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New concept to describe three-phase capillary pressure–degree of saturation 1 
relationship in porous media 2 

 3 

Highlights 4 

• Leverett concept is usually used to model water–nonaqueous phase liquid (NAPL)–air 5 
system.  6 

• However, this concept is not applicable in the case of nonspreading NAPLs. 7 
• We discuss limitations of Leverett concept based on state parameter 𝜇𝜇. 8 
• New concept applicable to both nonspreading and spreading NAPLs is proposed. 9 
• Proposed concept is validated by comparing experimental and simulation results. 10 

 11 
  12 
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Abstract 13 

The Leverett concept is used conventionally to model the relationship between the capillary 14 
pressures and the degrees of saturation in the water–nonaqueous phase liquid (NAPL)–air three-15 
phase system in porous media. In this paper, the limitation of the Leverett concept that the concept 16 
is not applicable in the case of nonspreading NAPLs is discussed through microscopic 17 
consideration. A new concept that can be applied in the case of nonspreading NAPLs as well as 18 
spreading NAPLs is then proposed. The validity of the proposed concept is confirmed by 19 
comparing with past experimental data and simulation results obtained using the conventional 20 
model based on the Leverett concept. It is confirmed that the proposed concept can correctly 21 
predict the observed distributions of NAPLs, including those of nonspreading ones.  22 

 23 

Keywords: capillary pressure; degree of saturation; nonspreading nonaqueous phase liquid 24 
(nonspreading NAPL); porous media; water–nonaqueous phase liquid (NAPL)–air three-phase 25 
system  26 
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1. Introduction 29 

Being able to simulate the seepage behavior of water–nonaqueous phase liquid (NAPL)–air three-30 
phase systems in porous media such as soils is of great importance in geoenvironmental 31 
engineering, especially when predicting the ground contamination resulting from the leakage of 32 
NAPLs as well as when selecting an efficient remediation method. To predict the seepage flow of 33 
NAPLs in a three-phase system, a rational model for the permeability coefficients of the three void 34 
fluids is crucial. As the permeability coefficients are primarily determined by the degrees of 35 
saturation of the three fluids, the relationship between the capillary pressures and the degrees of 36 
saturation of the void fluids needs to be described properly. 37 

In the case of the capillary pressure–saturation relationship in three–phase systems, 38 
Leverett (1941) assumed that the NAPL spreads across the water–air interface in a water-wet 39 
porous medium and separates the water and air phases. This assumption leads to the following 40 
conclusions: (a) the water saturation degree depends only on the capillary pressure between the 41 
water and the NAPL; and (b) the liquid saturation degree (which is the sum of the degrees of water 42 
saturation and NAPL saturation) depends on the capillary pressure between the NAPL and air 43 
phases. Based on this assumption, a number of models for the relationship between the capillary 44 
pressure and the degree of saturation for three-phase systems (van Genuchten, 1980; Lenhard and 45 
Parker, 1987a, 1987b, 1988, 1990; Parker and Lenhard, 1987, 1990; Parker et al., 1987; Farr et al., 46 
1990; Blunt et al., 1995; Zhou and Blunt, 1997) have been proposed.  47 

Meanwhile, it is usually believed that the configuration of the three fluids in a void space 48 
will necessarily be influenced by their wettability. A few NAPLs such as hexane will spread over 49 
the surface of the water phase, while others such as perchloroethylene (PCE) and decane will form 50 
a lens-like structure at the water–air interface (McBride et al., 1992; Hofstee et al., 1997). Thus, 51 
the Leverett assumption that the NAPL spreads across the water–air interface will not necessarily 52 
hold. Hofstee et al. (1997) determined the PCE–air and water–PCE–air retention curves and 53 
suggested that the Leverett concept is not applicable in the case of nonspreading NAPLs. In 54 
addition, experimental data (Kalaydjian et al., 1993; Vizika and Lombard, 1996; Zhou and Blunt, 55 
1997) have shown that the residual saturation degree of a nonspreading NAPL in water–NAPL–56 
air systems increases with a decrease in the spreading coefficient.  57 

In this study, we first highlighted the limitations of the classical Leverett concept by 58 
proving the existence of a critical ratio of the capillary pressures at which the NAPL layer covering 59 
the water–air interface cannot exist stably at the microscale (Keller et al., 1997; Fenwick and Blunt, 60 
1998a, 1998b). Next, we propose a new concept for the capillary pressure–degree of saturation 61 
relation for three-phase systems in porous media while considering the effects of the spreading 62 
coefficient of the NAPL. The proposed concept employs the relative magnitude of the NAPL 63 
pressure with respect to the water and air pressures as defined by Nakamura and Kikumoto (2014) 64 
and should be applicable to any capillary pressure–degree of saturation model (e.g., van Genuchten 65 
(1980) and Brooks and Corey (1964)). We also propose a method for taking into account the 66 
residual NAPL saturation degree in the three-phase system by using the irreducible (or minimum) 67 
degree of saturation of NAPL in the same way as is the case for the residual water in the water–air 68 
two-phase system. Finally, the performance of the proposed concept is evaluated based on 69 
comparisons with experimental data subject to a monotonic drainage path (Zhou and Blunt, 1997). 70 
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2. Overview of existing theories for three-phase systems in porous media 71 

In order to propose a new concept for the capillary pressure–degree of saturation relationship that 72 
overcomes the limitations of the classical Leverett concept, we first outline the existing theories 73 
for three–phase systems in porous media and their limitations. 74 

2.1. Capillary pressure–degree of saturation relationships for two–phase systems in porous 75 
media 76 

Using Laplace’s equation, the capillary pressure, 𝑃𝑃c𝑖𝑖𝑖𝑖, between two fluid phases 𝑖𝑖 and 𝑗𝑗 is given 77 
by 78 

𝑃𝑃c𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖𝑖 = 2𝛾𝛾𝑖𝑖𝑖𝑖/𝑟𝑟𝑖𝑖𝑖𝑖 (1) 79 

where 𝑃𝑃𝑖𝑖  and 𝑃𝑃𝑖𝑖  are the pressures of the fluid phases 𝑖𝑖 and 𝑗𝑗, respectively; 𝛾𝛾𝑖𝑖𝑖𝑖  is the interfacial 80 
tension between the fluid phases 𝑖𝑖 and 𝑗𝑗; and 𝑟𝑟𝑖𝑖𝑖𝑖 is the radius of curvature of the 𝑖𝑖–𝑗𝑗 phase interface. 81 
As 𝑟𝑟𝑖𝑖𝑖𝑖 can be regarded as being a characteristic of the porous medium, Equation (1) means that the 82 
relationship for each combination of phases 𝑖𝑖 and 𝑗𝑗 (i.e., for each 𝑖𝑖–𝑗𝑗 system) can be represented 83 
by 𝑃𝑃c𝑖𝑖𝑖𝑖/𝛾𝛾𝑖𝑖𝑖𝑖  (Leverett, 1941; Miller and Miller, 1956). 84 

On substituting the contact angle of the fluid phases 𝑖𝑖 and 𝑗𝑗, 𝜃𝜃𝑖𝑖𝑖𝑖 , and the radius of the 85 

capillary tube, 𝑎𝑎 �= 𝑟𝑟𝑖𝑖𝑖𝑖 cos 𝜃𝜃𝑖𝑖𝑖𝑖�, into Equation (1), we obtain the following relationship: 86 

2
𝑎𝑎

=
𝑃𝑃c𝑖𝑖𝑖𝑖

𝛾𝛾𝑖𝑖𝑖𝑖cos𝜃𝜃𝑖𝑖𝑖𝑖
(2) 87 

This suggests that the radius, 𝑎𝑎, is uniquely defined by 𝑃𝑃c𝑖𝑖𝑖𝑖, 𝛾𝛾𝑖𝑖𝑖𝑖, and 𝜃𝜃𝑖𝑖𝑖𝑖. The degree of saturation 88 
is generally determined by the cumulative pore-size distribution, that is, by the pores saturated 89 
with the wetting fluid and having an opening radius smaller than a threshold value, 𝑎𝑎 (e.g., Nimmo, 90 
J. R., 2004). Thus, as 𝑎𝑎 is a function of the effective degree of saturation, 𝑆𝑆j̅, we can define a 91 
function 𝐽𝐽 using Equation (2) as follows: 92 

𝐽𝐽�𝑆𝑆�̅�𝑖� =
2
𝑎𝑎

=
𝑃𝑃c𝑖𝑖𝑖𝑖

𝛾𝛾𝑖𝑖𝑖𝑖cos𝜃𝜃𝑖𝑖𝑖𝑖
(3) 93 

where the subscripts 𝑖𝑖 and 𝑗𝑗 denote the nonwetting and wetting phases, respectively. The inverse 94 
function, 𝐽𝐽−1 , also exists: 95 

𝐽𝐽−1 �
𝑃𝑃c𝑖𝑖𝑖𝑖

𝛾𝛾𝑖𝑖𝑖𝑖 cos 𝜃𝜃𝑖𝑖𝑖𝑖
� = 𝑆𝑆�̅�𝑖 (4) 96 

For the water–air two-phase system, the effective degree of saturation of water, 𝑆𝑆w, is thus 97 
given as 98 

𝑆𝑆w =
𝑆𝑆w − 𝑆𝑆wmin

1 − 𝑆𝑆wmin − 𝑆𝑆amin
= 𝐽𝐽−1 �

𝑃𝑃caw
𝛾𝛾aw cos 𝜃𝜃aw

� (5) 99 
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where 𝑆𝑆 is the actual degree of saturation, the subscripts w and a denote water and air, respectively, 100 
and the superscript min denotes the minimum (irreducible) degree of saturation. Several equations 101 
have been proposed for 𝑆𝑆w. For instance, van Genuchten (1980) proposed the following one: 102 

𝑆𝑆w = 𝐽𝐽VG
−1 �

𝑃𝑃caw
𝛾𝛾aw cos 𝜃𝜃aw

� = {1 + (𝛼𝛼𝑃𝑃caw)𝑛𝑛}
1−𝑛𝑛
𝑛𝑛 (6) 103 

with two parameters, 𝛼𝛼 and 𝑛𝑛. As Equation (6) states that  𝑆𝑆w is a function of 𝑃𝑃caw
𝛾𝛾aw cos𝜃𝜃aw

, 𝛼𝛼 is 104 

actually a parameter specific to the water–air two phase system and can be represented by 105 

𝛼𝛼 =
𝑎𝑎VG

2𝛾𝛾aw cos 𝜃𝜃aw
(7) 106 

where 𝑎𝑎VG is a constant that is specific to the porous media. Meanwhile, Brooks and Corey (1964) 107 
proposed that 108 

𝑆𝑆w = 𝐽𝐽BC−1 �
𝑃𝑃caw

𝛾𝛾aw cos 𝜃𝜃aw
� = �

𝑃𝑃caw
𝑃𝑃cawd

�
−𝜆𝜆

(8) 109 

where 𝜆𝜆 is a material parameter and 𝑃𝑃caw
d  is the entry pressure of air in the water–air two-phase 110 

system and given by the following equation: 111 

𝑃𝑃caw
d =

2𝛾𝛾aw cos 𝜃𝜃aw
𝑎𝑎BC

(9) 112 

where 𝑎𝑎BC is a parameter specific to the porous media. 113 

2.2. Leverett concept and classical capillary pressure–degree of saturation relationships for 114 
water–NAPL–air three-phase system in porous media 115 

The Leverett concept (Leverett, 1941) has been usually used to predict the capillary pressure–116 
degree of saturation relationship for three-phase systems based on the relationships for the water–117 
NAPL and NAPL–air two-phase systems. Leverett assumed that, in a water-wet porous medium, 118 
the NAPL spreads over the water–air interface, and the water and air phases do not come in contact 119 
with each other. This leads to the following: (a) the effective water saturation degree can be 120 
determined as a function of the capillary pressure between the water and NAPL phases alone, and 121 
(b) the effective degree of total liquid saturation (which is the sum of the degrees of water 122 
saturation and NAPL saturation) can be determined as a function of the capillary pressure between 123 
the NAPL and air phases alone. Based on Equation (3) and Leverett’s assumption stated above, 124 
the effective degree of water saturation, 𝑆𝑆w, and the effective degree of total liquid saturation, 𝑆𝑆t, 125 
in the three-phase system can be written as 126 

𝐽𝐽(𝑆𝑆w̅) =
𝑃𝑃cnw

𝛾𝛾nwcos𝜃𝜃nw
 (10) 127 

and 128 

𝐽𝐽(𝑆𝑆t̅) = 𝐽𝐽(𝑆𝑆w̅ + 𝑆𝑆n̅) =
𝑃𝑃can

𝛾𝛾ancos𝜃𝜃an
 (11) 129 
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where 𝐽𝐽 is a function of the effective degree of saturation and describes the capillary pressure for 130 
the two-phase fluid, while the subscripts w, n, and a denote water, the NAPL, and air, respectively. 131 
Here, the effective degree of saturation, 𝑆𝑆�̅�𝑖 , is the effective degree of saturation of the 𝑗𝑗 phase 132 
defined by the minimum or irreducible degree of saturation (e.g., Lenhard and Parker (1987)). 133 
Equations (10) and (11) indicate that the three-phase capillary pressure–degree of saturation 134 
relationship can be simply represented by scaling the two-phase relationships (i.e., the water–135 
NAPL and NAPL–air relationships) in the direction of the capillary pressure. 136 

A number of researchers (van Genuchten, 1980; Lenhard and Parker, 1987a, 1987b, 1988, 137 
1990; Parker and Lenhard, 1987, 1990; Parker et al., 1987; Farr et al., 1990; Blunt et al., 1995; 138 
Zhou and Blunt, 1997) have proposed models for the relationship between the capillary pressure 139 
and the degree of saturation for three-phase systems, all of which were based on this concept. 140 
Parker et al. (1987) and Lenhard and Parker (1988) described a three-phase relationship using van 141 
Genuchten’s two-phase model (van Genuchten, 1980). This model has been used in numerical 142 
simulations of initial-value problems related to soil contamination and remediation. Lenhard and 143 
Parker (1987a), Parker and Lenhard (1987), and Lenhard et al. (1989) modified this model to 144 
account for the phenomenon of hysteresis in soils. Meanwhile, Wipfler and Van Der Zee (2001), 145 
Van Geel and Roy (2002), and Lenhard et al. (2004) extended the existing multiphase constitutive 146 
theory to take into consideration the residual NAPL saturation degree. 147 

2.3. Spreading coefficient at thermodynamic equilibrium 148 

The configuration of three fluids in a void space is primarily governed by their wettability, 149 
and the spreading coefficient, 𝐶𝐶s, defined by Adamson (1990) is useful for measuring the tendency 150 
of the NAPL to spread across the water–air interface. 151 

𝐶𝐶s = 𝛾𝛾aw − (𝛾𝛾nw + 𝛾𝛾an). (12) 152 

NAPLs with a positive spreading coefficient (e.g., hexane) will spread over the surface of the water 153 
phase. On the other hand, NAPLs with a negative spreading coefficient, such as PCE and decane, 154 
will form a lens-like structure at the water–air interface (McBride et al., 1992; Hofstee et al., 1997). 155 
Thus, Leverett’s assumption that the NAPL spreads across the water-air interface is invalid for 156 
NAPLs having a negative spreading coefficient. Hofstee et al. (1997) determined the PCE–air and 157 
water–PCE–air retention curves and also concluded that the Leverett concept is not applicable to 158 
nonspreading NAPLs. McBride et al. (1992) stated that the spreading coefficient needs to be 159 
incorporated in the numerical models of multiphase flow. Meanwhile, experimental data 160 
(Kalaydjian et al., 1993; Vizika and Lombard, 1996; Zhou and Blunt, 1997) have shown that the 161 
residual saturation degree of a nonspreading NAPL in water–NAPL–air systems increases with a 162 
decrease in the spreading coefficient.  163 

The initial spreading coefficient, 𝐶𝐶s
I, is defined based on  the interfacial tensions of two of 164 

the fluids when the third phase is not in contact (Adamson, 1990), as follows: 165 

𝐶𝐶s
I = 𝛾𝛾aw − (𝛾𝛾nw + 𝛾𝛾an). (13) 166 

It can be seen from this equation that NAPLs having a positive spreading coefficient (𝐶𝐶s
I > 0) will 167 

form a continuous film that separates the water and air phases. On the other hand, NAPLs with a 168 
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negative spreading coefficient (𝐶𝐶s
I < 0) will form droplets at the water–air interface, such that the 169 

NAPL in question will not spread over the boundary of the water and air phases. 170 

The interfacial tension between any two of the phases will be affected by the presence of 171 
the third fluid phase (Adamson, 1990). If 𝐶𝐶s > 0, the water phase will be fully covered by the 172 
NAPL, and the water–air interfacial tension, 𝛾𝛾aw, in the three-phase system will be reduced. The 173 
other interfacial tensions, 𝛾𝛾nw and 𝛾𝛾an, will also vary; however, the changes in their values will 174 
usually be much smaller than that in 𝛾𝛾aw  (Adamson, 1990). When the three phases are at 175 
thermodynamic equilibrium, the spreading coefficient at equilibrium can be defined as 176 

𝐶𝐶s
e = 𝛾𝛾aw

e − (𝛾𝛾nw
e + 𝛾𝛾an

e ), (14) 177 

where the superscript e denotes that the three phases are in thermodynamic equilibrium. The 178 
spreading coefficient at equilibrium must be either zero or negative (Adamson, 1990). The 179 
configuration of the three phases in a pore space will necessarily be governed by the spreading 180 
coefficient at thermodynamic equilibrium, 𝐶𝐶s

e and this should be properly considered in the model 181 
for three-phase pressure–saturation relationship. 182 

2.4. Criterion for NAPL layer stability 183 

The limitations of the Leverett concept is highlighted by previous studies, which have focused on 184 
a geometric criterion for NAPL layer stability. Keller et al. (1997) proposed a microscopic model 185 
to describe the behavior of the NAPL layer in a crevice (Figure 1). They assumed that the solid is 186 
wetted by water. Thus, the water–NAPL contact angle, 𝜃𝜃nw, is equal to or smaller than the NAPL–187 
air contact angle, 𝜃𝜃an. From Equation (1), the ratio of the interfacial curvatures can be defined as 188 

𝑅𝑅 =
𝑟𝑟nw

𝑟𝑟an
=
𝛾𝛾nw

e 𝑃𝑃can

𝛾𝛾an
e 𝑃𝑃cnw

. (15) 189 

If 𝑅𝑅 is very small, the NAPL layer will be very thick, even though the NAPL layer becomes 190 
unstable with a decrease in 𝑅𝑅. Fenwick and Blunt (1998b) assumed that the NAPL layer will 191 
disappear when the water–NAPL and NAPL–air contacts with the solid surface (points A and B 192 
in Figure 1, respectively) coincide. Thus, the critical ratio, 𝑅𝑅c, at which the NAPL layer on the 193 
water–air interface is no longer stable can be defined as 194 

𝑅𝑅c =
cos(𝜃𝜃an + 𝜙𝜙)
cos(𝜃𝜃nw + 𝜙𝜙) (16) 195 

where 𝜙𝜙 is the half-angle of the crevice. Consequently, the Leverett concept is only applicable 196 
when 0 ≤ 𝑅𝑅 ≤ 𝑅𝑅c is satisfied, where the range of 𝑅𝑅c is given by equation (17) as 0 ≤ 𝜃𝜃nw ≤ 𝜃𝜃an 197 
and 𝜃𝜃an + 𝜙𝜙 ≤ π

2
 in Figure 1. 198 

0 ≤ 𝑅𝑅c ≤
cos 𝜃𝜃an

cos𝜃𝜃nw
(17) 199 

The constraint condition on the contact angles and interfacial tensions at thermodynamic 200 
equilibrium is given by Bartell and Osterhof (1927) as 201 

𝛾𝛾aw
e cos𝜃𝜃aw = 𝛾𝛾nw

e cos𝜃𝜃nw + 𝛾𝛾an
e cos𝜃𝜃an. (18) 202 
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For a completely water-wet surface, where 𝜃𝜃aw = 𝜃𝜃nw = 0, we get the following equation from 203 
Equations (14) and (18) in the same way as derived by Kalaydjian (1992) and Kalaydjian et al. 204 
(1993). 205 

cos𝜃𝜃an = 1 +
𝐶𝐶s

e

𝛾𝛾an
e (19) 206 

Further, the NAPL layer stability has been discussed in detail previously. For example, van Dijke 207 
et al. (2007) discussed the criteria for three–fluid configurations while considering the 208 
nonuniformity of wettability. 209 

 210 

 211 

Figure 1. Geometry of a crevice with a stable NAPL layer between the water and air phases (after 212 
Zhou and Blunt, 1997). 213 

 214 

3. New concept that overcomes limitations of Leverett concept 215 

The limitations of the classical models based on the Leverett concept are first discussed based on 216 
a state parameter, 𝜇𝜇. Subsequently, a simple approach is proposed to overcome its drawbacks. As 217 
we aimed to develop a novel concept to describe the capillary pressure–degree of saturation 218 
relationship of the three-phase system at thermodynamic equilibrium, the configuration of the three 219 
phases in a pore space is assumed to be governed by the spreading coefficient at equilibrium, 𝐶𝐶s

e. 220 
Further, the simple geometric criterion proposed by Keller et al. (1997) is applied herein. 221 

3.1. State parameter, 𝝁𝝁 , and interpretation of classical capillary pressure–degree of 222 
saturation relationship in three-phase system 223 

In the water–NAPL–air three phase system, when the NAPL spreads over the water–air 224 
interface and isolates the water and air phases, it is reasonable to define the degree of water 225 
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saturation and the degree of saturation of the liquids (water and NAPL) as functions of the water–226 
NAPL capillary pressure and the NAPL–air capillary pressure, respectively. Considering 227 
thermodynamic equilibrium state, Equations (10) and (11) can be rewritten as: 228 

𝐽𝐽(𝑆𝑆w̅) = 𝛽𝛽nw
e 𝑃𝑃cnw (20) 229 

and 230 

𝐽𝐽(𝑆𝑆t̅) = 𝐽𝐽(𝑆𝑆w̅ + 𝑆𝑆n̅) = 𝛽𝛽an
e 𝑃𝑃can (21) 231 

where 𝛽𝛽𝑖𝑖𝑖𝑖e  is given as: 232 

𝛽𝛽𝑖𝑖𝑖𝑖e =
1

𝛾𝛾𝑖𝑖𝑖𝑖e cos𝜃𝜃𝑖𝑖𝑖𝑖
. (22) 233 

We introduce the relative magnitude, 𝜇𝜇, of the NAPL pressure (𝑃𝑃n) with respect to the water 234 
pressure (𝑃𝑃w) and air pressure (𝑃𝑃a) (Nakamura and Kikumoto, 2014) as a parameter that plays a 235 
central role in the proposed concept. In case that capillary pressures 𝑃𝑃cnw and 𝑃𝑃caw are both positive 236 
(𝑃𝑃w < 𝑃𝑃n < 𝑃𝑃a), three phase exists in the system and 𝜇𝜇 is defined as follows. 237 

𝜇𝜇 =
𝑃𝑃n − 𝑃𝑃w

𝑃𝑃a − 𝑃𝑃w
(23) 238 

Using Equation (1), 𝜇𝜇 can also be represented by capillary pressures as follows: 239 

𝜇𝜇 =
𝑃𝑃cnw

𝑃𝑃caw
= 1 −

𝑃𝑃can

𝑃𝑃caw
(24) 240 

In other cases, air and/or NAPL phase does not exist in the system and the states in a multiphase 241 
system are summarized as follows: (a) 𝜇𝜇 = 0 when 𝑃𝑃cnw ≤ 0 as the NAPL is displaced by water 242 
and as the system consists of a water–air two-phase subsystem, and (b) 𝜇𝜇 = 1 when 𝑃𝑃can ≤ 0 as 243 
the air is displaced by the NAPL and as the system consists of an NAPL–air two-phase subsystem. 244 
Consequently, the possible range of parameter 𝜇𝜇 becomes 0 ≤ 𝜇𝜇 ≤ 1. 245 

On substituting Equation (24) for  𝑃𝑃cnw and 𝑃𝑃can in Equations (20) and (21), we obtain 246 

𝐽𝐽�𝑆𝑆w� = 𝛽𝛽nwe 𝜇𝜇𝑃𝑃caw (25) 247 

and 248 

𝐽𝐽�𝑆𝑆t� = 𝛽𝛽ane (1− 𝜇𝜇)𝑃𝑃caw, (26) 249 

respectively. As 𝑆𝑆w̅ ≤ 𝑆𝑆t̅ and because the capillary pressure necessarily increases with a decrease 250 
in the degree of saturation of the wetting phase (Bear, 1972), we get 251 

𝐽𝐽(𝑆𝑆w̅) ≥ 𝐽𝐽(𝑆𝑆t̅). (27) 252 

Substituting Equations (25) and (26) for 𝐽𝐽(𝑆𝑆w̅) and 𝐽𝐽(𝑆𝑆t̅) in Equation (26), an inequality relation 253 
involving 𝜇𝜇 is derived as follows: 254 

𝛽𝛽nw
e 𝜇𝜇 ≥ 𝛽𝛽an

e (1− 𝜇𝜇) (28) 255 
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where 𝑃𝑃caw is regarded having a nonnegative value.  256 

When the effective degree of saturation of the NAPL, 𝑆𝑆n̅(= 𝑆𝑆t̅ − 𝑆𝑆w̅) is 0, the system 257 
becomes a water–air two-phase one and Equation (27) satisfies the equality condition: 258 

𝐽𝐽(𝑆𝑆w̅) = 𝐽𝐽(𝑆𝑆t̅) = 𝛽𝛽aw
e 𝑃𝑃caw. (29) 259 

Then, as Equation (28) also satisfies the equality condition, 𝜇𝜇 is equal to 𝜇𝜇I, which is given as 260 
follows: 261 

𝜇𝜇I =
𝛽𝛽ane

𝛽𝛽nwe + 𝛽𝛽ane
�=

𝛾𝛾nwe cos𝜃𝜃nw
𝛾𝛾nwe cos𝜃𝜃nw + 𝛾𝛾ane cos𝜃𝜃an

� . (30) 262 

Using Equations (25), (26), and (29), 𝐽𝐽(𝑆𝑆w̅) and 𝐽𝐽(𝑆𝑆t̅) as related to the original Leverett 263 
concept can be derived in a uniform manner as 264 

𝐽𝐽�𝑆𝑆�̅�𝑖� = 𝛽𝛽𝑖𝑖e(𝜇𝜇)𝑃𝑃caw (31) 265 

while the inverse of function 𝐽𝐽 is written as 266 

𝑆𝑆�̅�𝑖 =
𝑆𝑆𝑖𝑖 − 𝑆𝑆w

min

1 − 𝑆𝑆w
min − 𝑆𝑆a

min = 𝐽𝐽−1�𝛽𝛽𝑖𝑖e(𝜇𝜇)𝑃𝑃caw� (32) 267 

where the subscript 𝑗𝑗 denotes water (w) or the total liquid (t) and 𝛽𝛽𝑖𝑖e(𝜇𝜇) for the classical capillary 268 
pressure–degree of saturation model is given as 269 

𝛽𝛽w
e (𝜇𝜇) = �𝛽𝛽aw

e : 0 < 𝜇𝜇 ≤ 𝜇𝜇I
𝛽𝛽nw

e 𝜇𝜇: 𝜇𝜇I < 𝜇𝜇 < 1 (33) 270 

and 271 

𝛽𝛽t
e(𝜇𝜇) = �

𝛽𝛽aw
e : 0 < 𝜇𝜇 ≤ 𝜇𝜇I

𝛽𝛽an
e (1 − 𝜇𝜇):𝜇𝜇I < 𝜇𝜇 < 1 (34) 272 

respectively. The relationships between 𝜇𝜇 and 𝛽𝛽𝑖𝑖e(𝜇𝜇), given by Equations (33) and (34), are shown 273 
by the solid lines in Figure 2. 274 

 275 
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 276 

Figure 2. Relationship between 𝜇𝜇 and 𝛽𝛽𝑖𝑖e. 277 

 278 

 Fenwick and Blunt (1998a) theoretically showed that an NAPL layer exists in a crevice 279 
when the ratio of the interfacial radius, 𝑅𝑅, is larger than the critical value, 𝑅𝑅c. From Equation (7), 280 
we obtain 281 

𝛾𝛾nw
e 𝑃𝑃can

𝛾𝛾an
e 𝑃𝑃cnw

< 𝑅𝑅c. (35) 282 

On substituting parameter 𝜇𝜇 given by Equation (24) for the capillary pressures, the applicable 283 
range of the Leverett concept given by Equation (35) becomes 284 

𝜇𝜇 ≥ 𝜇𝜇c (36) 285 

where 𝜇𝜇c is the critical value of 𝜇𝜇 for 𝑅𝑅 = 𝑅𝑅c and is given as follows: 286 

𝜇𝜇c =
𝛾𝛾nwe

𝛾𝛾nwe + 𝑅𝑅c𝛾𝛾ane
. (37) 287 

Conversely, the Leverett concept (Leverett, 1941) is not applicable when 𝜇𝜇 < 𝜇𝜇c. From the range 288 
of 𝑅𝑅c given by equation (17) and equations (30) and (37), the range of 𝜇𝜇c is given by equation (38). 289 

𝜇𝜇I ≤ 𝜇𝜇c ≤ 1 (38) 290 

Figure 3 shows the relationship between 𝜇𝜇c and the half-angle of the crevice, 𝜙𝜙. Figure 4 shows 291 
the relationship between 𝜇𝜇 and 𝛽𝛽𝑖𝑖e(𝜇𝜇) for a strongly water-wet system (𝜃𝜃aw = 𝜃𝜃nw = 0). To obtain 292 
this relationship, we assumed that 𝛾𝛾nwe = 𝛾𝛾nw  and 𝛾𝛾ane = 𝛾𝛾an, following the approximation for 293 
hydrocarbon systems used by Adamson (1990), and calculated 𝛾𝛾awe  and 𝜃𝜃an using Equations (14) 294 
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and (19), respectively. The values of the other parameters such as 𝛾𝛾aw, 𝛾𝛾nw, and 𝛾𝛾an are shown in 295 
Table 1. It can be seen from these figures that the range for which the Leverett concept (𝜇𝜇c < 𝜇𝜇 <296 
1) is applicable is smaller for NAPLs having a smaller spreading coefficients at equilibrium, 𝐶𝐶se; 297 
this finding is consistent with the experimental results obtained by McBride et al. (1992). It can 298 
also be seen that the original Leverett concept cannot be applied even in the case of an NAPL 299 
having a positive initial spreading coefficient (such as hexane), especially when the half-angle, 𝜙𝜙, 300 
in a crevice is large. Thus, the relationships between 𝜇𝜇  and 𝛽𝛽𝑖𝑖e(𝜇𝜇) for 0 < 𝜇𝜇 ≤ 𝜇𝜇c  need to be 301 
modified. 302 

 303 

 304 

Figure 3. Relationship between 𝜙𝜙 and 𝜇𝜇c. 305 

 306 
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 307 

Figure 4. Relationship between 𝜇𝜇 and 𝛽𝛽𝑖𝑖e for (a) hexane, (b) octane, and (c) decane as per the 308 

Leverett concept. 309 

 310 
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Table 1. Fluid properties (after Zhou and Blunt, 1997) 311 

 Hexane Octane Decane Water Air 

𝛾𝛾a𝑖𝑖 [mN/m] 18.0 21.4 23.5 72.1  

𝛾𝛾nw [mN/m] 50.7 51.5 52.0 72.1  

𝐶𝐶s
I [mN/m] 3.4 -0.8 -3.4   

𝐶𝐶s
e [mN/m] -0.5 -1.9 -3.9   

𝜌𝜌𝑖𝑖 [kg/m3] 659 703 730 998.2 1.2 

 312 

 Another issue with the conventional model based on the original Leverett concept is that 313 
the model does not take into account the residual degree of saturation of the NAPL, 𝑆𝑆nmin. It has 314 
been suggested by several researchers (Dong et al., 1995; Fenwick and Blunt, 1995; Zhou and 315 
Blunt, 1997) that the residual NAPL degree of saturation, 𝑆𝑆nmin, is positive when 𝐶𝐶se < 0, even 316 
though 𝑆𝑆nmin in the water–air two-phase system is zero when 𝐶𝐶se = 0. Therefore, we obtain 317 

𝑆𝑆nmin = 0 when 𝜇𝜇c = 𝜇𝜇I, (39) 318 

and 319 

𝑆𝑆nmin > 0 when 𝜇𝜇c > 𝜇𝜇I. (40) 320 

As has been pointed out through experimental studies (Kalaydjian et al., 1993; Vizika and 321 
Lombard, 1996; Zhou and Blunt, 1997), the amount of the residual NAPL increases with a decrease 322 
in the spreading coefficient, that is, 𝑆𝑆nmin increases monotonically as 𝜇𝜇c increases. 323 
 324 

3.2. A new concept taking account of critical 𝝁𝝁 value, 𝝁𝝁c 325 

We herein propose a novel form of the Leverett concept by modifying it such that its drawbacks 326 
are overcome. We then apply the unified form of the 𝐽𝐽 function for water and the total liquid in the 327 
same way as is the case for the conventional concept: 328 

𝐽𝐽�𝑆𝑆�̅�𝑖� = 𝛽𝛽𝚥𝚥e�(𝜇𝜇)𝑃𝑃caw (41) 329 

where subscript 𝑗𝑗 denotes water (w) or the total liquid (t) and 𝛽𝛽𝚥𝚥e�(𝜇𝜇) is a function of 𝜇𝜇. Further, we 330 
propose the following forms of the effective degree of saturation in order to incorporate the 331 
irreducible degree of saturation of the NAPL, 𝑆𝑆nmin  (i.e., lower limit of the NAPL degree of 332 
saturation): 333 

𝑆𝑆�̅�𝑖 =
𝑆𝑆𝑖𝑖 − 𝑆𝑆𝑖𝑖min

1 − ∑ 𝑆𝑆𝑖𝑖min𝑖𝑖
= 𝐽𝐽−1�𝛽𝛽𝚥𝚥e�(𝜇𝜇)𝑃𝑃caw� (42) 334 

which means that 335 
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𝑆𝑆w̅ =
𝑆𝑆w − 𝑆𝑆wmin

1 − 𝑆𝑆wmin − 𝑆𝑆nmin − 𝑆𝑆amin
= 𝐽𝐽−1�𝛽𝛽we� (𝜇𝜇)𝑃𝑃caw� (43) 336 

and 337 

𝑆𝑆t̅ = 𝑆𝑆w̅ + 𝑆𝑆n̅ =
𝑆𝑆t − 𝑆𝑆wmin − 𝑆𝑆nmin

1 − 𝑆𝑆wmin − 𝑆𝑆nmin − 𝑆𝑆amin
= 𝐽𝐽−1�𝛽𝛽te�(𝜇𝜇)𝑃𝑃caw�. (44) 338 

Here, 𝛽𝛽𝚥𝚥e�(𝜇𝜇) is a function of 𝜇𝜇 that satisfies the requirements listed below. 339 

In the cases where the original Leverett concept is not applicable (0 < 𝜇𝜇 ≤ 𝜇𝜇c), the NAPL 340 
remaining in the porous media tends to continue to remain there (Kalaydjian et al., 1993; Vizika 341 
and Lombard, 1996; Zhou and Blunt, 1997). In order to be able to account for this immobile NAPL 342 
phase, 𝛽𝛽we� (𝜇𝜇) and 𝛽𝛽te�(𝜇𝜇) must satisfy the following conditions: 343 

𝛽𝛽we� (𝜇𝜇) > 𝛽𝛽nwe 𝜇𝜇 (45) 344 

and 345 

𝛽𝛽te�(𝜇𝜇) < 𝛽𝛽ane (1 − 𝜇𝜇) (46) 346 

when 0 < 𝜇𝜇 ≤ 𝜇𝜇c. In addition, it is natural to assume that both 𝛽𝛽we (𝜇𝜇) and 𝛽𝛽te(𝜇𝜇) follow the water–347 
air relationship as 𝜇𝜇 approaches 0 and that the two satisfy the following conditions: 348 

𝛽𝛽we� (0) = 𝛽𝛽awe (47) 349 

and 350 

𝛽𝛽te�(0) = 𝛽𝛽awe . (48) 351 

In order to satisfy the necessary conditions given by Equations (45)–(48), we describe the 𝜇𝜇–𝛽𝛽we� (𝜇𝜇) 352 
and  𝜇𝜇–𝛽𝛽te�(𝜇𝜇) relationships using a quadratic Bezier curve (Figure 5). This approach has the 353 
following advantages: (a) the capillary pressure–degree of saturation relationships become 354 
continuously differentiable functions even at the transition point between the water–NAPL–air 355 
three-phase system and the water–air two-phase system—as a result, the implementation of the 356 
model using numerical simulations becomes rather straightforward; (b) any kind of suction-based 357 
water retention model (e.g., Gardner (1958), Brooks and Corey (1964), van Genuchten (1980), and 358 
Fredlund and Xing (1994)) can be used as the 𝐽𝐽−1 function in Equation (42); and (c) the shapes of 359 
capillary pressure–degree of saturation relationships can be adjusted readily by varying parameters 360 
𝑙𝑙w and 𝑙𝑙t of the quadratic Bezier curves (see Appendix A). In Figure 5, we assume that the system 361 
is strongly water-wet (𝜃𝜃aw = 𝜃𝜃nw = 0) in the same manner as in Figure 4, and we obtain the 362 
following relationship between 𝜇𝜇c and 𝐶𝐶s

e from equations (16), (19) and (37). 363 

𝜇𝜇c =
𝛾𝛾nw

e

𝛾𝛾nw
e + 𝛾𝛾an

e (1 + 𝐶𝐶s
e) − 𝑡𝑡𝑎𝑎𝑛𝑛𝜙𝜙�𝐶𝐶s

e(𝐶𝐶s
e − 2𝛾𝛾an

e )
. (49) 364 

The parameters 𝑙𝑙w and 𝑙𝑙t can be determined  by fitting the shapes of the quadratic Bezier curves 365 
for 𝛽𝛽we� (𝜇𝜇) and 𝛽𝛽te�(𝜇𝜇) to the 𝛽𝛽nwe 𝜇𝜇 and 𝛽𝛽ane (1− 𝜇𝜇) of the ordinary Leverett concept, respectively, 366 
in 𝜇𝜇c (𝜙𝜙 = 45∘) < 𝜇𝜇 ≤ 1. The determined values of 𝑙𝑙w and 𝑙𝑙t are 0.70 and 0.84 for hexane; 0.62 367 
and 0.70 for octane; and 0.52 and 0.69 for decane, respectively. If the spreading coefficient at 368 
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equilibrium, 𝐶𝐶s,
e is equal to zero (i.e., 𝜇𝜇c is equal to 𝜇𝜇I), the Leverett concept does not need any 369 

modification. In this case, we may set 𝑙𝑙w ≈ 1 and 𝑙𝑙t ≈ 1. 370 
 371 

 372 

Figure 5. Relationship between 𝜇𝜇 and 𝛽𝛽𝑖𝑖e for (a) hexane, (b) octane, and (c) decane as per the 373 

proposed concept. 374 

 375 

3.3. Application of the proposed concept 376 

The procedure for evaluating saturation degrees of three-phase fluids by the proposed concept is 377 
summarized herein. For given pressure of three-phase fluids, 𝑃𝑃𝑤𝑤, 𝑃𝑃𝑛𝑛 and 𝑃𝑃𝑎𝑎, we first calculate 𝑃𝑃𝑐𝑐𝑎𝑎𝑤𝑤 378 
and 𝜇𝜇. As most existing models for two-phase relationship between degree of saturation, 𝑆𝑆𝑖𝑖, and 379 

capillary pressure, 𝑃𝑃c𝑖𝑖𝑖𝑖, such as Equation (6) (van Genuchten, 1980) or Equation (8) (Brooks and 380 
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Corey, 1964) do not incorporate negative value of 𝑃𝑃c𝑖𝑖𝑖𝑖 , we evaluate 𝑃𝑃c𝑎𝑎𝑤𝑤  and 𝜇𝜇  through the 381 
following steps. 382 

In case that 𝑃𝑃w < 𝑃𝑃n < 𝑃𝑃a (the capillary pressures 𝑃𝑃cnw and 𝑃𝑃can are both positive), three 383 
phase exists in the system. For this case, 𝑃𝑃caw is given as: 384 

𝑃𝑃caw = 𝑃𝑃a − 𝑃𝑃w (50) 385 

and 𝜇𝜇 is given by equation (23). In other cases, air and/or NAPL phase does not exist in the system 386 
and we evaluate 𝑃𝑃caw and 𝜇𝜇 as follows: (a) 𝑃𝑃caw = 𝑃𝑃a − 𝑃𝑃w and 𝜇𝜇 = 0 when 𝑃𝑃n < 𝑃𝑃w ≤ 𝑃𝑃a (water–387 
air two-phase); (b) 𝑃𝑃caw = 𝑃𝑃n − 𝑃𝑃w and 𝜇𝜇 = 1 when 𝑃𝑃w ≤ 𝑃𝑃n and 𝑃𝑃a < 𝑃𝑃n (NAPL–air two-phase); 388 
and (c) 𝑃𝑃caw = 0 and 𝜇𝜇 is any value when 𝑃𝑃a < 𝑃𝑃w and 𝑃𝑃n < 𝑃𝑃w (water phase). This procedure is 389 
summarized in Figure 6. 390 

 391 

Figure 6. Procedure for calculating 𝑃𝑃caw and 𝜇𝜇. 392 

IF (𝑃𝑃w < 𝑃𝑃n < 𝑃𝑃a) 
 𝑃𝑃caw = 𝑃𝑃a − 𝑃𝑃w and calculate 𝜇𝜇 by eq. (23).  (water–NAPL–air three phase) 
ELSE IF (𝑃𝑃n < 𝑃𝑃w ≤ 𝑃𝑃a) 
 𝑃𝑃caw = 𝑃𝑃a − 𝑃𝑃w and 𝜇𝜇 = 0. (water–air two phase) 
ELSE IF (𝑃𝑃w ≤ 𝑃𝑃n) and (𝑃𝑃a < 𝑃𝑃n) 
 𝑃𝑃caw = 𝑃𝑃n − 𝑃𝑃w and 𝜇𝜇 = 1. (water–NAPL two phase) 
ELSE 
 𝑃𝑃caw = 0 and 𝜇𝜇 is any value. (water phase only) 
ENDIF 

 393 

Next, we evaluate 𝛽𝛽𝚥𝚥e�(𝜇𝜇) (𝑗𝑗 = w, t) in Equation (42) from 𝜇𝜇. By solving quadratic equation 394 
𝑎𝑎𝑡𝑡𝑖𝑖2 + 𝑏𝑏𝑡𝑡𝑖𝑖 + 𝑐𝑐 = 0, the intermediate parameter 𝑡𝑡𝑖𝑖 that controls the curvature of the Bezier curve 395 

for 𝛽𝛽𝚥𝚥e�(𝜇𝜇) (see Appendix A) is given by 𝜇𝜇 and 𝑙𝑙𝑖𝑖 as: 396 

𝑡𝑡𝑖𝑖 =
−𝑏𝑏𝑖𝑖 + �𝑏𝑏𝑖𝑖2 − 4𝑎𝑎𝑖𝑖𝑐𝑐

2𝑎𝑎𝑖𝑖
(51) 397 

where 398 

𝑎𝑎𝑖𝑖 = 1 − 𝑏𝑏𝑖𝑖
𝑏𝑏𝑖𝑖 = 𝑑𝑑𝑖𝑖𝜇𝜇I + 𝜇𝜇�2 − 𝑑𝑑𝑖𝑖�
𝑐𝑐 = −𝜇𝜇

𝑑𝑑𝑖𝑖 =
2𝑙𝑙𝑖𝑖

1 − 𝑙𝑙𝑖𝑖

. (52) 399 

Substituting 𝑡𝑡𝑖𝑖  for Equation (53), we can calculate weighting parameters 𝑘𝑘1𝑖𝑖 , 𝑘𝑘2𝑖𝑖  and 𝑘𝑘3𝑖𝑖  for 400 
phase j (w : water, t : liquid), respectively. 401 
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⎩
⎪
⎨

⎪
⎧𝑘𝑘1𝑖𝑖 = �1 − 𝑡𝑡𝑖𝑖�

2

𝑘𝑘2𝑖𝑖 =
2𝑙𝑙𝑖𝑖

1 − 𝑙𝑙𝑖𝑖
𝑡𝑡𝑖𝑖�1 − 𝑡𝑡𝑖𝑖�

𝑘𝑘3𝑖𝑖 = 𝑡𝑡𝑖𝑖2

(53) 402 

𝛽𝛽𝑤𝑤𝑒𝑒�  and 𝛽𝛽𝑡𝑡𝑒𝑒� are given as follows. 403 

𝛽𝛽𝑤𝑤𝑒𝑒� =
(𝑘𝑘1 + 𝑘𝑘2)𝛽𝛽𝑎𝑎𝑤𝑤𝑒𝑒 + 𝑘𝑘3𝛽𝛽𝑛𝑛𝑤𝑤𝑒𝑒

𝑘𝑘0
(54) 404 

𝛽𝛽𝑡𝑡𝑒𝑒� =
(𝑘𝑘1 + 𝑘𝑘2)𝛽𝛽𝑎𝑎𝑤𝑤𝑒𝑒

𝑘𝑘0
. (55) 405 

Using 𝛽𝛽𝚥𝚥e�(𝜇𝜇)  and 𝑃𝑃caw , we finally obtain saturation degrees of water and liquid by 406 
Equations (43) and (44), respectively. For the inverse of function 𝐽𝐽 in these equations, several 407 
functions were proposed. For instance, van Genuchten (1980) proposed: 408 

𝑆𝑆𝑖𝑖 = 𝐽𝐽VG−1�𝛽𝛽𝚥𝚥e�(𝜇𝜇)𝑃𝑃caw� = �1 + �
𝑎𝑎VG

2
𝛽𝛽𝚥𝚥e�(𝜇𝜇)𝑃𝑃caw�

𝑛𝑛
�
1−𝑛𝑛
𝑛𝑛

(56) 409 

with parameters specific to the porous media, 𝑛𝑛  and 𝑎𝑎VG , while Brooks and Corey (1964) 410 
proposed: 411 

𝑆𝑆𝑖𝑖 = 𝐽𝐽BC−1�𝛽𝛽𝚥𝚥e�(𝜇𝜇)𝑃𝑃caw� = �
𝑎𝑎BC

2
𝛽𝛽𝚥𝚥e�(𝜇𝜇)𝑃𝑃caw�

−𝜆𝜆
(57) 412 

where 𝜆𝜆 and 𝑎𝑎BC are parameters specific to the porous media. Finally, saturation degrees of NAPL 413 
and air are given as follows. 414 

𝑆𝑆n̅ = 𝑆𝑆t̅ − 𝑆𝑆w̅ (58) 415 

𝑆𝑆a̅ = 1 − 𝑆𝑆�̅�𝑡 (59) 416 

 417 

4. Validation 418 

We hereafter discuss the applicability of the proposed concept by comparing it with the ordinary 419 
Leverett concept and the past experimental data. Zhou and Blunt (1997) performed gravity 420 
drainage column experiments for water–air two-phase system and water–NAPL–air three-phase 421 
system on two kinds of sands (purified sand and red sand), for which the vertical distributions of 422 
the pressure of each fluid can be explicitly given as a stationary state is reached. For the 423 
experiments for three-phase system, three kinds of NAPLs (hexane, octane and decane) are used. 424 
In the simulation, we selected a model proposed by Brooks and Corey (1964) for the capillary 425 
pressure–degree of saturation relationship (Equation (57)). 426 

First, we simulated the water–air two-phase system to determine the material parameters 427 
for soils. For the water–air two-phase system, the water pressure and air pressure are given by 428 
Equations (60) and (61), respectively. 429 
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𝑃𝑃w = −𝜌𝜌w𝑔𝑔𝑔𝑔, (60) 430 

𝑃𝑃a = 𝑃𝑃cawd − 𝜌𝜌a𝑔𝑔𝑔𝑔. (61) 431 

Here, 𝜌𝜌w and 𝜌𝜌a are densities of water and air, respectively; 𝑃𝑃cawd  is the capillary pressure for the 432 
entry of the air into the water-saturated porous medium; and 𝑔𝑔 is the gravitational acceleration. As 433 
shown in Figure 7, vertical distributions of water saturation for two kinds of sand are well captured 434 
by the simulation. The material parameters for the water–air two-phase system are calibrated as 435 
Table 2 and the same sets of parameters are applied to the simulation of the three-phase system. 436 

 437 

 438 

Figure 7. Water–air two-phase capillary pressure–degree of saturation relationships for (a) 439 
purified sand and (b) red sand as determined experimentally (Zhou and Blunt, 1997). 440 

 441 

Next, vertical arrangement of fluids for the water–NAPL–air three-phase system at 442 
capillary/gravity equilibrium is schematically shown in Figure 8. NAPL and air exist above the 443 
level of 𝑔𝑔 = 0 and 𝑔𝑔 = 𝐻𝐻, respectively. We can set the vertical distribution of the pressure of each 444 
phase as: 445 

𝑃𝑃w = −𝜌𝜌w𝑔𝑔𝑔𝑔, (62) 446 

𝑃𝑃n = 𝑃𝑃cnwd − 𝜌𝜌n𝑔𝑔𝑔𝑔 (63) 447 

and 448 

𝑃𝑃a = 𝑃𝑃cand + 𝑃𝑃cnwd − (𝜌𝜌n − 𝜌𝜌a)𝑔𝑔𝐻𝐻 − 𝜌𝜌a𝑔𝑔𝑔𝑔 (64) 449 
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where 𝜌𝜌n is density of the NAPL; and 𝑃𝑃cnwd  and 𝑃𝑃cand  are the capillary pressure for the entry of the 450 
NAPL into the water-saturated porous medium and the capillary pressure for the entry of air into 451 
the NAPL-saturated porous medium, respectively. 𝑃𝑃cnwd  and 𝑃𝑃cand  are calculated as follows. 452 

𝑃𝑃cnwd =
𝛽𝛽awe

𝛽𝛽nwe
𝑃𝑃cawd (65) 453 

𝑃𝑃cand =
𝛽𝛽awe

𝛽𝛽ane
𝑃𝑃cawd (66) 454 

In this simulation, we assume a completely water-wet medium (𝜃𝜃aw = 𝜃𝜃nw = 0), as did Zhou and 455 
Blunt (1997). For the Leverett concept, Equation (57) is applied to Equation (32), with the 𝜇𝜇–𝛽𝛽𝑖𝑖e 456 
relationship being given by Equations (33) and (34) as shown in Figure 4. On the other hand, in 457 
the proposed concept, Equation (57) is applied to Equation (42) (Equations (43) and (44)), with 458 
the 𝜇𝜇–𝛽𝛽𝚥𝚥e� relationship being evaluated through the procedure explained in the section 3.3 as shown 459 
in Figure 5. 460 

 461 

Figure 8. Arrangement of water, NAPL and air in equilibrium (after Zhou and Blunt, 1997). 462 

 463 

Table 2. Material parameters for water–air two-phase system. 464 

 Purified sand Red sand 
𝑆𝑆w

min  0.032 0.070 
𝑆𝑆a

min  0.0 0.0 
𝜆𝜆  2.45 2.5 
𝑎𝑎BC [mm] 0.1091 0.1227 

 465 

Figure 9 shows the 𝜇𝜇–𝑔𝑔  relationship obtained by the vertical distribution of pressures 466 
(Equations 62, 63 and 64) for purified sand–hexane. In this figure, we can define a critical height, 467 
𝑔𝑔c which corresponds to the critical 𝜇𝜇 value, 𝜇𝜇c. As stated in Section 3.1, the Leverett concept is 468 
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not applicable when 𝜇𝜇 < 𝜇𝜇c. Since 𝜇𝜇 decreases monotonically as 𝑔𝑔 increases based on the linear 469 
distribution of pressures, the Leverett concept is not applicable in the range of 𝑔𝑔 > 𝑔𝑔c. 470 

Figures 10 and 11 show comparisons of the observed vertical distributions of the degrees 471 
of saturation of the three fluids and their corresponding values as calculated based on the original 472 
Leverett concept and the proposed concept, respectively. The height, 𝐻𝐻 , detected from the 473 
experimental data for purified sand (Zhou and Blunt, 1997), is 14.0 cm for hexane, 16.9 cm for 474 
octane, and 17.6 cm for decane. For red sand, the heights, 𝐻𝐻, for hexane, octane, and decane are 475 
11.1 cm, 17.4 cm, and 15.5 cm, respectively. In the case of the proposed concept, we set the 476 
irreducible degree of saturation of the NAPL, 𝑆𝑆nmin, as per the values used by Zhou and Blunt 477 
(1997). For purified sand, the value of 𝑆𝑆nmin is 0.13% for hexane, 1.13% for octane, and 1.49% for 478 
decane. For red sand, the value of 𝑆𝑆nmin is set to 0.35% for hexane, 3.11% for octane, and 5.25% 479 
for decane. 480 

It is seen from Figure 10 that the Leverett concept underestimate the NAPL saturation 481 
degree especially in the region above the critical height, 𝑔𝑔c. This is because the original Leverett 482 
concept cannot consider the existence of the NAPL in the region of 𝑔𝑔 > 𝑔𝑔c. On the other hand, the 483 
proposed concept can predict the measured distributions of saturation degrees of three fluids 484 
including the residual saturation degree of the NAPL well. To highlight this, we show comparisons 485 
of the observed vertical distributions of the NAPL saturation and the corresponding simulation 486 
results based on the Leverett concept and the proposed concept in Figure 12 and 13, respectively. 487 
As the ordinary Leverett concept fails when 𝑔𝑔 > 𝑔𝑔c, the predicted NAPL saturation degree tends 488 
to be much lower than the experimental results. The proposed concept, in contrast, predicts the 489 
measured NAPL saturation precisely even in the region of 𝑔𝑔 > 𝑔𝑔c. From Figures 10 and 11, it can 490 
be seen that the proposed concept can be applied regardless of the value of the spreading coefficient 491 
by controlling the shape of the quadratic Bezier curves. The residual saturation degree of the NAPL 492 
can be predicted well by the new concept as shown Figure 13(e) and 13(f) as the concept can 493 
consider the residual saturation degree of the NAPL by Equation (42).  It is deduced that the 494 
difference between the calculated results and the measured ones seen in Figures 10(f) and 11(f) is 495 
primarily due to the heterogeneity of the sand ground used in the experiment, as suggested by Zhou 496 
and Blunt (1997). 497 

 498 
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 499 

Figure 9. Relationship between 𝜇𝜇 and 𝑔𝑔 for purified sand–hexane. 500 

 501 
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 502 

Figure 10. Three-phase capillary pressure–degree of saturation relationship as determined by 503 
experiments (Zhou and Blunt, 1997) and simulations based on the Leverett concept for (a) purified 504 
sand–hexane, (b) purified sand–octane, (c) purified sand–decane, (d) red sand–hexane, (e) red 505 
sand–octane, and (f) red sand–decane systems. 506 
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 507 

Figure 11. Three-phase capillary pressure–degree of saturation relationship as determined by 508 
experiments (Zhou and Blunt, 1997) and simulations based on the proposed concept for (a) purified 509 
sand–hexane, (b) purified sand–octane, (c) purified sand–decane, (d) red sand–hexane, (e) red 510 
sand–octane, and (f) red sand–decane systems. 511 
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 512 

Figure 12. Distributions of the NAPL saturation as determined by experiments (Zhou and Blunt, 513 
1997) and simulations based on the Leverett concept for (a) purified sand–hexane, (b) purified 514 
sand–octane, (c) purified sand–decane, (d) red sand–hexane, (e) red sand–octane, and (f) red sand–515 
decane systems. 516 
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 517 

Figure 13. Distributions of the NAPL saturation as determined by experiments (Zhou and Blunt, 518 
1997) and simulations based on the proposed concept for (a) purified sand–hexane, (b) purified 519 
sand–octane, (c) purified sand–decane, (d) red sand–hexane, (e) red sand–octane, and (f) red sand–520 
decane systems. 521 
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5. Conclusions 522 

In this study, we first discussed the limitations of the ordinary Leverett concept, by which the 523 
capillary pressure–degree of saturation relationship for three-phase systems can be simplified to a 524 
combination of the water–NAPL and NAPL–air two-phase relationships. We pointed out that the 525 
limitations of the concept arise owing to the assumption that the NAPL spreads on the water 526 
surface as well as the fact that the concept needs to be modified, especially when the relative 527 
magnitude of the NAPL pressure (𝜇𝜇) is lower than its critical value (𝜇𝜇c). 528 

In order to extend the Leverett concept, 𝛽𝛽we�  and 𝛽𝛽te� are both described by quadratic Bezier 529 
curves. The spreading coefficient is incorporated into the three-phase capillary pressure–degree of 530 
saturation relationship by controlling the curvature of the quadratic Bezier curves through the 531 
parameters 𝑙𝑙w and 𝑙𝑙t. In the new concept proposed in the present study, the residual NAPL is 532 
further taken into account by its using irreducible (or minimum) saturation degree in the same way 533 
as is the case for the residual water in the water–air two-phase system. 534 

As the proposed concept is a generalized one, any two-phase capillary pressure–degree of 535 
saturation model can be applied to the concept. The validity of the proposed concept is 536 
demonstrated by comparing the simulation results obtained using the model proposed by Brooks 537 
and Corey (1964) with the experimental data reported by Zhou and Blunt (1997). In contrast to the 538 
case for the original Leverett concept, the predictions obtained using the proposed concept match 539 
well with the experimental data, including the amount of residual NAPL. Finally, it should be 540 
noted that we discuss the capillary pressure–degree of saturation relationship subject to a 541 
monotonic saturation path in the present paper. For the phenomenon of hysteresis and strongly 542 
NAPL-wet media, the proposed concept would need to be modified further. 543 

For the further application of the proposed concept to initial-boundary-value problems of 544 
water–NAPL–air three-phase flow in porous media, it is necessary to solve governing equations 545 
of mass conservation of three fluids with the pressure–saturation relationship given  by the 546 
proposed concept. The details of the application of the proposed concept is explained in Appendix 547 
B. 548 
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 553 

Appendix 554 

A. Quadratic Bezier curve 555 

The quadratic Bezier curve shown in Figure A1, which is described using three control points 𝒓𝒓1, 556 
𝒓𝒓2, and 𝒓𝒓3, has the following properties: (a) the curve interpolates 𝒓𝒓1 and 𝒓𝒓3 and its curvature is 557 
controlled by the middle control point, 𝒓𝒓2; (b) the curve connects to 𝒓𝒓1 and 𝒓𝒓3 smoothly, that is, 558 
the tangential vector of the curve is parallel to 𝒓𝒓1–𝒓𝒓2 and 𝒓𝒓2–𝒓𝒓3 at 𝒓𝒓1 and 𝒓𝒓3, respectively. Point 559 
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𝒓𝒓 on the Bezier curve can be derived via a geometric construction and can be easily written as a 560 
linear combination of the control points. 561 

𝒓𝒓 =
𝑘𝑘1𝒓𝒓1 + 𝑘𝑘2𝒓𝒓2 + 𝑘𝑘3𝒓𝒓3

𝑘𝑘1 + 𝑘𝑘2 + 𝑘𝑘3
(A1) 562 

Here, 𝑘𝑘1, 𝑘𝑘2, and 𝑘𝑘3 are functions of intermediate variable 𝑡𝑡 (0 ≤ 𝑡𝑡 ≤ 1), which are modified with 563 
an additional parameter 𝑙𝑙 (0 < 𝑙𝑙 < 1) so that the curvature of the Bezier curve can be controlled. 564 

⎩
⎨

⎧𝑘𝑘1 = (1 − 𝑡𝑡)2

𝑘𝑘2 =
2𝑙𝑙

1 − 𝑙𝑙
𝑡𝑡(1 − 𝑡𝑡)

𝑘𝑘3 = 𝑡𝑡2
(A2) 565 

The position of the Bezier curve 𝑡𝑡 = 0.5 is controlled by 𝑙𝑙 as follows. 566 

𝑙𝑙 =
ℎ
𝐻𝐻

(A3) 567 

In this study, the curve is applied in order to describe the 𝜇𝜇–𝛽𝛽𝚥𝚥e� relationship. As shown in 568 

Figure A2, the control points 𝒓𝒓w1, 𝒓𝒓w2, and 𝒓𝒓w1 are used for the 𝜇𝜇–𝛽𝛽we�  relationship while 𝒓𝒓t1, 𝒓𝒓t2, 569 
and 𝒓𝒓t3  are used for the 𝜇𝜇 –𝛽𝛽te�  relationship. Parameters, 𝑙𝑙w  and 𝑙𝑙t  are set separately as the 570 
parameter 𝑙𝑙 for the 𝜇𝜇–𝛽𝛽we�  and 𝜇𝜇–𝛽𝛽te� relationships, respectively. 571 

 572 

 573 

Figure A1. Quadratic Bezier curve with three control points. 574 
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 575 

 576 

Figure A2. Description of the 𝜇𝜇–𝛽𝛽𝚥𝚥e� relationship using a quadratic Bezier curve. 577 

 578 

B. Role of the pressure-saturation relationship in the simulation of initial boundary-value 579 
problems of water-NAPL-air three-phase transport in porous media 580 

In solving initial-boundary-value problems of water–NAPL–air three-phase transport in non-581 
deformable porous media, the mass of each fluid 𝑖𝑖 (w : water; n : NAPL; a : air) must be conserved 582 
everywhere.  583 

𝜙𝜙s�̇�𝑆𝑖𝑖 +
𝜙𝜙s𝑆𝑆𝑖𝑖
𝐾𝐾𝑖𝑖

�̇�𝑃𝑖𝑖 + 𝛻𝛻 ⋅ 𝒗𝒗𝑖𝑖 = 0 (B1) 584 

where 𝜙𝜙s is the porosity of the porous media, and 𝑆𝑆𝑖𝑖, 𝑃𝑃𝑖𝑖, 𝐾𝐾𝑖𝑖 and 𝒗𝒗𝑖𝑖 are volumetric saturation of 585 

pores, pressure, the bulk modulus and the flow rate of the fluid 𝑖𝑖, respectively. “ ̇ ” denotes the 586 
time derivative and  “ ∙ ” denotes an inner product of two vectors. By assuming Darcy’s law, 𝒗𝒗𝑖𝑖 is 587 
given as: 588 

𝒗𝒗𝑖𝑖 = −
𝑘𝑘𝑖𝑖
𝜂𝜂r𝑖𝑖

𝛻𝛻 �
𝑃𝑃𝑖𝑖
𝜌𝜌w𝑔𝑔

+ 𝜌𝜌r𝑖𝑖𝑔𝑔� (B2) 589 

where 𝑘𝑘𝑖𝑖 , 𝜂𝜂r𝑖𝑖  (= 𝜂𝜂𝑖𝑖/𝜂𝜂w) and 𝜌𝜌r𝑖𝑖  (= 𝜌𝜌𝑖𝑖/𝜌𝜌w) are the permeability, the relative viscosity and the 590 
specific gravity of fluid 𝑖𝑖, respectively, and 𝑔𝑔 is the elevation potential.  591 

As the permeability of air, 𝑘𝑘a, is practically a few order larger than 𝑘𝑘w and 𝑘𝑘n, we may 592 
assume that the air will immediately flow without significant change in the pore air pressure 𝑃𝑃a 593 
from the atmospheric pressure. Thus, the mass conservation for air is automatically satisfied and 594 



Confidential manuscript submitted to Contaminant Hydrology  

 

only the mass conservation for water and NAPL needs to be considered. By assuming that water 595 
and NAPL are both incompressible, governing equations becomes: 596 

𝜙𝜙s�̇�𝑆𝑖𝑖 −
𝑘𝑘𝑖𝑖
𝜂𝜂r𝑖𝑖

𝛻𝛻 ⋅ 𝛻𝛻 �
𝑃𝑃𝑖𝑖
𝜌𝜌w𝑔𝑔

+ 𝜌𝜌r𝑖𝑖𝑔𝑔� = 0    in ℬ

𝑃𝑃𝑖𝑖 = 𝑃𝑃𝑖𝑖∗    on 𝜕𝜕ℬ𝑃𝑃𝑖𝑖
𝒗𝒗𝑖𝑖 ⋅ 𝒏𝒏 = 𝑞𝑞𝑖𝑖    on 𝜕𝜕ℬ𝑞𝑞𝑖𝑖

(B3) 597 

where ℬ denotes an analysis domain and 𝜕𝜕ℬ represents the surface of the domain. In order to solve 598 
the first equation under Dirichlet and Neumann boundary given by the second and the third 599 
equation, we additionally need relationships that link the saturation degree, 𝑆𝑆𝑖𝑖, and the pressure, 600 
𝑃𝑃𝑖𝑖, for three liquids. For this, a model for capillary pressure–saturation relationship as the Leverett 601 
concept or the proposed concept is required. 602 

 603 
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