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Abstract 

AUSM (Advection-Upstream-Splitting-Method) and HLLC (Harten-Lax-van_Leer with Contact) are two 

popular families of flux functions. The AUSM is simple and requires no eigenstructure, which facilitates its 

extensions to general equations-of-state. Furthermore, one of its variants, SLAU (Simple Low-dissipation AUSM) 

(Shima and Kitamura, 2011, AIAA Journal) is applicable to all speeds and features removal of parameter-setting by 

the user. HLLC, on the other hand, clearly defines three distinct waves in Riemann problem, namely, left-running 

and right-running acoustic waves, and entropy wave. This note demonstrates that HLLC can be written in a very 

similar form with the AUSM family, and that the similar manner in extending AUSM family to all speeds is easily 

incorporated into HLLC in this AUSM-like form. Then, we combine the strengths of the both flux functions, and 

offers a new inviscid numerical flux function within the framework of MUSCL (Monotone Upwind Scheme for 

Conservation Laws) in CFD (Computational Fluid Dynamics) for Euler and Navier-Stokes equations. The resultant, 

HLLCL (HLLC with Low-dissipation) numerical flux can compute low Mach number flows and sound propagations 

at the same time with high accuracy, as demonstrated by one-dimensional and two-dimensional numerical examples. 

Furthermore, the results indicate that its extensions to general fluids such as supercritical fluids are encouraging. 
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1. Introduction 

MUSCL (Monotone Upwind Scheme for Conservation Laws) [1] type schemes have been applied for many 

practical CFD (Computational Fluid Dynamics) computations and are the basis of modern CFD algorithms. 

Numerical flux functions that calculate an inviscid flux at computational cell boundaries are one of the crucial points 

in this framework. This note presents a new inviscid numerical flux scheme for MUSCL in CFD for Euler and 

Navier-Stokes equations to compute low Mach number flows and sound propagations at the same time with high 

accuracy, based on HLLC (Harten-Lax-van_Leer with Contact) scheme [2]. 

It has been known that the inviscid numerical flux can be formulated in a simple and robust manner by AUSM 

(Advection Upstream Splitting Method) family schemes [3, 4, 5]. The authors proposed all-speed flux functions 

based on AUSM family schemes, named SLAU (Simple Low-dissipative AUSM) [6], SLAU2 [7] and SD (Shock 

Detecting)-SLAU [8], which have been successfully applied to various low Mach number flows. These schemes can 

compute low Mach number flows and sound in these (perfect-gas) flows at the same time. Such features are 

favorable to compute low Mach number flows directly coupled to the sound. For aerospace applications, however, 

combustion instabilities in a liquid rocket engine and flows in sound resonators are typical examples [9] in which the 

perfect gas assumption is too crude. 

Here let us mention flows in the combustion chamber of the liquid rocket engine into which cryogenic oxygen 

and sometimes gaseous hydrogen are injected. Typically, they are turbulently mixed, vaporized and burned. In 

certain cases, a standing wave in the chamber interacts with the combustion, then the oscillating combustion or the 

combustion instability occurs [9]. Therefore, we have to treat two phases (liquid and gas) expressed by different 

equations-of-state (EOSs), turbulent mixing, combustion and so on. All of these are very tough problems and could 

not be resolved easily by one single technology. We will propose, however, a new methodology that can handle 

general EOSs of two-phase flows and potentially alter the existing numerical analysis.  

Although it is also possible to treat general EOSs in AUSM family schemes, we have to admit that the AUSM 

family contains ambiguity in describing both sides of the Riemann problem as in the flux vector splitting (FVS) 

scheme [10], that is, we are unable to predict which side of fluids will flow into the other a priori, without the help 

of Godunov [27] or HLLC solver [28], in the context of two-fluid modeling (Kim et al. [31, 32] successfully 

extended AUSM family schemes to multiphase flows by one-fluid modeling (or homogeneous mixture modeling), in 

which pressure and velocity equilibriums are assumed between phases). On the other hand, multiphase flows of 
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general EOSs can be more naturally treated by HLLC scheme [2] since the numerical flux is clearly defined from 

conservation laws by only determining three wave speeds: HLLC defines three distinct waves in the Riemann 

problem, namely, left-running and right-running acoustic waves (sL and sR), and an entropy wave, s* (Fig. 1). In this 

example (Fig. 1), it is clearly seen that the left side fluid (e.g., water in the “L” region) will be conveyed to the cell-

interface (e.g., “*L” region), not the fluid from the right side fluid (e.g., air in the “R” region). This is one of 

strengths of HLLC. Therefore, we intend to use HLLC as the basis of a new all-speed scheme by combining its 

accuracy with the simplicity of the AUSM family.  

An extension of HLLC (or the similar numerical flux) to all speeds is not new. In their extension, Luo et al. [11] 

scaled not only the acoustic speed but also the convective velocity by borrowing a parameter from a pre-conditioner. 

Park et al. [12] employed the similar idea to HLLE+ scheme. While they were successful in solving aerodynamic 

problems, their applicability to aero-acoustic problems had not been discussed, in contrast with the present work. 

This paper will offer an alternative formulation of HLLC for all speeds (HLLC with Low-dissipation, HLLCL) 

covering both aerodynamic and aero-acoustic simulations. Furthermore, as in SLAU [6], the present extension of 

HLLC to all speeds is based on i) a simpler and more flexible formulation free from an eigenmatrix structure, and ii) 

a robust, multidimensional velocity consideration, in contrast with the classical, time-derivative-preconditioning-

based formulation [13]. We emphasize that it is not our current scope to demonstrate superiorities of HLLCL over 

the existing methods such as SLAU at all flow speeds, in every numerical test. Instead, we will pursue a new method 

that can be used for both a variety of flows (e.g., low speeds) and acoustic simulations. We hope that the newly-

proposed HLLCL will also serve as a bridge between HLLC and AUSM families, and further promote their 

extensions to general fluids such as multiphase flows or supercritical fluids [one example for supercritical Nitrogen, 

governed by Soave-Redlich-Kwon (SRK) EOS [24], will be shown in Appendix]. Folkner et al. [33] and Kim et al. 

[31, 32] applied an unsteady preconditioning technique to Convective-Upwind Split-Pressure (CUSP) and AUSM 

family schemes for very low Mach number unsteady flows. In contrast with such a technique, the present method 

will not require Strouhal number setting. 

This paper is constructed as follows. In Section 2, the governing equations and HLLC scheme in the AUSM-like 

form are introduced. Then, an “embedded” numerical dissipation of HLLC is theoretically analyzed and the new 

scheme will be proposed. Numerical examples of basic 1-D and 2-D problems including low Mach number flows 

and sound propagations are shown in Section 3. Section 4 concludes the present work. 
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2. Governing Equations and Formulations 

2.1 Finite Volume Formulation and AUSM family numerical flux scheme 

The governing equations are the compressible Navier-Stokes equations, written in the integral form as 

follows: 

Here Q, Ê , and R̂  are vectors of conservative variable, inviscid and viscous fluxes at the cell-interface, 

respectively. By applying the equation to a polyhedral computational cell, the basic form of a finite volume method 

(FVM), which is common to both structured and unstructured meshes, is obtained as 

Here 
ji,

~
E  and 

ji,

~
R are numerical inviscid and viscous fluxes at the cell-interface respectively, i is the cell volume, 

t is the time step, and Si,j is the interfacial-area separating cells i and j. Since the viscous term is treated in a 

conventional manner, we will focus on the inviscid flux here. 

It had been shown that the inviscid numerical flux function can be formulated as simple and robust as in AUSM 

family schemes. The authors have demonstrated that we can derive all-speed flux schemes by modifying the 

numerical dissipation in the AUSM family scheme [6]. We will follow the similar way to improve HLLC. 

The numerical flux function of an AUSM family scheme is written as 

Here u, v, w, h, e, p, , and N are velocity components in x, y, z directions, total enthalpy, total energy (per unit 

volume), pressure, density, and a unit outward normal vector at the cell interface, respectively, and values with 

subscript “L” or “R” indicate reconstructed values at the cell interface in MUSCL type CFD algorithms. In addition, 

m and p~ denote the mass flux and the numerical pressure at the cell-interface, and variations of them have yielded 
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variants within AUSM family schemes. The formulation of the numerical pressure was inherited from van Leer’s 

FVS method [10] and the authors have shown that this term also works as numerical dissipation that stabilizes 

computations. In addition, it was also shown that the amount of this numerical dissipation should be properly scaled 

for accurate low-dissipation computations of low Mach number flows. 

2.2 HLLC scheme and its AUSM-like expression 

Harten, Lax and van Leer [14] reported the way to determine the inviscid flux function by solving the 

approximate Riemann initial value problem. There are three characteristic speeds in the inviscid fluid, i.e., left- and 

right-running acoustic waves, sL, sR, and one convective speed, s* (Fig. 1). Assuming two constant intermediate 

states divided by three discontinuities, they showed that the numerical flux is uniquely defined to reproduce 

integrated values at both sides in which the above-mentioned wave structure exists†. 

Toro et al. [2] showed in their development of HLLC scheme that contact surfaces and boundary layers are 

correctly captured when the characteristic speed corresponding to the convective speed s* is properly given. If the 

three wave speeds are provided (Fig. 1), the interface flux is obtained automatically without the need for computing 

the Jacobian of the flux, and therefore, HLLC scheme can be easily applied to the general EOSs (with no ambiguity). 

Note that although the three wave speeds mimic the physical waves, we can modify those wave speeds and alter the 

characteristics of the scheme in numerical algorithms [15]. 

Let us now try to express HLLC scheme [2] in an AUSM-like form as follows  

Here s~  denotes the (numerical) characteristic speed (to be defined later). This expression helps us to understand 

(and even change) the numerical dissipation of HLLC scheme. Although the energy term is slightly different, HLLC 

scheme appears to have the similar form to the AUSM family schemes. Then, the mass flux and the numerical 

pressure of HLLC are expressed as 

                                                           
† There may be some confusions regarding HLL Riemann solvers, but the original HLL consists of two variants: two-wave and 
three-wave HLL [13] (as claimed by Prof. Bram van Leer himself at “Four Decades of CFD: Looking Back and Moving Forward 
- A symposium celebrating the careers of Jameson, Roe and van Leer (JRV Symposium),” June 23, 2013, 
http://dept.ku.edu/~cfdku/JRV.html), although the former is more widely recognized as the ‘original’ HLL having no contact-
resolving capability. 
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where * is referred to as a “star region,” located between the left (L) and right (R) states, as seen in Fig. 1. The 

definition of the numerical flux will be completed when the three characteristic speeds, i.e., sL, sR and s*, are given. 

We will keep this framework throughout this research. Now many ideas that have already been applied so far to 

improve AUSM family schemes are expected to be easily introduced to HLLC scheme from this AUSM-like 

notation. Note that Liou [29] expressed HLLE (Harten-Lax-van_Leer-Einfeldt) flux (a two-wave solver) [23] in the 

AUSM like form. However, HLLE flux does not give correct behavior at contact discontinuities [29] and the 

resolution of low Mach number flows was not considered in his expression as in the original HLLE scheme. Thus, 

its resolution is expected to be poorer than all-speed AUSM family schemes such as SLAU[6], because the 

convective speed s* , which plays a crucial role in low Mach number flows, is ignored as in the original HLLE. 

2.3 Analysis of the “embedded” numerical dissipation of HLLC (1): Interface pressure 

From the Eq.(5b), it is clear that the interface pressure consists of two parts: p* and the second part containing pL 

or pR. It is also seen that the second part works so as to turn the interface pressure completely upwinded at 
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supersonic condition, where 0~ Ls  or 0~ Rs . Therefore, the second term can be regarded as an upwind switch for 

the pressure term.  

In order to see how p* works at low speeds, on the other hand, we rewrite the first term as 

Here the following notations are used; 

where Lc~  and Rc~  are numerical sound speeds that are not necessarily the physical ones. Then, we assume here as 

Then, from Eq.(6a), 

Therefore, it is seen that p* consists of the average of pressures of both sides and the “embedded” numerical 
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~c . The dissipation given by the sound speed is of an 
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Furthermore, assuming Lc~  and Rc~  are constants, the first order Taylor expansion centered at ( pV ,, ) about Δρ, 

ΔV and Δp leads to the following approximate expression for the mass flux 

where the values with a bar denote the arithmetic averaged values. On the other hand, the mass flux of Roe scheme 

can be written for subsonic flows as 

Note that the Roe scheme gives linearized solution of the Riemann initial value problem (R.I.P.) of the Euler 

equation and that averages in Roe scheme are evaluated by the Roe average. It is obvious that Eq.(12) and Eq.(13) 
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where ε is a non-dimensional parameter that has a scale of the convective Mach number. For this case, numerical 

speeds of sound can be expressed as; 

Thus, the speed of sound is approximately scaled to the convective speed.  In this flux function, if the common 

density on the both sides and the definition of s* of Eq.(9) are introduced, the pressure in the star region p* reduces 

to; 

Thus, the dissipation is scaled to the convective speed, which is an appropriate scale for low Mach number flows. 
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The following behaviors are required for the non-dimensional function f in order to control the scale of the 

embedded numerical dissipation; 

Furthermore, its positivity is required in order to prevent anomalous behaviors at the stagnation. One of the simplest 

definitions for the smooth function can be given by; 

The form of Eq. (19a) was initially proposed in [5]. Here Mc, “cutoff Mach number,” is a positive non-dimensional 

parameter introduced to prevent anomalous behaviors at the stagnation and having the scale of uniform Mach 
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Note that θ ≈ O(M) at low speeds, since the numerator in Eq.(21a) is O(cM) while the denominator is O(c). At 

high speeds (θ ≥ 1, since both the numerator and the denominator in Eq.(21a) are O(c)), on the other hand, and the 

dependency of s* on pressure goes back to that of the original form expressed by Eq.(9). This scheme is denoted as 

HLLCL (HLLC with Low-dissipation), and its complete form is summarized in Appendix A, and its dissipation is 

analyzed in Appendix B. The original HLLC formulation is recovered if Mach number is high (M > 1). 

 

3. Numerical Examples 

In order to investigate the validity of the new scheme, a set of selected, simple 1D and 2D cases will be 

computed by HLLC, HLLCL and HLLCL (θ=1) [in which θ is taken to be unity in Eq.(15), corresponding to s* by 

Batten et al. [15]], and their results will be compared. For HLLCL and HLLCL (θ=1), k=2, which is within the 

common choice [30], is adopted unless noted otherwise. It is common practice to set the cutoff Mach number, Mc, as 

the order of the freestream Mach number. However, Mc is intentionally set small in 3.4. and 3.5. where small 

velocity regions exist. In 3.2, in which no freestream exists, Mc is set as 10 times the initial velocity. Again, it is not 

our intention to illustrate better performances of HLLCL or HLLCL (θ=1) than HLLC or SLAU in every case. 

Instead, it will be demonstrated that our new flux functions, developed based on our AUSM-like expression of 

HLLC, can handle low, mild, and high speed flows and also acoustic problems with reasonable solutions. 

3.1 Standard 1D shock tube 

In the Sod’s standard shock tube problem, the left and right side values are given as the following. 

The cutoff Mach number for HLLCL and HLLCL (θ=1) is set to be 0.05, that means these schemes are tuned for 

low Mach number flows (i.e., the acoustic speed will be nearly scaled to a larger value of the local velocity and 

Mach 0.05). A first order spatial difference and Euler explicit time integration are used. Courant number used for 

00 RL
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





  (21a) 

   RRRRLLLL VssV  0000 ,   (21b) 

),min(0 RRLLL cVcVs  ,   ),max(0 LLRRR cVcVs   (21c) 

)125.001.0(),,(

)101(),,(




RRR

LLL

pu

pu




 (22) 



Prepared for submission to Wiley 
 

12 
 

HLLC, and HLLCL is 0.95 while that for HLLCL (θ=1) is 0.16 which is close to the stability limit according our 

preliminary numerical experiments. This limitation, in consistent with [33, 34], is due to large numerical dissipation 

in the mass flux term of HLLCL (θ=1) while it is suppressed in HLLCL by the function θ defined in Eq.(21a). It is 

seen in Fig. 3 that HLLC and HLLCL give close results to each other, except for a tiny overshoot at the expansion in 

HLLCL (probably due to insufficient dissipation); however, the solution of HLLCL (θ=1) is further smeared at the 

expansion wave front (x ≈ 0.3), and also at the shock (x ≈ 0.9). This is also the consequence of enhancement of the 

numerical dissipation in the mass flux term. Nevertheless, these solutions do not differ significantly, demonstrating 

the potential of the present AUSM-like expression of HLLC. 

 

3.2 One-dimensional sound propagation 

One-dimensional sound propagating towards the positive direction by setting the sinusoidal wave condition at 

x=0 is simulated. The computational conditions are given bellow 

- Spatial discretization: Third-order MUSCL without slope limiter 

- Time integration: Second order, two-step explicit scheme 

- Courant number: 0.01 

- Specific heat ratio: =1.4 

- Total number of grid points per wavelength (ppw) : 40 

- Number of time steps: 25000 

- (Initial) Velocity amplitude: 1x10-3 

- Cutoff Mach number: 0.01 (10 times the initial velocity, meaning that the dissipation associated with acoustic speed is 

scaled down to Mach 0.01) 

Here 40ppw is the nearly the least number of grids to compute sound propagation without visible decay. Velocity 

profiles are shown in Fig. 4. It is seen that the wave propagates without decay by HLLC and HLLCL; on the other 

hand, their significant damping is observed in HLLCL (θ=1). This is again the consequence of enhancement of 

numerical dissipation in the last term of the mass flux term. Thus, a proper control of the dissipation such as in 

HLLCL is found effective for acoustic problems. 

 

3.3 Steady flows around NACA0012 Airfoil 
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 Inviscid and transonic (M=0.7), subsonic (M=0.1) and low Mach number (M=0.01 and 0.001) flows around 

NACA0012 airfoil are computed using the three schemes, and the pressure distributions on the surface are compared 

in Figs. 5, 6 for M=0.7, 0.1, and 0.01. The angle of incidence is three degrees and the second-order MUSCL 

reconstruction is used. The van Albada’s slope limiter [17] is applied for transonic flows. TC-PGS1 implicit method 

[18] is utilized for time integration. As for control parameters for the scheme, the cutoff Mach number is set to be 

the freestream Mach number, and k=2 is used. Only little difference is found between the results of HLLC, HLLCL, 

and HLLCL (θ=1), at each Mach number except for HLLC at M=0.01 where the pressure peak at the leading edge 

shows disagreement with others due to too much numerical dissipation of HLLC (Fig. 6). Also, we can observe 

small wiggles at the trailing edge (x≈1) in the solution of HLLCL (Fig. 6).  

In addition, for a very low Mach number case, the pressure distributions at M=0.001 by three schemes are shown 

in Fig.7. The result by HLLC shows an unphysical solution due to huge numerical dissipation and that of HLLCL 

shows violent oscillations near the trailing edge (x≈1) due to lack of enough dissipation. Moreover, Mc had to be set 

to be twice of freestream Mach number only in this very low Mach number HLLCL case in order to stabilize the 

computation.  

Contours of the pressure coefficients at M=0.001 around the airfoil by HLLCL, HLLCL (θ=1) and HLLC are 

shown in Figs. 8,9 and 10. Wiggles due to lack of enough numerical dissipation around the tailing edge are found in 

the solution of HLLCL (Fig. 8), and an unphysical solution by HLLC is evident in Fig.10, while a physically correct 

solution is obtained by HLLCL (θ=1) (Fig. 9). 

Recall that HLLCL (θ=1) has too much dissipation for sound propagation as opposed to the others. Therefore, it 

can be said that an ability to compute sound propagation and very low Mach number flows at the same time has 

been indeed improved by HLLCL, but not perfectly. Note that no special consideration for CFL limit is needed 

thanks to the implicit method employed [18] in these cases. 

Then, additional subsonic cases are computed for several Mach numbers at zero angle of incidence, and the drag 

coefficients are compared (Fig. 11). Theoretically, the aerodynamic drag should be zero for a subsonic, inviscid flow 

around a two-dimensional object, and hence, this drag indicates the overall error due to the numerical dissipation. 

While the new HLLCL and HLLCL (θ=1) schemes exhibit only small change with respect to the Mach number, the 

drag for the original HLLC exhibit rapid increase as the Mach number diminishes. (Note that the drag coefficients 

are shown in log scale.) This is due to excessive numerical dissipation contained in the interface pressure mentioned 
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in 2.3. [The difference between HLLCL and HLLCL (θ=1) seems to be resulting from the treatment of θ (as 

explained in Appendix B), which may be improved further for error reduction. Such a work, however, is beyond the 

scope of the present paper.] 

 

3.4 Supersonic Flow over Cylinder 

This numerical test has been conducted by many researchers, after Jiang and Shu computed it as a benchmark 

test in [20]. The freestream condition is Mach 3, and the computational grid for i ∈[0, imax] and j ∈[0, jmax] is 

generated by the following simple formula so that one of the grid lines fits the captured shockwave. 

where Rx =3, Ry = 6,  = 5/12, imax = 80 (circumferential direction), and jmax = 60 (wall-normal direction). The 

computational grid is displayed in Fig. 12a, in which the inflow condition is applied at the left boundary, the slip 

condition at the wall, and the top and the bottom are the outflow. The computations are carried out with MUSCL 

(=1/3) with minmod limiter for spatial reconstruction, and the two-stage, second-order, standard Runge-Kutta 

method for time integration. The Courant number is 0.5, and the computations converged around 20,000 timesteps. 

Figures 12b and 12c show the solutions (pressure contours) by HLLCL and HLLCL (θ=1), respectively (k=1, Mc 

=0.1 for both, where the low speed scaling is activated only around the stagnation point). Those solutions are free 

from carbuncle or other shock anomalies.  

 

3.5 Laminar Boundary-Layer over Flat Plate 

A Mach 0.2 flow over a flat plate is solved in order to investigate boundary-layer resolutions. This problem has 

been conducted by the authors to assess the performance of a numerical scheme in viscous flows [21, 22]. The 

rectangular computational domain comprises 60 (streamwise) x 40 (wall-normal) cells clustered to the bottom wall 

and the leading-edge. The first 10 cells are in a buffer region (symmetry condition at the bottom), and the flat plate 

(no-slip boundary condition at the bottom) starts from the 11th cell in the stream direction. The left boundary is the 

inflow, and the right and the top are the outflow with the freestream pressure specified. The MUSCL (=1/3) is 

employed for special reconstruction without a slope limiter, the second-order central difference is applied to 

     12cos1 maxmax,  jjiiRRx xxji   (23a) 

     12sin1 maxmax,  jjiiRRy yyji   (23b) 
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compute the viscous flux, and the two-stage, second-order, standard Runge-Kutta method is used for time 

integration. 

The present computations using HLLCL and HLLCL (θ=1) were carried out (k=1, Mc =0.1) for 50,000 time 

steps (at which the density residuals dropped three orders) with Courant number being 0.5. As seen in Fig. 13, those 

solutions (velocity profiles along i = 30; x= 0.4852E-02 from the leading-edge) agree well with the Blasius solution 

as HLLC, in contrast with the very diffusive HLLE [23]. Therefore, the new fluxes can be used in viscous flows. 

As seen, HLLCL attained nearly the same solution as HLLC in the shocktube problem in 3.1; it can compute 

sound waves without severe decay in 3.2; it is applicable to low Mach numbers at which HLLC showed huge 

numerical errors (3.3). Other examples in 3.4 and 3.5 showed typical solutions obtained by HLLCL for a supersonic 

flow over a blunt-body and a subsonic flow over a flat plate (laminar boundary-layer). Its extension to supercritical 

fluids governed by a more general equation-of-state is currently ongoing [19], as briefly introduced in Appendix C. 

Further examinations on HLLCL will follow in Appendices D, E, and F. 

 

4. Conclusions 

The HLLC numerical flux function has been expressed in AUSM-like formulation. Then, the simple idea already 

incorporated in AUSM family schemes (as opposed to the time-derivative preconditioning) is applied to HLLC 

scheme for all-speed simulations, i.e., HLLCL (HLLC with Low-dissipation) has been developed. In the course of 

its derivation, the embedded numerical dissipation of HLLC scheme has been analyzed, and the signal speeds in 

HLLC scheme has been modified so as to have appropriate scales at low speeds. Numerical experiments 

demonstrated that the HLLCL can compute flows of a wide range of Mach numbers accurately as well as sound 

propagations. 

This facilitates its extensions to fluids governed by general equations-of-state, such as multiphase flows and 

supercritical fluids. Such a topic is ongoing as a separate work. An extension to multidimensional, unstructured grids 

is straightforward and also left as a future work. 
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Appendix A: HLLCL Formulation 

The formulation of HLLCL is summarized here. 

 

where the mass flux and the pressure flux are given as 

with 
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where Mc is the cutoff Mach number having the scale of uniform Mach number, and k≃O(1) is a positive non-

dimensional parameter of the order of unity. Finally, the convective signal speed is given as follows. 

where 

 

Appendix B: Dissipation of HLLCL 

As in [35], the dissipation term in the pressure flux is analyzed for low speeds. Now let s* > 0 and |ML| << 1, |MR| << 

1,  

where [x] denotes “the order of x.” 
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Then, after some manipulation for [M] = [Mc], the pressure flux leads to 

 

by assuming L = R =   and cL = cR = c . As seen from this rough approximation, HLLCL and HLLCL (=1) 

have similar but slightly different dissipation at low speeds if [M] = [Mc]. (This supports slightly different numerical 

errors by HLLCL and HLLCL (=1) in Fig. 11.) 

 

Appendix C: Extension to Supercritical Fluids 

In a separate work [19], AUSM family schemes have been extended to supercritical fluids expressed by a 

complicated, cubic, Soave-Redlich-Kwon (SRK) EOS [24], expressed as follows: 
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where Tcr and pcr are critical temperature (126.2 K for nitrogen) and critical pressure (3.4 MPa for nitrogen), 

respectively, and is acentric factor ( =0.0372 for nitrogen). The (universal) gas constant R = 8.3144 J/(mol K), 

and the specific volume V is V = M/, where M is molecular weight (M = 0.028 kg/mol for nitrogen), and  is 

density. 

The “AUSM family” mentioned above does not exclude HLLCL, of course, and the corresponding formulation 

solves the following pressure-equilibrium equation [25] (for the Euler equation, for brevity), instead of the energy 

equation. 

where ci is the speed of sound at cell i, and Vn is the velocity (outward) normal to the cell-interface [please notice its 

similarity with Eq.(2)]. This treatment suppresses numerical oscillations appearing around the abrupt changes of 

variables.  

A moving nitrogen contact discontinuity [26], initially located at x=0.3m, represents the numerical solutions. 100 

cells are evenly spaced for a [0, 1] m domain (i.e., the grid spacing x=0.01m), and the initial conditions are given 

as follows. 

(, u, p, T)L = (450.0kg/m3, 10.0m/s, 4.0MPa, 124.6K) for x 0.3m 
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(, u, p, T)R = (  45.0kg/m3, 10.0m/s, 4.0MPa, 298.5K) for x>0.3m 

where the left boundary condition is the inflow, and the right boundary is the outflow with the prescribed pressure. 

The computations are conducted with t=1.0×10-5s (Courant number ≈ 0.4), up to 0.04s (4,000 steps). The solutions 

are displayed in Fig. C.1 [19], demonstrating that the extended HLLCL [by Eq. (C.5)] preserves constancy of 

pressure while the original one fails. Please see [19] for other examples. 

 

Appendix D: Effects of Two Parameters (k, Mc) 

Now let us briefly check the influences of the selections of the two parameters (k, Mc) included in HLLCL. 

Selected results are shown in Fig. D.1 for 3.4 Supersonic Flow over Cylinder, and Fig. D.2 for 3.5 Laminar 

Boundary-Layer over Flat Plate. We tested  (k, Mc) = (1, 0.1) (default), (1, 1.0), (0.1, 0.1), and (2, 0.1). As seen from 

those figures, the solutions look insensitive to the chosen values of (k, Mc) as long as they are big enough, whereas 

(k, Mc) = (0.1, 0.1) cases diverged in both examples. In other words, the effects of these two parameters are 

consistent between the two numerical tests, in spite of differences in freestream Mach number and viscous effects. 

 

Appendix E: Positivity of HLLCL 

The positivity of HLLCL is assessed in the vacuum flow problem [36]. In this test, 300 uniform cells are used 

separated at the very center by the left condition, i.e., (, u, e)L
T = (1, -2, 3), and the right condition, i.e., (, u, e)R

T = 

(1, 2, 3). The left and right boundaries are the outflow. The MUSCL (=1/3) is employed for special reconstruction 

with Van Albada’s slope limiter (=1.e-6), and the two-stage, second-order, standard Runge-Kutta method is used 

for time integration. 

The present computations using HLLCL and HLLCL (θ=1) were carried out (k=1, Mc =0.1) for 100 time steps 

with t = 0.2 (the corresponding Courant number is about 0.54). It is confirmed that they successfully conserved the 

positivity, reaching almost the same results (Fig. E.1), whereas Roe flux failed to obtain the solutions. 
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Appendix F: Severe Hypersonic Problem 

It is reported that many numerical fluxes fail to produce a stable and symmetry bow shock ahead of a cylinder at 

hypersonic speeds, particularly when computational cells have a large aspect ratio [37, 38, 39]. We have conducted 

such Mach 20 cases [37] with 800 cells in the circumferential direction and 30 cells in the wall-normal direction, 

covering a fan-shaped space of ±75 degrees upstream the cylinder. First-order accurate methods are employed both 

in space and time (i.e., Euler explicit method), and the computations are run with CFL=0.5 for 40,000 steps.  

The solutions are showin in Fig. F.1. HLLCL exhibit the carbuncle-like solution, and HLLCL (θ=1) yielded the 

full carbuncle, whereas SLAU2 showed only slight asymmetry. This comes with no surprise, since the proposed 

methods recover to the original HLLC (which is known to be carbuncle-prone, as well as the Roe flux) at supersonic 

speeds. These could be remedied by a multi-dimensional dissipation strategy, e.g. in [37, 40, 41, 42], and the 

research in this direction is ongoing. Nevertheless, we have demonstrated that HLLC can be expressed in the AUSM 

form, and also that it is extendable to all speeds by the same strategy as in the AUSM-family (such as SLAU). These 

are our initial objectives of the present study and have been successfully acomplished. 
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Fig. 1    Schematic of Riemann problem. 
 

Fig. 2 Behaviors of present (“sum”) and 
conventional (“max”) Mach number expressions 

near the cutoff Mach number, Mc = 0.1. 
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Fig. 3   Density distribution of the standard shock tube problem by HLLC, HLLCL and HLLCL (θ=1). 
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Fig. 4   Spatial velocity variations of 1-D sound propagation computed by HLLC, HLLCL and HLLCL (θ=1). 
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Fig. 5 Pressure distribution on NACA0012 airfoil in inviscid flows computed by three methods (M=0.1, 0.7). 
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Fig. 6 Pressure distribution on NACA0012 airfoil in inviscid flows computed by three methods (M=0.01). 
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Fig. 7 Pressure distribution on NACA0012 airfoil in inviscid flows computed by three methods (M=0.001). 
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Fig. 8 Pressure contour around NACA0012 airfoil at M=0.001 by HLLCL.  
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Fig. 9 Pressure contour around NACA0012 airfoil at M=0.001 by HLLCL(=1). 
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Fig. 10 Pressure contour around NACA0012 airfoil at M=0.001 by HLLC. 
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Fig. 11 Drag coefficients of NACA0012 airfoil at various Mach numbers in inviscid subsonic flows. 
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Fig. 12 Supersonic Flow past Cylinder, a) grid, b) HLLCL, and c) HLLCL (θ=1). 
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Fig. 13 Mach 0.2 flow over flat plate (velocity profiles at  i=30; x= 0.4852E-02). 

 
Fig. C.1 Nitrogen Interface Advection Result (HLLCL): pressure, where “Pressure Eqn.” stands for the 
supercritical-fluid-extended version, and “Conventional” is the original HLLCL [19]. 
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Fig. D.1 Supersonic Flow past Cylinder, a) (k, Mc) = (1, 0.1) (default, Fig.7b), b) (k, Mc) = (1, 1.0), and c) (k, Mc) 
= (2, 0.1). 

 

 
Fig. D.2 Mach 0.2 flow over flat plate (velocity profiles at i=30; x= 0.4852E-02): (k, Mc) = (1, 0.1), (1, 1.0), or (2, 
0.1). 
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Fig. E.1 Vacuum Problem Solutions, a) HLLCL, b) HLLCL (=1), c) SLAU2, and d) HLLC. 
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c) 

 
Fig. F.1 Severe Mach 20 with Large-Cell-Aspect-Ratio Problem, a) HLLCL, b) HLLCL (=1), and c) SLAU2. 

M=20 800 cells 

30 cells 


