF in the security game of QPRFs.

Setup: Set secret keys as follows:

1. id∗
U← ID and assign OPRF to the PRF of id∗.

2. For all id ∈ ID\{id∗}, kid ← KGen(1λ, id).

Corrupt: For each query id, return the key kid and set LCor ← LCor ∪ {id}.

Tagging: For each query
(
σ,
∑
ψm,τ ′,t,z |(m, τ ′), t, z〉

)
, simulate as follows:
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1. Compute each STag(kidσ(i)
, ·, ·) algorithm, in the following way:

• If idσ(i) = id∗, generate a tag by using OPRF(·).
• If idσ(i) 6= id∗, generate a tag by using PRF(kidσ(i)

, ·).
2. Return

∑
ψm,τ ′,t,z |(m, τ ′), t⊕ SeqAggK(σ,m, τ ′), z〉.

Output: When A outputs {((Mi, τ
′
i), τi)}i∈[q+1], do the following:

1. For all (M, τ ′) including id∗, compute aggregate tags generated by
id∗.

2. Find a pair (m, τ ′), (m̂, τ̂ ′) such that (m, τ ′) 6= (m̂, τ̂ ′) and OPRF(m ‖
τ ′) = OPRF(m̂ ‖ τ̂ ′).

3. If there exists such a pair, output 1. Otherwise, output 0.

Dc simulates the environment of A completely since it has secret keys and
the oracle in the security game of PRFs. If A can find a collision of PRF, Dc

can also break the security of PRF obviously. Because the probability that A
finds a collision in the straightforward way is O(q3 · 2−|τ |) from [138], we have
Pr[Coll] ≤ n(q + 1) · AdvqprPRF,Dc

(λ) +O(q3 · 2−|τ |).

Proof of [Suff|¬Coll]: We consider the case where id∗j−1 is corrupted for a
target sequenceM∗

j,k, or the case where id
∗
j is the first order of another sequence

including M∗
j,k. In these cases, M∗

j,k is not any suffix of other ID/message-
sequences. Thus, the event [Suff] does not happen. If id∗j−1 is not corrupted,
M∗

j−1,k must be the target subsequence from the condition that event [Coll]
does not happen. By replying this, however, the obtained M∗

1,k does not
meet the condition of target subsequences. From this contradiction, event
[Suff|¬Coll] does not happen. That is, Pr[Suff|¬Coll] = 0 holds.

Proof of [Pref|¬Coll∧¬Suff]: We construct Dp breaking a QPRF in the same
way as the algorithm above Dc except for the process in Output phase. When
A outputs {((Mi, τ

′
i), τi)}i∈[q+1] in Output phase, it does the following:

1. Find a pair ((M∗, τ ′∗), τ∗) such that M∗ includes a target sequence M∗
j,k

meeting the condition of [Pref|¬Coll ∧ ¬Suff], and id∗ equals to id∗k of
M∗

j,k.

2. Generate an aggregate tag τ̄∗ on (M∗, τ ′∗) by using OPRF.

3. If τ∗ = τ̄∗, output 1. Otherwise, output 0.

Dp simulates the view of A and breaks the quantum security of PRF. Then,
we have Pr[Pref|¬Coll ∧ ¬Suff] ≤ n(q + 1) · AdvqprPRF,Dp

(λ) + 2−|τ |/2.

Proof of [New|¬Coll ∧ ¬Suff ∧ ¬Pref]: In the same way as the proof in
[Pref|¬Coll∧¬Suff], we can show that the event happens with negligible prob-
ability. It is possible to construct a PPT algorithms Dn in the same way as Dp

except for the way to choose the target sequence. That is, Dn chooses a target
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sequence which is neither suffix nor prefix of another ID/message-sequence and
checks whether it is a valid tag. Hence, we have Pr[New|¬Coll∧¬Suff∧¬Pref] ≤
n(q + 1) · AdvqprPRF,Dn

(λ) + 1
2|τ |/2

.
From the above, we obtain the following advantage:

Advsagguf-qcma
SAMAC1,A

(λ) ≤ 3n(q + 1) · AdvqprPRF,D(λ) +O(q3 · 2−|τ |).

Therefore, the proof is completed.

In order to obtain quantum-secure constructions of SAMACs based on
SAMAC1, we can apply the quantum-secure PRF of [136, 124] to SAMAC1,
since those are deterministic. More specifically, we can apply NMAC/HMAC
to SAMAC1 as a quantum PRF, since these MACs are shown to be quantum
PRFs in [124].

4.5.4 SAMAC from Randomized Pseudorandom Generator

We construct an SAMAC scheme SAMAC2 starting from any randomized PRG
and any PRF. This scheme is based on the GGM (quantum) pseudorandom
function [55, 136]. The difference between the GGM construction and ours
is that a deterministic PRG is used in the GGM construction, whereas a
randomized PRG is used in SAMAC2.

Although one may think that we can realize quantum-secure SAMAC
schemes by applying randomized PRGs to the GGM pseudorandom func-
tion, there exists a problem. This problem is that each tagging user has
to append a randomness to his/her aggregate tag. Namely, a tagging user
generates an aggregate tag τ1 = (r1, GGM(k1,m1‖τ ′; r1)), and the next user
generates his/her tag τ2 = (r1, r2, GGM(k2,m2‖τ1; r2)) so that a verifier can
check whether (m1,m2, τ

′) and GGM(k2,m2‖τ1; r2) are valid. Here, a function
GGM(·) is the GGM pseudorandom function, r1, r2 are randomness used in
underlying PRGs, k1, k2 are the seeds of PRGs, m1,m2 are local messages, and
τ ′ is an aggregate-so-far tag. In this case, the size of aggregate tags increases
every time tagging users generate aggregate tags. Therefore, the size depends
on the number of tagging users.

In order to resolve this problem, we utilize a value r ← PRF(kPRF, c) as
randomness, where PRF(kPRF, ·) is a classical PRF, and c is a counter value
which is a component of tags. This counter value is shared among tagging
users and updated after sending an aggregate tag to a verifier. And, each
counter value is used only once for a sequential aggregate tag. The value r is
used as follows: r is the randomness used in randomized PRGs. The tag-size
does not depend on the number of tagging users, since it is possible to obtain
each r from a counter c and each PRF PRF.

Note that it is natural to use (counter) values shared among tagging users
in the model of SAMACs, since users are synchronized basically and the same
situation using common values has been considered in previous works such
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as counter-based aggregate MACs [44], and synchronized aggregate signatures
[4, 68]. We use the following primitives and parameters:

• Let G : X ×R → X 2 be a randomized PRG with a set R of randomness
used in G. Then, we write G(x; r) = (G0(x; r), G1(x; r)), where G0, G1

are functions from X ×R to X .

• Let PRF : K × C → Rµ be a (classical) PRF.

• Let c be a counter value in a space C.

• Lc ← ∅ is a list of counter values and shared among tagging users.

SAMAC2 = (KGen, STag, SVrfy) is constructed as follows:

• kid ← KGen(1λ, id): Choose x ∈ X and kPRF ∈ K uniformly at random.
Output kid := (x, kPRF).

• τ ← STag(kid,m, τ
′): Generate an aggregate tag as follows.

1. Split τ ′ into (c, y′).

2. (ri)i∈[µ] ← PRF(kPRF, c) ∈ Rµ.

3. (zi)i∈[µ] ← m ‖ y′ ∈ {0, 1}µ.
4. y ← Gz1(. . . Gzµ−1(Gzµ(x; rµ); rµ−1) . . . ; r1).

5. Output τ := (c, y).

• 1/0 ← SVrfy(K, (M, τ ′), τ): Verify a message/previous-tag pair (M, τ ′)
and an aggregate tag τ , as follows.

1. τ̃ ← STag(kidσ(ℓ)
,mℓ, STag(. . . STag(kidσ(1)

,m1, τ
′) . . .)).

2. Output 1 if τ = τ̃ and c /∈ Lc, and output 0 otherwise.

The following theorem holds regarding SAMAC2.

Theorem 4.3. If G is a randomized pseudorandom generator and PRF is a
pseudorandom function, then SAMAC2 satisfies saggUF-qCMA security.

Proof. Let A be a QPT adversary against SAMAC2. In the process of STag al-
gorithm, let F

(
x, (zi)i∈[µ]; (ri)i∈[µ]

)
:= Gz1(. . . Gzµ−1(Gzµ(x; rµ); rµ−1) . . . ; r1)

be a PRF, where x is a key, and ((zi)i∈[µ]; (ri)i∈[µ]) is the input of F . If F is
a QPRF, the resulting SAMAC SAMAC2 meets saggUF-qCMA security from
Theorem 4.2. To this end, we show that the function F is a QPRF if G is a
randomized PRG.

First, we consider that for i ∈ [µ], a QPT algorithm APRF against F is
given an oracle Fi

(
(zj , rj)j∈[µ]

)
:= Gz1(. . . Gzi(P ((zj , rj)j∈[i+1,µ]); ri) . . . ; r1),

where P : {0, 1}µ−i×Rµ−i → X is a random function. Notice that the case of
i = µ is the same as the game that APRF is given the truly PRF F . Let pi be
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the probability Pr[AFi
PRF → 1] for i ∈ {0, 1, . . . , µ} and let ϵ = |p0 − pµ| denote

the advantage of APRF. Then, we have ϵ =
∣∣∣∑i∈{0,1,...,µ−1}(pi − pi+1)

∣∣∣.
Next, we construct an algorithm D which distinguishes a random function

RF : {0, 1}µ−1 × Rµ−1 → X 2 and a function G ◦ RF for a random function
RF : {0, 1}µ−1 ×Rµ−1 → X ×R. D breaking PRG G is as follows:

• Choose i ∈ {0, 1, . . . , µ− 1} at random.

• Let P (i) : {0, 1}µ−i−1×Rµ−i−1 → X 2 be the oracle P (i)(z; r) = P (0iz; 0ir).

• Write P (i) as (P
(i)
0 , P

(i)
1 ) where P

(i)
b : {0, 1}µ−i−1×Rµ−i−1 → X for each

b ∈ {0, 1} is the left-hand side (b = 0) or the right-hand side (b = 1) of
P (i)(·).

• Construct the oracle F ((zj)j∈[µ]) as follows: Choose (rj)j∈[µ] ∈ Rµ at
random, and compute

Gz1(. . . , Gzi(P
(i)
zi+1

(
(zj)j∈[i+2,µ]; (rj)j∈[i+2,µ]

)
; ri) . . . ; r1).

• When AF
PRF outputs the guessing bit, output this bit.

Let Di be an algorithm D which chooses i ∈ {0, . . . , µ − 1}. We analyze the
algorithm Di. If the given P is a random function, then P (i)(z; r) = P (0iz; 0ir)
is also truly random, and Di simulates the environment of Gamei. If the given
P is G ◦ RF, Di simulates Gamei+1 since Pb is Gb ◦ RF for b ∈ {0, 1}. For each
i ∈ {0, . . . , µ− 1}, we have

Pr
P=RF

[
DP
i (1

λ)→ 1
]
− Pr

P=G◦RF

[
DP
i (1

λ)→ 1
]
= pi − pi+1.

Then, we obtain the following advantage:

AdvprgG,D(λ) =

∣∣∣∣ Pr
P=RF

[
DP (1λ)→ 1

]
− Pr

P=G◦RF

[
DP (1λ)→ 1

]∣∣∣∣
=
1

µ

∣∣∣∣∣∣
∑

i∈{0,...,µ−1}

(
Pr

P=RF

[
DP
i (1

λ)→ 1
]
− Pr

P=G◦RF

[
DP
i (1

λ)→ 1
])∣∣∣∣∣∣

=
1

µ

∣∣∣∣∣∣
∑

i∈{0,...,µ−1}

(pi − pi+1)

∣∣∣∣∣∣ = ϵ

µ
.

Therefore, ϵ = µ · AdvprgG,D(λ) holds, and F is a QPRF.
Thus, we can replace the QPRF of a targeted tagging user by a random

function, and it is possible to prove Theorem 4.3 in the same way as the proof
of Theorem 4.2. Hence, from the union bound, we obtain

Advsagguf-qcma
SAMAC2,A

(λ) ≤ 3n(q + 1)µ · AdvprgG,D(λ) + n · AdvqrPRF,D′(λ) +O
(
q3 · 2−|τ |/2

)
.

Therefore, the proof of Theorem 4.3 is completed.
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Chapter 5

Quantum-Secure Signcryption

5.1 Background of Signcryption

The notion of signcryption was introduced by Zheng [140]. In the model of
signcryption, there are two kinds of setting, the two-user setting and multi-
user setting. The two-user setting is a simple model of signcryption in which
there is a single sender and a single receiver. In contrast, the multi-user setting
is the model where there are multiple senders and receivers. It is important to
realize signcryption in the multi-user setting, since it is a realistic model and
the security of two-user setting does not imply that of the multi-user setting.
Furthermore, there are two kinds of security for signcryption, the insider secu-
rity and outsider security. In the outsider security, an external adversary only
knows public information (i.e., public parameters and public-keys of entities).
On the other hand, in the insider security, an internal adversary can know
some private-keys. Note that the insider security is stronger, and hence it is
sufficient and reasonable to consider the insider security.

The strongest security definition, which consists of strong insider confiden-
tiality and strong insider integrity in the multi-user setting, was first formal-
ized by Libert and Quisquater [88]. In this thesis, as IND-CCA security and
sUF-CMA security (see Section 2.6.1 and 2.7.1, respectively) in this security
model, we call multi-user indistinguishability against insider chosen cipher-
text attack (MU-IND-iCCA security), and multi-user strong unforgeability
against insider chosen message attack (MU-sUF-iCMA security), respectively.
Currently, there are several constructions known for signcryption schemes sat-
isfying the strongest security, [13, 88, 100] in the random oracle model, and
[34, 100, 104, 126] in the standard model (i.e., without random oracles). The
construction in [126] is a direct construction, and constructions in [34, 100, 104]
are generic constructions. Note that although [100] requires a key registration,
it is desirable to construct signcryption without the key registration. In ad-
dition, there is no quantum-secure signcryption scheme with MU-IND-iCCA
security and MU-IND-iCMA security. Hence, of all existing ones, [34, 104]
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are the most desirable constructions because we can apply (post-quantum)
primitives to these ones without the key registration.

5.2 Contribution

Our purpose is to propose quantum-secure signcryption schemes with short
key-size and ciphertext-size. Our schemes satisfy both MU-IND-iCCA security
and MU-sUF-iCMA security. Existing constructions with these securities are
generic constructions of [34, 104] in the standard model, and quantum-secure
signcryption scheme can be obtained by applying lattice-based primitives to
these ones. Hence, we aim at constructing quantum-secure ones with shorter
key-size and ciphertext-size than the existing ones.

We present two signcryption schemes:

• One is a lattice-based construction in the standard model. More con-
cretely, we construct a basic lattice-based construction satisfying both
MU-IND-iCCA security and MU-sUF-iCMA security. Furthermore, in
order to improve the efficiency of the basic construction, we construct
a hybrid signcryption scheme obtained by combining the basic one and
any DEM scheme with both indistinguishability against one-time attacks
(IND-OT security) and one-to-one property. And then, we show that this
scheme also satisfies both MU-IND-iCCA security and MU-sUF-iCMA
security.

• The other is a generic construction secure in the QROM, which is con-
structed from any PKE with indistinguishability against chosen plain-
text attacks (IND-CPA security) and any lossy identification scheme
with several properties. We can obtain concrete constructions by apply-
ing concrete lattice-based constructions to these primitives because there
exist the following lattice-based ones: IND-CCA secure PKE [113, 90]
and lossy identification scheme [95, 84].

It is important to consider both schemes. Constructions in the standard
model are stronger than ones in the QROM. That is, if a post-quantum sign-
cryption scheme meets MU-IND-iCCA security and MU-sUF-iCMA security
in the standard models, it also satisfies these securities in the QROM. Be-
sides, generally, constructions in the (Q)ROM are more efficient than ones in
the standard model in terms of key-size and ciphertext-size. In fact, standard-
ized PKE/DS schemes fulfill security in the classical ROM. Therefore, focusing
on security, we construct the signcryption scheme in the standard model while
we present the one in the QROM from the viewpoint of practicality.

Furthermore, we compare our schemes with existing ones. Our schemes
mean the lattice-based hybrid signcryption scheme and the scheme in the
QROM which is constructed by applying suitable lattice-based constructions
to our generic construction, and existing schemes mean constructions obtained
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by applying lattice-based primitives to existing generic constructions [34, 104].
We show that the key-size and ciphertext-size of our schemes are shorter than
those of the existing ones.

5.3 Lattice-based Signcryption

5.3.1 Basic Construction

In this section, we propose a lattice-based construction of signcryption. The
idea for our construction is as follows: To achieve both of MU-IND-iCCA
security and MU-sUF-iCMA security, we use a tag-based encryption (TBE)
[101], a DS [101], and collision-resistant hash functions [102].

Although our construction is based on sign-then-encrypt methodology, it
is shown that the construction, by combining IND-CCA secure PKE (or IND-
Tag-CCA secure TBE) and sUF-CMA secure DS in a trivial way of this
methodology, cannot achieve MU-sUF-iCMA security while they can meet
MU-IND-iCCA security, according to [11, 100]. This is because the insider
adversary, who has a receiver’s public-key, can unsigncrypt a ciphertext ct by
using the signcrypt oracle and obtain a valid pair of messages and signatures
which passes verification of the DS. Hence, the adversary can make a forgery
in the MU-sUF-iCMA game by encrypting the pair again.

To resolve the problem above, we utilize the following idea in the sign-then-
encrypt paradigm: We generate a signature σ not only for a message m and a
receiver’s public-key pkR, but also for outputs (c̄0, c̄1) of tag-based trapdoor
(or one-way) functions based on LWE such as gA(s;x) := s⊤A+x⊤ mod q for
a parameter A ∈ Zn×m

q , a secret vector s ∈ Zn
q , and an error vector x ∈ Zm.

Let c̄0 := gA(s;x0) and let c̄1 := gU (s;x1). And, it encrypts the signature
and the message by computing c0 = c̄0 + σ mod q and c1 = c̄1 + µb q2c mod q.
Then, the adversary needs to generate false c̄∗0 or c̄∗1 to break MU-sUF-iCMA
security. However, he cannot generate such a forgery unless he breaks the
sUF-CMA security, since c̄∗0 and c̄∗1 are signed.

LB-SCS = (Setup,KGenR,KGenS , SC,USC) is constructed as follows.

• pp ← Setup(1λ): Given a security parameter λ, set the following pa-
rameters: Let n ≥ λ be a positive integer, and q = poly(n) be a prime.
Let k := dlog qe, and let m := m̄ + nk, where m̄ = Θ(nk) is a positive
integer. {0, 1}ℓ is a message-space, where ℓ is the bit-length of messages.
The following lattice-based primitives are set:

– Let H : Zn
q → Zn×n

q be the full-rank differences encoding proposed
in [3].
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– A gadget matrix G is defined as follows:

G :=

g
⊤ 0

. . .

0 g⊤

 ∈ Zn×nk
q , where g⊤ = (20, 21, . . . , 2k).

– A0, . . . ,Ank
U← Zn×nk

q , B
U← Zn×m

q , U
U← Zn×ℓ

q , us
U← Zn

q .

– Let fA : {0, 1}∗ → Zn
q be a lattice-based collision-resistant hash

(CRH) function fA(x) := Ax mod q [102] with a matrix-parameter
A. Notice that it is possible to evaluate fA for an input with any
bit-length by using the technique in [125].

Let α be a positive integer such that α−1 = O(nk) · ω(
√
log n) and let

δ = O(nk) · ω(
√
log n)2 be a positive integer. Let p be a positive integer

such that p > αq, and d = O(
√
nk) · ω(

√
log n) be a positive integer.

Output pp = (λ, n, q, k, m̄,m, ℓ,G,H,A0, . . . ,Ank,B,U ,us, f, α, δ, p, d).

• (pkR, skR)← KGenR(pp): Generate a receiver’s key-pair as follows.

1. ĀR
U← Zn×m̄

q , TR ← Dm̄×nk
Z,ω(

√
logn)

.

2. AR ←
[
ĀR | −ĀRTR

]
∈ Zn×m

q .

3. Output pkR := AR and skR := TR.

• (pkS , skS)← KGenS(pp): Generate a sender’s key-pair as follows.

1. ĀS
U← Zn×m̄

q , TS ← Dm̄×nk
Z,ω(

√
logn)

.

2. AS ←
[
ĀS | G− ĀSTS

]
∈ Zn×m

q .

3. Output pkS := AS and skS := TS .

• ct← SC(pp, pkR, skS ,m): To signcrypt m ∈ {0, 1}ℓ, do the following:

1. re, rs ← Dm
Z,d, t← fĀR

(pkS) + fB(re) ∈ Zn
q .

2. AR,t ←
[
ĀR | H(t)G− ĀRTR

]
∈ Zn×m

q .

3. x
(0)
0 ← Dm̄

Z,αq and x
(1)
0 ← Dnk

Z,s, where s
2 = (‖x(0)

0 ‖2 + m̄α2q2) ·
ω(
√
log n)2. Then x⊤

0 ← x
(0)⊤
0 ‖x(1)⊤

0 .

4. s
U← Zn

q , x1 ← Dℓ
Z,αq.

5. c̄0 ← s⊤AR,t + px⊤
0 ∈ Zm

q , c̄1 ← s⊤U + px⊤
1 ∈ Zℓ

q.

6. c̄ = (c̄0, c̄1, re).

7. Generate a signature on m‖pkR‖c̄ as follows:
– h← fAS

(m‖pkR‖c̄) + fB(rs) ∈ Zn
q .
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– AS,h ←
[
AS | A0 +

∑nk
i=1 hi ·Ai

]
∈ Zn×(m+nk)

q , where h =

(h1, . . . , hnk)
⊤ ∈ {0, 1}nk.

– e← SampleD(TS ,AS,h,us, δ).

8. c0 ← c̄0 + rs ∈ Zm
q , c1 ← c̄1 + p ·mbq/2c ∈ Zℓ

q.

9. Output ct = (c0, c1, re, e).

• m/⊥ ← USC(pp, pkS , skR, ct): To unsigncrypt ct = (c0, c1, re, e), do the
following:

1. t← fĀR
(pkS) + fB(re) ∈ Zn

q , AR,t ←
[
ĀR | H(t)G− ĀRTR

]
.

2. (z, rs)← Invert(TR,AR,t, c0).

3. Y := [y1, . . . ,yℓ] ∈ Zm×ℓ, where let U := [u1, . . . ,uℓ] and for
i ∈ [ℓ], yi ← SampleD(TR,AR,t,ui, d).

4. v⊤ ← p−1(c⊤1 − c⊤0 Y ) = x⊤
1 +m⊤bq/2c − x⊤

0 Y ∈ Zℓ
q.

5. For each i ∈ [ℓ], let mi = 0 if vi is closer to 0 (modulo q) than to
q/2, and let mi = 1 otherwise. Then, m← (m1, . . . ,mℓ)

⊤.

6. c̄0 ← c0 − rs ∈ Zm
q , c̄1 ← c1 − p ·mbq/2c ∈ Zℓ

q, c̄← (c̄0, c̄1, re).

7. h← fĀS
(m‖pkR‖c̄)+fB(rs) ∈ Zn

q ,AS,h ←
[
AS | A0 +

∑nk
i=1 hi ·Ai

]
.

8. Output m if AS,h · e = us mod q ∧ ‖e‖ ≤ δ
√
m+ nk. Output ⊥

otherwise.

As the security of LB-SCS, Theorem 5.1 and 5.2 hold.

Theorem 5.1. If LWEn,q,Dαq assumption holds for α ≥ 2
√
n/q, and CRH f

meets collision-resistance, then LB-SCS meets MU-IND-iCCA security.

Theorem 5.2. If SISn,q,β,m+nk assumption holds for β = O((nk)5/2)·ω(
√
log n)3,

and CRH f meets collision-resistance, then LB-SCS meets MU-sUF-iCMA se-
curity.

Proof of Theorem 5.1

Let A be a PPT algorithm against LB-SCS and let qu be the number of queries
issued to USCO oracle. For values x generated in Challenge phase, we write
x∗. For i ∈ {0, 1, 2, 3, 4}, we consider the following security games.

• Game0: This game is the ordinary MU-IND-iCCA game.

• Game1: This game is the same as Game0 except that when A submits an
unsigncrypt query (pkS , (c0, c1, re, e)) such that t∗ = fĀR

(pkS)+fB(re),

USCO oracle returns ⊥.
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• Game2: This game is the same as Game1 except for replacing the param-
eter B of a collision resistant hash function fB by a parameter B with
a lattice-trapdoor TB.

• Game3: This game is the same as Game2 except that a component c∗0 of
a challenge ciphertext is generated as follows:

1. s
U← Zn

q , x̄0 ← Dm̄
Z,αq, x

′
0 ← Dnk

Z,αq
√
m̄·ω(

√
logn)

.

2. ĉ0 ← s⊤ĀR + px̄⊤
0 ∈ Zm̄

q .

3. c′0 ← −pĉ⊤0 TR + px′⊤
0 = ps⊤(−ĀRTR) + p(−x̄⊤

0 TR + x′⊤
0 ) ∈ Znk

q .

4. c̄∗⊤0 := ĉ⊤0 ‖c′⊤0 ∈ Zm
q .

• Game4: This game is the same as Game3 except that (ĉ0, c̄
∗
1) ∈ Zm̄

q × Zℓ
q

are chosen uniformly at random.

And then, we define the following events for i ∈ {0, 1, 2, 3, 4}:

• Wi: This is the event that A outputs b′ ∈ {0, 1} such that b = b′ in
Gamei.

• CRi: This is the event that A submits an unsigncrypt query (pkS , (c0, c1, re, e))
such that (pkS , re) 6= (pk∗S , r

∗
e)∧ t∗ = fĀR

(pkS)+ fB(re) ∈ Zn
q in Gamei.

• Fi: This is the event that A submits an unsigncrypt query (pkS , (c0, c1, e, re))
such that (pkS , re) = (pk∗S , r

∗
e) ∧ ‖e‖ ≤ δ

√
m+ nk ∧AS,h = us mod q,

where h = fĀS
(m‖pkR‖c̄) + fB(re) ∈ Zn

q in Gamei.

Then, we have

Advmu-ind-icca
LB-SCS,A (λ) =

∣∣∣∣Pr[W0]−
1

2

∣∣∣∣
≤ |Pr[W0]− Pr[W1]|+ |Pr[W1]− Pr[W2]|

+ |Pr[W2]− Pr[W3]|+
∣∣∣∣Pr[W3]−

1

2

∣∣∣∣ .
In addition, let Bad be the event that A outputs an unsigncrypt query

(pk∗S , (c0, c1, r
∗
e , e)) such that USCO oracle returns m 6= ⊥. Then, because

Pr [W1 | Bad] = Pr[CR1] + Pr[F1] holds, we get

|Pr[W0]− Pr[W1]| ≤Pr [W1 | Bad]
=Pr[CR1] + Pr[F1]

≤Pr[CR1] + |Pr[F1]− Pr[F2]|+ |Pr[F2]− Pr[F3]|
+ |Pr[F3]− Pr[F4]|+ Pr[F4].

Proof of Pr[CR1] ≤ AdvcrCRH,B(λ): We construct a PPT algorithm C breaking
the collision-resistance of fĀR

+ fB as follows:
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Setup: Take as input (B, ĀR) ∈ Zn×(m+m̄)
q . Sample TR ← Dm̄×nk√

logn

and compute AR ←
[
ĀR| − ĀRTR

]
∈ Zn×m

q . B is added to a public
parameter. Send (pp, pkR) to A.

Queries 1: Given an unsigncrypt query (pkS , ct), simulate USCO oracle
by using skR = TR.

Challenge: When A submits (m0,m1, pk
∗
S , sk

∗
S), compute (c∗0, c

∗
1, r

∗
e , e

∗)←
SC(pp, skR, sk

∗
S ,mb) and return ct∗ := (c∗0, c

∗
1, r

∗
e , e

∗), where b
U← {0, 1}.

Queries 2: Given an unsigncrypt query (pkS , ct), simulate USCO oracle
in the same way as the process of Queries 1 phase.

Output: When A outputs the guessing bit b′ ∈ {0, 1}, find a submitted
query (pkS , (c0, c1, re, e)) such that t∗ = fĀR

(pkS) + fB(re) ∈ Zn
q and

(pkS , re) 6= (pk∗S , r
∗
e). Then, output ((pkS , re), (pk

∗
S , r

∗
e)).

C simulates the view of A completely, and the output is a collision of
fĀR

+ fB clearly. Thus, we have the inequality.

Proof of Pr[W1] = Pr[W2] and Pr[F1] = Pr[F2]: We show Pr[W1] = Pr[W2].
The statistical distance between distributions of B in the two games is negli-
gible from the proof in Section 5.2 in [101]. Hence, we have the inequality. In
the same way as this, we get Pr[F1] = Pr[F2].

Proof of |Pr[W2]− Pr[W3]| ≤ negl(λ) and |Pr[F2]− Pr[F3]| ≤ negl(λ): The
difference between Game2 and Game3 is as follows: In Game3, the error term of
c′0 is the form x̄⊤

0 ti +x′⊤
0 for i ∈ [nk] while in Game2, the error term is drawn

from DZ,s, where TR = [t1, . . . , tnk], s
2 = (‖x(0)

0 ‖2 + m̄(αq)2) · ω(
√
log n)2,

and x
(0)
0 , x̄0 are drawn from Dm̄

Z,αq. Because ti is an independent discrete

Gaussian over Λ⊥(ĀR), the statistical distance between the error terms in the
two games is negligible by applying Corollary 3.10 in [113]. Hence, we have
|Pr[W2]− Pr[W3]| ≤ negl(λ) and |Pr[F2]− Pr[F3]| ≤ negl(λ).

Proof of |Pr[W3]− Pr[W4]| ≤ Adv
LWEn,q,Dαq

D (λ) and

|Pr[F3]− Pr[F4]| ≤ Adv
LWEn,q,Dαq

D′ (λ): First, we prove |Pr[W3]− Pr[W4]| ≤
Adv

LWEn,q,Dαq

D (λ) by constructing a PPT algorithm D solving LWEn,q,Dαq prob-
lem in the following way:

Setup: Given samples (ĀR,U , ĉ0, ĉ1) ∈ Zn×(m̄+ℓ)
q ×Zm̄+ℓ

q from the LWE
oracle, compute AR ←

[
ĀR| −H(t∗)G− ĀRTR

]
∈ Zn×m

q . (B,U) are
components of pp. Send pp and pkR := AR to A.

Queries 1: Given an unsigncrypt query (pkS , ct), simulate USCO oracle
by using skR = TR.

Challenge: When A submits (m0,m1, pk
∗
S , sk

∗
S), do the following:
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1. b
U← {0, 1}.

2. r∗e ← SampleD(TB,B, (t
∗ − fĀR

(pk∗S)) mod q, d).

3. c̄∗⊤0 ← p(ĉ⊤0 ‖ĉ⊤0 TR + x′⊤
0 ), where x′

0 ← Dnk
Z,αq

√
m̄·ω(

√
logn)

.

4. c̄∗1 ← pĉ1 ∈ Zℓ
q.

5. Compute (c∗0, c
∗
1, r

∗
e , e

∗) in the same way as SC algorithm with
(r∗e , c̄

∗
0, c̄

∗
1).

6. Return ct∗ := (c∗0, c
∗
1, r

∗
e , e

∗).

Queries 2: In the same way as the process of Queries 1 phase, simulate
USCO oracle.

Output: When A outputs b′ ∈ {0, 1}, output 1 if b = b′, and output 0
otherwise.

In Challenge phase, D simulates the view of A in Game3 (resp. Game4) if it is
given LWE samples (resp. uniformly random samples). In addition, in Queries
1 and Queries 2 phases, D can simulate USCO oracle since it has a secret key
TR, and H(t)−H(t∗) = H(t−t∗) ∈ Zn×n

q is invertible for any t = fĀR
(pkS)+

fB(re) ∈ Zn
q . Hence, we have |Pr[W3]− Pr[W4]| ≤ Adv

LWEn,q,Dαq

D (λ).

In addition, we show |Pr[F3]− Pr[F4]| ≤ Adv
LWEn,q,Dαq

D′ (λ) by constructing
a PPT algorithm D′ solving LWEn,q,Dαq . D

′ is the same as D except that in Out-
put phase, D′ checks whether A issues an unsigncrypt query (pk∗S , (c0, c1, re, e))
such that (pkS , re) = (pk∗S , r

∗
e) ∧ ‖e‖ ≤ δ

√
m+ nk ∧ AS,h · e = us mod q,

where h = fĀS
(m‖pkR‖c̄) + fB(re) ∈ Zn

q . If so, it outputs 1. Otherwise, it
outputs 0. Then, we have the inequality.

Proof of Pr[W4] = 1/2 and Pr[F4] = negl(λ): We have Pr[W4] = 1/2 since ct∗

and uniformly random b ∈ {0, 1} are independent each other. Next, we show
Pr[F4] = negl(λ). In order to submit an unsignrypt query (pk∗S , (c0, c1, re, e))
such that (pkS , re) = (pk∗S , r

∗
e) ∧ ‖e‖ ≤ δ

√
m+ nk ∧ AS,h · e = us mod q,

A needs to know r∗s . Although a component c∗0 of a challenge ciphertext and
h∗ hide r∗s , these values are uniformly random in Game4. Thus, A cannot find
r∗s , and we have the equation.

From the discussion above, we obtain

Advmu-ind-icca
LB-SCS,A (λ) ≤ 2 · AdvLWEn,q,Dαq

D (λ) + AdvcrCRH,B(λ) + negl(λ).

The proof is completed.

Proof of Theorem 5.2

Let A be a PPT adversary against LB-SCS and let qs be the number of queries
submitted to SCO oracle. Let M := m‖pkR‖c̄ and let x(i) for i ∈ [qs] be a
value x generated in the i-th oracle access.

The adversary A is classified into several types in the following way:
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Type-1. A generates a forgery by finding a collision of fĀS
+ fB.

Type-2. A generates a forgery without finding a collision of fĀS
+ fB.

Type-2-(a). A generates a forgery without any unsigncrypt queries.

Type-2-(b). A generates a forgery by using an unsigncrypt query.

First, we consider a Type-1 adversary. We construct a PPT algorithm Fcr
breaking the collision-resistance of fĀS

+ fB in the following way:

Setup: Take as input parameters (ĀS ,B) ∈ Zn×(m̄+m)
q of f . In the same

way as Setup and KGenS algorithms, generate pp and (pkS , skS). Then,
send pkS to A.

Queries: Given a signcrypt query (pkR,m), return ct← SC(pp, pkR, skS ,m).

Output: When A outputs (pkR, sk
∗
R, ct

∗), find a pair (M (i), r
(i)
s ) such that

fĀS
(M∗) + fB(r∗s) = fĀS

(M (i)) + fB(r
(i)
s ) and (M (i), r

(i)
s ) 6= (M∗, r∗s).

Fcr simulates the view of A completely since (pp, pkS) in the game above
is the same as those in the ordinary MU-sUF-iCMA game, and it can simulate
SCO oracle by using the generated key skS . The output of Fcr is clearly the
collision of fĀS

+ fB. Hence, the success probability of the Type-1 adversary
is negligible if fĀS

+ fB meets collision-resistance.
Next, we consider the Type-2-(a) adversary. We construct a PPT algorithm

Snew solving the SIS problem, in the following way.

Setup: Given a SIS challenge (ĀS‖A′,u) ∈ Zn×(m̄+nk)
q × Zn

q , do the
following:

– Choose qs values h(1),h(2), . . . ,h(qs) ∈ {0, 1}nk uniformly at ran-
dom. Compute the set P of all strings p ∈ {0, 1}≤nk with the
property that p is a shortest string for which no h(i) has p as a
prefix. In the same way as this, P represents the set of maximal
subtrees of {0, 1}≤nk that do not contain any of h(i). Notice that
the size of P is at most (nk−1)qs+1. Choose some p ∈ P uniformly
at random and let t = |p| ≤ nk.

– (AS = ĀS‖A′,A0,A1, . . . ,Ank,us = u) is constructed as follows:
For i ∈ {0, 1, . . . , nk}, choose TS,i ← Dm̄×nk

Z,ω(
√
logn)

and let

Ai = HiG− ĀSTS,i, where Hi =


H(0) = 0 i > t

(−1)pi ·H(ui) i ∈ [t]

−
∑

j∈[t] pj ·Hj i = 0

u1, . . . , unk ∈ Zn
q are units whose nontrivial subset-sums are also

units, and H : Zn
q → Zn×n

q is the FRD encoding of [3].
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– Generate (pp, pkS) following Setup and KGenS algorithms except
for the parameters above.

Queries: Given the j-th signcrypt query (pk
(j)
R ,m(j)) (j ∈ [qs]), do the

following:

1. Compute c̄(j) following SC algorithm and letM (j) := m(j)‖pk(j)R ‖c̄(j).

2. r
(j)
s ← SampleD(TB,B, (h

(j) − fĀS
(M (j))) mod q, d).

3. AS,h(j) ←
[
ĀS |A′|HG− ĀS(TS,0 +

∑
i∈[nk] h

(j)
i · TS,i)

]
∈ Zn×(m+nk)

q ,

where Th = TS,0+
∑

i∈[nk] h
(j)
i ·TS,i is a trapdoor of AS,h(j) and H

is invertible because the prefix of h(j) is not p.

4. e(j) ← SampleD(Th(j) ,AS,h(j) ,us, δ).

5. Compute ct(j) by using (e(j), r
(j)
s ) and return ct(j).

Output: When A outputs a forgery (pk∗R, sk
∗
R, ct

∗ = (c∗0, c
∗
1, r

∗
e , e

∗)), abort
if USC(pp, pkS , sk

∗
R, ct

∗) = ⊥. Compute h∗ ← fĀS
(M∗) + fB(r∗s) if

USC(pp, pkS , sk
∗
R, ct

∗) 6= ⊥. Then, extract the solution of SISn,q,β,m+nk

as follows: Compute z ∈ Zm+nk such that[
ĀS |A′]︸ ︷︷ ︸

AS

[
Im −T ∗

S

Ink

]
e∗︸ ︷︷ ︸

z

= us mod q,

where TS = TS,0 +
∑

i∈[nk] h
∗
i · TS,i. Then, (z⊤, 0) is the solution of the

given SIS instance
[
ĀS |A′|u

]
.

We analyze Snew. For each signcrypt query, we have

AS,h = [AS |A0 +
∑
i∈[nk]

hi ·Ai] = [ĀS |A′|HG− ĀS(TS,0 +
∑
i∈[nk]

hi · TS,i)].

TS = TS,0 +
∑

i∈[nk] hi ·TS,i is a trapdoor for AS,h. Besides, by Lemma 2.9 in
[101], we have

s1(TS) =
√
nk + 1 ·O(

√
m̄+

√
nk) · ω(

√
log n) = O(nk) · ω(

√
log n).

with overwhelming probability. We can generate e ← DΛ⊥
us (AS,h),δ

properly

since δ is large enough. Thus, Snew simulates SCO oracle completely.
Then, because ‖e∗‖ ≤ δ

√
m+ nk = O((nk)3/2) · ω(

√
log n)2 and s1(T

∗
S ) =

O(nk) · ω(
√
log n) with overwhelming probability, we have ‖z‖ = O((nk)5/2) ·

ω(
√
log n)3. That is, ‖z‖ is at most β − 1. Hence, the output of Snew is

a valid solution of SIS problem. The success probability of A is at most

((nk − 1)qs + 1) · Adv SISn,q,β,m+nk

Snew
(λ) + negl(λ).

Finally, we consider a Type-2-(b) adversary. Namely, this adversary outputs

a forgery on M (j)‖r(j)s which have been used in the j-th oracle access. We
construct a PPT algorithm Spre finding a solution of SISn,q,β,m+nk as follows:
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Setup: Given an SIS challenge ĀS‖A′ ∈ Zn×(m̄+nk)
q , do the following:

– Choose qs values h(1),h(2), . . . ,h(qs) ∈ {0, 1}nk uniformly at ran-

dom. Choose h∗ U← {h(i)}i∈[n].

– (AS ,A0,A1, . . . ,Ank) is constructed in the same way as the above
algorithm Snew.

– Generate (pp, pkS) following Setup and KGenS algorithms except
for the parameters above.

Queries: Given the j-th signcrypt query (pk
(j)
R ,m(j)), do the following:

1. Compute c̄(j) following SC algorithm and letM (j) := m(j)‖pk(j)R ‖c̄(j).

2. r
(j)
s ← SampleD(TB,B, (h

(j) − fĀS
(M)) mod q, d).

3. AS,h(j) ←
[
ĀS |A′|HG− ĀS(TS,0 +

∑
i∈[nk] h

(j)
i · TS,i)

]
∈ Zn×(m+nk)

q ,

where Th(j) = TS,0 +
∑

i∈[nk] h
(j)
i · TS,i is a trapdoor of AS,h(j) .

4. e(j) ← SampleD(Th,AS,h(j) ,us, δ).

5. Compute ct(j) by using (e(j), r
(j)
s ) and return ct(j).

Output: When A outputs a forgery (pk∗R, sk
∗
R, ct

∗ = (c∗0, c
∗
1, r

∗
e , e

∗)), abort
if USC(pp, pkS , sk

∗
R, ct

∗) = ⊥ or h∗ 6= fĀS
(M∗) + fB(r∗s). Otherwise,

extract the solution of SISn,q,β,m+nk as follows: Compute z ∈ Zm+nk

such that

[
ĀS |A′]︸ ︷︷ ︸

AS

[
Im −T ∗

S

Ink

]
(e∗ − e(i))︸ ︷︷ ︸

z

= 0 mod q,

where TS = TS,0 +
∑

i∈[nk] hi · TS,i. Then, output z ∈ Zm+nk.

Because ‖e∗‖, ‖e(i)‖ ≤ δ ·
√
m+ nk and s1(T

∗
S ) = O(nk) · ω(

√
log n) with

overwhelming probability, we have ‖z‖ = O((nk)5/2) · ω(
√
log n)3. Thus, the

output of Spre is a solution to SISn,q,β,m+nk.

From the discussion above, we obtain

Advmu-suf-icma
LB-SCS,A (λ) ≤ 2 ((nk − 1)qs + 1) ·AdvSISn,q,β,m+nk

S (λ)

+ AdvcrCRH,B(λ) + negl(λ).

The proof is completed.
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5.3.2 Lattice-based Hybrid Signcryption

In this section, we propose a lattice-based hybrid signcryption obtained by
combining LB-SCS and a DEM. In LB-SCS, the ciphertext size for a message
is |m| log q for the bit-length of a message |m| and a modulus q. By combining
LB-SCS with a DEM, the ciphertext-size for a message m is reduced to |m|.

Let DEM = (DEM.Enc,DEM.Dec) be an IND-OT secure DEM meeting one-
to-one property 1. Our hybrid signcryption HSC = (Setup,KGenR,KGenS , SC,USC)
is as follows. The Setup, KGenR, and KGenS algorithms of HSC are the same
as those of LB-SCS.

• ct← SC(pp, pkR, skS ,m): To signcrypt m ∈ {0, 1}|m|, do the following:

1. K
U← {0, 1}ℓ, where ℓ is the bit-length of a DEM’s symmetric key.

2. re, rs ← Dm
Z,d, t = fĀR

(pkS) + fB(re) ∈ Zn
q ,

3. AR,t ← [ĀR | H(t)G− ĀTR] ∈ Zn×m
q .

4. x
(0)
0 ← Dm̄

Z,αq and x
(1)
0 ← Dnk

Z,s, where s
2 = (‖x(0)

0 ‖2 + m̄α2q2) ·
ω(
√
log n)2. Then x⊤

0 ← x
(0)⊤
0 ‖x(1)⊤

0 .

5. s
U← Zn

q , x1 ← Dℓ
Z,αq.

6. c̄0 = s⊤AR,t + px⊤
0 ∈ Zm

q , c̄1 = s⊤U + px⊤
1 ∈ Zℓ

q.

7. c̄ = (c̄0, c̄1, re).

8. Generate a signature on m‖K‖pkR‖c̄.
– h← fĀS

(m‖K‖pkR‖c̄) + fB(rs) ∈ Zn
q ,

– AS,h ←
[
AS | A0 +

∑nk
i=1 hi ·Ai

]
∈ Zm+nk

q ,

– e← SampleD(TS ,AS,h,us, δ).

9. c0 ← c̄0 + rs ∈ Zm
q , c1 ← c̄1 + p ·Kb q2c ∈ Zℓ

q,

10. c2 ← DEM.Enc(K,m),

11. Output ct = (c0, c1, c2, re, e).

• m/⊥ ← USC(pp, pkS , skR, ct): To unsigncrypt ct = (c0, c1, c2, re, e), do
the following:

1. t← fĀR
(pkS) + fB(re), AR,t ← [ĀR | H(t)G− ĀTR].

2. (z, rs) = Invert(TR,AR,t, c0).

3. Y := [y1, . . . ,yℓ] ∈ Zm×ℓ, where let U := [u1, . . . ,uℓ] and for
i ∈ [ℓ], yi ← SampleD(TR,AR,t,ui, d).

4. v⊤ ← p−1(c⊤1 − c⊤0 Y ) = x⊤
1 +m⊤bq/2c − x⊤

0 Y ∈ Zℓ
q.

1We say that a DEM meets one-to-one property if the DEM is deterministic and bijective.
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5. For each i ∈ [ℓ], let Ki = 0 if vi is closer to 0 (modulo q) than to
q/2, and let Ki = 1 otherwise. Then, K ← (K1, . . . ,Kℓ)

⊤.

6. m← DEM.Dec(K, c2).

7. c̄0 ← c0 − rs mod q, c̄1 ← c1 − p ·Kb q2c mod q, c̄← (c̄0, c̄1, re).

8. h← fĀS
(m‖K‖pkR‖c̄) + fB(rs), AS,h = [AS | A0 +

∑nk
i=1 hi ·Ai].

9. Output m if AS,h · e = uS mod q ∧ ‖e‖ ≤ δ
√
m+ nk. Output ⊥

otherwise.

The following theorems show the security of HSC.

Theorem 5.3. If LWEn,q,Dαq assumption holds for α ≥ 2
√
n/q, CRH f meets

collision-resistance, and DEM meets IND-OT security and one-to-one property,
then HSC satisfies MU-IND-iCCA security.

Theorem 5.4. If SISn,q,β,m+nk assumption holds for β = O((nk)5/2)·ω(
√
log n)3,

CRH f meets collision-resistance, and DEM meets one-to-one property, then
HSC satisfies MU-sUF-iCMA security.

Proof of Theorem 5.3

Let A be a PPT adversary against HSC. We consider two security games Game0
and Game1 below. Let W0 and W1 be the events that A submits b′ ∈ {0, 1}
such that b = b′ in Game0 and Game1, respectively.

Game0: This game is the ordinary MU-IND-iCCA security game. Thus, we
have Advmu-ind-icca

HSC,A (λ) = |Pr[W0]− 1/2|.

Game1: This game is the same as Game0 except that the symmetric-key K is
chosen uniformly at random.

We obtain |Pr[W0]− Pr[W1]| ≤ 2 ·AdvLWEn,q,Dαq

D (λ)+AdvcrCRH,B(λ)+negl(λ)
in the same way as the proof of Theorem 5.1. The reason is as follows:
From the one-to-one property of DEM, A cannot issue a valid unsigncrypt
query ct = (c0, c1, c2, re, e) such that (m,K) 6= (mb,K

∗) and c2 6= c∗2, where
(m,K) is used in ct. In addition, A cannot generate a valid ct by substitut-
ing (c∗0, c

∗
1, r

∗
e , e

∗) from the MU-IND-iCCA security of LB-SCS. Therefore, we
have |Pr[W0] − Pr[W1]| = 2 · Advmu-ind-icca

LB-SCS,A (λ). Then, |Pr[W0]− Pr[W1]| ≤
4 · AdvLWEn,q,Dαq

D (λ) + 2 · AdvcrCRH,B(λ) + negl(λ) holds.

In addition, we show |Pr[W1]− 1/2| ≤ Advind-otDEM,D′(λ). We can simulate
Setup, Queries 1, and Queries 2 phases, following the algorithms of HSC. In
the Challenge phase, we encrypt the ciphertext c∗2 by sending messages to the
challenger in IND-OT game. In Output phase, the guessing bit b′ ∈ {0, 1} in
IND-OT game is the same as the output of A in MU-IND-iCCA game.

From the above discussion,

Advmu-ind-icca
HSC,A (λ) ≤ 4 · AdvLWEn,q,Dαq

D (λ) + 2 · AdvcrCRH,B(λ) + Advind-otDEM,D′(λ) + negl(λ),

and the proof is completed.
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Proof of Theorem 5.4

It is possible to prove Theorem 5.4 in the same way as Theorem 5.2. The
reason is as follows:

• If an adversary tries to make a forgery on a queried message m, he has
to make a new symmetric-key K which was not used in the Queries
phase, because DEM meets one-to-one property. However, K has to
be signcrypted in the same way as LB-SCS. Hence, he needs to break
SISn,q,β,m+nk problem.

• Suppose that an adversary tries to make a forgery on a message m which
was never queried. However, in HSC, the message has to be signcrypted
in the same way as LB-SCS. Hence, he has to break the SISn,q,β,m+nk

problem in this case as well.

Therefore, by using the same proof technique in Theorem 5.2, we finally
obtain

Advmu-suf-icma
HSC,A (λ) ≤ 2 ((nk − 1)qs + 1) ·AdvSISn,q,β,m+nk

S (λ)

+ AdvcrCRH,B(λ) + negl(λ)

5.4 Signcryption in the Quantum Random Oracle
Model

We construct a signcryption scheme in the QROM starting from an IND-
CPA secure PKE, an IND-OT secure DEM, and a lossy identification scheme.
Although our construction is based on the sign-then-encrypt methodology, it
is shown in [11, 100] that the construction, by combining IND-CCA secure
PKE and sUF-CMA secure DS in a trivial way of this methodology, cannot
achieve MU-sUF-iCMA security while they can meet MU-IND-iCCA security.
The reason is as follows: Any inside adversary can obtain a valid pair of a
message and a signature from a ciphertext ct by using his/her decryption key
skR. Hence, the adversary can make a forgery in the MU-sUF-iCMA game by
encrypting the pair again. To resolve this problem, we generate a signature
on m‖r, where m is a message and r is a random value used in the underlying
PKE scheme. By doing this, even if an adversary decrypts m and r, he has to
generate a forgery of the underlying signature scheme.

We use the following primitives:

• Let PKE = (KGenasy,Encasy,Decasy) be a PKE scheme with a message
spaceMasy, a randomness space Rasy, and a ciphertext space Casy.
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• Let LIDS = (KGenids, LossyKGenids,Pids, Cids,Vids) be a (commitment-
recoverable) lossy identification scheme with a commitment space W, a
response space Z, and a commitment-recoverable algorithm Recids.

• Let DEM = (Encsym,Decsym) be a DEM scheme with a key space Ksym

and a message space Msym, where Msym is the same as the message
spaceM of SCS-QRO.

• Let H :Masy×Casy → Ksym, G :Masy →Rasy, and HS : {0, 1}∗ → Cids
be random oracles.

SCS-QRO = (Setup,KGenR,KGenS , SC,USC) is constructed as follows.

• pp ← Setup(1λ): Let ppasy and ppids be public parameters of PKE and
LIDS, respectively. Let κm := κm(λ). Output pp := (1λ, ppasy, ppids, κm).

• (pkR, skR)← KGenR(pp): Generate (pkasy, skasy)← KGenasy(1λ; ppasy)2,

and choose s
U←Masy. Output pkR := pkasy and skR := (skasy, s).

• (pkS , skS) ← KGenS(pp): Generate (pkids, skids) ← KGenids(1λ; ppids).
Output pkS := pkids and skS := skids.

• ct← SC(pp, pkR, skS ,m): Compute a ciphertext on m ∈M as follows:

1. r
U←Masy, κ← 0.

2. e← Encasy(pkR, r;G(r)).

3. Do the following while Z = ⊥ and κ ≤ κm:

– (W, st)← Pids
1 (skS).

– c← HS(W,m, r, pkR, pkS).

– Z← Pids
2 (skS ,W, c, st).

4. d← Encsym(k,m‖c‖Z), where k = H(r, e).

5. Output ct := (e, d).

• m/⊥ ← USC(pp, pkS , skR, ct): Unsigncrypt ct = (e, d) as follows:

1. r′ ← Decasy(skR, e). Output ⊥ if r′ = ⊥.
2. k← H(r′, e) if e = Encasy(pkR, r

′;G(r′)). k← H(s, e) otherwise.

3. M ′ ← Decsym(k, d). Output ⊥ if M ′ = ⊥.
4. Parse M ′ = m′‖c′‖Z′.

5. W′ ← Recids(pkS , c
′,Z′).

6. Output m′ if HS(W
′,m′, r′, pkR, pkS) = c′, and output ⊥ otherwise.

2In this section, for a key generation algorithm KGen of PKE or LIDS, we write (pk, sk)←
KGen(1λ; pp), where λ is a security parameter, and pp is a public parameter based on λ.
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Theorem 5.5 and 5.6 show the security of SCS-QRO.

Theorem 5.5. If PKE meets IND-CPA security and DEM meets IND-OT secu-
rity and one-to-one property, then SCS-QRO satisfies MU-IND-iCCA security
in the quantum random oracle model.

Theorem 5.6. If LIDS meets naHVZK, α bits min-entropy, CUR property,
key-indistinguishability, and lossy-soundness, and DEM meets one-to-one prop-
erty, then SCS-QRO meets MU-sUF-iCMA security in the quantum random
oracle model.

In the proofs of Theorem 5.5 and Theorem 5.6, we use the following no-
tations: Let A be a PPT adversary against SCS-QRO. Let qs and qu be the
number of queries which A issues to SCO and USCO oracles, respectively. Let
qh, qhs , and qg be the number of queries which A submits to random oracles
H, HS , and G, respectively.

Proof of Theorem 5.5

For i ∈ {0, 1, . . . , 9}, we consider security games Gamei, let Wi be the event
that A outputs b′ ∈ {0, 1} such that b = b′ in Gamei, let Findi be the event
that a random oracle H, HS , or G submits a query to a semi-classical oracle
OSC

S and it returns |1〉 in Gamei, and let ¬Findi be the event that OSC
S always

returns |0〉 in Gamei.

Game0: This game is the same as the ordinary MU-IND-iCCA game. So, we
have Advmu-ind-icca

SCS-QRO,A(λ) =
∣∣Pr[W0]− 1

2

∣∣.
For any (pkasy, skasy) ← KGenasy(1λ; ppasy) and any r ∈ Masy, a set of

“bad” random coins is defined as

Rasy
bad(pk

asy, skasy, r) := {r̂ ∈ Rasy | Decasy(skasy,Encasy(pkasy, r; r̂)) 6= r},

and a set of “good” random coins is defined as Rasy
good = Rasy\Rasy

bad(pk
asy).

Then, let

δ(pkasy, skasy, r) :=

∣∣Rasy
bad(pk

asy, skasy, r)
∣∣

|Rasy|
,

and let δ(pkasy, skasy) := maxr∈Masy δ(pkasy, skasy). Then, we have the expec-
tation δ = E[δ(pkR, skR)] which is taken over (pkasy, skasy)← KGenasy(1λ; ppasy).

Game1: This game is the same as Game0 except that H(s, e) in USCO oracle is
replaced by Hq(e), where Hq :Masy →Rasy is a random oracle.

We apply Lemma 6 in [78] in the straightforward way. That is, H(s, ·) and
Hq(·) are viewed as F0(·) and F1(·) oracles in this lemma, respectively. Then,
we have |Pr[W0]− Pr[W1]| ≤ 2qh/

√
Ksym.
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Game2: This game is the same as Game1 except that the random oracle G(r)
is replaced by G′(r) which samples uniformly random values from a set Rasy

good

of “good” random coins.
G and G′ can be viewed as functions F and N in the generic search prob-

lem, respectively. Thus, we get the following equations: Pr[F (r) = 1] =
δ(pkasy, skasy, r), Pr[F (r) = 0] = 1 − δ(pkasy, skasy, r), and Pr[N(r) = 0] = 1.
Then, we get

|Pr[W1 | (pkasy, skasy)]− Pr[W2 | (pkasy, skasy)]| ≤ 2qg
√
δ(pkasy, skasy).

Hence, by averaging this equation over (pkasy, skasy)← KGenasy(1λ; ppasy), we
obtain |Pr[W1]− Pr[W2]| ≤ 2qg

√
δ.

Game3: This game is the same as Game2 except that the random oracles
HS(W,m, r, pkR, pkS) and H(r, e) return H′

S(W,m,Encasy(pkasy, r;G′(r)), pkR, pkS)
and Hq(Enc

asy(pkasy, r;G′(r))), respectively.
Since the random oracle G′ samples only “good” random coins, the en-

cryption algorithm Encasy(pkasy, ·;G′(·)) is injective. The statistical distance
between values of (HS ,H) and (H′

S ,Hq) is negligible. Hence, we have Pr[W3] =
Pr[W2].

Game4: This game is the same as Game3 except that USCO oracle is changed
as follows:

1. k← Hq(e).

2. M ′ ← Decsym(k, d) and output ⊥ if M ′ = ⊥.

3. Parse M ′ = m′‖c′‖Z′.

4. W′ ← Recids(pkS , c
′,Z′).

5. Output m′ if c′ = HS(W
′,m, e, pkR, pkS), and output ⊥ otherwise.

That is, the modified USCO oracle does not use a receiver’s secret key.
We consider several cases for unsigncrypt queries (e, d). In the case of

e = Encasy(pkasy, r;G′(r)) and c = HS(W,m, r, pkR, pkS), USC
O oracles in both

games return a message m 6= ⊥. In the case of e = Encasy(pkasy, r;G′(r)) and
c 6= HS(W,m, r, pkR, pkS), USC

O oracles in both games return an invalid sym-
bol ⊥. In the case of e 6= Encasy(pkasy, r;G′(r)) and c 6= HS(W,m, r, pkR, pkS),
both USCO oracles return ⊥. In the case of e 6= Encasy(pkasy, r;G′(r)) and
c = HS(W,m, r, pkR, pkS), the USCO oracle in Game3 returns ⊥ while the
USCO oracle in Game4 returns m. However, since G′ returns only “good” ran-
dom coins, this case of e 6= Encasy(pkasy, r;G′(r)) does not happen. Hence, we
have Pr[W4] = Pr[W3].

Game5: This game is the same as Game4 except that we replace G′ by an ideal
random oracle G.
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In the same way as the proof in the game-hop of Game1, we get the in-
equality |Pr[W4]− Pr[W5]| ≤ 2qg

√
δ.

G̈ is a random oracle which G̈(r) is sampled from Rasy uniformly at random
if r = r∗, and G̈(r) := G(r) otherwise. Ḧ and ḦS are defined in the same way
as G̈.

Game6: This game is the same as Game5 except that we replace G, H, and HS

by G̈\{r∗}, Ḧ\{r∗}, and ḦS\{r∗}, respectively.
From Theorem 1 in [9], we have

|Pr[W5]− Pr[W6 ∧ ¬Find6]|+
∣∣∣∣Pr[W6 ∧ ¬Find6]−

1

2

∣∣∣∣
≤
√
2(qg + qh + qhs) Pr[Find6] +

∣∣∣∣Pr[W6 ∧ ¬Find6]−
1

2

∣∣∣∣ .
We show |Pr[W6 ∧ ¬Find6]− 1/2| ≤ Advind-otDEM,Dsym(λ). The following PPT

algorithm Dsym against DEM is constructed as follows: At the beginning of
the game, it generates pp ← Setup(1λ), (pkR, skR) ← KGenR(pp) and sends
(pp, pkR) to A. Dsym can simulate USCO oracle and random oracles since
USCO oracle does not use any secret key from the game-hop of Game4 and
2q′-wise independent hash functions can be used as random oracles (q′ ∈
{qg, qh, qhs}), from Theorem 6.1 in [137]. When A submits (m0,m1, pk

∗
S , sk

∗
S),

Dsym computes (e∗, c∗,Z∗) by following SC algorithm. It gets d∗ by issuing
(m0‖c∗‖Z∗,m1‖c∗‖Z∗) to the challenger of IND-OT game, and returns (e∗, d∗).
When A outputs b′ ∈ {0, 1}, Dsym also submits b′. Notice that A cannot sub-
mit a valid query ct = (e, d) such that d 6= d∗ and (m, r) = (mb, r

∗) from
the one-to-one property of DEM and the assumption of [W6 ∧ ¬Find6], where
(m, r) is used in the query ct.

From the above, Dsym simulates the environment of A in Game6. If A
guesses the signcrypted message mb, D

sym also wins in IND-OT game. Hence,
we have the inequality |Pr[W6 ∧ ¬Find6]− 1/2| ≤ Advind-otDEM,Dsym(λ).

Game7: This game is the same as Game6 except that we replace r̂∗ ← G(r∗),

k∗ ← H(r∗, e∗), and c∗ ← HS(W
∗,mb, r

∗, pkR, pk
∗
S) by r̂

∗ U←Masy, k∗
U← Ksym,

and c∗
U← Cids, respectively.

We consider only whether event Find happens or not. In the two games
Game6 and Game7, A is not given the values (G(r∗),H(r∗, ·),HS(·, ·, r∗, ·, ·)).
Hence, Pr[Find7] = Pr[Find6] holds.

Game8: This game is the same as Game7 except that G̈, Ḧ, and ḦS are replaced
by G, H, and HS , respectively.

Since G(r∗), H(r∗, ·), and HS(·, ·, r∗, ·, ·)) are not used in the two games,
this replacement does not influence the view of A, and Pr[Find8] = Pr[Find7]
holds.

Game9: This game is the same as Game8 except that in Challenge phase, we
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replace r∗ by r′∗. Notice that random oracles G\{r∗}, H\{r∗}, and HS\{r∗}
are used in Game9.

By Corollary 1 in [9], we have Pr[Find9] ≤ 4(qg+qh+qhs)/ |Masy|. Next, we

show |Pr[Find8]− Pr[Find9]| ≤ Advind-cpaPKE,Dasy(λ). A PPT adversary Dasy against

PKE is constructed in the following way: Given pkasy, it chooses r∗, r′∗
U←

Masy and submits these as the challenge messages in IND-CPA game. After
receiving the challenge ciphertext e∗, Dasy sets (pp, pkR) and sends (pp, pkR)
to A. When A submits queries to random oracles G,H,HS , it submits them
to a semi-classical oracle OSC

{r∗} outputs 1 if this oracle returns |1〉. Dasy can

simulate USCO oracle by following the game-hop of Game4. When A outputs
b′ ∈ {0, 1}, and OSC

{r∗} never returns |1〉, then Dasy outputs 0.

Dasy simulates the environment of A in Game8 or Game9 if it is given
e∗ = Encasy(pkasy, r∗) or e∗ = Encasy(pkasy, r′∗) as input, respectively. Hence,

we have |Pr[Find8]− Pr[Find9]| ≤ Advind-cpaPKE,D (λ).

From the above discussion, we obtain the advantage

Advmu-ind-icca
SCS-QRO,A(λ) ≤

√
2(qg + qh + qhs)Adv

ind-cpa
PKE,Dasy(λ) + 8

(qg + qh + qhs)
2

|Masy|

+ Advind-otDEM,Dsym(λ) + 2qg
√
δ +

2qh√
Masy

,

and the proof is completed.

Proof of Theorem 5.6

For i ∈ {0, 1, 2, 3, 4}, we consider security games Gamei, and let Wi be the
event that A wins in Gamei.

Game0: This game is the same as the ordinary MU-sUF-iCMA security game.
Thus, we have Advmu-suf-icma

SCS-QRO,A (λ) = Pr[W0].

Game1: This game is the same as Game0 except that SCO oracle is modified
as follows: Let c← 0 be a counter.

1. r
U←Masy, c← c+ 1.

2. e← Encasy(pkR, r;G(r)).

3. (WM,c, cM,c,ZM,c)← GetTransids(M, c), where M ← m‖r‖pkR‖pkS .

4. Output ⊥ if (WM,c, cM,c,ZM,c) = (⊥,⊥,⊥).

5. d← Encsym(k,m‖cM,c‖ZM,c), where k = H(r, e).

6. Output ct := (e, d).
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Here, GetTransids(M, c) is defined as follows: Let RF : {0, 1}∗ → Rids be a
random function.

1. κ← 0.

2. While ZM,c = ⊥ and κ ≤ κm:

• κ← κ+ 1.

• (WM,c, st)← Pids
1 (skS ;RF(0‖M‖κ‖c)).

• cM,c ← HS(WM,c‖M).

• ZM,c ← Pids
2 (skS ,WM,c, cM,c, st;RF(1‖M‖κ‖c)).

3. If ZM,c = ⊥, (WM,c, cM,c)← (⊥,⊥).

4. Output (WM,c, cM,c,ZM,c).

This modification is conceptual because we just add a counter c so that
(WM,c, cM,c,ZM,c) can be viewed as a random value. Hence, we have Pr[W1] =
Pr[W0].

Game2: This game is the same as Game1 except that (WM,c, cM,c,ZM,c) on
M = m‖r‖pkR‖pkS are generated by the simulator of LIDS and the ran-
dom oracle HS is programmed by following this modification. Concretely,
GetTransids(M, c) is modified as follows: Let Sids be the simulator of LIDS.

1. κ← 0.

2. While ZM,c = ⊥ and κ ≤ κm:

• κ← κ+ 1.

• (WM,c, cM,c,ZM,c)← Sids(pkS ;RF(M‖κ‖c)).

3. If ZM,c = ⊥, (WM,c, cM,c,ZM,c)← (⊥,⊥,⊥).

4. Output (WM,c, cM,c,ZM,c).

Besides, HS(W‖M) is modified as follows:

1. For i ∈ [qs], do the following:

• (WM,c, cM,c,ZM,c)← GetTransids(M, c).

• If W = WM,c, return c← cM,c.

2. Return c ← H′
S(W‖M), where H′

S is a random oracle which A cannot
access directly.
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By the naHVZK of LIDS, the statistical distance between (c,Z) in Game1
and Game2 is at most κmεzk. Since (c,Z) must be a valid signature on M , we
need to patch the values of the quantum random oracle HS like the modification
above. Hence, we have |Pr[W1]− Pr[W2]| ≤ κmqs · εzk.

Game3: This game is the same as Game2 except that the challenger aborts if
c∗ 6= HS(W

∗,M∗) holds for the values (W∗, c∗,Z∗) obtained from the output
ct∗ of A.

First, we consider the case in which A generates a forgery on M∗ =
m∗‖r∗‖pk∗R‖pkS which is not queried to SCO oracle, and W∗ = WM∗,c holds
for c ∈ [qs]. By the α bits min-entropy of LIDS, WM∗,c is not revealed for all
c ∈ [qs]. Thus, the success probability in this case is at most qs · 2−α+1.

Next, we consider the case in which A generates (WM∗,c∗ , cM∗,c∗ ,ZM∗,c∗)
forM∗ and c∗ which were used in SCO oracle. By the CUR of LIDS, it is compu-
tationally difficult for A to generate ZM∗,c∗ which was not used in SCO oracle.
Hence, the upper bound that A generates such a response is AdvcurLIDS,C(λ).

Therefore, we obtain |Pr[W2]− Pr[W3]| ≤ qs · 2−α+1 + AdvcurLIDS,C(λ).

Game4: This game is the same as Game3 except for replacing pk with a lossy
public key pkls.

By using 2q′-wise independent hash functions for q′ ∈ {qhs , qh, qg} in order
to simulate the random oracles HS , H, and G, it is possible to construct a PPT
adversary D against LIDS such that

|Pr[W3]− Pr[W4]| ≤ AdvlossLIDS,D(λ).

In addition, we show Pr[W4] is negligible in λ if LIDS fulfills lossy-soundness.
For any (pkS , skS) ← KGenS(pp) and any W ∈ W, a set of “good” challenges
is defined as Cidsgood(pkS ,W) := {c ∈ Cids | ∃Z ∈ Z,Vids(pkS ,W, c,Z) = 1}.
Cidsgood(pkS ,W) contains only challenges c such that there exists a response Z

satisfying Vids(pkS ,W, c,Z) = 1.
We construct a PPT algorithm F solving the generic search problem with

bounded probabilities as follows: At the beginning of the game, it generates
pkS = pkidsls ← LossyKGen(pp) and chooses a 2qhs-wise independent hash func-
tion fHS

. For each W ∈ W , F does the following:

1. Compute Cidsgood(pkS ,W) ⊆ Cids.

2. Let γpkidsls
(W) := |Cidsgood(pkS ,W)|/|Cids|.

3. For all M , let γpkidsls
(W‖M) := γpkidsls

(W).

Then, it outputs γpkidsls
(W‖M) for all W ∈ W and all M . F simulates oracles

SCO in the same way as Game3 and simulates H and G by using a 2qh-wise
independent hash function and a 2qg-wise independent hash function, respec-
tively. It simulates HS(W‖M) as follows: If F (W‖M) = 1, it returns W ∈

89



Chapter 5. Quantum-Secure Signcryption

Cidsgood(pkS ,W) chosen uniformly at random by using a random coin fHS
(W‖M).

If F (W‖M) = 0, it returns uniformly random W ∈ Cids\Cidsgood(pkS ,W) by using
a random coin fHS

(W‖M). In Output phase, when A outputs (pk∗R, sk
∗
R, ct

∗),
F computes M∗ and (W∗, c∗,Z∗) by using sk∗R. Finally, it returns W∗‖M∗ if
HS(W

∗,m∗, r∗, pk∗R, pkS) = c∗, and outputs ⊥ otherwise. Then, c∗ is a “good”
challenge which implies F (W‖M) = 1 holds with probability |Cidsgood(pkS ,W)|/

∣∣Cids∣∣.
If the forgery (c∗,Z∗) onM∗ is valid, c∗ is in Cidsgood(pkS ,W

∗), that is, A finds
W∗‖M∗ such that F (W∗‖M∗) = 1. Notice that since LIDS is commitment-
recoverable, the condition of Cidsgood(pkS ,W

∗) is identical to the verification by

HS(W
∗,m∗, r∗, pk∗R, pkS) = c∗. Thus, for fixed pkidsls , the success probability in

Game4 is at most 8(qh + 1)2γpkidsls
, where γpkidsls

= maxW,M γpkidsls
(W‖M). The

average of 8(qhs +1)2γpkidsls
over pkidsls ← LossyKGen(pp) is 8(qh+1)2εls. Hence,

we have Pr[W4] ≤ 8(qhs + 1)2εls.
In addition, the one-to-one property of DEM also guarantees the strong

unforgeability of SCS-QRO even though the adversary A tries to generate the
same randomness as query/response pairs submitted to the signcrypt oracle.

From the discussion above, we obtain

Advmu-suf-icma
SCS-QRO,A (λ) ≤ κmqs · εzk+

qs
2α−1

+ AdvcurLIDS,C(λ)

+ AdvlossLIDS,D(λ) + 8(qhs + 1)2εls.

The proof is completed.

5.5 Comparison of Signcryption Schemes

We compare our schemes with existing ones in terms of key-sizes (i.e., sizes of
public-keys and secret-keys), and ciphertext-size in order to evaluate efficiency
among the constructions. Our schemes are two constructions. One is the
construction HSC in Section 5.3. The other is a scheme obtained by applying
lattice-based primitives to SCS-QRO in Section 5.4. Concretely, we apply an
IND-CPA secure PKE [90] and a lossy identification scheme [84] to the scheme.

To the best of our knowledge, LB-SCS and HSC are the first direct con-
structions of signcryption based on lattice problems without random oracles.
Hence, there is no other lattice-based construction to compare efficiency with
ours. However, since there are generic constructions of signcryption [34, 104]
satisfying the strongest security (i.e., both MU-IND-iCCA security and MU-
sUF-iCMA security) without (quantum) random oracles, we can obtain lattice-
based signcryption schemes by applying suitable lattice-based primitives to the
generic constructions. Specifically, we consider the following applications of
lattice-based primitives.

• SCSTK [34]: We apply IND-Tag-CCA secure Tag-based KEM ([101] and
[31]), sUF-CMA secure DS ([101] and [31]), IND-CCA secure DEM.

90



5.5 Comparison of Signcryption Schemes

• SCSKEM [34]: We apply IND-CCA secure KEM ([101] and [22]), sUF-
CMA secure DS ([101] and [31]), IND-OT secure DEM, sUF-OT-CMA
secure MAC.

• SCSCHK [104]: We apply IND-sID-CPA secure Identity-based Encryption
[3], EUF-CMA secure DS [26], sUF-OT-CMA secure OTS [98].

In the description above, KEM is a key encapsulation mechanism, DS is a
digital signature, MAC is a message authentication code, and OTS is a one-
time signature. IND-Tag-CCA means indistinguishability against adaptive tag
chosen ciphertext attacks, sUF-OT-CMA means strong unforgeability against
one-time chosen message attacks, and IND-sID-CPA means indistinguisha-
bility against selective ID chosen plaintext attacks. Then, to fairly compare
efficiency of lattice-based signcryption, we take into account the following:

1. In SCSTK , SCSKEM , and our schemes, we assume that the paradigm of
authenticated encryption in [17] is used to obtain IND-CCA secure DEM
(or IND-OT secure DEM). Namely, IND-CCA secure DEM is obtained
from IND-CPA secure symmetric-key encryption (SKE) and sUF-CMA
secure MAC. These SKE and MAC can be constructed from the AES
meeting the 128-bit security and IND-CPA security. The key-sizes are
set to be at least 512 bits, since it is necessary to have resistance against
quantum computing by taking into account the power of the Grover’s
algorithm.

2. In SCSTK , IND-Tag-CCA secure tag-based KEM is required. However,
there is no lattice-based construction meeting this security. We construct
this tag-based KEM by combining tag-based KEM achieving weaker se-
curity and a chameleon hash function [31] in a generic way.

3. In SCSKEM , we construct IND-CCA secure KEM by the BK-transformation
[22]. This reason is that even if we consider realizing CCA-secure KEM
based on the lattice problems [110], the resulting signcryption will be
less efficient than SCSTK and SCSCHK obviously.

Table 5.1 shows comparison in sizes of public/secret-keys and ciphertexts.
We can see that the key-sizes and ciphertext-size of SCS-QRO are the shortest
of all schemes though it is secure in the QROM. Regarding schemes in the
standard model, Table 5.1 shows the following: Although it can be seen that
SCSCHK and our scheme HSC are the most efficient in terms of receiver’s and
sender’s public-key sizes. The ciphertext-size of HSC is the shortest of all
schemes in the standard model.

From the above discussion, the public-key sizes and ciphertext-size of our
scheme HSC are shorter than those of existing ones, and there is no disadvan-
tage for ours compared to other ones. SCS-QRO is the best of all schemes in
terms of key-sizes and ciphertext-size.
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Chapter 6

Conclusion

We dealt with quantum-secure cryptographic schemes of encryption, authen-
tication, and signcryption which guarantees both securities of encryption and
authentication.

First, we focused on the selective opening (SO) security of public key
encryption (PKE). We proved that two hybrid encryption schemes satisfy
simulation-based SO security against chosen ciphertext attacks (SIM-SO-CCA
security) in the quantum random oracle model (QROM) or the quantum ideal
cipher model (QICM). One is constructed from any key encapsulation mech-
anism (KEM) meeting indistinguishability against chosen ciphertext attacks
(IND-CCA security) and any data encapsulation mechanism (DEM) meeting
both simulatability and one-time integrity of ciphertexts (OT-INT-CTXT se-
curity). The other is constructed from a KEM based on Fujisaki-Okamoto
transformation [48, 64] and any message authentication code (MAC) meeting
strong unforgeability against one-time chosen message attacks (sUF-OT-CMA
security). We obtain concrete constructions of the above PKE schemes in the
following way:

• Regarding the PKE scheme starting from a KEM and a DEM, it is
possible to construct the concrete ones from existing IND-CCA secure
KEM/PKE schemes resistant to quantum computing and standardized
DEMs such as CTR-DEM and CCM-DEM. In particular, we can trans-
form all KEM/PKE schemes submitted to the post-quantum cryptogra-
phy (PQC) standardization project to SIM-SO-CCA secure PKE in the
QICM by combining with the standardized DEM.

• Concerning the scheme starting from an FO-based KEM and a MAC, we
can obtain the concrete ones by combining concrete FO-based KEM/PKE
schemes submitted to the PQC standardization project and quantum-
secure MACs. Notice that most submitted KEM constructions are cat-
egorized as FO-based KEM such as FO̸⊥, FO̸⊥

m, QFO̸⊥, and QFO̸⊥
m, and

standardized MACs such as NMAC/HMAC.
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Chapter 6. Conclusion

Therefore, it is possible to obtain concrete SIM-SO-CCA secure PKE schemes
in the QICM or the QROM, by using existing practical (standardized) cryp-
tographic primitives.

Second, we dealt with the quantum security of aggregate MACs (AMACs)
and sequential aggregate MACs (SAMACs) for the first time. Regarding
AMACs, we formalized the security of AMACs in the security model in which
any adversary is allowed to issue quantum queries to tagging oracles. Our
security definition is reasonable because it is the extension of the existing one
[82] in the classical security model. Moreover, we proved that an existing
generic construction [82] starting from any deterministic MAC satisfies our se-
curity if the underlying MAC scheme fulfills the quantum security formalized
in [25]. Concerning SAMACs, we formalized the quantum security, which is
the extension of the existing security definition [44] in the classical security
model. And then, we showed that existing SAMACs [44, 128] are broken in
our security model. We presented two generic constructions satisfying our
security. One is constructed from any (deterministic) quantum-secure pseu-
dorandom function (QPRF). The other is constructed from any randomized
pseudorandom generator (randomized PRG) resistant to quantum computing.

Concrete constructions of our schemes are obtained as follows:

• The concrete SAMAC schemes from QPRFs are obtained by applying
existing QPRFs [136, 124]. In particular, we can apply standardized
MACs such as NMAC/HMAC because it was proven that these meet
the quantum security of PRFs [124].

• The SAMAC schemes from randomized PRGs are concretely realized by
applying PRGs of [135, 12]. Namely, it is possible to obtain SAMACs
with the quantum security based on learning parity with noise (LPN)
which is a well-known computationally hard problem even for quantum
computers.

Third, we proposed signcryption schemes in the QROM or the standard
model which is a model without random oracles and ideal ciphers. We pre-
sented two constructions satisfying both multi-user indistinguishability against
insider chosen chiphertext attacks (MU-IND-iCCA security) and multi-user
strong unforgeability against insider chosen message attacks (MU-sUF-iCMA
security). One is a hybrid encryption from our lattice-based signcryption and
a DEM scheme with indistinguishability against one-time attacks (IND-OT
security) and one-to-one property. The other is a generic construction start-
ing from any PKE scheme satisfying indistinguishability against chosen plain-
text attacks (IND-CPA security) and any lossy identification scheme meeting
several properties. We showed that the key-size and ciphertext-size of our
schemes are shorter than those of existing ones which is constructed by apply-
ing concrete lattice-based primitives to existing generic constructions [34, 104].
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Besides, concerning our schemes, the key-size and ciphertext-size of signcryp-
tion scheme in the QROM are shorter than those of the scheme in the standard
model.

Concrete constructions of our signcryption schemes are obtained as follows:

• The concrete constructions of the lattice-based hybrid signcryption can
be realized by combining our signcryption scheme in Section 5.3.1 and
AES (Advanced Encryption Standard), which is a standardized symmet-
ric key encryption, as an IND-OT secure DEM with one-to-one property.

• The concrete constructions of the generic construction secure in the
QROM can be obtained by applying concrete IND-CPA secure PKE
schemes and lossy identification schemes. We can apply lattice-based
IND-CPA secure PKE constructions [113, 90] and lattice-based lossy
identification schemes [95, 58, 84].

The scheme in the standard model is important in terms of security while
the one in the QROM is also significant in terms of practicality. Focusing on
security, we presented the lattice-based scheme in the standard model1 because
we do not assume that there exist ideal quantum random functions (quantum
random oracles), and the standard model is stronger than the QROM. Al-
though the security of cryptosystems in the (quantum) random oracle model
is guaranteed under the strong assumption, cryptographic systems secure in
this model are generally more efficient than those in the standard model in
terms of key-size, ciphertext-size, and time-complexity. Actually, standardized
public-key cryptosystems meet security in the random oracle model, and most
ones submitted to the PQC standardization project also satisfy security in the
QROM.

At present, researchers have presented designs of fundamental crypto-
graphic primitives secure against quantum computing in classical security
models. However, in the future, these ones do not necessarily guarantee secu-
rity in a situation where quantum computers are widespread, and many users
can use quantum computing. Hence, we dealt with security against quan-
tum computing in such a situation, which is called quantum security in this
thesis, and gave how to construct cryptosystems with quantum security of
fundamental properties such as confidentiality and integrity. In the substan-
tially distant future, the quantum security may not be sufficient since we have
considered only quantum security of classical data. In a quantum world, it
is natural to use not only classical data but also quantum one. Hence, it is
necessary to consider the security of quantum data. Regarding the existing
works of this security, there are security definitions of encryption [30, 6, 49]

1Although we proved that our lattice-based scheme satisfies both MU-IND-iCCA security
and MU-sUF-iCMA security in the classical security model, this scheme also fulfills both
security in the quantum security model. The security proofs are the same as the proofs in
[25].
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and MACs [51] in the quantum world. More concretely, Broadbent and Jef-
fery considered the security of encryption schemes with quantum algorithms,
and formalized the indistinguishability of PKE and symmetric key encryption
(SKE) [30]. Alagic et al. gave the simulation-based security of PKE/SKE with
quantum algorithms [6]. On the other hand, Gagliardoni et al. considered
the security model in which a quantum adversary gets the quantum superpo-
sition of ciphertexts of encryption with classical computations, and defined
the indistinguishability/simulation-based security of encryption schemes with
classical algorithms [49]. As for authentication, Garg et al. formalized the
one-time unforgeability of MACs with quantum algorithms. Cryptosystems
with the security have been proposed in [30, 6, 49, 43, 7, 29, 99, 51]. However,
formalizing standard security such as IND-CCA security and unforgeability
against (multi-time) chosen message attacks (UF-CMA security) on quantum
data is an open problem because of the quantum no-cloning theorem. There-
fore, the development of encryption/authentication schemes with the standard
security in the quantum world is necessary and challenging as the future work
of quantum-secure cryptography.
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