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Abstract: Adiabatic quantum-flux-parametron (AQFP) logic is an energy-efficient 

superconductor logic family; the energy dissipation of an AQFP gate can be arbitrarily reduced 

through adiabatic switching. In addition to high energy efficiency, AQFP logic has the advantage 

that it can easily introduce stochastic processes by exploiting naturally occurring thermal 

fluctuations. In this paper, we propose to use AQFP logic to implement an amoeba-inspired 

problem solver (APS), which is a stochastic local search method to explore solutions to 

combinatorial optimization problems such as the Boolean satisfiability problem (SAT). We 

designed a superconductor amoeba-inspired problem solver (SAPS) using AQFP logic, which 

finds solutions to a simple logical constraint satisfaction problem in the manner of APS, and 

fabricated it using a Nb integrated circuit fabrication process. Experimental results showed that 

the probability distribution of the stochastic processes in AQFP logic can be controlled by the 
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magnitude of bias current and that SAPS finds solutions using a small number of iterations when 

a moderate bias current is applied. The present results indicate the possibility of using AQFP logic 

to build hardware dedicated to the implementation of stochastic local search algorithms to solve 

combinatorial optimization problems such as SAT. 

I. Introduction  

Superconductor logic can perform logic operations in an energy-efficient manner by taking 

advantage of its physical features: zero dc resistance, magnetic flux quanta, and the Josephson 

effect. Over the last several decades, many types of superconductor logic families have been 

proposed and demonstrated [1,2]. Rapid single flux quantum (RSFQ) logic [3] is one of the most 

developed logic families; RSFQ microprocessor prototypes have been designed and demonstrated 

by Tanaka et al. [4,5] Moreover, the extensive study of RSFQ logic has contributed to the 

invention of very energy-efficient logic families, such as energy-efficient RSFQ (ERSFQ) logic 

[6], reciprocal quantum logic (RQL) [7], and low-voltage RSFQ (LV-RSFQ) logic [8]. The 

Cryogenic Computing Complexity (C3) project [9] funded by IARPA has recently been 

developing very low-power microprocessors using ERSFQ logic and RQL while developing 

submicron fabrication technology [10]. 

 Adiabatic quantum-flux-parametron (AQFP) logic [11], which is one of the energy-

efficient superconductor logic families, is adiabatic logic based on the quantum-flux-parametron 

(QFP) [12]. The switching energy (energy dissipation per switching event) of a single AQFP gate 

can be arbitrarily reduced [13] through adiabatic switching [14,15], in which the potential energy 

profile evolves from a single-well shape to a double-well shape such that the logic state can 

change quasi-statically. Followed by the establishment of a design environment for AQFP logic 

[16,17], we have demonstrated complex AQFP logic circuits such as 8-bit carry look-ahead adders 



 

3 

 

[16,18] and register files [19] to develop low-power microprocessors. We have also conducted 

research on information thermodynamics [20], which studies information processing from a 

thermodynamics perspective, by the calculation of the heat emitted from and absorbed by AQFP 

logic. In previous work [21], we demonstrated Landauer’s principle [22] numerically by showing 

that the probability distribution of logic states (logical entropy H) in AQFP gates is associated 

with thermodynamic entropy S and that the change in logical entropy ∆H is accompanied by heat 

absorption Q such that ∆H = βQ in the quasi-static limit, where β is the inverse temperature. 

 The previous demonstration revealed that stochastic processes can be introduced into 

AQFP gates through heat absorption, which paves the way for the use of AQFP logic to implement 

stochastic local search algorithms for combinatorial optimization problems. Simulated (or 

quantum) annealing [23,24] is one of the most well-known local search algorithms; several types 

of hardware that implement simulated or quantum annealing have recently been proposed and are 

attracting much attention [25,26]. The Ising model can be used to apply annealing to many 

combinatorial optimization problems that find minima of objective functions [27]; however, this 

requires the careful scheduling of temperature, or the magnitude of fluctuation, because the 

variables can stabilize even at local minimum states, which do not satisfy all constraints. On the 

other hand, the amoeba-inspired problem solver (APS) [28,29] is a stochastic local search 

algorithm that is dedicated to solving the Boolean satisfiability problem (SAT) but does not 

require the scheduling of fluctuation. APS was formulated by Aono et al. and is inspired by the 

complex spatiotemporal dynamics of a single-celled amoeba of the true slime mold Physarum 

polycephalum [28], which deforms into the optimal shape to maximize favorable nutrient 

absorption and minimize the risk of being exposed to aversive light stimuli. SAT is a problem to 

determine if all the given logical constraints (Boolean formula) can be satisfied and is classified 

as a nondeterministic polynomial time (NP)-complete problem, which implies that all NP 
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problems, including many practical real-world problems, can be reduced to SAT [30]. In general, 

APS can find solutions to SAT with a fewer number of iteration steps than conventional 

algorithms because APS updates multiple variables in parallel during each iteration whereas 

conventional algorithms change a single variable during each iteration [29]. Therefore, it is 

meaningful to develop hardware that can find solutions to SAT quickly by implementing APS. 

The key challenge to achieve hardware for the implementation of APS is to introduce stochastic 

processes into logic devices, but this is achievable in AQFP logic.  

 Here, as a proof-of-concept, we demonstrate a superconductor amoeba-inspired 

problem solver (SAPS) that can find solutions to a simple logical constraint satisfaction problem 

in the manner of APS. SAPS is composed of basic AQFP logic gates such as buffers and NOR 

gates. In SAPS, stochastic processes are introduced to AQFP gates via thermal fluctuation, where 

the amount of heat absorption, or the magnitude of entropy change, is controlled by the bias 

current applied to the AQFP gates. Followed by a basic explanation of AQFP logic and APS, we 

show the detail of SAPS and demonstrate it at 4.2 K in liquid He. The measurement results 

indicate that SAPS can find solutions through stochastic processes and that the solutions are 

quickly found when moderate bias current is applied. 

II. Adiabatic quantum-flux-parametron (AQFP) logic  

Figure 1(a) shows a schematic of an AQFP gate. When the excitation current Iex ramps up and a 

magnetic flux Φex is applied to the gate, either of the two Josephson junctions J1 and J2 switches, 

depending on the polarity of the input current Iin. As a result of the junction switching, a flux 

quantum Φ0 ≈ 2.07 × 10−15 Wb is stored in the superconductor loop composed of Lq, L1, and 

J1 (Lq, L2, and J2) for positive Iin (negative Iin). The output current Iout is generated through the 

mutual inductance Mout = kout(LqLout)0.5. The direction of Iout shows the logic state of the gate: 
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positive Iout (negative Iout) represents a logic 1 (a logic 0). Figure 1(b) shows the time evolution of 

the potential energy of the AQFP gate for a positive Iin while switching, where Φex = MexIex and 

Mex = kex1(LqL1)0.5+kex2(LqL2)0.5. AQFP gates are generally symmetrical; therefore, we assume that 

L1 = L2 and kex1 = kex2. The figure shows that the profile of the potential energy evolves from a 

single-well shape into a double-well shape as Φex increases. Positive Iin tilts the potential energy 

toward a logic 1, so that the state of the gate (the blue particle in the figure) switches gradually to 

a logic 1. This switching process is almost deterministic if the magnitude of Iin is sufficiently large. 

On the other hand, if Iin is not large, then the state could switch to a logic 0 due to thermal 

fluctuation, as shown in Fig. 1(c), where the color strength of the particles represents the 

probability of being in each state. In this case, the AQFP gate absorbs heat Q from the thermal 

bath, and the logical entropy of the gate changes by ∆H = βQ (> 0) [21]. In this way, stochastic 

processes can be introduced to AQFP gates through heat absorption. It is noteworthy that the 

magnitude of Q, or ∆H, can be controlled by the magnitude of Iin because it determines the shape 

of the potential energy during a switching process. 

 

(a) 
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(b) 

 

(c) 

Fig. 1. (a) Schematic of the adiabatic quantum-flux-parametron gate. When the excitation current Iex is applied, either 

of the two Josephson junctions J1 and J2 switches, depending on the polarity of the input current Iin, and a flux quantum 

is stored. (b) Time evolution of the potential energy with large Iin during a switching process. The potential energy is 

significantly tilted, so that the switching process is almost deterministic. (c) Time evolution of the potential energy with 

small Iin during a switching process. In this case, the AQFP gate can switch stochastically to both logic states 0 and 1 

because of thermal fluctuation; the AQFP gate absorbs heat Q and increases entropy, thereby changing the probability 

distribution inside the potential well. 

III. Amoeba-inspired problem solver (APS)  

There are multiple versions of APS; however, an iteration of APS generally includes the following 

three procedures. (1) The logic states of all the variables are observed. (2) The variables are 

simultaneously updated such that the variables that satisfy given constraints hold their values, and 

those that do not satisfy constraints are flipped; this is the reason why APS does not require the 
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scheduling of fluctuation. (3) The update of the variables fails stochastically (i.e., the variables 

are stochastically flipped, regardless of given constraints), which is required to avoid deadlocked 

states, where variables keep evolving but never reach a solution [31]. The variables eventually 

stop changing as procedures 1 through 3 are iterated, which ensures that the states of the variables 

correspond to a solution, that satisfies all the constraints [29]. Here, we treat a simple logical 

constraint satisfaction problem that we call the NOR problem [31]: find a vector x = (x1, x2, x3, 

…, xN) such that the variables satisfy xi = NOR(xi-1, xi+1), where xi ∈ {0, 1} and i ∈ {1, 2, 3, …, 

N}. In APS, the solutions to the NOR problem can be found by updating the variables in 

accordance with the following equations: 

𝑋𝑋i(𝑡𝑡 + 1) = 𝑥𝑥i-1(𝑡𝑡) + 𝑥𝑥i+1(𝑡𝑡)���������������������,                                                                                                (1) 

𝑥𝑥i(𝑡𝑡 + 1) = �
𝑋𝑋i(𝑡𝑡 + 1)������������     with a probability 𝑝𝑝1 if 𝑥𝑥i(𝑡𝑡) = 1 and 𝑋𝑋i(𝑡𝑡 + 1) = 0
𝑋𝑋i(𝑡𝑡 + 1)������������     with a probability 𝑝𝑝2 if 𝑥𝑥i(𝑡𝑡) = 0 and 𝑋𝑋i(𝑡𝑡 + 1) = 0
𝑋𝑋i(𝑡𝑡 + 1)     otherwise,                                                                             

     (2) 

where xi(t) shows the state of xi at the current iteration t, Xi(t+1) shows the intermediate state for 

updating xi, and xi(t+1) shows the state of xi at the next iteration t+1. Equation 1 corresponds to 

procedure 2 in APS: xi(t) holds its value when it satisfies the given constraint and is flipped 

otherwise. For instance, Xi(t+1) = 1 if xi-1(t) = 0, xi(t) =1, and xi+1(t) = 0; Xi(t+1) = 0 if xi-1(t) = 1, 

xi(t) =1, and xi+1(t) = 0; and Xi(t+1) = 1 if xi-1(t) = 0, xi(t) =0, and xi+1(t) = 0. Equation 2 corresponds 

to procedure 3 in APS: the change from 1 to 0 fails with a probability p1, and the conservation of 

0 fails with a probability p2. Figures 2(a) and (b) show some examples of the time evolution of 

the variables for N = 6, where the initial state is x = (0, 0, 0, 0, 0, 0). Figure 2(a) shows the case 

for p1 = 0 and p2 = 0. Stochastic processes are not introduced, so that the variables alternate 

between the two states x = (0, 0, 0, 0, 0, 0) and x = (1, 1, 1, 1, 1, 1), i.e., the variables are 

deadlocked and cannot reach a solution. Figure 2(b) shows the case for p1 > 0 and p2 > 0. Unlike 

the case of Fig. 2(a), the change from 1 to 0 and the conservation of 0 fail stochastically. These 
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stochastic processes are highlighted in red. At iterations 2 and 4, the change from 1 to 0 fails, 

which breaks the deadlocked state and leads to a satisfied state, or a solution x = (1, 0, 1, 0, 1, 0), 

at iteration 5. The solution satisfies all the constraints; for instance, x3 satisfies x3 = NOR(x2, x4). 

The satisfied state continues for a while because Eq. 1 does not change the variables. However, 

the conservation of 0 fails stochastically in accordance with Eq. 2, so that the satisfied state is 

eventually broken, thereby starting a search for another solution. In Fig. 2(b), the conservation of 

0 fails at iteration 8, and another solution x = (0, 1, 0, 0, 1, 0) is found at iteration 9. In this way, 

APS can find multiple solutions during a time evolution, which is important in some applications 

such as the simulation of chemical reactions [32]. Figure 2(c) shows the simulated performance 

of APS solving NOR problems: the average iteration number to find a solution over 500 trials as 

a function of the problem size N, where the initial state is x = (0, 0, 0, …, 0), and the probabilities 

of stochastic processes are p1 = 0.2 and p2 = 1/(2N). Note that p1 and p2 are kept constant during 

a solution search because APS does not require the scheduling of fluctuation. p2 works only to 

break satisfied states and to find multiple solutions; therefore, p2 is set to a small value 1/(2N) in 

this simulation so that it does not affect the search speed significantly. The fitting curve in Fig. 

2(c) is 5.47lnN+2.88, which indicates that APS can find solutions quickly using simple procedures. 

Although the procedures shown in Eqs. 1 and 2 are applicable only to the NOR problem, APS has 

undergone several modifications to solve general SAT, the details of which are given in the 

literature [28,29,31]. 
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(c) 

Fig. 2. Solving NOR problems using APS. (a) Time evolution for N = 6 without stochastic processes. Every process is 

deterministic; therefore, the variables cannot find a solution, or become deadlocked. (b) Time evolution for N = 6 with 

stochastic processes. The variables can break the deadlocked state because of stochastic processes, which leads to 

multiple solutions. (c) Simulated performance of APS solving NOR problems for p1 = 0.2 and p2 = 1/(2N). The average 

iteration number to find a solution was calculated over 500 trials for each problem size N. The fitting curve is 

5.47lnN+2.88. 

IV. Superconductor amoeba-inspired problem solver (SAPS)  

We design SAPS using AQFP logic that can solve a small-scale NOR problem (N = 4). Figure 

3(a) shows a schematic of SAPS, which is based on the amoeba-inspired semiconductor circuit 

demonstrated by Kasai et al. [33] The AQFP logic gates in Fig. 3(a) are based on the buffer shown 

in Fig. 1(a) and are driven by a four-phase excitation mode using a pair of ac excitation currents 

and a dc-offset current. The details of AQFP logic gate design and excitation methods are given 
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in the literature [16,34]. Logic operations are performed along the excitation phases φ1 through φ4 

with a phase separation of 90°. The logic states of the buffers in phase φ4 represent the states of 

the variables x1 through x4. SAPS implements the three procedures of APS as follows. (1) The 

buffers in phase φ1 observe the variables x1 through x4. (2) The NOR gates update all the variables 

simultaneously in accordance with Eq. 1, Xi = NOR(xi-1, xi+1). (3) Stochastic processes are 

introduced by the bias current Ib (> 0), which applies an offset input current to the buffers in phase 

φ4. Both Ib and the signal current that represents a logic 1 (positive Iout in Fig. 1(a)) have the same 

polarity; therefore, logic 1s propagate deterministically from the buffers in phase φ3 to those in 

phase φ4. On the other hand, logic 0s (negative Iout in Fig. 1(a)) propagate stochastically from the 

buffers in phase φ3 to those in phase φ4 because Ib reduces the magnitude of the signal current that 

represents logic 0s between phases φ3 and φ4. The buffers in phase φ4 absorb heat and increase 

logical entropy, as shown in Fig. 1(c); therefore, xi is updated in accordance with Eq. 2. For 

simplicity, p1 = p2 in this circuit configuration because both p1 and p2 are determined by the 

amplitude of Ib. In this way, the variables x1 through x4 evolve in the manner of APS. SAPS is 

scalable because the problem size can be increased by repeating the same circuit structure, as 

shown in Fig. 3(d), which illustrates SAPS for N = 8. While the previously reported amoeba-

inspired circuit [33] used circuit parameter variations to avoid deadlocked states, SAPS utilizes 

thermal fluctuation to avoid deadlocked states, which enables multiple solutions independent of 

initial states to be found, as will be shown later. SAPS includes 12 Josephson junctions per 

variable, excluding the peripheral circuits for readout. Assuming the average energy dissipation 

is 5 zJ per junction [16], the power consumption of SAPS for N variables is only 0.3N (nW) for a 

5 GHz operation. 

 Figure 3(b) shows the possible states of SAPS. In the experiment, SAPS starts searching 

for solutions from the initial state x = (0, 0, 0, 0). SAPS undergoes state transition from the initial 
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state to the deadlocked state, where the variables alternate between the two combinations x = (0, 

0, 0, 0) and x = (1, 1, 1, 1) due to the logical constraint xi = NOR(xi-1, xi+1) represented by the NOR 

gates. If the update of a variable fails due to thermal fluctuation, then the variables can break the 

deadlocked state and switch to one of the satisfied states x = (0, 1, 0, 1) and x = (1, 0, 1, 0), which 

are the solutions to the NOR problem. The given logical constraints are satisfied, so that the 

variables keep the same logical values for a while after reaching a satisfied state. The variables 

can return to the deadlocked state again due to thermal fluctuation, and therefore multiple 

solutions can appear without initialization of the variables, which is one of the features in APS 

[31]. 

 

(a) 
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(d) 

Fig. 3. (a) Schematic of a superconductor amoeba-inspired problem solver (SAPS) that can solve a NOR problem for 

N = 4. The buffers in φ1 observe the variables x1 through x4. The NOR gates in φ2 update the variables in parallel. The 

bias current Ib induces stochastic processes, where logic 1s propagate deterministically, whereas logic 0s are 

stochastically flipped. (b) Possible states of the variables x1 through x4. In the deadlocked state, the variables alternate 

between x = (0, 0, 0, 0) and x = (1, 1, 1, 1) and do not find solutions. With stochastic processes, the deadlocked state is 

stochastically broken, and the variables can switch to the satisfied states where the solutions are found. (c) Micrograph 

of SAPS, which was fabricated using the Nb integrated circuit fabrication process. (d) SAPS for N = 8.  

V. Stochastic solution search using SAPS  

We fabricate SAPS and operate it to demonstrate that the solutions to the NOR problem are found 

through the time evolution shown in Fig. 3(b). Figure 3(c) shows a micrograph of SAPS, which 

was fabricated using the National Institute of Advanced Industrial Science and Technology 

(AIST) 2.5 kA/cm2 Nb standard process (STP2) [35]. A pair of excitation currents Iex1 and Iex2 are 
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provided by a function generator, and a dc-offset current Idc is provided by a voltage source. The 

bias current Ib is provided to each buffer in phase φ4 by a common voltage source. The logic states 

of the variables x1 through x4 are converted into voltage signals Vx1 through Vx4 using dc 

superconducting quantum interference devices (dc-SQUIDs) [11] that are magnetically coupled 

to the buffers in phase φ4. The SAPS chip was placed inside a liquid He dewar in the experiment. 

Figure 4(a) shows the measurement sequences. Iex1 and Iex2 are sinusoidal currents with a phase 

separation of 90° that power and clock the AQFP gates in SAPS. At the beginning, Ib is set to a 

negative value Ib0 (= -27 µA) to set the variables x1 through x4 to the initial state x = (0, 0, 0, 0). 

After the initialization, Ib increases to a positive value Ib1 to introduce stochastic processes, and 

the time evolution of Vx1 through Vx4 (x1 through x4) is then observed. In synchronization with Iex2, 

x1 through x4 are iteratively updated, and their corresponding voltage signals Vx1 through Vx4 

appear in the form of unipolar return-to-zero (RZ) encoding. Figures 4(b) through 4(d) show 

typical measurement waveforms for the three different values of Ib1, where the frequency of Iex1 

and Iex2 is 100 kHz. Figure 4(b) shows the time evolution of Vx1 through Vx4 for Ib1 = 0 µA. No 

positive Ib is applied; therefore, every logic operation in SAPS is deterministic, and thus the 

variables stay in the deadlocked state. Figure 4(c) shows waveforms for Ib1 = 18.24 µA. SAPS 

escapes from the deadlocked state and switches to satisfied states because a positive Ib flips logic 

0s stochastically between φ3 and φ4. The variables keep the same logic values for a while after 

reaching a satisfied state, which ensures that the variables form a solution in APS [28]. Both the 

satisfied states x = (0, 1, 0, 1) and x = (1, 0, 1, 0) appear stochastically via the deadlocked state. 

These indicate that stochastic processes due to thermal fluctuation help SAPS break the 

deadlocked state and find solutions, as expected in Fig. 3(b), and that both solutions are found 

from the same initial state. Figure 4(d) shows waveforms for Ib1 = 27.55 µA. In this case, Ib1 is 

too large, so the variables are fixed to x = (1, 1, 1, 1), which corresponds to the fixed state in Fig. 
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3(b). 

 

(a) 

 

 

(b) 
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Fig. 4. (a) Sequence of the measurement waveforms of SAPS. Iex1 and Iex2 power and clock the AQFP gates in SAPS. 

Ib initially has a negative value Ib0 = -27 µA to initialize the variables to (0, 0, 0, 0) and increases to a positive value Ib1 

to introduce stochastic processes. The logic states of the variables x1 through x4 are converted into the voltages signals 

Vx1 through Vx4 for readout. (b) Waveforms for Ib1 = 0 µA. Every logic operation is deterministic, so that the variables 

stay in the deadlocked state. (c) Waveform for Ib1 = 18.24 µA. The moderate bias current introduces stochastic processes, 

so that the variables can switch to the satisfied states stochastically. (c) Waveform for Ib1 = 27.55 µA. The logic states 

of the variables are fixed to (1, 1, 1, 1) because the bias current is too large.  

 

 The measurement sequence shown in Fig. 4(a) was repeated 200 times for each Ib1, 

where one measurement sequence includes 1000 iteration steps, to evaluate how fast solutions are 

found depending on the value of Ib1. Figure 5(a) shows the measured probability of being in 

satisfied states Psat as a function of the iteration number and Ib1. Ib1 determines how much heat 

SAPS absorbs, or how often logic 0s are flipped between phases φ3 and φ4; therefore, the time 

evolution of Psat is strongly dependent on Ib1. The figure shows that Psat increases quickly for Ib1 

around 18.40 µA, which indicates that there is an appropriate amount of heat absorption to find 

solutions. Figure 5(b) shows the time evolution for the probability distribution of the variables x1 

through x4 for Ib1 = 18.4 µA. While the probabilities of being in x = (0, 0, 0, 0) and x = (1, 1, 1, 1) 

drop quickly, those of being in the satisfied states x = (0, 1, 0, 1) and x = (1, 0, 1, 0) increase 

rapidly, which indicates that stochastic processes introduced by Ib1 help SAPS find solutions 

quickly. Moreover, both the solutions appear with similar probabilities, although the probabilities 

of being in x = (0, 1, 0, 1) and x = (1, 0, 1, 0) are not exactly the same due to circuit parameter 

variation. In future work, we will demonstrate a large-scale SAPS to study the search speed more 

comprehensively because the size of the problem treated in this experiment is too small for such 

discussions. 
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(a) 

 

(b) 

Fig. 5. Time evolution of the variables in the experiments. (a) Evolution of the probability of being in satisfied states 

Psat. With small Ib1, Psat requires many iterations to achieve high Psat. However, with Ib1 of approximately 18.4 µA, Psat 

reaches 0.5 with less than 10 iterations. (b) Evolution of the probability distribution of each state for Ib1 = 18.40 µA. 

The probabilities of being in x = (0, 0, 0, 0) and x = (1, 1, 1, 1) drop quickly, and those of being in x = (0, 1, 0, 1) and 
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x = (1, 0, 1, 0) increase rapidly. Both the solutions x = (0, 1, 0, 1) and x = (1, 0, 1, 0) appear with similar probabilities. 

VI. Conclusions 

In this study, we proposed to use AQFP logic to implement APS by taking advantage of the ease 

of introducing stochastic processes into the circuit implementation. We designed SAPS using 

basic AQFP logic gates and fabricated it using a Nb integrated circuit fabrication process. SAPS 

was operated at 4.2 K, and it was demonstrated that it can find solutions to a simple logical 

constraint satisfaction problem through the use of stochastic processes induced by thermal 

fluctuation. The experimental results showed that the probability distribution of the logic states 

of AQFP gates can be controlled by the magnitude of the bias current and that SAPS can find 

solutions with a small number of iterations when a moderate bias current is applied. The estimated 

power consumption of SAPS was only 2.4 nW for a 5 GHz operation. These results reveal the 

possibility of very low-power superconductor circuits dedicated to the performance of stochastic 

solution-search algorithms. 

 For our next step, we will modify SAPS such that it can solve not only NOR problems 

but also general SAT. In a previous study [36], we proposed a circuit model called circuit-level 

AmoebaSAT (CL-AmbSAT), which can find solutions to general SAT in the manner of APS. This 

model is designed to search for solutions to 3-SAT [37], which is a NP-complete problem to 

determine the satisfiability of a formula in the conjunctive normal form (CNF) where each clause 

includes at most three literals. Arbitrary SAT instances can be reduced to 3-SAT instances, so that 

CL-AmbSAT can solve general SAT. In CL-AmbSAT, each variable xi is represented by a small 

circuit unit called a variable cell, and the variable cells are interconnected in accordance with the 

given 3-SAT instance. Figure 6 illustrates a schematic of a variable cell representing xi(t), which 

is composed of basic logic gates, flip-flops (FFs), a majority (MAJ) gate, and stochastic gates 
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(SGs). lj,α, lk,β and others represent the literals that share clauses (logical constraints) in the given 

3-SAT instance with xi, where lj,α = xj (lj,α = ¬xj) for α = 0 (α = 1). SGs introduce stochastic 

processes; for instance, SG1 always passes a logic 1 but flips a logic 0 with a probability p1. Our 

numerical simulation showed that CL-AmbSAT can find solutions to 3-SAT in the manner of 

APS; more details of CL-AmbSAT and simulation results can be found in the literature [36]. 

Therefore, we will modify SAPS on the basis of CL-AmbSAT. Importantly, all the circuit 

components in CL-AmbSAT can be implemented by AQFP logic. SGs can be implemented by 

buffers with bias current that controls probability distribution, and other logic gates are available 

in our AQFP cell library [16,34].  

 

Fig. 6. Variable cell representing xi in a circuit model called CL-AmbSAT. The variable cells are interconnected in 

accordance with the given 3-SAT instance. Stochastic processes are introduced by SGs.  
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