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Abstract

With the progress of deep learning research in recent years, applications using

end-to-end learning are expanding in various industries and fields. However, there

are many situations where it is difficult to directly perform end-to-end learning

on real data such as design problems. In particular, it is known that the learner

becomes unstable when the data sampling density is non-uniform or when am

imbalance exists. In this study, to solve these problems, we aimed at the method

of extracting low-dimensional features of three-dimensional shapes and eliminating

bias by prioritized selective sampling. The former clarified a method for efficiently

expressing the features of three-dimensional shapes by extracting base frequency

components from changes in the hidden layer of DAE. The latter clarified a two-

level priority sampling method that obtains a robust learning result from a biased

data set. This method was applied to the hull shape design problem, and the

estimation accuracy was improved compared to the conventional method, and an

end-to-end system that directly regressed the wave-making resistance from the hull

shape was successfully constructed.
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あらまし

近年の深層学習研究の進歩に伴い，様々な産業・分野で end-to-end学習を用いた

応用が拡がっている。しかし，設計問題をはじめとする実データにおいては end-

to-endの学習を直接行うことが困難な場面が多く存在する。特に，データのサン

プリング密度が不均一である場合やインバランスが存在している場合，学習器が

不安定になることが知られている。本研究では，これらの問題を解決するために，

3次元形状の低次特徴量の抽出法と優先的選択的サンプリングによる偏りの解消

をめざした。前者により，DAEの中間層の変化から周波数基底成分を取り出すこ

とで 3次元形状の特徴を効率的に表現する方法を明らかにした。また後者により，

偏りのあるデータ集合からロバストな学習結果を得る 2段階の優先サンプリング

手法を明らかにした。本手法を，船型形状設計問題に応用し，従来手法に比べて

推定精度が上がり，船型形状から造波抵抗を直接回帰する end-to-endのシステム

の構築に成功した。
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1 Introduction

1.1 Motivation

In the rapid development of machine learning[1], deep learning[2], and the pop-

ularity of big data technology, the intelligence and accuracy of data processing is

becoming more and more important, especially for some production industry. For

example, in the case of the shipbuilding industry, there is a problem with how

to generate a regression curve for wave-making resistance[3] of the ship. Here,

the wave-making resistance is an indicator to evaluate whether the built ships

have a good shape for navigation. While the ship is sailing at high speeds, the

lower wave-making resistance value means the higher energy-saving performance.

Among the trade in the world, maritime transport by ship accounts more than

99% in the world logistics, especially in Japan, maritime transport by ship ac-

counts for 99.7% of the total weight of all transported goods[4]. Energy-saving

technology and high efficiency for ship navigation are greatly significant not only

for reducing transportation costs but also for environmental protection and carbon

dioxide reduction.

1.1.1 What is the wave-making resistance of ship

The energy cost of ship navigation is significantly affected by the resistance

caused between the air and the sea surface when the ship is moving[5]. These

1



Figure 1.1: An example of a ship sailing in the water

resistances include:

1. Frictional resistance caused by the fluid and hull surface[6];

2. Viscosity resistance caused by the disturbance of fluid around the object[7];

3. Wave-making resistance owing to the generation of waves by the hull[3],

Figure 1.2 shows the ship figure image of the hull.

Of these resistances, wave-making resistance varies significantly depending on

the shape and speed of the ship; however, its analytical estimation is a difficult

task. Therefore, the conventional method must rely on measurements based on

experimental tests with water tanks.
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Figure 1.2: Ship figure image of the hull

1.1.2 Why it is necessary to change the wave-making re-

sistance estimation method

As described in the previous section, a tank test requires large-scale equipment

and time, the efficiency of the design is limited. It is better to perform the wave-

making resistance estimation using an end-to-end learning algorithm[8], however,

because of the ship parameters are not uniform, it is necessary to propose a set of

solutions for processing such data, for it can be processed through deep learning.

These solutions include interpolation, feature extraction, feature space conversion

and so on.

1.1.3 About feature extraction

While processing data, dimensionality reduction[9] and feature extraction[10]

are necessary works, also, if these works are not effective, they will greatly affect

the accuracy of machine learning algorithms. Feature extraction is important for

the whole process because of,
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1. Using the extracted low-dimensional features as the input of deep learning

helps to improve convergence speed and training efficiency.

2. A completed feature helps improve the accuracy of training.

Therefore, there are also necessary for the compressing of ship shape data.

As representative methods for the works, there are principal component analysis(PCA)[11]

and auto-encoder(AE)[12]. PCA mainly solve linear problems, simultaneously AE

mostly solve nonlinear problems. Because of AE has the structure of the neural

network(NN)[13], it can be used in the expanding applicable scenes, as representa-

tive methods, there are AE, and its subspecies denoising auto-encoder(DAE)[14].

1.2 About this study

In this study, we will use the results of an already performed tank test and realize

an end-to-end learning algorithm that directly obtains the wave-making resistance

characteristic from the shape of the ship through deep learning. Moreover, while

performing feature extraction for ship parameters, propose a feature extraction

method that raises accuracy when data are skewed. By using these algorithms, we

aim to support the automatic shape design[15][16] of hull design. Further, in the

case of the same problem class, we look forward to solving other problems.

1.3 Overview of this dissertation

This dissertation is organized as follows. The following Chapter 2 described a

method for wave-making resistance estimation from the shape of the ship through

deep learning. To solve the problem in Chapter 2, Chapter 3 introduced an im-

proved auto-encoder based on 2-level prioritized experience replay for dimension-

4



ality reduction of high dimension skewed data; Chapter 4 described a wave-making

resistance estimation method considering the distribution of ship figure based on

the method of Chapter 3; Chapter 5 discussed the conclusions and future works

of this study.

Figure 1.3 shows the outline of this dissertation.

Figure 1.3: Outline of this dissertation
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2 Wave-making resistance

estimation from the shape of

the ship through deep learning

2.1 Overview

A method for the estimation of wave-making resistance from the hull form and

the Froude number through deep learning is proposed. The reduction of wave-

making resistance is an essential issue in hull form design. However, the estimation

of wave-making resistance is a time-consuming task that depends on experimental

measurements. To enable direct estimation of the wave resistance from hull form,

deep learning, which enables end-to-end learning, is an effective approach.

This chapter introduces a proposed method for the estimation of wave-making

resistance, which has two phases.

1. First, auto-encoders, which reduce the dimension of the offset and the profile

data are generated.

2. Subsequently, after the regularization of these data, a deep neural net for

regression estimation of wave-making resistance is generated.

In Section 2.7 of this chapter there are the results of evaluation experiments.

The results show that the proposed method can estimate wave-making resistance

with high precision.

6



2.2 Conventional method

Conventionally, the following methods are using to estimate wave-making resis-

tance.

1. Estimation based on actual measurement by the ship models

Making ship models and performing water tank experiment, the experiments

about measuring wave-making resistance parameter which does not depend

on the scale has been widely performed[17]. Although the actual measure-

ment experiment is the most reliable method, there is a limit to the efficiency

of the hull design because of water tank measurement is required large-scale

equipment and time. Figure 2.1 shows an image of actual measurement by

the ship models.

2. Analytical method base on computational fluid dynamics (CFD)

Computational fluid dynamics (CFD) as a method for obtaining wave-making

resistance analytically from the shape of the ship is widely known[18]. By

analyzing the motion of fluid generated around the hull dynamically, a sim-

ulation that not performed an actual measurement with the ship model is

possible. Nevertheless, on the other hand, to set the computational grid

and ensure stability, a lot of calculation time-consuming. Further, even if it

changes a slight design on the ship, it requires an enormous amount of time.

This is a remaining issue over the years. Figure 2.2 shows an image of CFD

measurement for wave-making resistance.

For such an issue, this chapter will introduce a directly end-to-end estimation

method for wave-making resistance from hull shape, which aims the same precision

and estimation speed with the water tank experiment for wave-making resistance.
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Figure 2.1: An image of actual measurement by the ship models

Figure 2.2: An image of CFD measurement for wave-making resistance
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Specifically, the measurement experiment results of the water tank in the past

will be used as training data, and a method through deep learning which can

directly determine the wave-making resistance characteristic curve from the shape

parameter of the ship will be achieved. Before introducing the proposed method,

in the next section, the physical and mathematical definitions of wave-making

resistance will be introduced specifically.

2.3 Wave-making resistance

As the introduction of Section 1.1.1 in Chapter 1, wave-making resistance varies

greatly and can affect surface ship very seriously when the ships have different

shapes and speeds. Ships need more energy to make water keep away from the

hull of ships, and at the same time the energy creat waves. The specific principle

is like this, when a ship sails, the surface pressure of the fore on the direction

of motion increases, and the pressure creates waves on the surface of the water.

Waves are generated by the pressure from the confluence of water divided into both

sides of the ship at the aft. Owing to the interference of these waves, the complex

energy loss of waves occurs and it becomes wave-making resistance. Wave-making

resistance is determined by the speed of the hull and the velocity of the wave,

in addition to the hull form. According to this phenomenon, it is known that

wave generation is similar when the shape of the ship is similar. Therefore, the

relationship between speed and wave-making resistance is expressed as a value

obtained by nondimensionalizing the physical unit as follows:

Fn =
U√
Lg

(2.1)
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Cw =
Rw

1
2
ρU2S

(2.2)

Fn represents Froude number and Cw represents the wave-making resistance

coefficient. Here, U is the speed (m/s), L is the ship length (m), g is the gravita-

tional acceleration (m/s2), Rw is the wave-making resistance (N), ρ is the density

(kg/m3), and S is the hull inundation surface area (m2). Both Fn and Cw are

dimensionless parameters, and if the hull form is the same, the same relationship

between Fn and Cw can be derived regardless of the scale. It is generally known

that Cw increases as Fn increases. It is also known that the value of Fn, which

shows an evident increase in Cw, and the trend of increase strongly depends on

the hull form. In the design of hull shape, according to the Fn-Cw estimation, it is

necessary to determine the hull shape when wave-making resistance most reduced

in various scenes.

The current hull shape is examined by predicting Cw using computational fluid

dynamics nowadays[19]. The performance of the ship type considered to be optimal

for the examination of the hull form is confirmed using a water tank test. However,

the theoretical calculation result and the experimental value are not necessarily

the same because of the influence of various nonlinear factors. Therefore, the

method which gets the relationship of Fn-Cw with a non-linear model through a

direct regression is required.

However, the dimension of the parameters that define the three-dimensional

shape of the various scales are not uniform, therefore, it is difficult to use these

parameters to learning directly. Further, the data of the ship model used for

regression has a large deviation in hull shape, there is a possibility that the learning

results in bias. Therefore, the data pre-treatment processing is necessary, in the

next section, the parameters of the original ship shape which used as training data

for deep learning will be introduced.
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2.4 The ship shape data

There are some differences in shape and size for each ship[20], but we have

defined several general parameters for them to enable us to apply our proposed

method. For tanker vessels according to the purpose of estimating wave-making

resistance, data on vessels with different shapes, lengths, scales, etc. are targeted.

The shape of the ship is expressed by the following parameters.

• Offset (om)

The first one is the offset part of the ship, which refers to the vertical cross-

section shape against the length direction of the ship.

om = [wm
1 , w

m
2 , · · · , wm

No
] (2.3)

Here, m = [1, 2, · · · ,M ] is the cross-section number from the aft to the fore,

n = [1, 2, · · · , No] is the number of samples in the cross-section m, wm
n is

the value of the contour sample n of the cross-section m, and represents the

width from the centerline of the ship.

• Profile (pf , pa)

The second one is the profile part of the ship, which refers to the vertical

cross-section shape along the length direction of the ship.

pf = [f1, f2, · · · , fNf
] (2.4)

pa = [a1, a2, · · · , aNa ] (2.5)

where pf is the profile of the fore and pa is the profile of the aft. Nf and

Na are the profile contour sample numbers of each profile, and p[f,a] is the

sample value of each profile. The shape of the fore and aft on the centerline

is expressed based on each reference point.
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• Total length (L)

The third one is the total length of the ship, which represents the length

from the reference point of the fore to the reference point of the aft.

Figure 2.3 shows the relationship between the hull shape and each parameter[21].

Figure 2.3: Ship plan and its offset and profile dataset

2.5 Pre-treatment for ship shape data

2.5.1 Interpolation and re-sampling

In order to generate the input data of next step for feature extraction, the ship

shape data need to be interpolation and re-sampling. Therefore, for all om, pf and

pa, perform interpolation operation and re-sampling.
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2.5.2 Compression of shape parameter with auto-encoder

The variations in the shape of both the offset and profile are limited, and there

is a possibility that the shapes can be expressed with lower-dimension features

using the samples. Utilizing this property, we train an auto-encoder(AE), which

expresses om, pf , pa in a low dimension, according to the following procedure.

Incidentally, in the following process, the data set of all the ships is shuffled from

om, pf , pa.

1. Use AE to learn the re-sample result. At this time, to increase the number of

samples, we used denoising AE(DAE)[22] with Gaussian noise superimposed,

for DAE, because of the Gaussian noise is added to the input so that not only

the samples increased but also the general characteristics can be extracted

for both training data and test data. Regarding the level of Gaussian noise,

we used value with σ set to 3% of the data range for the input data. The

reason for using Gaussian noise is that DAE needs a corruption distribution

that adds noise to a portion of the input vector. As a corruption distribution,

Gaussian noise or salt and pepper noise which randomly selects components

and reduces them to 0 or 1 need to be used. However, to performing a

maximum likelihood estimation, salt and pepper noise may destroy the data

structure and Gaussian noise is a better choice.

2. Using the parameters of the intermediate layer obtained through learning,

we obtained the dimension-compressed offset ôm and dimension-compressed

profile p̂f , p̂a.

ôm = [ŵm
1 , ŵ

m
2 , · · · , ŵm

N̂o
] (2.6)

p̂f = [f̂1, f̂2, · · · , f̂N̂f
] (2.7)

13



p̂a = [â1, â2, · · · , âN̂a
] (2.8)

Figure 2.4 shows a DAE used in the experiment described later.

Figure 2.4: Denoising auto-encoder, which performs dimensional compression for

ship shape parameters

As a preliminary experiment, we compared the reconstruction errors between

PCA and AE while performing dimensional compression on the ship shape data.

From Figure 2.5 we can know that for the feature extraction problem of ship

shape data, a nonlinear method is better. And Figure 2.6 shows a comparison of

the expression of the features between PCA and DAE.

When using DAE to perform feature extraction, the re-sampling number is set

to 100 as neuron number, to determine the dimension of the intermediate layer, we

performed a pre-experiment. Figure 2.7 shows the reconstruction error[23] changes

evaluated by RMSE loss for different dimension of intermediate layer through

cross-validation. In this figure, the solid line means average value, the broken line

means variance ranges. Indeed, the higher the dimension, the closer to the original

dimension number of the ship shape data, but the redundant information will also

be increased. From the figure, we can know that for the dataset currently, the
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Figure 2.5: Comparison of the reconstruction error (sorted) between PCA and

DAE

Figure 2.6: Comparison of the expression of the features between PCA and DAE
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number of intermediate layer nodes on 4 or 5 dimensions for DAE is a better choice

as a feature dimension, which can ensure the learning gets the low reconstruction

error.

Figure 2.7: Changes in the reconstruction error owing to the difference in the DAE

intermediate layer

Therefore, we set N̂o = 4, N̂f = N̂a = 5.

For the next step which performs a regression learning[24] in the next section,

we will use the 5-dimensional features which we extracted through DAE.

2.6 Regression learning of the wave-making re-

sistance

This section will introduce the method which directly regresses the relationship

between Fn and Cw with a nonlinear model through end-to-end learning without

physical calculation by using the parameters that define the shape of the ship. we
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hope that through this we can accurately calculate the relationship between the

Fn and Cw.

Using the compressed hull shape parameters ôm, p̂f , p̂a and any Fn as input,

regression for Cw is performed by using a deep neural network(DNN).

The low-dimension compressed offset data obtained in the previous section have

a different sampling number (M) in the length direction of the ship. Therefore,

they cannot be added directly to the input layer of a fixed-dimension DNN.

To perform regression using DNN and do not generate significantly affecting

on the hull shape, ôm is necessary to convert to a fixed-length input. Therefore,

we have noticed that the even if the different ship hull, there are also common

characteristics which ôm have no abrupt changes and always be smooth variation

and continuous in the length direction. That is, present Ôn as the series of each

dimension of ôm, when taken frequency components of Ôn in the length direction,

about the shape of the ship with continuous variation, because of the value of

the continuous offset does not change suddenly, assume it can be approximated

represent as a fixed low-dimension components of frequency.

2.6.1 Frequency components extraction

For specific instructions, generate the fixed-length feature of the frequency com-

ponents according to the following procedure.

1. Decompose ôm into a vector Ôn on each dimension.

Ôn = [ôn1 , ô
n
2 , · · · , ônM ], n = 1, 2 · · · N̂o (2.9)

2. For the sequence in length direction, perform zero padding and obtain a fixed

length.
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3. Convert it into complex frequencies using discrete Fourier transform(DFT)

to analyze the frequency components, which include phase information of

the sequence in the window of the ship length + zero paddings.

4. Among the obtained complex frequency components, until the fixed-length

component which from a lower dimension to a proper dimension is referred

to as a feature.

Since we want to preserve the ship shape characteristics of the hull, we do not

need a window function which mainly processing to some normal signal. And

about the phase information, it is important for securing the scale and length

of the hull form. The innovative point of this method is that the shape data of

variable length can be stored uniformly by frequency components.

Figure 2.8 shows an example of ship feature of different ships in length direction,

and Figure 2.9 shows the process of DFT to convert features to fixed frequency

components.

And Figure 2.10 shows the changes in the average reconstruction errors of the

low dimensional features at each cut-off value of all ship shape data. To apply

to all ship types, 20 is set with a margin since the average RMSE error (0.097)

converges. Figure 2.11 shows the example of the offset feature when the cut-off be

20.

Through this operation, a fixed dimension of the offset can be obtained. The

learning process of regression below will only use low-dimension components of

frequency. Moreover, because of p̂f , p̂a is fixed by the dimension of the intermediate

layer of AE, it can be used to the feature for learning and do not need to convert

to frequency.
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Figure 2.8: The offset feature sequence in different length
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Figure 2.9: The image for DFT process

Figure 2.10: Changes of reconstruction error of offset feature by different cut-off

value
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Figure 2.11: The features and the frequency components when cut-off be 20

2.6.2 Regression learning through deep neural network

Figure 2.12 shows a deep neural network for Fn-Cw regression used in experi-

ment.

The overall view of the above procedure is shown in Figure 2.13.

2.7 Experiment

Using the above method and the data obtained from the water tank experiments,

we conducted learning and evaluation experiments.

2.7.1 Experiment environment

Using the Fn-Cw obtained from the hull form parameters and water tank ex-

periments of 58 model ships, we estimated the wave-making resistance via the

proposed method.
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Figure 2.12: Deep neural network for Fn-Cw regression learning

Figure 2.13: Procedure for estimating wave-making resistance from ship shape
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Table 2.1 shows the specifications of DAE and DNN.

Table 2.1: Parameters of DAE and DNN for regression of Fn-Cw

Profile number 112× 100

Offset number 2046× 100

Cross-section number M ∈ [34, 49]

Cross-section size No = Nf = Na = 100

DAE epoch number 100

DAE batch size 20

DAE layer (100)-(64 tanh)-(32 tanh)-(4 / 5 tanh)-

(32 tanh)-(64 sigmoid)-(100)

DNN epoch number 10000

DNN batch number 250

DNN input number 171 = 5 + 5 + 20× 2× 4 + 1

DNN layer (171)-(256 relu)-(128 relu)-(64 sigmoid)-(16 sigmoid)-(1)

The adjustment of each hyperparameter of DAE and DNN was determined

through preliminary experiments. Here, about the adjustment for the activation

method, other than the output layer, hyperbolic tangent function (tanh) was used,

and the output layer used sigmoid function (sigmoid). From the Figure 2.14 and

Figure 2.15, we can know that tanh can guarantee that learning will not lose valid

minus values in the hidden layers, and for the output, we need the values to revert

to the range of 0 to 1 to correspond to the normalized ship shape data.
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Figure 2.14: The hyperbolic tangent function

Figure 2.15: The sigmoid function
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2.7.2 Experiment result

Figure 2.16 shows an example of the input and output from the learned DAE

obtained for a certain ship shape. We can confirm that, for both offset and profile,

the original shape can be reproduced. Moreover, for the offset change(offset pa-

rameter) in the length direction of the ship, although the change at the fore and

aft is large, there is almost no change in the ship’s body part, and regarding the

expression of the offset frequency component, it is understood that the values are

concentrated in the low dimension.

Appearance frequency distribution of RMSE error when the intermediate layer of

DAE is four-dimension which we performed in the experiment is shown in Figure

2.17. Through the figure, we can know that the curve shows the approximate

distribution of the data which following a chi-squared distribution. Most of the

errors are relatively small, about the worst cases, a few of the data with large

errors are shown in the figure which is considered to perform sampling to increase

accuracy.

Based on these features, we used the DNN to perform regression learning for

Fn-Cw (Figure 2.18). We evaluated the error in Cw for all ship types and the

average RMSE was 0.078. Compare to the RMSE error 0.1 which normally gets

from conventional method DFT, and it can be observed that the proposed method

has been estimated with high accuracy, which raised an accuracy in 22% on wave-

making resistance estimation. Figure 8 shows the results of sorted Cw errors in the

descending order of Fn-Cw regression for all ship types. According to the experi-

ment for the 58 ships, about the wave-making resistance estimation precision, the

reconstruction errors for most of the ships were less than the average, however,

minority ships are begetting the high errors. It can be observed that sufficient

accuracy has not been obtained for Cw estimation of some types of ships.
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Figure 2.16: Reconstruction result of offset and profile, intermediate expression,

and DAE regression result
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Figure 2.17: Appearance frequency distribution of RMSE error

Figure 2.18: Result of regression analysis
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Figure 2.19: Regression error distribution evaluated through RMSE (descending

order)

2.7.3 Consideration

The cross-section shape of the ship over a wide range of the length direction is

rectangular and we refer to it as the parallel portion. Therefore, DAE learning

deviated from the rectangular part. Relatively, the shape near the fore and aft

may not be accurately expressed. It is considered that this error leads to the

estimation error of Fn-Cw.

Therefore, we speculate that if we use some method that can conduct targeted

and effective learning on the offset data for the fore and aft part, the error rate may

be able to be reduced. Such a method needs to reduce the DAE reconstruction

error of offset data for the fore and aft part while ensuring the low error of most

of the original parts. To perform an investigation, a comparative experiment was

conducted on this. From Figure 2.20, we find that the top and bottom are different

ships. The first row is a plot of the offset in the ship’s direction, and the second row

is the form of the offset compressed in the lower order. In the third column, the

blue curve is the regression curve and the orange point is the actual measurement.

As you can see from the regression curve, the upper hull has higher reproducibility

than the lower hull. The reason why the hull form below could not be reproduced

well is that the characteristics of the offset aft and fore area of the ship are very
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small in number from the overall data. It can also be seen that the features of the

corresponding parts in the low-order region are not well extracted. Therefore, the

effect of data bias is considered. This problem was solved by the general-purpose

feature extraction method proposed in Chapter 3.

Figure 2.20: The comparison between two ships (one ship has the majority features

and one ship have the skewed features)

2.8 Summary

We proposed a deep learning method to obtain wave-making resistance from the

ship shape through end-to-end learning.

In the learning process, low-dimensional compression of shape parameters was

performed using DAE and a frequency component in the length direction was used

for obtaining fixed-length data. The results of the experiment revealed that, for
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many types of ships, wave-making resistance characteristics can be obtained with

high accuracy.

About how to absorb modality differences, Firstly, when the number of points

in each section of the hull form is not uniform, a method of zero padding to make

them the same number of dimensions, and this method is applicable when the

number of points in the scale-independent shape data is not uniform; Secondly,

extracting fixed components of frequency components when it is not possible to

directly input to the input layer of deep learning because the length of the data is

not uniform. This method is applicable to shape data that has the characteristic

of changing smoothly.

In the next Chapter 3, we will introduce a method that considered the bias

of dataset, and we expect that through the method could improve the proposed

method of this chapter for raising the overall learning accuracy of offset data.
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3 An improved auto-encoder

based on 2-level prioritized

experience replay for high

dimension skewed data

3.1 Overview

Auto-encoder(AE) has been used for the feature extraction in Chapter 2 while

preparing the input data for deep regression. However, because of the bias of the

training data, the proposed method on Chapter 2 did not obtain high accuracy on

every ship. In this chapter, AE will be introduced in detail and based on the AE

and DAE, we proposed an improved feature extraction method that considering

the data distribution.

AE as the representative method for data dimensionality reduction and feature

extraction plays a very important role in machine learning. However, the data in

the actual research work of institutions or industrial production is not always nor-

malized. Moreover, regarding real data, there are many data are skewed in actual

production and life. Most of the production which involves the shape data, when

considering the optimal solution for a particular standard, the shapes are often ir-

regular and bring about data skew, at this time, it will lead to high reconstruction

error and slow convergence speed.
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For example in the case of shipbuilding which we introduced in Chapter 2, the

length between perpendiculars (LBP)[25] of ships always be huge, meanwhile, the

range of aft and fore of the ship is always short. If observing the whole data of the

ship, we can know that the data of aft and fore of the ship are skewed, which have

a low percentage on the amount of data and follow a different distribution, at this

time the reconstruction error[23] of compressed data or the extracted feature will

be high due to the influence of the skewed data, in this case, the learning process

will be hard to work.

For this problem, any variant of AE does not reduce the error very well, at this

time, although the shipshape data are skewed, precise accuracy and convergence

speed are still relevant. The accuracy of algorithms directly affects productivity,

therefore, based on these legacy issues, in this chapter, we aim at a feature extrac-

tion method, which can get low loss, and fast convergence speed for high dimension

skewed data.

This chapter will introduce an improved auto-encoder and a denoising auto-

encoder based on 2-level prioritized experience replay, which can improve accuracy

and reduce loss, while processing a dimensionality reduction or feature extraction

problem on high dimension skewed data. To evaluate the effectiveness of the

proposed method, three models of high dimension simulation dataset which on

different skewed degrees are generated. The results of evaluation experiments show

that the proposed method can get lower reconstruction error than the conventional

method for high dimension skewed simulation data.

Compared with other approaches to skewed problems, the first focus of this

study is to improve the accuracy of feature extraction for skewed data. Other

approaches have solved skewed problems when the data are skewed as the prior

knowledge, in this study, we considered to solve the problem through optimize the
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learning process[26].

In the following, Section 3.2 describes the original AE and DAE; Section 3.3

describes how to reduce the loss rate by using the proposed method with sam-

pling; Section 3.5 shows the experimental results through a comparison between

the conventional method with the proposed method on high dimension skewed

simulation data; Section 3.6 is a summary of this chapter.

3.2 Introduction of AE

Auto-encoder(AE) is an unsupervised learning[27] algorithm mainly used for

data dimensionality reduction and feature extraction.

In deep learning, AE can be used to determine the initial value of the weight

matrix before the training phase begins. The weight matrix in the NN can be

regarded as the feature conversion of the input data, that is, the data firstly

encoded into another expression, moreover, then a series of learning performed

base on this.

However, when initializing the weights, we don’t know what role of initial weights

plays in training, nor how the weights will change during the training. Therefore,

a better idea is that when encoding with the weight matrix generated by initial-

ization, we hope that the encoded data can better retain the main features of the

original data.

About how to measure whether the encoded data retain complete information,

from previous research, if the encoded data can be easily restored to the original

data by decoding, in other words, the lower reconstruction error, the features of

the data are preserved well.

AE has such an NN structure, which mainly constituted by an encoder and
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a decoder, and perform backpropagation to solve a nonlinear reconstruction op-

timization problem. Figure 3.1 shows the structure, and equation 3.1 shows a

function definition of AE.

Figure 3.1: The structure of AE

x̂ = f(x; θ) (3.1)

Here, x is input data, and x̂ is reconstruction data. z is an under-complete

representation generated from the intermediate layer, which contains a feature

of input data. θ is a weight matrix that contains parameters of AE. Through

calculating the reconstruction error L(x, x̂) between x and x̂, the effectiveness of

AE can be evaluated.

L(x, x̂) =
√
||x− f(x; θ)||2 (3.2)

θ = argmin
1

N

N∑
n=1

L(xn, x̂n) (3.3)

Equation 3.2 shows the definition of error function, and equation 3.3 shows the

target θ which we want to get, where data number is n ∈ 1 · · ·N .

AE also have some variants, to take a simple example, it contains denoising

auto-encoder(DAE), variational auto-encoder(VAE)[28], or beta-VAE[29] etc.

DAE mainly used to generate generalized features by adding noise to input.

VAE mainly used to get a generation model which can control output through
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adjust latent variable. Moreover, if a disentangled representation, which differs

from the distributed representation and mapping one is a hidden variable to one

meaning, is necessary beta-VAE is a better choice.

However, the common problem with these methods is that, when dealing with

the problem with high dimension skewed datasets, they can not reduce the error

very well, moreover, the learning results are biased. That is, the problem of a

decrease in generalization is shown.

3.3 Proposed method

To solve the problems described in Chapter 2, in this chapter, a sampling method

for AE and DAE on the high dimension skewed dataset is proposed.

Fig. 3.2 shows the AE, and Fig. 3.3 shows the DAE used in the chapter of the

experiment.

Figure 3.2: The AE structure used in the experiments
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Figure 3.3: The DAE structure used in the experiments

Here when using DAE, the noise will be added by the distribution of Gaussian

noise. Figure 3.4 shows the distribution of Gaussian noise.

From previous research, in recent years, prioritized experience replay(PER)[30]

which can enhance generalization performance through preferentially reproducing

experiences on the data with few opportunities, is proposed using reinforcement

learning. Figure 3.5 shows the reinforcement learning solutions by prioritized

experience replay for unstable learning.

From examining the findings, in this research, we use priority sampling[31] to

enhance opportunities for high dimension skewed data, moreover, enhance gener-

alization performance for AE and DAE.

Equation 3.4 shows the definition of PER.

PERi(α) =
pαi∑
k p

α
k

(3.4)

Here, pi is the reference sampling probability based on error for sample i, and
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Figure 3.4: The distribution of Gaussian noise which used for DAE

this probability can be used to perform a roulette selection. PERi(α) is selection

probability for sample i, α is weight parameter, within the range of 0 < α < 1,

PERi(1.0) = p(i), and PERi(0.0) makes the learning become a random sampling.

In this research, considering the idea that using samples with significant er-

rors preferentially for learning, we are setting the reference sampling probability

according to the reconstruction error of AE and DAE.

For example, (1) firstly, starting learning progress from random sampling(α =

0); (2) secondly, according to learning progress and variation of reconstruction

error, update α; (3) finally, taking α = 1.0 and finish learning progress.

However, when PER is performed for all samples, the sampling priority strongly

depends on the distribution of reconstruction error.

For example, even if there are a small number of samples with significant recon-

struction errors, if there are a large number of samples with small reconstruction

errors, there is a possibility that the sampling does not work.
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Figure 3.5: The reinforcement learning solutions by prioritized experience replay

for unstable learning
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Here, we set an arithmetic progression with an element number of 100 as an

example of the probability array, the sum of all elements in the array is 1.0, Fig.

3.6 shows the relationship changes between p(i) with PERi(α) on the different α

settings for this array. It can be known from this that even in the case of 100 data

if the sample of high-error data is tiny, the effect of PER will be weakened.

Figure 3.6: The relationship changes between p(i) with PERi(α) on the different

α settings for an example of probability array

Moreover, the problem is that the actual application does not have only 100

data, usually with larger samples. Therefore, we proposed a method based on 2-

level PER sampling, and make samples with significant reconstruction error can be

preferentially selected anytime without depending on the sample number. Figure

3.7 shows an improved AE or DAE based on 2-level PER, and the procedure of

the proposed method is shown below.

1. Let α = 0 in first iteration, and learn to a EP epochs. When finish learning,
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Figure 3.7: Improved AE or DAE based on 2-level PER

using the obtained AE / DAE, calculate the reconstruction error L(xn, x̂n)

for all data n = 1 · · ·N . (Fig. 3.7(a))

2. Divide L(xn, x̂n) into groups m = 1 · · ·M in units of ∆L, calculate the

average value avgm of reconstruction error for each group. (Fig. 3.7(b))

3. Let avgm as reference probability, select a group based on PERg(α1). (Fig.

3.7(c))

4. For samples belonging to the selected group, according to the reconstruction

error of these samples, select a sample based on PERi(α2). (Fig. 3.7(d))

5. Extract βN samples as described above, and select (1 − β)N samples ran-

domly from all samples. (Fig. 3.7(e))

6. Use the selected samples as training data and learn to EP epochs.

7. Go back to 2.
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Figure 3.8 shows an image of the comparison between not using sampling and

using sampling.

Figure 3.8: A comparison of reconstruction error through DAE between not using

sampling and using sampling

Here, the x-axis means the index of every sample, and the y-axis means the

error of each sample. We can find the error of high error samples will be reduced

by sampling.

3.4 Dataset

To evaluate the effectiveness of the proposed method, we generated three models

of high dimension simulation dataset which on different skewed degrees.

For example,

1. Firstly, generate two different normal distributions, according to distribution

1 and distribution 2, let µ1, µ2 be their expectation, and σ1, σ2 be their

standard deviation;
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2. Secondly, generate 95% samples from distribution 1, moreover, generate 5%

samples from distribution 2 using as skewed data;

3. Finally, generate d dimension samples as described above.

Table 3.1 shows the settings for simulation data.

Table 3.1: The skewed degree control for three models of simulation data

A model B model C model

µ1 0.0 0.0 0.0

µ2 1.0 3.0 7.0

σ1, σ2 0.1 0.5 1.2

In the experiment, we generated 50000 samples of dimension d = 100. To control

the correlation between each dimension, the variance-covariance matrix is the right

choice.

From previous research, when extracting features, it is more prone to skewed

issues for the data with a low correlation between dimensions. Here we let the

covariance to be 0 on every two dimensions of the three models of simulation data

to reduce correlation.

Fig. 3.9 shows the three models simulation data, (a)(c)(e) show the three models

of simulation data on three coordinate axes, however, the data have 100 dimen-

sions, therefore considering any three dimensions in 100 dimensions data have

similar relative relationships. (b)(d)(f) show the heatmap of three models simula-

tion data, through which we can know the situation of skewed degree for the data

of each model.
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Figure 3.9: The high dimension skewed simulation data of three models
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3.5 Experiment

3.5.1 Experiment environment

We used Keras[32] as an experiment tool for each experiment below. Figure 3.10

shows the model structure in Keras of AE or DAE for training, and when DAE,

the input is corrupted by Gaussian noise[33], with 3% of data range as σ to input

data.

Table 3.2: The common parameter settings of improved AE and DAE

Simulation data number 50000

Training data number 36000

Validation data number 9000

Cross-validation data number 45000 = 36000 + 9000

Test data number 5000

Sampling group stride ∆L = 0.06

Sampling factor β = 0.2

Sampling parameter α1 = 0.3, α2 = 0.5

Sampling times 4

Epoch number for EP = 100

each smapling

Total epoch number 400 = 4× 100

Batch size 20

Layer (100)-(64 tanh)-(32 tanh)-(4 tanh)-

(32 tanh)-(64 sigmoid)-(100)

Loss function RMSE(Root Mean Squared Error)
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Figure 3.10: The model structure of AE or DAE for training
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We use the values in Table 3.2 as common parameter settings for improved AE

and DAE, the parameters were already adjusted to appropriate values through

preliminary experiments. About the parameters adjustment for α1 and α2, in

most cases, we hope the parameter values to be higher, however when the skewed

degree increased, the learning process becomes difficult, if increase parameter val-

ues blindly, it may lead to the training data changes intensely during sampling,

this will bring a lot of instability, it is usually embodied as the learning curve up

and down cyclically, therefore, this is a trade-off relationship.

A feasible solution is to increase the value under the premise that learning can

proceed normally, and the preliminary experiment was also carried out in this way.

However the standard parameters are not always valid for all experiments, they

need to be adjusted for some specific situations.

About the experiment in which the parameters need to be changed, we adjusted

some values additionally. In this experiment, when the data of the C model has

been used, Because of the distribution of the C model perhaps lead to the learning

got high reconstruction error relatively, the sampling group stride must be adjusted

to a new appropriate value, in general, because of the error range becomes wider,

the sampling group stride also follows the larger adjustment.

Moreover, according to high reconstruction errors due to a highly skewed degree,

to get more efficient features from learning, it also requires an increase in the

sampling parameter through an adjustment on α1 and α2. Therefore, when the

processing target is C model data, some of the changes in the parameter settings

are shown in Table 3.3 and Table 3.4.

Here, the parameters settings are based on some preliminary experiments. Re-

garding the difference in adjustment for improved AE and improved DAE, we

consider that is because the DAE already has some generalization performance
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Table 3.3: The changes of parameter settings for improved AE on C model simu-

lation data

Sampling group stride ∆L = 0.09

Sampling factor β = 0.3

Sampling parameter α1 = 0.5, α2 = 0.7

Table 3.4: The changes of parameter settings for improved DAE on C model

simulation data

Sampling group stride ∆L = 0.08

Sampling factor β = 0.3

Sampling parameter α1 = 0.3, α2 = 0.8

due to the addition of Gaussian noise, therefore compare to the AE, the value of

α1 which controlling the group selection can be lower, about the value of α2 can

be almost the same level as the AE.

To compare the proposed method with AE and DAE, 5-fold cross-validation[34]

has been performed. Fig. 3.11 shows the splits of samples through cross-validation

on the experiment, here, for the simulation data of each model, 10% are generated

for test data through random selection, which should be fixed and do not change.

The cross-validation is performed on the remaining 90%, therefore, for 5-fold cross-

validation, 72% training data and 18% validation data are generated for the cross-

validation of each time, at the same time, we always have the 10% test data to

perform an additional validation.
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Figure 3.11: The splits of samples for A, B, C models simulation data through

cross-validation

3.5.2 Experiment result

We performed AE, DAE, and the proposed method on A, B, C models simulation

data by 5-fold cross-validation. Fig. 3.12 shows the comparison of the RMSE

average by reconstruction error between AE and the proposed method, and Fig.

3.13 shows the comparison of the RMSE average by reconstruction error between

DAE and the proposed method.

According to the experiment results, we can know that through using the pro-

posed method, the RMSE average of reconstruction error by 5-fold cross-validation

decreased for all the data of three models with different skewed degrees both on

AE and DAE, and it also speeds up the convergence for learning.
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Figure 3.12: The RMSE average curve of AE and 2-level PER
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Figure 3.13: The RMSE average curve of DAE and 2-level PER
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3.6 Summary

For the high dimension skewed data, a sampling method based on 2-level PER for

AE and DAE is proposed. To evaluate the effectiveness, which without depending

on a particular skewed degree, of this method, three models of high dimension

skewed simulation data with a different skewed degree are generated.

Through appropriate parameter adjustments and evaluation experiments, the

effectiveness of the proposed method,

1. Reducing the reconstruction error caused by the skewed data effectively,

2. Improving the generalization of the algorithm and the convergence speed of

learning, have been confirmed.

In the next Chapter 4, we will use this method to improve accuracy for wave-

making resistance estimation, when using deep neural network(DNN)[35] to per-

form a regression for ship shape data, the data is skewed and have bias on offset

data, to improve the learning rate and accuracy of DNN, the input layer need some

compressed features with generalization. The features can be extracted through

this study to improve the accuracy of the regression.

Further, no only for this research, more usages of the other research are expected.

and it is also expected to apply some practical problems in other research, and

the proposed method will be applied to the actual high dimension skewed data,

to improve the efficiency of feature extraction during learning, and further, verify

the effectiveness of this method on a practical problem.

Of course, there are still many shortcomings in this method. For example, in the

case of parameters, it is necessary to make adjustments through many preliminary

experiments to make the proposed method get better performance, we treat this as

a legacy topic in the current stage, and will consider a more intelligent optimization
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solution, such as parameters adjustment automation based on the skewed degree

of the dataset in the future.

Besides, when the dataset has a highly skewed degree, the original learner such

as AE or DAE will get high reconstruction errors, we can reduce the high error

caused because of skewed data, but can not fundamentally solve the high error

problem of the learner. At the same time, for DAE, a learner that has some

generalization performance itself, with the increase of the skewed degree and the

high error problem of the learner, although the proposed method can achieve better

results than the conventional methods, the performance is slightly reduced. These

will be considered as the subject of future research.
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4 Wave-making resistance

estimation through deep

learning considering the

distribution of ship figure

4.1 Overview and the new proposed method

In Chapter 2 a wave-making resistance estimation method has been introduced.

However, because of the bias of offset data, we proposed an improved feature

extraction method for high dimension skewed data based on AE and PER in

Chapter 3. And in this chapter, a wave-making resistance estimate method which

considering the distribution of ship figures will be introduced.

The method in this chapter includes two phases,

1. First, improved auto-encoders, which reduce the dimension of the offset and

the profile data at the same time considering the data distribution, are gener-

ated. While performing to the skewed offset data, use the method introduced

in Chapter 3.

2. Subsequently, after the regularization of these data, a deep neural net for

regression estimation of wave-making resistance is generated, this part is the

same with Chapter 2.
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With the consideration of data distribution, compared to the results in Chapter

2, the results of the experiment show that the proposed method in this chapter can

improve the precision of wave-making resistance estimation furthermore. Figure

4.1 shows the new procedure which improved the procedure in Chapter 2 used

2-level PER sampling method in Chapter 3.

Figure 4.1: New procedure for offset sampling and estimating wave-making resis-

tance from ship shape

4.2 Dataset

In this chapter, we used two types of dataset,

1. The dataset of 58 ships which is the same with the dataset in Chapter 2;

2. The increased dataset which include the shape parameters and water tank

measurement data for other 587 ships, the definition of ship shape parameters

is the same with the definition in Chapter 2.
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When performing experiments in the next section, these two types of the dataset

will be used, and comparison experiments will be performed.

4.3 Experiment

4.3.1 Experiment environment

The settings of DAE and DNN parameters are showed in Table 4.1.

About the adjustment of the α1 and α2, because of α is the weight for deter-

mining the selection probability and means the importance of the skewed degree

of ship shape data, it depends on the dataset. Therefore to determine the α1

and α2 for each step of learning, we performed a grid search and the figure shows

the result of reconstruction errors (RMSE) with α1 and α2 changes by heat map.

Figure 4.2 shows the result, through the results, we set the values shown in Table

4.1.

Figure 4.2: Heatmap of reconstruction error (RMSE) with α1 and α2 changes

And the spec of machine what we used in the experiment is,

1. CPU: Intel Xeon E3-1230
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2. Memory: 16GB DDR-4 SDRAM

3. Graphics: NVIDIA Quadro P400 2GB

4. OS: Linux

Based on the above spec, both the method in Chapter 2 and proposed method

in this chapter take 30 minutes for 58 ships, and 100 minutes for 587 ships on one

cycle learning of DAE and DNN.

4.3.2 Experiment result

The result is, compare to using the method in Chapter 2 when using the proposed

method of this chapter on processing 58 ships, the RMSE reconstruction error of

offset data is reduced from 0.00501 to 0.00429. And the RMSE regression loss

reduced from 0.078 to 0.047, it proves a 39.74% error reduction performance.

Figure 4.4 shows the RMSE distribution of regression loss for sorted 58 ships.

From the figure, we can know that with using the proposed method, regression

loss reduced substantially and especially for the ship types which have a high

regression error before.

Moreover, the reconstruction error reduced from 0.00601 to 0.00417 when pro-

cessing 587 ships, and the regression loss reduced from 0.114 to 0.095, a 16.67%

error reduction performance has been shown. Figure 4.6 shows the result of sorted

587 ships. Here, Because of the increase ship numbers, the types of the ship also

increased, it made the skewed degree of dataset decrease, therefore compare to the

58 ships, the predominance of the proposed method decreased a little bit while

processing 587 ships.

Even so, we can find that the hull form with high error is effective. To confirm the
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Figure 4.3: RMSE distribution of regression loss with 2-level PER sampling (in

case 58 ships)

Figure 4.4: RMSE distribution of regression loss with 2-level PER sampling (in

case sorted 58 ships)
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Figure 4.5: RMSE distribution of regression loss with 2-level PER sampling (a

part of ships in case 587 ships)

Figure 4.6: RMSE distribution of regression loss with 2-level PER sampling (in

case sorted 587 ships)
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effectiveness of the proposed method, the conventional method and the proposed

method were compared on ship types with high regression error of the top 20%.

For samples with a high error of the top 20%, When the proposed method was

used, the error was reduced by 22.9%. In the case of the remaining 80%, only 9.4%

error reduction was achieved. Especially for samples with high error, the perfor-

mance improved. It proved that when there are skewed data, the generalization

performance can be maintained with the proposed method.

Figure 4.7 shows the comparison of top 20% and remaining 80%.

Figure 4.7: Comparison for top 20% and remaining 80% of 587 ships

Figure 4.8 shows the reconstruction error changes with epoch number increased.

if not using sampling, the reduction of reconstruction error can not find nor training

data, validation data, and test data. When using the proposed method which

includes a sampling process, from 100 epoch which is the start point of sampling,

reconstruction error is also starting to reduce.

Figure 4.9 shows the results of the Fn-Cw regression curve comparison between

not using sampling and using the sampling method. When not using sampling,

with Fn increased, the deviation of Cw also increased, and the hump parts of Fn-

Cw curve are also not represented distinctly. Here, the hump case is a type of

59



change in the relationship of Fn-Cw that appears in some hull forms. For these

hull forms, the trend of the changes in the increase of speed within a certain range

of ship speeds can be reversed. An appearance is a small number of data from all

ship data. When using the sampling method, from the figure we can know that

the reproducibility improved a lot.

Figure 4.8: RMSE average curve by 10-fold cross-validation

4.4 Summary

For the distribution of the ships which have various shapes, based on the method

in Chapter 2, a 2-level priority sampling based on the method in Chapter 3 has

been used and improved the learning accuracy. With these methods, high-precision

wave-making resistance estimation is realized.

As a consideration, if the combination of α is suitable for the data set, an

appropriate training sample will be selected. However, if it deviates from the

optimal α value by about 0.1, the error may increase. Here, if the step of α is

made smaller, it is thought that the error changes smoothly, but it takes enormous

time when using the grid search, and it becomes difficult to search for the optimal

solution. Therefore, we are currently setting the increment of 0.1, but as a direction

for further development, we can expect a smarter search method using Bayesian

optimization.
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Figure 4.9: The examples of comparison results of the Fn-Cw regression. The

left-column: conventional, the right-column: proposed method.
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Table 4.1: Parameters of improved DAE and DNN for regression of

Profile number 1174× 100

Offset number 22470× 100

DAE sampling group stride 0.001

DAE sampling factor β = 0.5

DAE sampling parameter α1 = 0.5, α2 = 0.8

DAE sampling times 4

DAE epoch number for each sampling EP = 100

DAE total epoch number 400 = 4× 100

DAE batch size 20

DAE layer (100)-(64 tanh)-(32 tanh)-(4 tanh)-

(32 tanh)-(64 sigmoid)-(100)

DAE Loss function RMSE(Root Mean Squared Error)

DNN epoch number 10000

DNN batch number 250

DNN input number 171 = 5 + 5 + 20× 2× 4 + 1

DNN layer (171)-(256 relu)-(128 relu)-

(64 sigmoid)-(16 sigmoid)-(1)

DNN Loss function MSE(Mean Squared Error)

DAE and DNN Optimizer Adam
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5 Conclusions and future work

5.1 Conclusions

In this dissertation, we proposed a high-precision estimation method through

deep learning with considering data distribution. Meanwhile, throughout the the-

ory of this study through a case in wave-making resistance estimation considering

the distribution of ship figures for hull design support.

In Chapter 1, we raised the motivation of this study, clarified the significance

of the study on energy saving and environmental protection through the case in

wave-making resistance estimation of the shipbuilding industry. Moreover, we in-

troduced the concept of wave-making resistance and the reason for performing

a wave-making resistance estimation. Further, we explained that because of the

inefficiency of existing estimation methods, it is necessary to propose an efficient

estimation method such as end-to-end learning. Besides, we also introduced the

feature extraction method that is expected to be used for the dimensionality re-

duction of ship shape data. The finally of the Chapter, we introduced the main

idea of this study and gave an overview of the whole study.

In Chapter 2, we proposed a wave-making resistance estimation method from the

shape of the ship through deep learning, which made end-to-end learning becomes

possible on the non-uniform ship-shape data. The proposed method contains the

pre-treatment method for non-uniformity data, the feature extraction solution

through denoising auto-encoder and discrete Fourier transform, the regression pro-
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cess through deep learning. At the same time, the experiment performed in this

chapter evaluated that the proposed method can estimate wave-making resistance

directly with high precision. At the end of this chapter, an issue about the learning

bias due to the characteristic of skewed data has been discovered.

In Chapter 3, to solve the remaining issue which begot because of the skewed

data, at the same time raise the generalization performance of the method in

Chapter 2, we proposed an improved auto-encoder based on 2-level prioritized ex-

perience replay for high dimension skewed data. To evaluate the proposed method,

three models of high dimension simulation dataset which on different skewed de-

grees are generated. To prove the universal validity of the method, the three

models of simulation datasets have been used instead of the ship shape data. The

experiment performed on both auto-encoder and denoising auto-encoder, and the

results of evaluating experiments shown that the proposed method can get lower

reconstruction error than the conventional method when the dataset is skewed.

In Chapter 4, the method in Chapter 3 has been applied on the ship shape data,

and according to the method we improved the method in Chapter 2, proposed

a wave-making resistance estimation method with considering the distribution of

ship figure. Further, to evaluate the proposed method, based on the previous

ship-shape dataset, a dataset with another larger dataset of ship shape is to be

used. In the experiment section, a comparative experiment conducted on both

two datasets, and the results of the experiment show that the proposed method

in this chapter can improve the precision of wave-making resistance estimation

furthermore.

It is expected that the method introduced in this study will be used more gener-

ally. The problem classes that can be considered when using the method generically

are as follows. (1) Feature extraction problems for non-uniform dataset when the
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data have smooth changes and the frequency components that can be extracted fall

within a certain range; (2) Learning process optimization problems when the error

of only a small part of the data is high, and it is considered to be a problem due

to the bias of data; (3) Problems that require that explainable features obtained

from learning and further applications are needed based on these features.

In the appendix of this dissertation, we give several application solutions through

this study for hull design support, which should be a hint for the needs of ship

industries. Based on the wave-making resistance estimator generated through this

study, A hint of idea about using variational auto-encoder to perform part mor-

phing, and usages of performing completed morphing for the ship shape through

inverse discrete Fourier transform are raised in Appendix B. At the same time,

with the necessity for the similarity evaluation between ships, because of the dif-

ferent length of the ships, it is recommended that using a dynamic solution such as

dynamic time warping instead of a static one. We also raise an example that per-

forming a ship-shape optimization in Appendix C, which based on the wave-making

resistance estimator of this study, through using a part morphing by variational

auto-encoder and real-coded genetic algorithm.

5.2 Future work

An issue which about the completed solution for hull design of shipbuilding has

been raised, we will consider some solutions for this issue and try to solve it in the

future work. For example, when performing the experiments for this study, we used

some random factors. indeed, starting from random as initial parameters during

learning may cause some uncertainty. Nevertheless, as the learning progresses,

the model is developed in the direction of reducing the interference of random
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factors. For models that have completed the learning, while ensuring a certain

generalization ability, it applies to the determinism of the current world. We

hope that this research can be applied in many fields, not just in the field of ship

design, but more to solve growing and urgently needed problems. We also hope

that this research can be put into use as soon as possible under the premise of

ensuring quality and accepted the test of practical application, to find problems

and improve the generalization ability of this research.
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Appendix A

About the optimization problem of the ship shape

for hull design support

Here, about how to support the ship hull optimization through the theory of

this dissertation will be described, several examples of the applications about opti-

mization method for ship hull shape design support through the estimator by this

theory will be introduced. The target is the optimization method for ship shape

according to the generated estimation model.

Hull design support has important industrial significance, in the shipbuilding

industry, there is a big demand to optimize the shape of the hull. A high-precision

wave-making resistance estimator through deep regression which considered the

ship figure distribution already be generated through this dissertation. Because of

the generated estimator has been evaluated in several experiments and proven to

have an applicable precision accuracy, therefore we are considering to use it as an

evaluation standard for the hull design.

About the hull design support, there are several methods. To illustrate how

to use the generated estimator for optimization, The methods include morph-

ing methods such as variational auto-encoder(VAE) or discrete Fourier trans-

form(DFT), to generate a variation of ships, and metaheuristic methods such as

genetic algorithm(GA) to perform an optimization will be introduced.
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Appendix B

Hull morphing and variation generation

Part morphing through variational auto-encoder(VAE)

As what mentioned in Chapter 3, variational auto-encoder(VAE) is also one of

the variants of AE, due to its unique variability because of the controllable latent

space, it is often used as generation model, here, we also want to use VAE to

generate the variation of ships. However, the length of the ships are not the same,

therefore, it is impossible to use the offset data as input of VAE directly.

To solve this problem, because the hull part excluding fore and aft usually have

little changes, it can be considered only apply the learning on the part of fore and

aft. Further, because of the continuous offset does not change suddenly, we assign

a fixed-length parameter k for both fore and aft.

Figure 1 shows the encoder part, Figure 2 shows the decoder part of VAE. Table

1 shows the specifications of VAE which using to generate fore and aft variation

in the experiment.

About the loss function for VAE, KL Divergence is used Equation 1 shows the

definition of the loss function, and Figure 3 shows the loss rate on training data

and test data of VAE learning.

Figure 4 shows the aft generation result of VAE.
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Figure 1: Encoder part of VAE, which compress fore and aft parameters to low-

dimensional latent space

LOSSV AE = MSE ×Dinput − 0.5× [

0,max∑
k=i

(1 + zσi
− z2µi

− eσi)] (1)

Figure 5 shows the procedure for evaluation, this procedure should be used to

support a hull design.

Completed morphing through inverse discrete Fourier trans-

form(IDFT)

VAE can well performed on the fore and aft part of the hull, however, to reduce

the amount of calculation for the integration on the each parts of the hull, a

completed morphing for the hull is expected.

69



Figure 2: Decoder part of VAE, which generate variated fore and aft parameters

from latent space

Figure 3: The learning loss per epochs of VAE
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Figure 4: An aft generation example of the VAE morphing result

Figure 5: Procedure of evaluating the ship shape by wave-making resistance esti-

mator
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Table 1: Parameters of VAE for generating fore and aft variation

Offset number 587× k × 100

Fore and aft length parameter k = 12

Data extension 587× 30

VAE input 587× 1200

VAE epoch number EP = 500

VAE batch size 20

VAE layer (1200)-(610 tanh)-(200 tanh)-(24 tanh)-

(200 tanh)-(610 tanh)-(1200)

Loss function MSE, KL Divergence

From Chapter 2, we have already known that the offset data can be approxi-

mated represent as fixed low-dimension components of frequency, and we gener-

ated the fixed-length offset features through the discrete Fourier transform(DFT).

Here, according to a similar consideration, it is logically reasonable that recov-

ery of the low-dimensional representation of offset data from the low-dimension

components of frequency through inverse discrete Fourier transform(IDFT)[36].

Figure 6 shows the procedure for generating a completed offset feature from the

frequency component of two ships.

Through this procedure, there are two main steps,

1. Firstly, prepare the offset features of two ships which performed interpolation

and zero-padding;

2. Subsequently, generate variated frequency component through average cal-

culation and recovery it to a new offset feature.
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Figure 6: Procedure of completed feature generation from frequency component

of two ships

73



Figure 7 shows the interpolated offset features of ship one and ship two, and

their zero-padding performed presentation, here, the coordinates of the y-axis can

be ignored because for the convenience of comparison, the relative movement up

and down for ship one and two has been performed.

Figure 7: The interpolated and zero-padding performed offset features of ship one

and ship two

Figure 8 shows the variated frequency component generation.

Within the above results, a completed morphing for a hull becomes achievable

through the variation generation procedure which is shown in Figure 9.
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Figure 8: The variated frequency component generation from two ships

Figure 9: Procedure for a completed variation generation based on frequency do-

main representation adjustment
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However, when to perform IDFT to generate offset feature, we found the gener-

ated features are unsatisfactory comparing to the generated features of by VAE,

the reason for leading to the new shape of the ship be not reality is considered as

follow,

1. Although DFT can retain a lot of features, the operation of IDFT is equiv-

alent to accumulating losses multiple times, resulting in a cumulative error

that reduces accuracy;

2. The two ships which used as input of the procedure have the low similar-

ity, this also causes a large bias in the frequency domain, and make the

cumulative error of IDFT increase.

To raise the feasibility of this method, it is necessary to evaluate the similarity

of different ships.

Similarity evaluation through dynamic time warping(DTW)

In this study, the ships have different length, to evaluate the similarity of the

different ships, we can not perform a measurement point by point, it is necessary

to use a dynamic method on the length direction of the ship. Dynamic time

warping(DTW)[37] is an algorithm that measures the degree of similarity between

two signal sequences that differ in time or speed.

When performing DTW, we decompose each dimension of the offset features

into one sequence and perform DTW processing one sequence by one sequence.

To verify the validity of this method, 6 ships have been selected randomly, and

DTW will be performed on every two ships. Figure 10, 11, 12 show the results

of the DTW which performed on the 6 ships. Every figure shows the shortest

distance route of each two ships, and the DTW distance of each two ships.
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Figure 10: The shortest distance route and DTW distance of group A(ship 1, ship

2)

Figure 11: The shortest distance route and DTW distance of group B(ship 3, ship

4)
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Figure 12: The shortest distance route and DTW distance of group C(ship 5, ship

6)

Through these figures, we found that although the variation of dimension 2 for

each ship always be large, the DTW path draw by gray lines shown on DTW

distance graph able to mapping accurately except the group C. We will make this

as a future issue.

In the current step, we used the good case to different length offset features, and

we can get the dynamic mapping path which shows in Figure 13. and each graph

in this figure means the different dimensions of the two ships.

Using the DTW mapping path which we get, we generated an example of a new

ship through the mapping path. Figure 14 shows the result.
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Figure 13: The dynamic mapping through DTW

Figure 14: The new feature generated by DTW from two ships
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Appendix C

Hull design support

Using denoising auto-encoder(DAE) to get low-dimension features of the ship,

and then change the features little by little to generate variation of ships, the

estimator can be used to evaluate if the new shape of the ship is better than

existing ships. Further, considering the solution for the optimization process which

should give support on hull design.

Based on the generated wave-making resistance estimator through this study,

there are many possibilities of solutions for hull design, Here, an example as a hint

for hull design will be raised.

Genetic algorithm(GA)[38] is a classic algorithm which as a representative meta-

heuristic method[39], has been widely recognized as an optimization method. It

can reply to the demands of industrial applications, and respond to multi-objective

optimization problems, it also has a simplicity of the framework and high search

performance especially in optimization problems with high-dimensional multidi-

mensional variables. Based on these characteristics of GA, hence it is reasonable

to apply the method on the hull shape optimization problem. Real-coded genetic

algorithm(RCGA)[40] is a branch of GA, which using continuous parameters as

they are without modifying the genes to the bit string. In the experiment below,

we will use the fore and aft variation results of VAE which got in Section 5.2 as

the first generation of RCGA, and use the wave-making resistance estimator to
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evaluate every generation.

Figure 15 shows the procedure the hull optimization used the fore and aft vari-

ation results of VAE through RCGA and wave-making resistance estimator.

Figure 15: Procedure of the hull optimization through RCGA and wave-making

resistance estimator

Evaluation value of RCGA

To evaluate a ship shape if it is an optimized hull need considering many factors,

in light of the evidence, the most important is the wave-making resistance curve

which we can use the estimator to generate from any ship shape. However, the

production of ships always needs some of the other constraints, for example, ships

with different main speeds, as well as ships with different cargo requirements, need

to consider the different range of wave-making resistance. Here we only raise an

example of how to use this study to support ship production. In the experiment,
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we let RCGA to evaluate a cumulative Cw range of the ship when 0.01 ≤ Fn ≤ 0.8,

and the measurement of the Fn stride is set to ∆Fn = 0.001. Figure 16 shows the

evaluation value what RCGA used in the experiment, and Equation 2 shows the

calculation for the evaluation value Eval of RCGA.

Figure 16: The evaluation value what RCGA used in the experiment

Eval =
0.8∑

i=0.01

[Cw(i)×∆Fn] (2)
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Crossover and mutation of RCGA

Crossover and mutation are two basic operators of GA. In the experiment, we

will use simulated binary bounded(SBX) which is a crossover method and polyno-

mially bounded which is a mutation method for RCGA.

1. Simulated binary bounded(SBX)

SBX is a crossover method for RCGA, and the parameter η control the

variation between parents and children. Large variation from a small η and

small variation from a large η value. The generation of two children from two

parents is according to the following polynomial probability distribution.

C(β) = 0.5(ηc + 1)βηc , β ≤ 1 (3)

C(β) = 0.5(ηc + 1)
1

βηc+2
, β > 1 (4)

Here, ηc is a non-negative distribution parameter, let parents are x1, x2(x1 <

x2), then their children will be c1, c2(xl ≤ ci ≤ xu, i = 1, 2). therefore, the

process for generation of two children is,

(a) Generate uniform random number u range on 0 ≤ u ≤ 1;

(b) Calculate βq,i(i = 1, 2) according to probability distribution C(β);

(c) Calculate c1, c2 and generate the children.

2. Polynomial bounded(PB)

PB is a mutation method for RCGA. It also has a parameter η to control

the variation between parent and child which is similar to SBX, and the

relationship between variation and η is the same with SBX.

Experiment of RCGA

Table 2 shows the specifications of RCGA.
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Table 2: Parameters of RCGA for hull optimization

Generations 30

Individuals 30

Selection Tournament selection

Crossover rate 0.6

Mutation rate 0.3

Figure 17 shows the result for fitness curve of RCGA.

Figure 17: The fitness curve of RCGA

With the generation number increase, the wave-making resistance evaluation

value can decrease well, however, in the real production for hull shape, the last

generation can not be used directly. That is because

1. The actual industrial application must be considering more of the limiting

factors and add them to the constraints of RCGA or other metaheuristic

methods.

2. This experiment is just a hint for hull design support, therefore it used the

common crossover and mutation method of RCGA, however, to raise the
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availability, the crossover and mutation method for the exclusive use of the

ship shape must be proposed, this could be an issue in the future.
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