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Preface

This thesis is written on the subject “Facially-constrained colorings of triangulations on

closed surfaces” and it is to be submitted to get the degree of Doctor of Philosophy at

Yokohama National University.

I like to listen to music and play the guitar. When I was a first year student at

Ochanomizu University, I knew that Pythagorean tuning had been constructed by using

mathematics. I was interested in the relationship between music and mathematics.

However, there is little information about it in the Internet. Moreover, no professors

in Ochanomizu University were familiar with such a topic.

When I was a second year student at Ochanomizu University, I found a symposium held

at Yokohama National University by chance. Though that symposium is for mathematics,

Ms. Sachiko Nakajima who is a gold medalist of International Mathematical Olympiad

and a jazz pianist would appear. I expected that if I attend the symposium, then I could

obtain some information about music and mathematics, and hence I decided to attend it.

In that symposium, my heart was moved by Professor Seiya Negami’s talk. He talked

about his policy “mathematics without calculating” and my prejudice of mathematics

was broken by him. After the symposium, I talked to Professor Negami and talked that

I wanted to study the relationship between music and mathematics. He told me that he

had discovered the relationship between musical chords and the Möbius band with his

student and that if I would come to his laboratory, then I might be able to study what I

wanted. Thus, I decided to enter a master course in Yokohama National University and

choice Professor Negami as my supervisor.

In the first year of the graduate school, Professor Negami gave me a new idea of

colorings of triangulations which is motivated by musical chords and called it a “triad

coloring”. When I heard it, I was very interested in it and I wanted to develop it. Since

Professor Negami is familiar with topology, I was taught some topological and algebraic

topological method by him, and I constructed the theory of the new coloring, using them.

On the other hand, when I was the first year student in a doctor course, Naoki

Matsumoto, an assistant professor in Keio University, gave me some problems about

colorings of triangulations called a “facial complete coloring”. He invited me for studying

together and we obtained some results about it. I will present my work on these topics

in this thesis, entitled “facially-constrained colorings of triangulations on closed surfaces”

which belongs to topological graph theory.
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Finally, I am grateful to Professor Negami not only for his kindness and advice but

also for his teaching me the possibility of mathematics. Thanks to him, I noticed that

I can enjoy talking with foreign people through mathematics and it made me want to

go abroad actively. Moreover, I thank to Professor Naoki Matsumoto. Though I had

mistakes in studying and in writing the papers, he taught me kindly and politely. Then, I

am thankful to Professor Atsuhiro Nakamoto and Professor Kenta Ozeki. They gave me

many useful advices for my study and my presentations.

The author

Yumiko Ohno

March 2020
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Introduction

A graph consists of finitely many points and lines, each of which joins a pair of vertices.

They are called vertices and edges. The sets of vertices and edges of a graph G are

usually denoted by V (G) and E(G), respectively. A graph is often represented by a

figure drawn on paper and such a figure may have edge crossings. When we consider

only the combinatorial structure of graphs, we do not care about whether graphs have

edge crossings or not. However, in topological graph theory, which the author is majoring

in, we deal with graphs drawn on a closed surface with no edge crossings and we study

properties or structures of such graphs by using topology. If a graph G is drawn on a

closed surface F 2 with no edge crossings, G is said to be embedded on F 2 and we simply say

“a graph G on a closed surface”. For a graph G on a closed surface F 2, each component

of F 2 −G is called a face of G. Faces of graphs on closed surfaces play an important role

in topological graph theory.

In this thesis, we deal with “colorings of graphs”. Let G be a graph. A coloring of G is

defined as an assignment of colors to each of vertices in G. In particular, a coloring is said

to be proper if every pair of vertices joined by an edge receive different colors. In what

follows, “a coloring” means a proper coloring implicitly unless otherwise stated. Colors

are often regarded as numbers and the set of n colors is defined as the set {1, . . . , n} in

studies on colorings of graphs. A coloring of G using n colors is called an n-coloring,

which is usually defined as a function c : V (G) → {1, . . . , n}. If we assign different colors

to all vertices in G, then such an assignment of colors is a coloring clearly. Since we allow

the same color to be used for vertices which are not joined by edges, we may be able

to decrease the number of colors to make a coloring of G. Thus, we should discuss the

minimum number n such that G has an n-coloring. Such an invariant of graphs is called

the chromatic number, denoted by χ(G).

Studies on colorings of graphs started with the famous problem called “Four Color

Problem”; can we color a map by four colors so that countries sharing a common boundary

do not receive the same color? This problem was given by Francis Guthrie in 1852.

Representing each country by a vertex and joining two vertices if countries corresponding

to them share a common boundary, we obtain a graph embedded on the plane, which is

called a plane graph. Thus, we can rephrase Four Color Problem with a problem on a

coloring of a plane graph; does any plane graph G have a 4-coloring? Though Four Color

Problem fascinated many researchers, it had not been solved for more than 100 years. In

9



1976, Appel and Haken solved affirmatively Four Color Problem by using computers and

their result has been called “Four Color Theorem”:

Theorem 0.1 (Appel and Haken [5, 6, 7]). Any plane graph has a 4-coloring.

Four Color Theorem implies that the chromatic number of any plane graph does not

exceed 4. Moreover, the upper bound of the chromatic number for graphs on closed

surfaces other than the sphere was evaluated as “Map Color Theorem”:

Theorem 0.2 (Ringel [72]). Let G be a graph on a closed surface F 2 other than the sphere

and the Klein bottle. Then the maximum of χ(G) taken over all graphs G on F 2 is equal

to

⌊
7+
√

49−24ε(F 2)

2

⌋
, where ε(F 2) stands for the Euler characteristic of F 2. For the Klein

bottle, the maximum is 6.

Moreover, studies on colorings of graphs with some additional conditions have been

considered. For example, a distinguishing coloring is a coloring of a graph breaking

its symmetry [2, 10, 21, 30, 65, 73, 82, 83] and an equitable coloring is a coloring of a

graph such that the numbers of vertices in any two color classes differ by at most one

[17, 18, 29, 36, 52, 53, 54, 57, 59, 62]. In particular, there have been studied in topological

graph theory those colorings of graphs on closed surfaces that satisfy suitable conditions on

colors appearing around each face. Such a coloring is called a facially-constrained coloring

of a graph on a closed surface generally and at least 100 papers about facially-constrained

colorings have already been published. In this thesis, we consider two facially-constrained

colorings of triangulations on closed surfaces, where a triangulation on a closed surface

F 2 is a graph on F 2 such that each face is triangular.

The first facially-constrained coloring of triangulations on closed surface is called a

triad coloring. Let G be a triangulation on a closed surface. We use the cyclic group Zn

(n ≥ 3) as the color set {1, . . . , n} with n ≡ 0 (mod n) to define an algebraic property

of a coloring. Put Tn = {{i, i + 1, i + 2} | i ∈ Zn} and call it the set of triads. A

function c : V (G) → Zn is called an n-triad coloring if {c(u), c(v), c(w)} belongs to Tn

for each face uvw of G. Roughly speaking, a triad coloring is a coloring of G such that

vertices on the boundary of any face of G have three consecutive colors. Note that triads

{n−2, n−1, 0}, {n−1, 0, 1} and {0, 1, 2} are the elements of Tn since we define the colors

modulo n.

It is clear that an n-triad coloring of G is also an n-coloring since c(u) − c(v) ̸≡ 0

(mod n) for any edge uv. If n = 3 or 4, then the set of triads Tn contains all 3-element

subsets in Zn and hence any 3- or 4-coloring of G becomes a 3- or 4-triad coloring,

respectively. However, if n ≥ 5, then there are many 3-element subsets in Zn not belonging

to Tn. Thus, an n-coloring of G cannot be always regarded as an n-triad coloring of G for

n ≥ 5. Therefore, we would like to know the set of numbers n such that G has an n-triad

coloring and we define TCS(G) as such a set meaning “Triad Coloring Set of G”.

If the chromatic number of a triangulation G on a closed surface is 3, then a 3-coloring

of G becomes an n-triad coloring for any n ≥ 3 since we may assume that three colors
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used in the 3-coloring are 0, 1 and 2. That is, TCS(G) contains all positive integers more

than 2 in such a case. In addition, for a triangulation G with χ(G) = 4, TCS(G) contains

4 as its element since a 4-triad coloring of G is a 4-coloring. However, in this case, we do

not know which n belongs to TCS(G) for n ≥ 5 immediately. Similarly, the elements of

TCS(G) are not obvious if the chromatic number of G is at least 5. To investigate the

elements of the Triad Coloring Set, we first prove the following theorem for a triangulation

on the sphere or the projective plane.

Theorem 0.3. Let n be any natural number ≥ 5. A triangulation G on the sphere or the

projective plane has an n-triad coloring if and only if G has a 3-coloring.

By Theorem 0.3, the elements of TCS(G) are determined completely for a triangulation

G on the sphere or the projective plane, that is, TCS(G) contains only 4 as its element

if χ(G) = 4 and TCS(G) has no element if χ(G) ≥ 5. To prove this theorem, we use

some notions in algebraic topology. The set of triads Tn induces naturally a combinatorial

simplicial 2-complex, called a triad complex, and its underlying space X is homeomorphic

to a Möbius band if n ≥ 5 is odd and to an annulus if n ≥ 6 is even. By regarding

faces of a triangulation G on a closed surface F 2 as a 2-dimensional simplex, G naturally

induces a simplicial 2-complex and there exists a continuous simplicial map between it

and the triad complex when G has a triad coloring. Moreover, such a map induces a

continuous map from F 2 to X naturally, too. Under this situation, we show Theorem 0.3

discussing the fundamental groups and covering spaces. In particular, it is important

that the fundamental groups π1 of the Möbius band and the annulus are isomorphic to

the cyclic group Z, while that the order of π1(F
2) is finite when F 2 is the sphere or the

projective plane. It seems to be difficult to prove Theorem 0.3 by only combinatorial

methods.

Since the order of the fundamental group of a closed surface other than the sphere or

the projective plane is infinite, Theorem 0.3 does not hold for a triangulation on the closed

surface. In fact, there exists a triangulation on the torus for which the same argument as

in our proof of the theorem does not work. Though it is difficult to determine completely

the elements of TCS(G) for a triangulation G on a closed surface F 2 other than the sphere

and the projective plane, we investigate them partially as follows by using the continuous

map between F 2 and X described above. Our proofs of the theorems and the details of

methods in algebraic topology used for them are introduced in Chapter 3.

Theorem 0.4. Let G be a triangulation on a closed surface.

(i) If χ(G) = 3, then TCS(G) consists of all natural numbers n ≥ 3.

(ii) If χ(G) = 4, then there exists the maximum number n ≥ 4 with n ̸≡ 0 (mod 3) such

that G has an n-triad coloring. For this number n, TCS(G) includes all natural

numbers k such that 4 ≤ k ≤ n and k ≡ n (mod 3). Furthermore, if n ≥ 8, then

there is a natural number m ≥ ⌊n/2⌋ − 1 with m ≡ −n (mod 3) such that TCS(G)
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includes all natural numbers k with 4 ≤ k ≤ m and k ≡ m (mod 3), and TCS(G)

includes no other numbers.

(iii) If χ(G) = 5, then either TCS(G) = {5} or TCS(G) = ∅.

(iv) If χ(G) ≥ 6, then TCS(G) = ∅.

The second facially-constrained coloring of triangulations on closed surfaces is a facial

complete coloring. This coloring is an extension of a coloring called a complete coloring

defined as follows:

Let G be a graph. A complete n-coloring of G is an n-coloring such that each pair

of colors appears on at least one edge. A χ(G)-coloring of G is necessarily a complete

χ(G)-coloring, for if a pair (i, j) of colors did not appear on any edge, we could obtain a

proper (χ(G) − 1)-coloring of G by recoloring all vertices with color j by color i, which

is contrary to χ(G) being the minimum number of colors in colorings. We define the

achromatic number of G, denoted by ψ(G), to be the maximum number n for which G

has a complete n-coloring.

Complete colorings and the achromatic number were introduced by Harary and

Hedetniemi [39]. They gave a general upper bound for the achromatic number of graphs

by using the maximum number of vertices which are not joined by edges mutually, called

the independence number of G and denoted by α(G):

Theorem 0.5 (Harary and Hedetniemi [39]). For any graph G, the following equality

holds:

ψ(G) ≤ |V (G)| − α(G) + 1.

The achromatic number of graphs on closed surfaces also has been studied (see [37]

and [38], for example). Hara [37] completely characterized triangulations on a closed

surface having the achromatic number 3, as follows. Here, Kn,n,n denotes the complete

tripartite graphs, described in Section 1.1 of Chapter 1. See the survey [49] for other

studies on complete colorings and the achromatic number.

Theorem 0.6 (Hara [37]). Let G be a triangulation on a closed surface. Then ψ(G) = 3

if and only if G is isomorphic to Kn,n,n for some n ≥ 1.

We introduce a “facial complete coloring” by a slightly general form. Let G be a graph

on a closed surface and t be a positive integer. An n-coloring c : V (G) → {1, 2, . . . , n},
which is not necessarily proper, is a facial t-complete n-coloring if for any t-element subset

X of {1, · · · , n}, there exists at least one face of G such that the set of colors assigned

to the vertices lying along its boundary includes X. The facial t-achromatic number of

G, denoted by ψt(G), is defined as the maximum number n such that G has a facial

t-complete n-coloring. Similarly, if we deal only with proper colorings as c, then a proper

facial t-complete n-coloring and the proper facial t-achromatic number ψp
t (G) are defined

as well as in the previous. A (proper) facial 1-complete coloring is just a (proper) coloring
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using each color at least once, and a proper facial 2-complete coloring is a complete

coloring. In this thesis, we concentrate on a (proper) facial 3-complete coloring of a

triangulation on the sphere.

Recall that every graph G has a complete n-coloring for some n ≥ χ(G). However,

there exists a triangulation G on the sphere which has no (proper) facial 3-complete

n-coloring for any n ≥ χ(G). On the other hand, every even triangulation G on the sphere

has at least one proper facial 3-complete 3-coloring, since it has a proper 3-coloring [81],

where a triangulation G on a closed surface is even if every vertex of G is incident to

even number of edges. Thus, in this thesis, we principally focus on the (proper) facial

3-achromatic number of even triangulations on the sphere.

By the definition of a facial complete coloring, we intuitively see that the greater the

number of mutually vertex disjoint faces of an even triangulation on the sphere becomes,

the larger its facial 3-achromatic number is, where faces f1 and f2 of a graph on a closed

surface are said to be vertex disjoint if the boundaries of f1 and f2 contain no common

vertices. In fact, we can easily see that if G has at least
(
n
3

)
such faces, then the facial

3-achromatic number of G is at least n; assign all triples of colors to such faces of G one

by one and then assign the same color to other uncolored vertices. Moreover, we can also

have a similar result with the restriction to proper colorings as follows.

Theorem 0.7. Let G be an even triangulation on the sphere and k be the maximum

number of faces which are vertex disjoint in G. If k ≥ 4
(
n
3

)
, then ψp

3(G) ≥ n.

In addition, we characterize even triangulations G on the sphere with χ(G) = ψp
3(G) =

3, which is an analogue of Theorem 0.6. Here, the double wheel DWn for n ≥ 3 is a

triangulation on the sphere which is obtained from the cycle Cn by adding two extra

vertices x and y and joining them to all vertices of Cn (see the left of Figure 1). When n

is even, DWn is an even triangulation on the sphere.

Theorem 0.8. Let G be an even triangulation on the sphere. The proper facial

3-achromatic number of G is exactly 3 if and only if G is isomorphic to the double wheel

DW2n for n ≥ 2 or one of the two graphs OC1 and Q3 given in Figure 1.

𝑥 𝑦
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𝑎$ 𝑏$
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Figure 1: The double wheel DW6 and graphs G with ψp
3(G) = 3
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Though many facially-constrained colorings have been defined for general graphs on

closed surfaces, we especially focus on those of triangulations on closed surfaces in this

thesis. By that restriction, we can apply effectively some notions of algebraic topology to

consider triad colorings. Moreover, we see the fascinating fact that there are triangulations

G on closed surfaces which have no (proper) facial 3-complete n-colorings for any n ≥
χ(G), in contrast to complete colorings.

This thesis consists of some chapters as follows: In Chapter 1, we prepare some

terminologies of graph theory and topological graph theory. Moreover, we prepare some

notions of algebraic topology for our results. In Chapter 2, we see some facts on colorings

of graphs and a short survey of facially-constrained colorings. In Chapter 3, we prove

Theorems 0.3 and 0.4, and consider some examples of a triad coloring for a triangulation

on the torus. In Chapter 4, we introduce some results of facial complete colorings and

show Theorems 0.7 and 0.8.
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Chapter 1

Foundations

In this chapter, we shall give the foundations of this thesis. We confirm basic terminologies

of graph theory, topology and algebraic topology. We refer to [25, 33, 34, 35, 76].

1.1 Graphs

A graph G is a pair of two sets V (G) and E(G). The elements of V (G) are called vertices

and those of E(G) are called edges, where E(G) is a set of 2-element subsets of V (G).

Note that an element of E(G) admits multisets or 1-element subsets of V (G). That is, a

graph is a figure which consists of vertices and edges as shown in Figure 1.1. We use a

notation |X| for a set X to represent the cardinality of X.

Figure 1.1: A graph

If two vertices u and v are joined by an edge, then we say that u is adjacent to v or

that uv ∈ E(G) is incident to u and v, where uv often denotes the edge which joines

endvertices u and v. Two adjacent vertices are referred to as a neighbor of each other.

The set of neighbors of a vertex v is called the open neighborhood of v (or simply the

neighborhood of v) and is denoted by NG(v) or simply N(v). If two vertices u and v are

joined by two or more edges, then these edges are called multiple edges and a loop is an

edge which joins one vertex to itself as shown in Figures 1.2 and 1.3, respectively. If a

graph G has neither multiple edges nor loops, then G is called simple and we deal with a

simple graph in this thesis unless otherwise stated.
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𝑢 𝑣

Figure 1.2: Multiple edges
Figure 1.3: A loop

Let G1 and G2 be graphs. An isomorphism of G1 and G2 is a bijection f : V (G1) →
V (G2) such that any two vertices u and v of G1 are adjacent in G1 if and only if f(u)

and f(v) are adjacent in G2. If there exists an isomorphism of G1 and G2, then we say

that G1 and G2 are isomorphic and it is denoted by G1
∼= G2. Roughly speaking, if each

pair of adjacent vertices of G1 is adjacent in G2, then G1 and G2 are called isomorphic.

Generally, an isomorphism f : G → G which carries a graph G to G itself is called an

automorphism.

Let G and G′ be two graphs consists of V (G), E(G) and V (G′), E(G′), respectively. If

V (G′) ⊆ V (G) and E(G′) ⊆ E(G), then G′ is called a subgraph of G. For a subgraph G′

of G, if V (G′) = V (G), then G′ is called a spanning subgraph of G. Let G′ be a subgraph

of G and S be a subset of V (G). If V (G′) = S and every edge uv ∈ E(G) for u, v ∈ S

is in E(G′), then G′ is called an induced subgraph of G or G′ is induced by S, denoted by

⟨S⟩. A subdivision of a graph G is obtained from G by replacing edges of G with paths

of length at least 1. Note that G is also a subdivision of G.

The number of edges incident to v of a graph G is called the degree of v and denoted

by degG(v). In particular, if degrees of all the vertices of a graph G are r for r ≥ 1, then

G is called r-regular. A 3-regular graph is often called cubic. The maximum degree and

the minimum degree of G are the maximum and minimum degree of vertices in G and

denoted by ∆(G) and δ(G), respectively. The following theorem, which is well known as

Handshaking lemma, is the fundamental and important one in Graph Theory.

Theorem 1.1. Let G be a graph. Then
∑

v∈V (G) degG(v) = 2|E(G)|.

Moreover, we obtain the following corollary by Theorem 1.1 immediately.

Corollary 1.2. Every graph has an even number of vertices of odd degree.

A walk is a sequence of vertices W = v0v1 . . . vn such that the vertices vj−1 and vj are

adjacent for j = 1, . . . , n. In particular, if a walk W has no overlap vertices, then W is

called a path as shown in Figure 1.4. If there exists a path P between two vertices u and

v, then u and v are called connected by P . A walk W = v0 · · · vn is closed if v0 = vn and

a closed walk W is called a cycle if W has no overlap vertices as shown in Figure 1.5.

The length of a walk, a path or a cycle is the number of edges in the walk, the path or

the cycle, respectively. If there are k edges in a path (resp., cycle), then we say that it
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is a k-path (resp., k-cycle). Moreover, a k-path (resp., k-cycle) is often denoted by Pk

(resp., Ck). A cycle C is said to be a Hamilton cycle if C passes through each vertex of

G exactly once.

Figure 1.4: A path P5

Figure 1.5: A cycle C6

Let G be a graph and let S be a subset of V (G). We write G − S = ⟨V (G) \ S⟩. In

particular, if S contains only one vertex v, then we write G−v simply. If each two vertices

of a graph G are connected by a path, then G is called connected. Otherwise, G can be

resolved into some connected parts and each of them are called connected component. A

cut set S of a connected graph G is a set of vertices such that G − S is disconnected.

In particular, if a cut set of G contains only one vertex v, then v is called a cut vertex.

If |V (G)| > k and G − S is connected for S ⊆ V (G) with |S| < k, then G is called

k-connected.

For any two vertices u and v in a graph G, the distance of u and v, denoted by

distG(u, v), is the length of a shortest path which connects u and v. If there is no path

between u and v, then we define distG(u, v) = ∞. Note that distG(u, u) = 0.

A set of vertices S ⊆ V (G) is an independent set if for any vertices x and y in S, x

and y are not adjacent in G. The maximum number of vertices in an independent set of

G is called the independence number, denoted by α(G).

As typical graphs, we introduce some kinds of graphs. A tree is a connected graph

which has no cycle and a forest is a graph whose components are trees as shown in

Figure 1.6. A complete graph is a graph in which every distinct two vertices are adjacent

as shown in Figure 1.7. A complete graph with k vertices is denoted by Kk. For a graph

G, if V (G) is divided into k subsets X1, . . . , Xk for k ≥ 2 such that any adjacent vertices

of G belong to different subsets, then G is called a k-partite graph. In particular, if any

pair of vertices belonging to different subsets of a k-partite graph G are adjacent, then

G is called a complete k-partite graph as shown in Figure 1.8 and denoted by Kn1,...,nk
,

where ni = |Xi| for i = 1, · · · , k.
A 2-partite graph is often called a bipartite graph. For a bipartite graph, the following

theorem is well known.

Theorem 1.3. A graph G is a bipartite graph if and only if G contains no odd cycle.
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Figure 1.6: A forest

Figure 1.7: A complete

graph K5

Figure 1.8: A complete

bipartite graph K3,3

Proof. If a bipartite graph has an odd cycle, then the vertices of such a cycle are not

divided into two partite sets. Thus, the necessity is clear. Therefore, it suffices to show

that if a graph G has no odd cycle, then G is a bipartite graph. Let G be a graph with

no odd cycle. We may assume that G is connected. First, fix a vertex u of G and suppose

that a vertex v is in a set X if distG(u, v) is odd and that v is in a set Y if distG(u, v) is

even. Note that u is in Y since distG(u, u) = 0. Since G is connected, every vertex of G is

either in X or in Y . Suppose that there is a pair of two adjacent vertices x and y which

are in the same set, that is, at least one of x and y is in both X and Y . By symmetry,

we may assume that distG(u, x) ≥ distG(u, y). Let P = u, u1, u2, · · · , x be a shortest path

between u and x and let P ′ = u, v1, v2, · · · , y be one between u and y. LetW = P ∪P ′∪xy
be a closed walk. Since the length of P and that of P ′ have same parity, the length of W

is odd. It is easy to see that W contains an odd cycle, a contradiction.

1.2 Embeddings

Throughout this thesis, we call a connected compact 2-dimensional manifold without

boundaries a closed surface. There are two classes of closed surfaces, orientable ones and

non-orientable ones. On orientable closed surfaces, we can compatibly prescribe clockwise

and counter clockwise orientations around all the points on it. On the other hand, we

cannot do on non-orientable closed surfaces. For example, on a Möbius band, we cannot

give compatible clockwise orientations to points on the center line of the Möbius band

as shown in Figure 1.9. In fact, a closed surface is orientable if and only if it does not

include a Möbius band.

Let F 2
1 and F 2

2 be two closed surfaces. The closed surface obtained from F 2
1 with a

disk removed and F 2
2 with a disk removed by pasting them along their boundaries is called

a connected sum of F 2
1 and F 2

2 , denoted by F 2
1#F

2
2 . We can characterize orientable and

non-orientable closed surfaces, as follows. A closed surface is an orientable closed surface

of genus g ≥ 1, denoted by Sg, if F
2 is homeomorphic to T 2# · · ·#T 2︸ ︷︷ ︸

g

, where T 2 stands for

the torus. Note that the sphere is regarded as a connected sum of no torus and denoted

by S0. On the other hand, a closed surface is a non-orientable closed surface of genus (or
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Figure 1.9: A Möbius band

cross-cap number) k ≥ 1, denoted by Nk, if F
2 is homeomorphic to P 2# · · ·#P 2︸ ︷︷ ︸

k

, where

P 2 is the projective plane. Equivalently, Nk is obtained from the sphere with k pairwise

disjoint disk removed by attaching k Möbius bands to each boundary of the punctured

sphere. For example, S0,S1,N1 and N2 denote the sphere, the torus, the projective plane

and the Klein bottle, respectively.

By the classification theorem of closed surfaces, it is known that every closed surface

is homeomorphic to either an orientable closed surface or a non-orientable closed surface

with some genus. For non-orientable closed surfaces, it is also known that N3 and N4

are homeomorphic to T 2#P 2 and T 2#K2, respectively, where K2 stands for the Klein

bottle. In general, for any positive integer k and any even integer 0 ≤ k′ < k, Nk is

homeomorphic to Nk−k′#S k′
2
.

A closed curve on a closed surface F 2 is a continuous function l : S1 → F 2 or its image,

where S1 is the 1-dimensional sphere, that is, {(x, y) ∈ R2 | x2+y2 = 1}. A closed curve l

is called simple if the function l is an injection. A simple closed curve l on a closed surface

F 2 is called separating (resp., non-separating) if F 2− l is disconnected (resp., connected).

A simple closed curve l on a closed surface F 2 is said to be trivial (or contractible) if l

bounds a 2-cell on F 2. Otherwise, l is said to be essential (or non-contractible). Among

essential simple closed curves, one with an annular neighborhood is called 2-sided while

one whose tubular neighborhood forms a Möbius band is called 1-sided . Two closed curves

l1 and l2 on a closed surface F 2 are said to be homotopic to each other on F 2 if there exists

a continuous function ϕ : [0, 1] × S1 → F 2 such that ϕ(0, x) = l1(x) and ϕ(1, x) = l2(x)

for each x ∈ S1.

When we discuss embeddings of graphs into closed surfaces, we regard graphs as

1-dimensional topological spaces, not only as combinatorial objects. Roughly speaking,

to embed a graph into a closed surface F 2 is to draw the graph on F 2 without crossing

edges. It is sometimes effective to regard an embedding as an injective continuous map

f : G → F 2. We deal with G and f(G) as the same object intuitively. However, to

distinguish G from the embedded one f(G), we sometimes call G an abstract graph while

we call f(G) an embedding . In this thesis, we often denote an embedded graph by G.
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When G is embedded on a closed surface F 2, G can be regarded as a subset of F 2.

Each component of F 2−G is called a face of G on F 2. A closed walkW (resp., cycle C) of

G which bounds a face F of G is called the boundary walk (resp., boundary cycle) of F . An

embedded graph G is said to be a 2-cell embedding , or G is said to be 2-cell embedded in

F 2 if each face of G is homeomorphic to an open 2-cell , that is, {(x, y) ∈ R2|x2+ y2 < 1}.
After this, we simply call 2-cell embeddings embeddings. An even-(resp., odd-)embedding

on a closed surface is a graph such that each face is bounded by a cycle of length even

(resp., odd). For a graph G on a closed surface F 2, we denote the face set of G by

F (G), and denote the vertex set and the edge set of G by V (G) and E(G), respectively.

Moreover, for any face (or a 2-cell region) f in a graph G on a closed surface, ∂f denotes

the boundary walk of f .

Let G1 and G2 be two graphs on closed surfaces F 2
1 and F 2

2 , respectively. Two graphs

G1 and G2 are said to be homeomorphic to each other if there exists a homeomorphism

h : F 2
1 → F 2

2 with h(G1) = G2 which induces an isomorphism from G1 to G2. In this

case, we also say that G1 ⊂ F 2
1 and G2 ⊂ F 2

2 are the same ones up to homeomorphism.

For a given graph G on a closed surface, the dual graph of G is defined as follows: A

vertex is placed in each face of G and two distinct vertices are joined by an edge for each

common edge on the boundaries of the two corresponding faces of G. Lastly, by deleting

G, we obtain a dual graph of G.

So far, we have not referred to the orientability of closed surfaces or used Euler’s

formula. To make it explicit, the Euler characteristic ε(F 2) of a closed surface F 2 is

defined as

ε(F 2) =

{
2− 2g (ifF 2 = Sg)

2− k (ifF 2 = Nk)

We introduce the following theorem that is well known as “ Euler’s formula”.
(Throughout this thesis, Euler’s formula means the following equation.)

Theorem 1.4. Let G be a connected graph (might not be simple) on a closed surface F 2.

Then, the following holds: |V (G)|+ |E(G)| − |F (G)| = ε(F 2).

A triangulation G on a closed surface F 2 is a simple graph on F 2 such that every

face is bounded by a cycle of length 3 and any two faces of G share at most one edge.

A triangulation is even (or Eulerian) if every vertex has even degree. For an even

triangulation on the sphere, the following proposition holds by using Euler’s formula.

Proposition 1.5. Let G be an even triangulation on the sphere. Then G has at least six

vertices of degree 4.

Proof. Let V,E and F be the number of the vertices, edges and faces of G. Since G

is an even triangulation, it holds that 3F = 2E. Thus, we obtain that 3V − E =

6 by Euler’s formula. Moreover, by Handshaking lemma, the equation is replaced by

6V −
∑

v∈V (G) degG(v) = 12. Let Vi be the number of vertices of degree i. Using such a
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notation, the above equation can be changed to
∑∆(G)

i=3 6Vi −
∑∆(G)

i=3 iVi = 12 since G is a

simple graph. Moreover, since G is an even triangulation, the degrees of the vertices in

G are even. Thus, the equation represents that 2V4 − (2V8 + 4V10 + . . . ) = 12. Clearly,

Vi for any i = 1, . . . ,∆(G) is at least 0 and hence, we obtain that 2V4 ≥ 12. Therefore,

there exist at least six vertices of degree 4 in G.

In the end of this section, we introduce the following two theorems which state

fundamental properties of topology of the sphere.

Theorem 1.6 (Veblen [84]). Any simple closed curve C on the plane divides the plane

into exactly two connected components, the interior and the exterior. Both of these regions

have C as the boundary.

Theorem 1.7 (Thomassen [79]). The interior of any simple closed curve on the plane is

homeomorphic to an open 2-cell.

1.3 Algebraic topology

Let N be a set of points, possible infinitely many. An (abstract) simplex is a nonempty

finite subset of N , in particular, if a simplex consists of s + 1 points, then it is

called an s-dimensional simplex. For example, 0-dimensional simplexes are regarded as

vertices, 1-dimensional simplexes are edges, 2-dimensional simplexes are triangles and

3-dimensional simplexes are tetrahedrons. The dimension of an s-dimensional simplex is

defined as s. Here, let σ be an s-dimensional simplex and let σ′ be any subset of σ. In

this case, σ′ becomes also a simplex and σ′ is called a face of σ denoted by σ′ ≺ σ.

An (abstract) simplicial complexK overN is a collection of simplexes which are formed

by subsets of N such that any face of every simplex in K is also in K. If the maximum

dimension of simplexes in K is equal to s, then K is called a simplicial s-complex. The

collection of simplexes whose dimensions are at most s in K is called the s-skeleton of K.

In particular, the 1-skeleton of any simplicial complex can be regarded as a simple graph.

Now, let K and K ′ be two simplicial complexes over N and N ′. A map c : N → N ′

is said to be simplicial if c sends each simplex in K to a simplex in K ′. In particular, if c

sends any simplex in K to one in K ′ which has the same dimension, then c is said to be

non-degenerate.

Suppose that the topological spaces X and X ′ which are exhibited by K and K ′. A

simplicial map c : N → N ′ naturally induces a continuous map fc : X → X ′. If a simplicial

map c : N → N ′ is non-degenerate, then the regions in X and X ′ corresponding to each

simplex σ and c(σ) are homeomorphic since their dimensions are the same. In this case,

we say that a continuous map fc is simplicial and non-degenerate, too.

Let X be a topological space. A curve in X is a continuous map γ : I → X, where

I = [0, 1]. We say that γ is a curve from the point x = γ(0) to x′ = γ(1) and x is called
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an initial point and x′ is called a terminal point. A curve whose initial point and terminal

point are the same is called a closed curve and its initial point is called a base point.

If γ is a curve from x to x′ and γ′ is a curve from x′ to x′′, then there is a product curve

γ ·γ′ from x to x′′. A product curve is defined as follows: if 0 ≤ t ≤ 1
2
, then γ ·γ′(t) = γ(2t)

and if 1
2
≤ t ≤ 1, then γ · γ′(t) = γ′(2t − 1). For any point x ∈ X, a constant curve εx

is defined as εx(t) = x (0 ≤ t ≤ 1). If γ is a curve from x to x′, then there is an inverse

curve γ−1 from x′ to x such that γ−1(t) = γ(1− t) (0 ≤ t ≤ 1).

Let γ, γ′ : I → X be two closed curves with a base point x. If there is a continuous

map H : I × I → X such that H(0, t) = γ(t) (0 ≤ t ≤ 1), H(1, t) = γ′(t) (0 ≤ t ≤ 1) and

H(s, 0) = H(s, 1) = x (0 ≤ s ≤ 1), then γ and γ′ are called homotopic denoted by γ ≃ γ′

and H : I × I → X is called a homotopy between γ and γ′. Roughly speaking, if one of

two closed curves can be transformed continuously into the other fixing their base point,

then they are homotopic. Since the relation of homotopic is an equivalence relation, then

we can consider the equivalence class of closed curves. A set of closed curves which is

homotopic with γ is called a homotopy class of γ and denoted by [γ].

Let X be a topological space and let x be a point in X. The fundamental group of X

with a base point x is defined as the set of homotopy class of closed curves with a base

point x and it is usually denoted by π1(X). Here, we define an operation of homotopy

class as [γ]·[γ′] = [γ ·γ′] and define identity element as e = [εx]. Then, the above operation

· makes π1(X) into a group.

If there is only one homotopy class in a topological space X, that is, any closed curve

can be transformed into other one, then π1(X) is called a trivial group and it is denoted

by π1(X) = {1}. In this case, X is said to be simply connected. If there is a continuous

map f : X → X ′ between two topological spaces X and X ′, then it naturally induces

a group homomorphism f# : π1(X) → π1(X
′). In the following, f# denotes an induced

group homomorphism by f .

For example, the fundamental group of the sphere π1(S0) is isomorphic to the trivial

group {1} since any closed curve with a base point x in S0 can be continuously transformed

into εx. Here, we shall confirm the fundamental group of the projective plane, an annulus

and a Möbius band for later arguments. An annulus is obtained by pasting side edges of

a rectangle band and a Möbius band is obtained by twisting one of the side edges of a

rectangle band by 180◦ and pasting them.

Figures 1.10 and 1.11 show closed curves on the projective plane, whish is obtained

by identifying the antipodal points of the circumference. A closed curve in Figure 1.10 is

called e and one in Figure 1.11 is called a here. Now, we shall consider a · a. Two closed

curves like a can be transformed as in Figure 1.12. Therefore, we have a · a = e. Thus,

the fundamental group of the projective plane π1(P
2) is generated by loops [e] and [a]

and it is isomorphic to Z2. Note that e and a are not isomorphic each other.

Now, to confirm the fundamental group of an annulus and a Möbius band, we shall

define a deformation retract. Let X and Y be two topological spaces and let f, f ′ : X → Y

be two continuous maps. If a continuous map F : I ×X → Y satisfies the following two
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Figure 1.10: A loop e Figure 1.11: A loop a

Figure 1.12: A transformation of a · a

conditions for any x ∈ X, then F is called a homotopy between f and f ′ and we say that

f and f ′ are homotopic:

(i) F (0, x) = f(x).

(ii) F (1, x) = f ′(x).

Let A be a subset of X. If a continuous map r : X → A satisfies r(a) = a for all

a ∈ A and if r is homotopic to the identity map of X, then A is called a deformation

retract. It is known that if A is a deformation retract of X, then the fundamental group

of A and that of X are isomorphic. A circle S1 is a deformation retract of an annulus and

a Möbius band, and the fundamental group of a circle is isomorphic to Z. Therefore, the
fundamental group of an annulus and a Möbius band is isomorphic to Z, too.

Let X and X̃ be two topological spaces. A continuous map p : X̃ → X is called a

covering projection if there is an open neighborhood U of any point x ∈ X such that

p−1(U) is a disjoint union of open sets of X̃, each of which is mapped homeomorphically

onto U by p. If there is a covering projection p : X̃ → X, then X̃ or (X̃, p) is called a

covering space of X. In particular, if X̃ is simply connected, then it is called a universal

covering.

Let (X̃, p) be a covering space of X. A continuous map f : Y → X is said to be lifted

to X̃ if there is a continuous map f̃ : Y → X̃ such that pf̃ = f . We call f̃ a lift of f .

Here, we shall give the fact in algebraic topology called “Map Lifting Property”.
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Theorem 1.8 (Map Lifting Property). Let X and Y be two topological spaces and let

(X̃, p) be a covering space of X. Suppose that f be a continuous map. Points x ∈ X, x̃ ∈
X̃, y ∈ Y hold p(x̃) = f(y) = x. A continuous map f : Y → X can be lifted to a covering

space X̃ if and only if f#(π1(Y )) < p#(π1(X̃)), up to conjugate.
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Chapter 2

Facially-constrained colorings

A facially-constrained coloring of a graph G on a closed surface is a coloring with some

additional restriction concerning faces of G. In this section, we first confirm some

notations for colorings of graphs and introduce a short survey of facially-constrained

colorings of graphs on closed surfaces. For more details of facially-constrained colorings,

we refer to a survey [22].

2.1 Colorings

Let G be a graph. A map c : V (G) → {1, 2, · · · , k} is called a vertex k-coloring . In

particular, a vertex coloring c is proper if c(u) ̸= c(v) for any vertices u, v ∈ V (G) such

that uv ∈ E(G). In what follows, “a coloring” is implied a proper vertex coloring unless

otherwise stated. If G has a k-coloring, then we say that G is k-colorable. The chromatic

number of G denoted by χ(G) is the minimum number k such that G is k-colorable. We

often call a graph G with χ(G) = k a k-chromatic graph.

It is clear that χ(G) ≤ n, where n is the number of vertices of G. Moreover, by using

the induction on the number of vertices in G, we can easily prove that χ(G) ≤ ∆(G) + 1.

Brooks [16] showed that almost all graphs G are ∆(G)-colorable as follows.

Theorem 2.1 (Brooks [16]). Let G be a connected graph other than a cycle with odd

length or a complete graph. Then, χ(G) ≤ ∆(G) holds.

On the other hands, an edge coloring has been considered as the same as vertex one. A

map c′ : E(G) → {1, 2, · · · , k} is called an k-edge-coloring . In particular, an edge coloring

c′ is called a proper if c′(e1) ̸= c′(e2) for any e1, e2 ∈ E(G) such that e1 and e2 are incident

to the same vertex. The minimum number k such that G has a proper k-edge-coloring is

called the chromatic index denoted by χ′(G).

By the definition of a proper edge coloring, it is clear that ∆(G) ≤ χ′(G). Moreover,

Vizing [85] showed the upper bound of χ′(G) as follows.

Theorem 2.2 (Vizing [85]). Let G be a graph. Then, ∆(G) ≤ χ′(G) ≤ ∆(G) + 1 holds.
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If χ′(G) = ∆(G), then we say that G is in class 1 and if χ′(G) = ∆(G) + 1, then we

say that G is in class 2. By Theorem 2.2, every graph is classified into either class 1 or

class 2. In particular, a 3-regular graph G which is in class 2 is often called a snark.

2.2 Rainbow coloring

A face of a graph on a closed surface is rainbow if all vertices of its boundary walk have

different colors. A rainbow coloring (originally called a cyclic coloring) of a graph on a

closed surface is a coloring such that all faces are rainbow as shown in Figure 2.1, where

Figure 2.1 shows a rainbow coloring with 6 colors. The minimum number of colors which

are used in a rainbow coloring of a graph G called the rainbowness of G denoted by rb(G).

Figure 2.1: A rainbow coloring of a plane graph

A rainbow coloring was introduced by Ore and Plummer [68]. If a graph G on a closed

surface is 2-connected, then it is clear that rb(G) ≥ ∆∗(G), where ∆∗(G) is the longest

length of a boundary cycle in G. Borodin [11] conjectured that for every 2-connected

plane graph G, rb(G) ≤ ⌊3∆∗(G)
2

⌋. Sanders and Zhao [74] showed rb(G) ≤ ⌈5∆∗(G)
3

⌉ for

every 2-connected plane graph G and this value is the currently best known result. For

small value of ∆∗(G), there are results for the conjecture as follows. If ∆∗(G) = 3, then

the conjecture is for plane triangulations and hence, the conjecture holds by Four Color

Theorem. Borodin [11, 12] showed that rb(G) ≤ 6 if ∆∗(G) = 4 and Hebdige and Král’

[42] proved that rb(G) ≤ 9 if ∆∗(G) = 6. Moreover, when ∆∗(G) = 5 and 7, rb(G) is at

most 8 [13] and 11 [41] are shown, respectively.

On the other hand, it is conjectured in [69] that every 3-connected plane graph has a

rainbow coloring with at most ∆∗(G)+2 colors. This conjecture is true when ∆∗(G) = 3, 4

or ∆∗(G) ≥ 18 [46, 47, 48]. Moreover, if ∆∗(G) ≥ 60 or vertices of all faces whose length

of the boundary cycle is four or more are mutually disjoint, then rb(G) ≤ ∆∗(G) + 1

[28, 8], that is, the conjecture is strengthen in such a supposition. However, for every

3-connected plane graph, the best known upper bound is rb(G) ≤ ∆∗(G) + 5 in general

[27].

There are some studies for graphs on closed surface other than plane ones. Schumacher

[75] showed that for a graph on the projective plane with ∆∗(G) = 4, rb(G) ≤ 7. Borodin
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et al. [13] proved that rb(G) is at most 8 for a graph on the projective plane with

∆∗(G) = 5. Moreover, Nakamoto et al. [61] showed the necessary and sufficient condition

for a graph G on closed surface with ∆∗(G) ≤ 4 to have a cyclic 4-coloring.

2.3 Antirainbow coloring

An antirainbow coloring is a coloring of a graph on a closed surface, which is not necessarily

proper, such that no face in the graph is rainbow as shown in Figure 2.2, which shows

an antirainbow coloring with 5 colors. The maximum number of colors which are used

in an antirainbow coloring of a graph G on a closed surface is called the antirainbowness

denoted by arb(G). The length of the shortest boundary walk of a face in G on a closed

surface is called the girth denoted by g(G).

Figure 2.2: An antirainbow coloring of a plane graph

Ramamurthi and West [70, 71] showed that arb(G) ≥ α(G) + 1 for every plane graph

G with α(G) ≤ |V (G)|−1, where α(G) is the independence number of G. Since the set of

vertices colored by the same color for a coloring of a graph is an independent set, we obtain

that arb(G) ≥ ⌈ |V (G)|
4

⌉+1 for every plane graph G by Four Color Theorem and arb(G) ≥
⌈ |V (G)|

3
⌉+1 for every plane graph G with g(G) ≥ 4 by Grötzsch’s Theorem. Jungič, Král’

and Škrekovski proved that for every plane graph G with g(G) ≥ 5, if g(G) is odd, then

arb(G) ≥ ⌈ g(G)−3
g(G)−2

n − g(G)−7
2(g(G)−2)

⌉ and if g(G) is even, then arb(G) ≥ ⌈ g(G)−3
g(G)−2

n − g(G)−6
2(g(G)−2)

⌉.
There are some results for the upper bound of arb(G), see [26].

Let G be a triangulation on a closed surface and c : V (G) → {1, . . . , k+3} be a coloring
of G, which is not necessarily proper, such that c is a surjection. For any assignment of

c, if there exists a rainbow face in G, then G is called k-loosely tight and the minimum

number k such that G is k-loosely tight is called the looseness of G denoted by ξ(G). It

holds that arb(G) = ξ(G)− 1 and the looseness is introduced in [66]. The authors of the

paper showed that ξ(G) ≥ α(G)−1. Moreover, Nakamoto et al. [60] proved the nontrivial

upper bound of the looseness of a triangulation G on the sphere, that is, ξ(G) ≤ 11α(G)−10
6

.

They also showed the upper bound of the looseness of a triangulation on a closed surface

generally in the same paper. For other studies of the looseness, see [23, 64, 78].
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2.4 Polychromatic coloring

A polychromatic n-coloring of G on a closed surface is a coloring of G, which is not

necessarily proper, such that all n colors appear on the vertices of the boundary walk of

each face of G. (Figure 2.3 represents a polychromatic 4-coloring of a plane graph.) The

polychromatic number of G is the maximum number n such that G has a polychromatic

n-coloring denoted by p(G).

Figure 2.3: A polychromatic 4-coloring of a plane graph

A polychromatic coloring was introduced by Alon et al. [3] and it is related to guarding

problems as follows. Guarding problems are problems which ask for a small set of vertices

that “see” a given domain, for example, a polygon, a plane graph and so on. Guarding

problems for a polygon are known as art gallery problems [19, 32].

In a guarding problem for a plane graph G, we want to know the smallest set S ⊆ V (G)

such that every face is incident to at least one of the vertices in S. Such a set is called

a guarding set of G and the minimum number of vertices which are in a guarding set

of G is called the guarding number denoted by guard(G) in this thesis. Observe that

each color class, which is a set of vertices colored by the same color, of a polychromatic

coloring becomes a guarding set. That is, guard(G) ≤ n
p(G)

holds, where n is the number

of vertices in G.

It is NP-hard to determine whether p(G) ≥ 3 for a graph G in general [3] and there

are many studies about polychromatic colorings of plane graphs. In 1969, Lovász [58]

showed that p(G) ≥ 2 for any plane graph G. Clearly, p(G) ≤ g(G) holds. Alon et al. [3]

proved that p(G) ≥ ⌊3g(G)−5
4

⌋. Bose et al. [15] proved that every plane graph G with

g(G) ≥ 3 has a polychromatic 2-coloring. Though they had proved it by using Four Color

Theorem, Bose et al. [14] showed it without the theorem later.

Polychromatic colorings of plane graphs with some degree conditions have been

studied. Horev and Krakovski [45] proved that for a plane graph G with ∆(G) ≥ 3

other than K4 and a subdivision of K4 on five vertices, p(G) ≥ 3. Horev et al. [44] also

showed that every cubic bipartite plane graph has a polychromatic 4-coloring.

For triangulations G on the sphere, p(G) = 3 if and only if G is even since even

triangulations on the sphere are 3-colorable [81]. Hoffman and Kriegel [43] proved that
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every 2-connected bipartite plane graph can be transformed into an even triangulation by

adding edges only. It follows that for a 2-connected bipartite plane graph G, p(G) ≥ 3

by 3-colorability of even triangulations on the sphere. Polychromatic colorings have been

studied not only for graphs on the sphere as the above but also for those on the projective

plane [55].

29





Chapter 3

Triad colorings

In this chapter, we consider a facially-constrained coloring of a triangulation on a closed

surface called a triad coloring.

3.1 Foundations

3.1.1 Motivation and Definition

First, we introduce a motivation of a triad coloring, which is affected by some musical

phenomenon. The interesting fact connecting music and mathematics is told in the

textbook [67] as follows.

There are seven musical notes which are made by playing white keys of piano and called

do, re, mi, fa, so, la and ci. We shall consider consonances constructed of three musical

notes from above skipping one musical note, that is, made by piling three musical notes

on a score as shown in Figure 3.1. For example, the leftmost consonance is well-known

one called “do mi so”.

For each consonance, we consider a triangle which has three musical notes consisting

of the consonance on its corners as shown in Figure 3.2 and then we can make seven

triangles. Considering to paste edges of them whose endpoints are two common musical

notes, we can obtain a figure as shown in Figure 3.3. Side edges of Figure 3.3 have common

musical notes and they can be pasted by twisting, that is, Figure 3.3 becomes a Möbius

band.

Figure 3.1: Seven consonances

The author was impressed by the above fact and considered to improve it in

mathematics. If we replace musical notes do, re, mi, · · · with numbers 0, 1, 2, · · · in
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Figure 3.2: A triangle with three musical

notes
Figure 3.3: Pasted seven triangles

order, then the above musical triangles consist of three numbers i, i + 2 and i + 4 with

modulo 7 for i ∈ {0, · · · , 6}. On the other hand, if we replace musical notes with numbers

0, 4, 1, 5, 2, 6, 3 in order, then the musical triangles consist i ≡ i, i + 1 ≡ i + 1 and

i + 2 ≡ i + 2 (mod 7) for i ∈ {0, · · · , 6}. For the latter sequence of numbers, if we

twice each number, then the resulting sequence is the former ones in modulo 7. Thus,

each number in the latter sequence corresponds to the former one by one. By this idea,

we define a facially-constrained coloring of triangulations on closed surfaces called a triad

coloring as follows.

Let G be a triangulation on a closed surface F 2. Here we use Zn (n ≥ 3) as the color set

{1, . . . , n} with n ≡ 0 (mod n) to define an algebraic property. Put Tn = {{i, i+1, i+2} |
i ∈ Zn} and call it the set of triads. A function c : V (G) → Zn is called an n-triad coloring

if {c(u), c(v), c(w)} belongs to Tn for each face uvw of G. If G has an n-triad coloring,

then G is said to be n-triad colorable.

Let G be a triangulation on a closed surface and define TCS(G) as the set of numbers

n such that G has an n-triad coloring. We call it the triad coloring set. If a graph G is

m-colorable in the ordinary sense, then G is n-colorable for any natural number n ≥ m.

However, triad colorings defined as above do not have such a property. So a natural

question arises; for what number n, a triangulation is n-triad colorable if it is m-triad

colorable? Thus, we would like to investigate the set of such m’s, that is, the elements of

TCS(G).

3.1.2 Observations

Here, we confirm some observations of triad colorings of triangulations on closed surfaces.

For an n-triad coloring c of a triangulation G on a closed surface, since c(u) − c(v) ̸≡ 0

(mod n) for any edge uv of G, the following observation is obtained clearly.

Observation 3.1. Let G be a triangulation on a closed surface. An n-triad coloring of

G is also an n-coloring for n ≥ 3.

Moreover, if n = 3 or 4, then the set of triads Tn contains all 3-element subsets in Zn

and hence, the following observation holds.
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Observation 3.2. Let G be a triangulation on a closed surface. If n = 3 or 4, then an

n-coloring of G is equivalent to an n-triad coloring.

If n ≥ 5, then there are many 3-element subsets in Zn not belonging to Tn. Thus, an

n-colorable triangulation is not always n-triad colorable for n ≥ 5.

In a sense of triad coloring sets, we obtain the following observations clearly.

Observation 3.3. Let G be a triangulation on a closed surface. If χ(G) = 3, then

TCS(G) = {3, 4, 5, · · · }.

Observation 3.4. Let G be a triangulation on a closed surface. If χ(G) = 4, then

TCS(G) contains 4 as its element.

3.2 Triad complexes and coverings

To investigate elements of TCS(G) of a triangulation G on a closed surface, we prepare

the special structure called a triad complex using some notions of algebraic topology.

We regard Zn as a set of points 1, . . . , n to define a simplicial 2-complex over the

color set. Let K(Tn) denote the simplicial 2-complex induced from Zn by adding all

triads {i, i + 1, i + 2} ∈ Tn and their subsets, that is, their 0-dimensional simplexes and

1-dimensional simplexes. We call it the triad complex of Tn. Then K(Tn) can be regarded

as a triangulation on the closed surface obtained from all triangles having three vertices

{i, i+ 1, i+ 2} by pasting them along edges {i, i+ 1} for i ∈ Zn. We call the surface the

triad space of Tn and denote it byX(Tn). It is clear thatX(T3) is a triangle and that X(T4)

is the tetrahedron homeomorphic to the sphere. When n ≥ 5, X(Tn) is homeomorphic to

an annulus if n is even and to a Möbius band if n is odd.

Let G be a triangulation on a closed surface F 2. Since G is a simple graph, G itself

has the structure of a simplicial 1-complex over V (G). Let K(G) denote the simplicial

2-complex obtained from G by adding all faces as 2-dimensional simplexes.

Suppose that G has an n-triad coloring c : V (G) → Zn for some n ≥ 3. Then it is clear

that c extends naturally to a simplicial map c : K(G) → K(Tn), which is non-degenerate,

that is, it sends each simplex of K(G) to a simplex of the same dimension in K(Tn).

Furthermore, c induces a continuous map fc : F 2 → X(Tn). Conversely, if we have a

continuous map f : F 2 → X(Tn) which induces a simplicial map between K(G) and

K(Tn), then it induces an n-triad coloring c : V (G) → Zn of G with f = fc.

Now we consider a covering space of the triad space X(Tn), which is a pair of a

topological space X̃ and a locally homeomorphic surjection p : X̃ → X(Tn). Recall that

X(Tn) is homeomorphic to either an annulus or a Möbius band if n ≥ 5. Then its covering

space also is either an annulus or a Möbius band which winds around it several times via

the projection if the space is compact. There is a unique non-compact covering space of

X(Tn), which is a strip of infinite length homeomorphic to R × [0, 1] and which winds
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around X(Tn) infinite times. We call it the universal covering space of X(Tn) and denote

it by X̃{1}(Tn). Note that π1(X(Tn)) ∼= Z and π1(X̃{1}(Tn)) ∼= {1}.
Let p : X̃{1}(Tn) → X(Tn) be the covering projection of the universal covering space

X̃{1}(Tn) on X(Tn). Pulling back each simplex in K(Tn) by p, we obtain a simplicial

complex of X̃{1}(Tn) which contains an infinite number of simplexes. We denote this

simplicial complex by K(X̃{1}(Tn)). Then this can be regarded as a simplicial 2-complex

over Z with 2-dimensional simplexes {i, i+1, i+2} (i ∈ Z). Then p works as a simplicial

map from K(X̃{1}(Tn)) to K(Tn), which sends each 2-dimensional simplex {i, i+1, i+2}
(i ∈ Z) to a 2-dimensional simplex {i, i+ 1, i+ 2} (i ∈ Zn).

3.3 Triad coloring sets of triangulations on closed

surfaces

In this section, we prove Theorem 0.4 and Theorem 0.3 described in Introduction.

3.3.1 Lemmas

First, we show some lemmas for triad colorings by using triad complexes.

Lemma 3.5. Let n ≥ 6 be a natural number. If a triangulation G on a closed surface

is n-triad colorable, then G is 4-colorable. In particular, if n ≡ 0 (mod 3), then G is

3-colorable.

Proof. Suppose that G has an n-triad coloring c : V (G) → Zn for a natural number n ≥ 6.

Consider the square of the cycle over Zn, say C
2
n, which is the 1-skeleton ofK(Tn). If n ≡ 0

(mod 3), then there is a 3-coloring c3 : Zn → {1, 2, 3} of C2
n. Otherwise, it is easy to find

a 4-coloring c4 : Zn → {1, 2, 3, 4} of C2
n. Then the composition ck c : V (G) → {1, 2, . . . , k}

of two colorings c and ck (k = 3 or 4) becomes a k-coloring of G since fc sends each edge

in G to an edge in C2
n. Thus, the lemma follows.

Lemma 3.6. Let n ≥ 6 be a natural number. If a triangulation G on a closed surface is

n-triad colorable, then G is (n− 3)-triad colorable.

Proof. Suppose that G has an n-triad coloring c : V (G) → Zn for a natural number n ≥ 6.

Define a map gn : Zn → Zn−3 by gn(x) = x for x = 0, 1, . . . , n−4, gn(n−3) = 0, gn(n−2) =

1 and gn(n − 1) = 2. Then it is easy to see that gn induces a non-degenerate simplicial

map between K(Tn) and K(Tn−3). The composition gnc : V (G) → Zn−3 becomes an

(n− 3)-triad coloring of G.

Lemma 3.7. Let n ≥ 3 and m ≥ 3 be natural numbers such that m divides n. If a

triangulation G on a closed surface is n-triad colorable, then G is m-triad colorable.
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Proof. Since m divides n, we can define a map hn,m : Zn → Zm by hn,m(x) ≡ x (mod m)

and hn,m induces a non-degenerate simplicial map from K(Tn) to K(Tm). Composing an

n-triad coloring c : V (G) → Zn with this hn,m, we obtain an m-triad coloring hn,mc :

V (G) → Zm.

Lemma 3.8. If a triangulation G on a closed surface has an n-triad coloring for a natural

number n ≥ 5 and if there is a triad in Tn which does not appear at any face of G in the

coloring, then G is 3-colorable.

Proof. Let c : V (G) → Zn be an n-triad coloring of a triangulation G on a closed surface

F 2 and suppose that the triad {1, 2, 3} ∈ Tn does not appear at any face of G in the triad

coloring c. That is, the simplicial map fc : K(G) → K(Tn) induced by c carries any face

to a triad different from {1, 2, 3}.
Suppose that there is a vertex v in G which fc sends to the vertex 2 in K(Tn), that

is, fc(v) = 2. Let Ck be the link of v in K(G), which is a cycle consisting of all neighbors

of v and surrounds v on the surface. Since Ck is connected, the whole of fc(Ck) must be

contained in exactly one of edges 01 and 34 in K(Tn). Split the vertex 2 into two distinct

vertices 2′ and 2′′ to obtain another 2-dimensional simplicial complex K ′, where each of

{0, 1, 2′} and {2′′, 3, 4} becomes a 2-dimensional simplex in K ′. Then we can modify the

simplicial map fc to be a simplicial map f ′
c : K(G) → K ′.

The underlying space of K ′ is homeomorphic to a disk and the 1-skeleton of K ′ has

a 3-coloring c′ : V (K ′) → {1, 2, 3}. Pulling back this 3-coloring c′ via f ′
c, we obtain a

3-coloring c′f ′
c : V (G) → {1, 2, 3} of G.

Lemma 3.9. Let G be a triangulation on a closed surface F 2 and suppose that G has

an n-triad coloring c : V (G) → Zn for some natural number n ≥ 5. If fc#(π1(F
2)) is a

trivial subgroup in π1(X(Tn)), then G is 3-colorable.

Proof. Suppose that fc#(π1(F
2)) = {1} < π1(X(Tn)) and consider the universal covering

space X̃{1}(Tn) of X(Tn). Since π1(X̃{1}(Tn)) is trivial, we have p#(π1(X̃{1}(Tn))) must be

the trivial subgroup in π1(X(Tn)), which contains fc#(π1(F
2)). Then fc can be lifted to

X̃{1}(Tn) by Map Lifting Property.

Let f̃ : F 2 → X̃{1}(Tn) be the lift of fc and let c3 : Z → Z3. Since Z forms the vertex

set of K(X̃{1}(Tn)) as in the previous, c3 can be regarded as a 3-coloring of its 1-skeleton;

i and i + 1 get two different colors and so do i and i + 2. Then c3 f̃ |V (G) : V (G) → Z3

becomes a 3-coloring of G.

3.3.2 Proof of Theorem 0.3

We first show Theorem 0.3 to investigate the elements of TCS(G) for a triangulation G on

the sphere and the projective plane. We recall the theorem for the readability as follows.

Theorem 0.3. Let n be any natural number ≥ 5. A triangulation G on the sphere or the

projective plane has an n-triad coloring if and only if G has a 3-coloring.
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Proof of Theorem 0.3. Let G be a triangulation on a closed surface F 2. If G has a

3-coloring c : V (G) → {1, 2, 3}, then we can define an n-triad coloring cn : V (G) → Zn

by cn(v) ≡ c(v) (mod n). Thus, the sufficiency holds.

Now suppose that G has an n-triad coloring c : V (G) → Zn. Then this extends to a

simplicial non-degenerate map fc : F
2 → X(Tn), which induces a group homomorphism

fc# : π1(F
2) → π1(X(Tn)). If F 2 is homeomorphic to the sphere, then π1(F

2) is trivial,

and hence fc#(π1(F
2)) must be trivial. If F 2 is homeomorphic to the projective plane,

then π1(F
2) ∼= Z2 and fc#(π1(F

2)) must be trivial since π1(X(Tn)) ∼= Z has no torsion

for n ≥ 5. Therefore, G is 3-colorable by Lemma 3.9 and the necessity holds.

By Four Color Theorem, the chromatic number of any triangulation on the sphere is

equal to 3 or 4. Therefore, we can conclude the following theorem:

Theorem 3.10. Let G be a triangulation on the sphere.

• If χ(G) = 3, then G has an n-triad coloring for any natural number n ≥ 3.

• If χ(G) = 4, then G has a 4-triad coloring and no n-triad coloring for n ̸= 4.

There are three options for the projective plane since the chromatic numbers of its

triangulations can be more than 4:

Theorem 3.11. Let G be a triangulation on the projective plane.

• If χ(G) = 3, then G has an n-triad coloring for any natural number n ≥ 3.

• If χ(G) = 4, then G has a 4-triad coloring and no n-triad coloring for n ̸= 4.

• If χ(G) ≥ 5, then G has no n-triad coloring for any natural number n ≥ 3.

Proof of Theorems 3.10 and 3.11. Let G be a triangulation on the sphere or the projective

plane. Then we have χ(G) = 3 or 4 for the sphere while 3 ≤ χ(G) ≤ 6 for the projective

plane [72]. The same argument as in the first paragraph of the previous proof implies that

if G is 3-colorable, that is, if χ(G) = 3, then G has an n-triad coloring for any natural

number n ≥ 3. On the other hand, if χ(G) ≥ 4, then G has no n-triad coloring for any

natural number n ≥ 5 by Theorem 0.3. If χ(G) = 4, then G has a 4-coloring, which

can be regarded as a 4-triad coloring. If χ(G) ≥ 5, then G has neither 3- nor 4-coloring

and hence it has no n-triad coloring for any n ≥ 3. The last case happens only for the

projective plane.

Theorem 0.3 implies that a 3-colorable triangulation has an n-triad coloring for some

n ≥ 5, but the n-triad coloring constructed in the proof contains only 3 colors 1, 2 and

3. Is there an n-triad coloring which contains all n colors? In fact, we can make such

an n-triad coloring by “attaching an octahedron” shown as in Figure 3.4. Here let G

be a triangulation on a closed surface which has an n-triad coloring. Suppose that the

three vertices of a face uvw of G are colored by i, i + 1 and i + 2, respectively. Attach
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an octahedron inside the face and color the added vertices by i+ 1, i + 2 and i + 3 as in

Figure 3.4. If the new color i+ 3 does not exceed n, then the resulting coloring becomes

an n-triad coloring of the new triangulation. Repeating this operation, we can obtain

a triangulation on the same closed surface and its n-triad coloring which contains all n

colors.

Figure 3.4: Attaching an octahedron

3.3.3 Proof of Theorem 0.4

Next, we prove Theorem 0.4. To show it, we see the following lemma.

Lemma 3.12. Let n ≥ 4 be a natural number. If n ̸≡ 0 (mod 3), then there is a natural

number m ≥ ⌊n/2⌋ − 1 such that m divides either n or n− 3 and that m ≡ −n (mod 3).

Proof of Theorems 3.10 and 3.11. If n is an even number 2m, then we have n = 2m ≡ −m
(mod 3) and hence m ≡ −n (mod 3) and m = n/2 > ⌊n/2⌋ − 1. On the other hand, if n

is an odd number, then n− 3 is an even number 2m. In this case, we have n ≡ n− 3 =

2m ≡ −m (mod 3). Thus, m ≡ −n (mod 3) and m = (n− 3)/2 = ⌊n/2⌋ − 1.

Now we recall Theorem 0.4 and prove it.

Theorem 0.4. Let G be a triangulation on a closed surface.

(i) If χ(G) = 3, then TCS(G) consists of all natural numbers n ≥ 3.

(ii) If χ(G) = 4, then there exists the maximum number n ≥ 4 with n ̸≡ 0 (mod 3) such

that G has an n-triad coloring. For this number n, TCS(G) includes all natural

numbers k such that 4 ≤ k ≤ n and k ≡ n (mod 3). Furthermore, if n ≥ 8, then

there is a natural number m ≥ ⌊n/2⌋ − 1 with m ≡ −n (mod 3) such that TCS(G)

includes all natural numbers k with 4 ≤ k ≤ m and k ≡ m (mod 3), and TCS(G)

includes no other numbers.

(iii) If χ(G) = 5, then either TCS(G) = {5} or TCS(G) = ∅.

(iv) If χ(G) ≥ 6, then TCS(G) = ∅.

37



Proof of Theorem 0.4. (i) First suppose that G has a 3-coloring c : V (G) → {0, 1, 2}.
Since Zn contains 0, 1 and 2 as three distinct elements for any n ≥ 3, the 3-coloring c

can be regarded as an n-triad coloring of G. Thus, if χ(G) = 3, then we have TCS(G) =

{n ∈ N : n ≥ 3}.

(ii) Suppose that χ(G) = 4 and that G has an n-triad coloring for some n ≥ 4. Since

K(Tn) has exactly n 2-dimensional simplexes, if n is more than the number of faces of G,

then there is a triad in K(Tn) which is not assigned to any face of G. By Lemma 3.8, G

would be 3-colorable in this case, which is contrary to our assumption. Thus, the number

of faces will be an upper bound for n.

By Lemma 3.6, if n ≥ 6 belongs to TCS(G), then so does any integer k ≥ 3 with k ≡ n

(mod 3). However, if n ≡ 0 (mod 3), then 3 would belong to TCS(G) and G would be

3-colorable. Therefore, the maximum element in TCS(G), say n, is congruent to 1 or 2

modulo 3 and TCS(G) includes a series of decreasing numbers n = n0, n1, . . . ≥ 4 with

ni ≡ n (mod 3).

By Lemma 3.12, there is an integer m ≥ ⌊n/2⌋ − 1 such that m divides either n or

n − 3 and that m ≡ −n (mod 3). If n ≥ 8, then we have m ≥ 4. Since n and n − 3

belong to TCS(G), so does m by Lemma 3.7. Consider the maximum of such m’s. Then

TCS(G) includes another series of decreasing numbers m = m0,m1, . . . ≥ 4 with mi ≡ m

(mod 3). One of the two series of decreasing numbers ends at 4.

(iii) and (iv) By Lemma 3.5, if TCS(G) contains n ≥ 6, then χ(G) ≤ 4. Thus, if χ(G) ≥ 5,

then TCS(G) does not contain any integer n ≥ 6. Therefore, we have TCS(G) = {5} or

= ∅ in this case.

3.3.4 Triad colorings of triangulations on the torus

Triangulations on the sphere or the projective plane whose chromatic numbers are more

than 3 have no n-triad colorings for n ̸= 4 by Theorem 0.3. However, it does not hold for

other closed surfaces in general. Moreover, in the proof of Theorem 0.4 (ii), there are two

series of decreasing integers n = n0, n1, . . . and m = m0,m1, . . .. However, it is difficult to

estimate the gap between n and m more precisely. For example, we do not know whether

G has (n− 1)- or (n− 2)-triad colorings for the maximum element n ∈ TCS(G). In this

subsection, we shall show some examples of triangulations on the torus corresponding to

the above problems and each case of Theorem 0.4.

6-regular triangulations on the torus have been classified in [4] and [63], and can be

described using three parameters p, q and r. We use the notation given in the latter as

follows. Prepare a rectangle subdivided by (p+1)×(r+1) grid having the vertices v(x,y) for

x = 0, . . . , r and y = 0, . . . p, and add the diagonal v(x,y)v(x+1,y+1) of slope 1 in each small

square. First identify the pair of horizontal sides of length r+1 to obtain a cylinder having

two cycles of length p at its ends. The left cycle consists of v(0,0) = v(0,p), v(0,1), . . . , v(0,p−1)

and the right cycle has v(r,0) = v(r,p), v(r,1), . . . , v(r,p−1). Identify these cycles at both ends
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of the cylinder so that v(0,y) = v(r,y−q) afterward, where y − q is considered in modulo p.

Then we obtain a 6-regular triangulation on the torus and denote it by T (p, q, r). If one

starts at v(0,0) on the left cycle and go along the path corresponding to the horizontal side

toward the right cycle, then he will reach v(r,0) = v(0,q). (See Figure 3.5 for T (5, 3, 4).)

𝑣 "," = 𝑣 ",%

𝑣 ",&

𝑣 ",'

𝑣 ",(

𝑣 ",)

𝑣 ","

𝑣 &,)

𝑣 &," = 𝑣 ",'

𝑣 &,( = 𝑣 ","

𝑣 &,% = 𝑣 &,"

𝑣 &,'

𝑣 &,&

Figure 3.5: The 6-regular triangulation T (5, 3, 4) on the torus

First, we show a 6-regular triangulation on the torus which is a counterexample of

Theorem 0.4 for a graph on the torus. Let G be a 6-regular triangulation T (5, 0, 5) on the

torus as shown in Figure 3.6. The chromatic number of χ(T (p, q, r)) have been already

determined completely by the results in [20, 80, 86] and G is known as 4-colorable. It is

easy to see that if T (p, q, r) is 3-colorable, then 3 divides p. Since 3 does not divide 5,

we obtain that χ(G) = 4. Moreover, Figure 3.6 shows a 5-triad coloring of G. This fact

means that Theorem 0.3 does not always hold on triangulations on closed surfaces other

than the sphere and the projective plane.

Figure 3.6: A 5-triad colorable triangulation G on the torus with χ(G) = 4

To analyze triad colorings of T (p, q, r), we shall prepare several lemmas. The next one

will be used to give an upper bound for elements n ∈ TCS(T (p, q, r)). Here, a zigzag path
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Z = v0v1 . . . vk for k ≥ 1 of a 6-regular triangulation G on the torus is a path in G such

that every angle between vi and vi+1 for i = 0, . . . , k − 1 is 60◦.

Lemma 3.13. Let G be a 6-regular triangulation on the torus and suppose that G has

an n-triad coloring c : V (G) → Zn for some n ≥ 5. If the two ends of a zigzag path

Z = w0w1 · · ·wk of length k < n get the same color, then k ≡ 0 (mod 3).

Proof. Consider the non-degenerate simplicial map fc : K(G) → K(Tn) induced by an

n-triad coloring c : V (G) → Zn and suppose that c(w0) = c(wk) = 0. Since k < n,

the path fc(Z) in K(Tn) cannot reach the vertex 0 ∈ Zn, going around the annulus or

the Möbius band. It follows that we can trace the image of fc(Z) as a walk Z ′ in the

zigzag ladder complex K ′ over [−k, k] = {−k,−k + 1, . . . ,−1, 0, 1, . . . , k} with triangles

∆i = {i, i+1, i+2}. That is, the natural projection p : [−k, k] → Zn maps Z ′ onto fc(Z)

in K(Tn). The walk Z ′ in K ′ starts at the vertex 0 and comes back to 0. This may not

be a zigzag path, but turns 60◦ at each corner if we draw each face ∆i as an equilateral

triangle.

Fold the end of the zigzag ladder complex K ′ with a crease {k − 1, k − 2} to obtain a

shorter zigzag ladder complex K ′′ with the most right triangle ∆k−2 missing. Then Z ′ will

be deformed into a similar walk in K ′′. Repeat such folding of the zigzag ladder complex

at both ends until only one triangle ∆−1 = {−1, 0, 1} remains. Then ∆−1 includes a walk

of length k starting and ending at 0 as a trace of fc(Z) and the walk must turn 60◦ at each

corner of ∆−1. This implies that it goes around the triangle k/3 times in one direction.

Therefore we have k ≡ 0 (mod 3).

Lemma 3.14. Let G be a 6-regular triangulation on the torus and suppose that G has an

n-triad coloring for a natural number n ≥ 5. For each triad which appears on vertices of

the boundary walk of faces in G, it appears at least four times in G.

Proof. Let c : V (G) → Zn be an n-triad coloring and take a face u0v0w0 of G which gets

a triad {1, 2, 3} ∈ Tn. We may assume that c(u0) = 1, c(v0) = 2 and c(w0) = 3. The face

u0v0w0 is surrounded by twelve faces and by a cycle of length 9. Let v1u2w3u1w2v3w1v2u3
be the cycle and let u0v0w2, v0w0u2 and w0u0v2 be the three faces adjacent to u0v0w0.

Then the remaining nine faces will be automatically labeled as uivjwk.

First look at u0w0v2. Since {1, 2, 3} is the unique triad in Tn containing {1, 3} if n ≥ 5,

the face u0w0v2 necessarily gets the triad {1, 2, 3}. Thus, it suffices to find two more faces

which have {1, 2, 3} in the triad coloring c.

There are only two triads in Tn containing {1, 2}, namely {0, 1, 2} and {1, 2, 3}. This
implies that either c(w2) = 0 or 3. If c(w2) = 3, then u0v0w2 gets the triad {1, 2, 3} and

so does u0w2v3; we found two in this case. Thus we may assume that c(w2) = 0 and

conclude that w2u1v0 gets the triad {0, 1, 2} and c(u1) = 1.

Similarly, if u2v0w0 gets the triad {1, 2, 3}, then so does u2v1w0. Otherwise, v0w0u2
gets the triad {2, 3, 4} and we have c(w3) = 3. Therefore, we found the third face u1v0w3

having {1, 2, 3} with c(u1) = 1 and c(w3) = 3.
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Carrying out the same argument for the face u1v0w3 as for u0v0w0, we conclude that

if we never found two more {1, 2, 3}, then the face meeting u1w3 different from u1v0w3

gets the triad {1, 2, 3}. This is the fourth face having the triad {1, 2, 3}. The simpleness

of G guarantees that the four faces we found are all different.

Theorem 3.15. If T (p, q, r) is not 3-colorable, then the maximum element in

TCS(T (p, q, r)) does not exceed pr/2.

Proof. The 6-regular triangulation T (p, q, r) on the torus has exactly 2pr faces. If it has

an n-triad coloring and is not 3-colorable, then any triad in Tn appears at four or more

faces by Lemmas 3.8 and 3.14. This implies that 4n ≤ 2pr and hence n ≤ pr/2.

In what follows, we show some examples of 6-regular triangulations T (p, q, r) on the

torus to see various patterns of TCS(T (p, q, r)).

Example 1. If p ≡ 0 and r+q ≡ 0 (mod 3), then χ(T (p, q, r)) = 3 and TCS(T (p, q, r)) =

{n ∈ N : n ≥ 3}.

It is not so easy to determine TCS(T (p, q, r)) if it is not 3-colorable in general. So we

shall discuss T (p, q, r) here only for a few concrete parameters (p, q, r).

Example 2. χ(T (5, 3, 4)) = 4 and TCS(T (5, 3, 4)) = {4, 5, 7, 10}. The maximum element

10 in this is congruent to 1 modulo 3 and it includes two series of decreasing numbers

10, 7, 4 and 5.

Proof. Assign 0, 2, 4, 6 and 8 to v(0,0), . . . , v(0,4), 1, 3, 5, 7 and 9 to v(1,1), . . . , v(1,5), 0, 2, 4, 6

and 8 to v(2,1), . . . , v(2,5) and 1, 3, 5, 7 and 9 to v(3,2), . . . , v(3,1) in order. This assignment

extends naturally to a 10-triad coloring of T (5, 3, 4) and hence TCS(T (5, 3, 4)) contains

the decreasing numbers 10, 7 and 4 by Lemma 3.6 and 5 by Lemma 3.7. Since T (5, 3, 4)

is not 3-colorable and 5 × 4/2 = 10, it does not have any n-triad coloring for n > 10 by

Theorem 3.15. Thus, it suffices to show that 8 does not belong to TCS(T (5, 3, 4)).

Suppose that T (5, 3, 4) has an 8-triad coloring. Since it has exactly 20 vertices, at

least one of eight colors must be used for more than two vertices. Assume that color 0 is

such a color. Since it is vertex-transitive, we may assume that v(2,2) gets color 0. Then the

six neighbors of v(2,2) cannot get color 0. Furthermore, Lemma 3.13 forbids all vertices,

except v(2,2) and v(0,1), to have color 0. Thus, there are at most two vertices having color

0. However, this is contrary to our assumption on color 0. Therefore, T (5, 3, 4) does not

have an 8-triad coloring.

Example 3. χ(T (22, 16, 1)) = 4 and TCS(T (22, 16, 1)) = {4, 5, 8, 11}. The maximum

element 11 in this is congruent to 2 modulo 3 and it includes two series of decreasing

numbers {11, 8, 5} and {4}.
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Proof. The 6-regular triangulation T (22, 16, 1) on the torus has a hamilton cycle, namely

v(0,0)v(0,1) · · · v(0,21) and we can assign 0, 2, . . . , 10, 1, 3, . . . , 9 twice to the vertices along

this hamilton cycle to obtain an 11-triad coloring. Since T (22, 16, 1) is not 3-colorable

and 22 × 1/2 = 11, the maximum element in TCS(T (22, 16, 1)) is 11 by Theorem 3.15.

It follows that TCS(T (22, 16, 1)) contains 11, 8 and 5. Furthermore, T (22, 16, 1) has a

4-coloring. Since any 4-coloring can be regarded as a 4-triad coloring, TCS(22, 16, 1) ⊃
{4, 5, 8, 11}. Thus, it suffices to show that it does not contain 7, which implies that it

does not contain 10 by Lemma 3.6.

Suppose that there is a 7-triad coloring c : V (T (22, 16, 1)) → Z7. Since 22/7 > 3, at

least one color, say color 0, must appear at four or more vertices. Choose two vertices

having color 0 to minimize the distance between them along the hamilton cycle. Since

22/4 < 6, we may assume that c(v(0,0)) = c(v(0,t)) = 0 and t ≤ 5. However, we must have

t = 3 by Lemma 3.13 while there is a zigzag path of length 5 between v(0,3) and v(1,6).

The latter is contrary to Lemma 3.13 since v(1,6) = v(0,0) must have color 0. Therefore,

T (22, 16, 1) does not have any 7-triad coloring.

Example 4. χ(T (14, 10, 1)) = 4 and TCS(T (14, 10, 1)) = {4, 7}. This contains only two

congruent integers modulo 3 and hence the condition of n ≥ 8 in Theorem 0.4 (ii) cannot

be omitted.

Proof. The 6-regular triangulation T (14, 10, 1) on the torus has the hamilton cycle

v(0,0)v(0,1) · · · v(0,13). By Theorem 3.15, the maximum element in TCS(T (14, 10, 1)) does

not exceed 14 × 1/2 = 7. Assign 2i (mod 7) to v(0,i). Such an assignment becomes a

7-triad coloring and hence it suffices to show that 5 ̸∈ TCS(T (14, 10, 1)).

Suppose that T (14, 10, 1) has a 5-triad coloring c : V (T (14, 10, 1)) → Z5. We may

assume that c(v(0,0)) = 0. Investigating the ends of zigzag path starting at v(0,0) and at

v(1,4) = v(0,0), we conclude that the four vertices v(0,1) to v(0,4) cannot get color 0 by Lemma

3.13. This implies that each pair of vertices having color 0 have distance at least 5 along

the hamilton cycle v(0,0)v(0,1) · · · v(0,13) of length 14 and there are at most two vertices

having color 0. This is the same for other colors and hence T (14, 10, 1) would have at

most 10 vertices, a contradiction. Therefore, there does not exist its 5-triad coloring.

By the same logic using Lemma 3.13 and Theorem 3.15 as in the previous examples,

we can conclude the following. Since the chromatic number of any graph on the torus

does not exceed 7 by Map Color Theorem [72], there are only four cases for the chromatic

numbers of triangulations on the torus, namely χ(G) = 3, 4, 5, 6 and 7. By the result in

[80], T (11, 7, 1) is the unique 6-chromatic 6-regular graph on the torus and it has been

denoted by J in [1]. Also T (7, 2, 1) is the unique 7-chromatic one and is isomorphic to

K7. Both T (10, 7, 1) and T (3, 1, 3) contain K5 as their subgraphs and hence they are not

4-colorable.

• χ(G) = 3: TCS(T (p, q, r)) = {n ∈ N : n ≥ 3}.
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• χ(G) = 4: TCS(T (4, 1, 3)) = {4}, TCS(T (5, 2, 3)) = {4, 5}

• χ(G) = 5: TCS(T (10, 7, 1)) = {5}, TCS(T (3, 1, 3)) = ∅

• χ(G) = 6: TCS(T (11, 7, 1)) = ∅

• χ(G) = 7: TCS(T (7, 2, 1)) = ∅
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Chapter 4

Facial complete colorings

In this chapter, we consider a facially-constrained coloring of a triangulation on a closed

surface called a facial complete coloring.

4.1 Definition and observations

Let G be a graph on a closed surface. In this chapter, a coloring is not necessarily proper

and we say a proper coloring if we assume that a coloring is proper. For a positive integer t,

an n-coloring c : V (G) → {1, 2, . . . , n} is a facial t-complete n-coloring if for any t-element

subset X of n colors, there exists at least one face such that X is a subset of colors

assigned to the vertices lying along its boundary walk. The facial t-achromatic number

of G, denoted by ψt(G), is the maximum number n such that G has a facial t-complete

n-coloring. Similarly, for a proper n-coloring, a proper facial t-complete n-coloring and

the proper facial t-achromatic number ψp
t (G) are defined as well as non-proper ones.

We first give several observations for a (proper) facial complete coloring and the

(proper) facial achromatic number. The following observations are trivial from the

definitions.

Observation 4.1. For any graph G on a closed surface, we have

ψt(G) ≥ ψp
t (G)

if G has a proper facial t-complete coloring.

Observation 4.2. Let G be a graph on a closed surface and let h(G) be the length of the

longest boundary walk of G. If G has a facial t-complete coloring, then t ≤ h(G).

Observation 4.3. Let G be a triangulation on a closed surface. If χ(G) = 3, then we

have

ψ3(G) ≥ ψp
3(G) ≥ 3.

Note that it is well known that an even triangulation on the sphere is 3-colorable [81]

and hence, ψ3(G) ≥ ψp
3(G) ≥ 3 holds for such a graph.
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Observation 4.4. Let G be a triangulation on a closed surface. If ψp
3(G) ≥ k, then the

number of faces of G is at least
(
k
3

)
.

Next, we introduce two graph families which are related to graphs shown in Figure 1.

Let v1v2v3 be a triangular face in a triangulation G with deg(v1) = deg(v2) = deg(v3) = 4.

Suppose that v1v2v3 is surrounded by a 3-cycle v′1v
′
2v

′
3 and that vivjv

′
k and viv

′
jv

′
k are faces

for {i, j, k} = {1, 2, 3}. The octahedron removal is removing v1, v2 and v3 from G as shown

in Figure 4.1. The inverse operation of the octahedron removal is called the octahedron

addition. (This operation was introduced in [9].)

!"

!#

!$

!"′

!#′

!$′ !"′

!#′

!$′

Figure 4.1: The octahedron removal

The octahedron cylinder OCn is an even triangulation on the sphere which is obtained

from the octahedron by repeatedly applying an octahedron addition to a face xyz with

deg(x) = deg(y) = deg(z) = 4 for n ≥ 0 times. Note that DW4 = OC0 is the octahedron

and the graph shown in the center of Figure 1 is OC1.

Proposition 4.5. If n ∈ {0, 1}, then ψp
3(OCn) = 3.

Proof. Since OC0 is isomorphic to DW4, it is easy to check that it has no proper facial

3-complete n-coloring for n ≥ 4; note that a face which consists of three distinct colors

assigned to vertices on the rim cannot appear in DW4. (The details of the check are

described in Proposition 4.8.)

Suppose that G = OC1 in which vertices in G are labelled as in the center of Figure 1.

Since the number of faces of G is 14 <
(
6
3

)
, G may have a proper facial 3-complete 4- or

5-coloring. We first show that G has no proper facial 3-complete 4-coloring. Without loss

of generality, we color the vertices a, b, c, d, e and f by colors 1, 2, 3, 4, 1 and 2, respectively.

(If we color a, b, c, d, e and f by colors only 1, 2 and 3, then two of triples of 4 colors

containing color 4 cannot appear.) In this case, we have two triples {1, 2, 3} and {1, 2, 4},
but in any proper coloring of g, h and i, one of {1, 3, 4} and {2, 3, 4} cannot appear.

Next, we show that G has no proper facial 3-complete 5-coloring. If we color the

octahedron by using five colors 1, 2, 3, 4 and 5, then at most four kinds of triples of colors

appear. (For example, color a, b, c, d, e and f by color 1, 2, 3, 4, 1 and 5, respectively.)

Since OC1 is obtained from two octahedrons by identifying one face of each octahedron,
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at most eight kinds of triples of colors can appear, and hence, we cannot obtain a proper

facial 3-complete 5-coloring.

The split double wheel Qn for n ≥ 2 is an even triangulation on the sphere which is

obtained from a quadrangulation on the sphere (i.e., a graph on a closed surface such

that every face is quadrilateral) whose faces are v1xv2y, v2xv3y, . . . , vn−1xvny, vnxv1y by

adding two adjacent vertices ai and bi to inside a face vixvi+1y and adding six edges

aivi, aivi+1, bivi, bivi+1, aix and biy; see the right of Figure 1. (The split double wheel was

introduced in [51] in detail.) Note that DW6 = Q2 and the graph shown in the right of

Figure 1 is Q3. In what follows, the inside of the disk surrounded by a contractible cycle

v1 · · · vk for k ≥ 3 is called a region.

Proposition 4.6. If n ∈ {2, 3}, then ψp
3(Qn) = 3.

Proof. Since Q2 is isomorphic to DW6, it is easy to check that it has no proper facial

3-complete n-coloring for n ≥ 4 similar to DW4 in Proposition 4.5. (The details of the

check are described in Proposition 4.8 in Section 4.2.)

Suppose that G = Q3 in which vertices in G are labelled as in the right of Figure 1.

Since the number of faces of G is 18 <
(
6
3

)
, G may have a proper facial 3-complete

m-coloring for m ∈ {4, 5}. For the case when m = 4, if we color x and y by the same

color 1 and v1 by color 2, then v2 and v3 must be colored by color 2. Thus, each face

has a vertex colored by 2, and so, we cannot obtain a proper facial 3-complete 4-coloring.

On the other hand, if we color x and y by color 1 and 2, respectively, and v1 by color 3,

then v2 and v3 are colored by color 3 or 4. If both v2 and v3 are colored by 3, then we

are done as the previous case. Thus, by symmetry, we assume that exactly one of v2 and

v3, say v2, is colored by 4. The inside of two quadrilateral regions v1xv2y and v2xv3y are

colored uniquely, and hence, two triples {1, 2, 3} and {1, 2, 4} appear. Though the inside

of v3xv1y is not colored uniquely, at most two of triples of colors can appear. Moreover,

{1, 2, 3} certainly appears inside of it. Since at most three triples of colors can appear in

total, G has no proper facial 3-complete 4-coloring.

For m = 5, we consider the colors assigned to v1, v2 and v3. If we color v1, v2 and

v3 by different three colors j, k and l for {j, k, l} ⊆ {1, 2, 3, 4, 5}, then a triples of colors

{j, k, l} cannot appear on any face of G. If two of v1, v2 and v3 have the same color

j and the other is colored by k (possibly j = k), then a triple which consists of three

colors in {1, 2, 3, 4, 5} \ {j, k} does not appear. Hence, G has no proper facial 3-complete

5-coloring.

On the other hand, there are triangulations which have no facial 3-complete coloring,

as follows.

Proposition 4.7. There exist infinitely many triangulations on the sphere which have no

(resp., proper) facial 3-complete n-coloring for any n ≥ 5 (resp., n ≥ 3).

47



Proof. Consider the double wheel DW2n+1 for any integer n ≥ 1. Assume that the two

vertices not on the rim are colored by color i and j for i, j ∈ {1, . . . , n}. (Note that i and
j may be the same.) In this case, there exists no face whose vertices are all colored by

colors except i and j. Therefore, for any n-coloring of DW2n+1 with n ≥ 5, three colors

used only on the rim cannot appear on any face. Moreover, χ(DW2n+1) = 4 and at least

three colors need to properly color the rim, and hence, we have the same conclusion for

proper colorings as above.

Proposition 4.8. There exist infinitely many even triangulations on the sphere which

have no (resp., proper) facial 3-complete n-coloring for any n ≥ 5 (resp., n ≥ 4).

Proof. We can show the proposition similarly to Proposition 4.7 by considering the double

wheel DW2n for any integer n ≥ 2.

4.2 Proof of Theorem 0.7

It is known that every even triangulation on the sphere can be obtained from the

octahedron OC0 by repeatedly applying octahedron addition and 4-splitting [9]. (The

4-contraction is removing a vertex v with degree 4, identifying the vertices b and d and

replacing the two pairs of multiple edges with two single edges as shown in Figure 4.2.

The 4-splitting is the inverse operation of the 4-contraction.) Note that an octahedron

addition and a 4-splitting do not decrease the maximum number of faces whose boundary

cycles are vertex disjoint. In what follows, faces f1 and f2 of a graph on a closed surface

are called vertex disjoint if vertices of the boundary walk of f1 and those of f2 are distinct.

If an octahedron addition is applied to OC0, then we have OC1 and it has three faces

which are vertex disjoint. On the other hand, if we apply the 4-splitting to OC0, then

the double wheel DW6 is obtained. It is easy to check that an even triangulation on the

sphere obtained from DW2m for m ≥ 2 by applying the 4-splitting has exactly three faces

which are vertex disjoint or is DW2(m+1) by symmetry of the graph. Therefore, an even

triangulation on the sphere with exactly two faces which are vertex disjoint is isomorphic

to the double wheel, and hence, we obtain the following corollary.
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Figure 4.2: The 4-contraction
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Corollary 4.9. Let G be an even triangulation on the sphere. If G has at most two faces

which are vertex disjoint, then G has no (resp., proper) facial 3-complete n-coloring for

any n ≥ 5 (resp., n ≥ 4).

Now we shall show Theorem 0.7.

Theorem 0.8. Let G be an even triangulation on the sphere and k be the maximum

number of faces which are vertex disjoint in G. If k ≥ 4
(
n
3

)
, then ψp

3(G) ≥ n.

Proof of Theorem 0.7. Since G is 3-colorable, we properly assign colors 1, 2 and 3 to the

vertices of G. Let T be the set of faces which are vertex disjoint of G with |T | = k ≥ 4
(
n
3

)
.

Let G′ be the graph obtained from G by contracting each face in T to a single vertex and

removing the vertices of G which are not on the boundary walk of the faces in T . (Note

that G′ may have multiple edges and no loops.) Since G′ is also planar, G′ is 4-colorable

by the Four Color Theorem [5], and hence, α(G′) ≥ k
4
≥

(
n
3

)
by assumption.

Let S ⊆ T be the subset corresponding to the maximum independent set of G′ and

let N be
({1,...,n}

3

)
. Since |S| = α(G′) ≥

(
n
3

)
, there exists an surjection f : N → S. Thus,

according to f , we assign each 3-element subset of {1, . . . , n} to one of the faces in S,

keeping the original color of any vertex colored 1, 2 or 3. More formally, for any element

x ∈ N which contains at least one of 1, 2 and 3, the recoloring of the face t = f(x)

preserves 1, 2 or 3 appearing on t which belongs to x. Since the vertices of faces in S are

not adjacent in G, the obtained coloring is a proper facial 3-complete n-coloring.

The order of k in Theorem 0.7 is best possible in general (the coloring is not necessarily

proper), as follows: Let G be a triangulation on the sphere obtained from a double wheel

DW2m for m ≥ 2 by adding an octahedron piece into each face of DW2m incident to x as

shown in Figure 4.3. (Figure 4.3 represents a triangulation which is obtained from DW6.)

Assume that the number of these added octahedron pieces in G is O(nl) for l < 3 and

that we color x and y by color 1 and 2, respectively. The number of faces of G which

contains neither x nor y is four times the number of octahedron pieces, that is, it is O(nl)

for l < 3. Since the number of triples of colors which contain neither 1 nor 2 as its element

is
(
n−2
3

)
and such triples must appear on faces which include neither x nor y, at least one

of such triples cannot appear on faces of G when n is sufficiently large. Thus, G has no

facial 3-complete n-coloring, and the order of k in Theorem 0.7 is best possible.

By Theorem 0.7 and Corollary 4.9, we see that faces which are vertex disjoint in

an even triangulation G on the sphere play an important role to construct a proper

facial 3-complete coloring. However, they are not available for a proper facial 3-complete

4-coloring of 4-chromatic triangulations on the sphere.

Theorem 4.10. For any integer k ≥ 3, there exists a triangulation on the sphere with k

faces which are vertex disjoint, which has no proper facial 3-complete 4-coloring.

Proof. Let G be the graph shown in the left of Figure 4.4. Without loss of generality,

we color the vertices a, b and c by color 1, 2 and 3, respectively. Thus, d and e must be
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Figure 4.3: A triangulation obtained from DW6 by adding octahedron pieces

colored by colors 4 and 2, respectively. If we color f by color 4, then we cannot obtain a

proper 4-coloring of G. Thus, f must be colored by color 2, and hence, we cannot obtain

a proper facial 3-complete 4-coloring since a triple of colors {1, 3, 4} cannot appear.

Let G′ be the graph shown in the right of Figure 4.4. We can obtain G′ from G by

repeatedly adding a copy of the rectangle region bafc of G with all inner vertices and

edges to the triangle region acf identifying ba with fa and bc with fc. Though G′ has
n−3
4

+ 1 faces which are vertex disjoint, where n = |V (G′)|, we see that G′ has no proper

facial 3-complete 4-coloring similarly to G.
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Figure 4.4: Triangulations which have no proper facial 3-complete 4-coloring

4.3 Proof of Theorem 0.8

To prove Theorem 0.8, we first prepare the following lemmas.
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Lemma 4.11 (Komuro et al. [56]). Let G be a triangulation on a closed surface with

minimum degree at least 4 and H be a component of the subgraph induced by the vertices

of degree 4 in G. Then one of the following holds.

(i) H is a path v1, . . . , vs with s ≥ 1 and there are four other vertices forming a cycle

abcd of length 4 such that a and c are adjacent to all of v1, . . . , vs and bv1 · · · vsd
forms a path.

(ii) H is a triangle v1v2v3 and there are three other vertices forming a cycle a1a2a3 of

length 3 such that ai is adjacent to vj and vk for {i, j, k} = {1, 2, 3}.

(iii) H is a cycle v1 · · · vs with s ≥ 5 and G is a double wheel with rim H.

(iv) H = G is the octahedron.

The diamond graph is a complete graph K4 minus one edge as shown in the left of

Figure 4.5, denoted by K−
4 . The right of Figure 4.5 is the double wheel DWs+2 minus one

edge from its rim, denoted by DW−
s+2.

Lemma 4.12. Let R be a quadrilateral region abcd in an even triangulation G on the

sphere. If R is isomorphic to neither K−
4 nor DW−

n for any n ≥ 3, then there exists at

least one face xyz inside of abcd with x, y and z being different from a, b, c and d.

Proof. We prove the lemma by induction on the number of vertices inside of R. Suppose

that R is isomorphic to neither K−
4 nor DW−

n for any n ≥ 3. If R contains no vertex,

i.e., it has exactly two faces, then R is isomorphic to K−
4 , a contradiction. Thus, we may

assume that R contains at least one vertex inside of R.

By Euler’s formula, R contains a vertex of degree 4 [77, Lemma 5]. So let u be a vertex

of degree 4 and let u1u2u3u4 anticlockwise be the link of u. If the link of u coincides with

the boundary of R, then R is clearly DW−
3 , a contradiction. On the other hand, if at

most one vertex of neighbors of u lies on the boundary of R, then we can find a desired

face.

So we first suppose that exactly two vertices of neighbors of u lie on the boundary of

R. By symmetry, if {u1, u2} = {a, b} or {u1, u2} = {a, c}, then the face uu3u4 is a desired

one. Thus, we may assume that u1 = a and u3 = c. Let R1 = abcu2 and R2 = au4cd be

quadrilateral regions inside of R. By inductive hypothesis, each of R1 and R2 is isomorphic

to K−
4 or DW−

n for some n ≥ 3. (Otherwise, we can find a desired face.) By symmetry,

if R1 = DW−
n for some n ≥ 4, then vertices of degree 4 inside of R1 are adjacent to both

a and c, since otherwise, we can find a desired face inside of R1. Moreover, if R1 = K−
4 ,

then R1 must have u2b since G is an even triangulation. Therefore, in this case, R is

isomorphic to DW−
n for some n ≥ 5, a contradiction.

Next suppose that exactly three vertices of neighbors of u lie on the boundary of R. By

symmetry, we assume that u1 = a, u3 = c and u4 = d. Let R′ = abcu2 be a quadrilateral
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region inside of R. Similarly to the previous case, we can find a desired face or have a

contradiction, by applying induction to R′.

Otherwise, i.e., we assume that u1 = a, u2 = b and u4 = c by symmetry and we prove

that the degree of u3 cannot be even in this case. Let F be a region u2u3u4 and suppose

to the contrary that the degree of u3 in R is even. If there is no vertex inside of F , then

the degree of u3 in R is odd, a contradiction. Thus, there exists at least one vertex inside

of F and hence F forms a triangulation on the sphere. Since the degree of u3 in R is

even, that in F is odd. Since the degree of all vertices inside of F are even, one of the

degrees of u2 and that of u4 in F is odd by the handshaking lemma. However, this is a

contradiction by the fact that if a triangulation on the sphere has exactly two vertices of

odd degree, then they are not adjacent [31]. Therefore, the lemma holds.
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Figure 4.5: The diamond graph K−
4 and DW−

s+2

Lemma 4.13. Let G be an even triangulation on the sphere with exactly six vertices of

degree 4 and such that the subgraph induced by the vertices of degree 4 in G is the union

of two triangles. Then G is isomorphic to OCn for some n ≥ 1.

Proof. Let v1v2v3 and v4v5v6 be triangular faces in G with deg(vi) = 4 for any i ∈
{1, 2, . . . , 6}. By Lemma 4.11, there exists a 3-cycle v′1v

′
2v

′
3 (resp., v

′
4v

′
5v

′
6) which surrounds

v1v2v3 (resp., v4v5v6) such that vivjv
′
k and viv

′
jv

′
k are faces for {i, j, k} = {1, 2, 3} (resp.,

{i, j, k} = {4, 5, 6}), where the degrees of v′i’s for each i ∈ {1, . . . 6} are exactly 6, by

Euler’s formula and the assumption. We apply octahedron removal to v1v2v3. After that,

the degrees of v′1, v
′
2 and v′3 are reduced to 4 and those of other vertices do not change.

That is, the number of vertices of degree 4 is still exactly six and the induced subgraph of

them is the union of two triangles or is isomorphic to the octahedron. Thus, by repeating

the application of octahedron removal, G can be reduced to the octahedron, that is, G is

isomorphic to OCn for some n ≥ 1.

Now we shall prove Theorem 0.8.

Theorem 0.9. Let G be an even triangulation on the sphere. The proper facial

3-achromatic number of G is exactly 3 if and only if G is isomorphic to the double wheel

DW2n for n ≥ 2 or one of the two graphs shown in the center and the right in Figure 4.6.
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Figure 4.6: The double wheel DW6 and graphs G with ψp
3(G) = 3

Proof of Theorem 0.8. If G is isomorphic to one of the double wheel DW2n for n ≥ 2,

the octahedron cylinder OC1 and the split double wheel Q3, then G has no proper facial

3-complete n-coloring for n ≥ 4 by Propositions 4.8 and 4.9, 4.5 and4.6, respectively.

Hence the “ if ” part holds.

We shall prove the “ only-if ” part, that is, if G is isomorphic to none of the three

exceptions, then ψp
3(G) ≥ 4. Since G is an even triangulation on the sphere, G has a

proper 3-coloring f : V (G) → {1, 2, 3}. In what follows, by recoloring some vertices using

four colors {1, 2, 3, 4}, we construct a proper facial 3-complete 4-coloring f ′ : V (G) →
{1, 2, 3, 4}.

Let H1, H2, . . . , Hk be components of the subgraph induced by the vertices of degree

4 in G and let H = {H1, H2, . . . , Hk}. Note that k ≥ 1 since G has at least six vertices

of degree 4 by Proposition 1.5. Since G is isomorphic to a double wheel, it suffices to

consider that Hi is either a path or a triangle for each i ∈ {1, . . . , k}, by Lemma 4.11.

Case 1. H contains at least three triangles.

Without loss of generality, we may suppose that H1 = u1u2u3, H2 = v1v2v3 and

H3 = w1w2w3 are triangles and that f(vi) = f(ui) = f(wi) = i for each i ∈ {1, 2, 3}.
Recoloring u1, v2 and w3 by color 4 as shown in Figure 4.7, we obtain a desired 4-coloring

f ′.

Case 2. H has at least one path.

Suppose that H1 is a path v1v2 . . . vl+1 of length l and abcd be a cycle of length 4

of G such that a and c are adjacent to all of v1, . . . , vl+1 and bv1 . . . vl+1d forms a path.

Without loss of generality, we may suppose that f(a) = f(c) = 1 and f(b) = 2 (f(d) = 2

or 3 depending on the parity of l).

Subcase 1. l ≥ 2.

Since G is an even triangulation on the sphere and b is not included in H1, the degree

of b is at least 6. Thus, there exists at least one vertex x with f(x) = 1 other than a

and c, which is adjacent to b. Since such a vertex is adjacent to neither v1 nor v3, by
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Figure 4.7: Recoloring of three triangles

recoloring v1, v3 and x by color 4 and v2 by color 3 as shown in Figure 4.8, we have a

desired 4-coloring f ′.
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Figure 4.8: Recoloring of G when l ≥ 2

Subcase 2. l = 1.

If there exists at least one vertex x with f(x) = 1 and x ̸∈ {a, c}, which is adjacent

to exactly one of b or d, say b, then we recolor v1, d and x by color 4 and v2 by color

3 similarly to Subcase 1. The resulting 4-coloring is a desired one. Otherwise, we have

deg(b) = deg(d) since all neighborhoods of b with color 1 are adjacent to d. In this case,

we can represent the structure around H1 as shown in Figure 4.9. Inside of shaded regions

in Figure 4.9 are triangulated suitably.
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If at least one of the shaded regions is isomorphic to DW−
m for some m ≥ 3, then G

has a path Hi ∈ H of length at least 2, which is a degenerate case (or G has a vertex of

odd degree, a contradiction). Thus, we assume that each shaded region is not isomorphic

to DW−
m .

Suppose that there exists at least one shaded region, say R, which are not isomorphic

to K−
4 . In this case, we recolor v2 by color 3, vertices which are not inside of R with color

1 by color 4, and v1 and d by color 1. Since there exists at least one face colored by 1, 2

and 3 in R by Lemma 4.12, we have a desired 4-coloring f ′.

Now we may suppose that each shaded region is isomorphic to K−
4 . If the degrees of

b and d are at least 8, then we can obtain a desired 4-coloring f ′ by recoloring vertices as

shown in Figure 4.10. When the degrees of b and d are exactly 6, G is isomorphic to Q3,

a contradiction.
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Figure 4.9: A structure around H1
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Figure 4.10: Recoloring of G when l = 1 and

deg(b) = deg(d) ≥ 8

Subcase 3. l = 0.

Let Ni(v) be the set of the neighborhoods of a vertex v which are colored by color i.

In this subcase, we consider three cases based on the relation between N1(b) and N1(d):

N1(b) = N1(d), N1(b) ⊊ N1(d) (or N1(d) ⊊ N1(b)) and otherwise.

Case (i). N1(b) = N1(d).

Let b1b2 · · · bm be the link of b in anticlockwise order and d1d2 · · · dm be the link of

d in clockwise order for m ≥ 6, where a = b1 = d1 and v1 = bm = dm. In this case,

there are two quadrilateral regions ab2b3d2 and cbm−2bm−3dm−2. (Figure 4.11 shows the

structure of around H1 when deg(b) = deg(d) = 6.) In this case, if at least one of such

quadrilateral regions is isomorphic to DW−
n for some n, then H has a path of length at
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least 1. (Such a region cannot beK−
4 since otherwise two vertices with the same color must

be adjacent.) Hence, there exists a face inside of each quadrilateral region each of whose

vertices does not coincide with any of vertices on the boundary cycle by Lemma 4.12.

Thus, by recoloring such a face by color {2, 3, 4} in one quadrilateral region, and recolor

around H1 as shown in Figure 4.11, and then we obtain a desired 4-coloring f ′.
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Figure 4.11: Recoloring of G when N1(b) = N1(d)

Case (ii). N1(b) ⊊ N1(d) or N1(d) ⊊ N1(b).

In this case, we may suppose by symmetry that N1(b) ⊊ N1(d). Let b1b2 · · · bm for

m ≥ 6 and d1d2 · · · dl for l ≥ 6 be the links of b and d in anti-clockwise and clockwise,

respectively. Suppose that b1 = d1 = v1, b2 = d2 = a and bm = dl = c as shown in

Figure 4.12. Since all of the degrees of a, b, c and d are at least 6 and G is on the sphere, all

of the b3, bm−1, d3 and dl−1 are mutually distinct. There exist vertices di and dj for 4 ≤ i ≤
j ≤ l−2 such that b4 = di and bm−2 = dj since N1(b) ⊊ N1(d), deg(a) ≥ 6 and deg(c) ≥ 6.

Moreover, there exist two regions R1 and R2 whose boundaries are b4b3ad3 · · · di(= b4) and

dj · · · dl−1cbm−1bm−2(= dj), respectively (see the left of Figure 4.12).

Let S be the set of vertices in N1(d) \ N1(b) such that all vertices in S lie on the

boundary of R1. Namely, all vertices on the boundary of R1 which are colored by color 1

other than a and b4 are in S. We consider the following two cases.

Case (ii)-1. S = ∅.

Now R1 is a quadrilateral region. If R1 is isomorphic to DW−
n or K−

4 , then we have

a contradiction as in the previous case. Thus, there exists at least one face colored by

{1, 2, 3} inside of R1 by Lemma 4.12. Moreover, since the boundary of R2 consists of

vertices with colors 1 and 3, there is a face colored by {1, 2, 3} in R2. Therefore, we

recolor G similar to the previous case as shown in Figure 4.11 and we obtain a desired

4-coloring f ′.

56



Case (ii)-2. S ̸= ∅.

Let N2(S) be the set of neighborhoods of vertices in S, which are colored by color 2.

Note that R1 and R2 both contain a vertex with color 2 in their interior, and in particular,

all vertices in N2(S) \ {d} lie in the interior of R1. Thus, as shown in Figure 4.12, we

can recolor vertices in S ∪ {v1} and ones in N2(S) ∪ {b} by colors 2 and 4, respectively,

preserving the color of vertices in the interior of R2, and hence, we obtain a desired

4-coloring f ′.
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Figure 4.12: Recoloring of G when l = 0 with N1(b) ⊊ N1(d) (where x ∈ S)

Case (iii). Otherwise, i.e., N1(b) ̸⊂ N1(d) and N1(d) ̸⊂ N1(b).

In this case, there exist u ∈ N1(d) \N1(b) and w ∈ N1(b) \N1(d). Let p and q (resp.,

r and s) be vertices in N3(w) (resp., N3(u)) which are on the boundary cycle of a face

containing w and b (resp., u and d). Since deg(a) and deg(c) are at least 6, there exist

such vertices.

Case (iii)-1. There is a vertex with color 2 other than b and d which is not in

N2(u) ∩N2(w).

Let x be a vertex with color 2 which is not in (N2(u) ∩N2(w)) ∪ {b, d}. In this case,

we have a desired 4-coloring by recoloring vertices in N2(u) ∪ {b} by color 4, and u and

v1 by color 2 as shown in Figure 4.13. (Note that x may not be in N2(u) ∪N2(w).)

Case (iii)-2. N2(u) \ {d} = N2(w) \ {b} and there is no vertex with color 2 other

than N2(u) ∪ {b}.
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Figure 4.13: Recoloring of G when l = 0 (preserving the color of x)

Suppose that at least one of p, q, r and s belongs to N3(u) ∩ N3(w), say r. Let b =

w1 · · ·wk be the link of w for k ≥ 4. If r = wl for l ≥ 4, then wl−1 is colored by color

2 and not in N2(u) ∩ N2(w), which is a degenerate case. If r = w2, then there exists

a quadrilateral region rbad. Since such a region is isomorphic to neither K−
4 nor DW−

m

for any m ≥ 3 (otherwise, H has a path of length at least 1), there exists a face inside

of the region whose vertices do not coincide with any of r, b, a and d. Since the vertices

of the face is colored by color 1, 2 and 3, there exists a vertex colored by color 2, which

is a degenerate case. Therefore, we may assume that none of p, q, r and s belongs to

N3(u) ∩N3(w). In this situation, we consider the following two cases.

Case (iii)-2-i. N3(u) \ {r, s} ̸= N3(w) \ {p, q}.

In this case, there exists the vertex yw (resp., yu) belonging to N3(w) (resp., N3(u)) but

not to N3(u) (resp., N3(w)) and is not any of p, q, r and s such that there is a quadrilateral

region R which consists of yu, yw and two vertices in N2(u) \ {d} as shown in Figure 4.14.

By Lemma 4.12, if R is isomorphic to neither K−
4 nor DW−

m for any m ≥ 3, then there

exists at least one face not touching the boundary of R colored by color 1, 2 and 3 and

hence, we obtain a desired 4-coloring f ′ as in Figure 4.14. Otherwise, there exists a path

Hi ∈ H for i ̸= 1 of length at least 1. (The region cannot be K−
4 similarly to the first

paragraph in this subcase.)

Case (iii)-2-ii. N3(u) \ {r, s} = N3(w) \ {p, q}.

If deg(u) = deg(w) ≥ 8, then there exists Hi ∈ H for i ̸= 1 which is a path (colored by

colors 2 and 3) and whose length is at least 2, a degenerate case. If deg(u) = deg(w) = 4,

then the degrees of p, q, r and s are at least 6 since there does not exist Hi ∈ H for i ̸= 1

which is a path whose length is at least 1; see Figure 4.15. Thus, there exists a vertex

with color 2 which is a neighborhood of p, q, r or s and not in N2(u)∪N2(w) by planarity,

which contradicts the condition of the Case (iii)-2.

If deg(u) = deg(w) = 6, then G is isomorphic to the graph shown in the left of

Figure 4.16. In this case, G has a desired 4-coloring by recoloring vertices of G as shown

in Figure 4.16. (By the above argument, the degree of each of p, q, r and s is exactly 4 in
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this final case since otherwise we can find a vertex x′ with color 2 and x′ /∈ N2(u)∪N2(w),

and so we are done by Case (iii)-1.)

Case 3. H consists of exactly two triangles.

We suppose that H = {H1, H2} and H1 and H2 are both triangles. In this case,

G = OCn for some n ≥ 1 by Lemma 4.13. By the assumption, we have n ≥ 2. We

can color OC0 such that two triples of colors {1, 2, 3} and {1, 2, 4} appear. Since we

apply the octahedron addition at least two times, we can easily see that at least one of

triples {1, 3, 4} and {2, 3, 4} can be discovered by an octahedron addition and followed by

coloring the added three vertices suitably.

In fact, we can color added three vertices by color {1, 3, 4} for the first time and
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{2, 3, 4} for the second time. The third time or after, by coloring added three vertices by

color {1, 2, 3}, we can obtain a desired 4-coloring f ′.

4.4 Hypergraphs

A hypergraph H is a pair (V,E) of disjoint sets, where the elements of E are non-empty

subsets of V . An element in V (resp., E) of H is called a vertex (resp., an edge) the same

as a graph. In particular, if every edge of H has k vertices, then H is k-uniform. An

n-coloring of a hypergraph H is defined as an assignment of n colors to vertices of H such

that not all vertices of an edge of H are colored by the same color.

Jucovič and Olejńık [50] introduced a complete n-coloring of a hypergraph H as an

ordinary n-coloring of H such that for every pair of colors, there exists an edge containing

two vertices colored by the two colors, and the achromatic number of H denoted by φ(H)

as well as that of a graph. Moreover, they gave the upper bound of the achromatic number

of hypergraphs, as follows.

Theorem 4.14 (Jucovič and Olejńık [50]). Let H be a k-uniform hypergraph with h

edges. Then the inequality φ(H) ≤ ξ holds, where ξ is the positive solution of the equation

x2 − x− h(k2 − k) = 0.

Generalizing the above definition, we can define a t-achromatic number of hypergraphs

as follows. A t-complete n-coloring of a hypergraph H if for any t-element subset X of

n colors, there exists at least one edge such that X is a subset of colors assigned to the

vertices in the edge. The maximum number of n such that H has a t-complete n-coloring

is called the t-achromatic number of H and denoted by φt(H). By this definition, we

obtain the following theorem similarly to Theorem 4.14.
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Theorem 4.15. Let H be a k-uniform hypergraph with h edges. Then the inequality

φt(H) ≤ ξ holds, where ξ is the positive solution of the equation x(x− 1)(x− 2) . . . (x−
t+ 1)− hk(k − 1)(k − 2) . . . (k − t+ 1) = 0.

Proof. Suppose that φt(H) = n. If H has a t-complete n-coloring, then there exist
(
n
t

)
sets of colors. In one edge of H,

(
k
t

)
different sets of colors can appear. Thus, we obtain

that h ≥ (nt)
(kt)

.

If a 3-uniform hypergraph H is obtained from a triangulation G on a closed surface by

regarding a face of G as an edge containing three vertices in its boundary walk, then we

have ψ3(G) = φ3(H) by the definition of a 3-complete coloring of a hypergraph. Similarly,

ψp
3(G) is corresponded to the achromatic number of H defined by Dȩbski et al. [24]. An

n-coloring of H is a rainbow if all vertices of every edge receive different colors. Dȩbski et

al. [24] defined a complete coloring of a k-uniform hypergraph H as a rainbow coloring

of H such that every k-subset of colors appears on at least one edge, and the achromatic

number of H is defined in the same way as for simple graphs. Therefore, the study of

various complete colorings of 3-uniform hypergraphs may help one of ψ3(G) and ψ
p
3(G).

4.5 Remarks

In Section 4.2, we show that the more the number of faces which are vertex disjoint of

an even triangulation G on the sphere becomes, the larger its proper facial 3-achromatic

number is (Theorem 0.7). However, there exists a triangulation on the sphere which has

no proper facial 3-complete coloring in general (Propositions 4.7 and 4.8). In particular,

there exists a triangulation on the sphere with many faces which are vertex disjoint which

has no proper facial 3-complete 4-coloring in general (Theorem 4.10).

Similarly to Theorem 0.7, we can obtain the following theorem for triangulations on

closed surfaces other than the sphere. The heawood number of F 2, denoted by h(F 2), is⌊
7+
√

49−24ε(F 2)

2

⌋
, where ε(F 2) is the Euler characteristic of F 2.

Theorem 4.16. Let G be a proper 3-colorable triangulation on a closed surface F 2 and

k be the maximum number of faces which are vertex disjoint of G. If k ≥ h(F 2)
(
n
3

)
, then

ψp
3(G) ≥ n.

Observe that the exceptions in Theorem 0.8 have at most three faces which are vertex

disjoint. Therefore, the following corollary holds.

Corollary 4.17. Let G be an even triangulation on the sphere and k be the maximum

number of faces which are vertex disjoint of G. If k ≥ 4, then ψp
3(G) ≥ 4.

In the end, we consider a kind of hereditary property of the (proper) facial achromatic

number. Let G be a graph, k ≥ 0 be an integer and P (k) be some property of graphs

depending on k. Then P (k) is interpolation if either (i) or (ii) holds:
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(i) For all k ≥ 1, if G satisfies P (k), then it also satisfies P (k − 1).

(ii) For all k ≥ 0, if G satisfies P (k), then it also satisfies P (k + 1).

For example, the property that the chromatic number is at most k for k ≥ 1 has the

interpolation property (which satisfies (ii)). Moreover, the property that achromatic

number is at least k for k ≥ 1 has the interpolation property, too (which satisfies (i))

[40]. (Note that the achromatic number cannot go below the chromatic number.) We see

that the facial achromatic number has the interpolation property in two senses, that is,

if a graph G has a facial t-complete n-coloring, then it has both a facial (t− 1)-complete

n-coloring and a facial t-complete (n − 1)-coloring. For the proper version, the former

similarly holds, however, the latter does not hold in general: Consider the graph shown

in Figure 4.17. This graph has a proper facial 3-complete 5-coloring as in the figure.

However, the graph has no proper facial 3-complete 4-coloring by Theorem 4.10.
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Figure 4.17: A proper facial 3-complete 5-coloring of the graph shown in Figure 4.4

We guess that the reason why some triangulations on the sphere have no proper facial

3-complete 4-coloring concerns Four Color Theorem. Thus, if n ≥ 5, then the interpolation

may hold.

Conjecture 1. Let G be a triangulation on the sphere. If G has a proper facial 3-complete

(n+ 1)-coloring, then G has a proper facial 3-complete n-coloring for n ≥ 5.

On the other hand, we have not found an even triangulation on the sphere whose proper

facial 3-achromatic number is not interpolation. Therefore, the following conjecture is

worth considering.
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Conjecture 2. Let G be an even triangulation on the sphere. For any integer n ≥ 3, if

G has a proper facial 3-complete (n + 1)-coloring, then G has a proper facial 3-complete

n-coloring.
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