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SUMMARY A drastic increase in cyberattacks targeting Internet of
Things (IoT) devices using telnet protocols has been observed. IoT mal-
ware continues to evolve, and the diversity of OS and environments in-
creases the difficulty of executing malware samples in an observation set-
ting. To address this problem, we sought to develop an alternative means
of investigation by using the telnet logs of IoT honeypots and analyzing
malware without executing it. In this paper, we present a malware clas-
sification method based on malware binaries, command sequences, and
meta-features. We employ both unsupervised or supervised learning algo-
rithms and text-mining algorithms for handling unstructured data. Cluster-
ing analysis is applied for finding malware family members and revealing
their inherent features for better explanation. First, the malware binaries are
grouped using similarity analysis. Then, we extract key patterns of interac-
tion behavior using an N-gram model. We also train a multiclass classifier
to identify IoT malware categories based on common infection behavior.
For misclassified subclasses, second-stage sub-training is performed using
a file meta-feature. Our results demonstrate 96.70% accuracy, with high
precision and recall. The clustering results reveal variant attack vectors
and one denial of service (DoS) attack that used pure Linux commands.
key words: IoT malware, botnet, denial of service, text mining, N-gram,
classification, clustering

1. Introduction

Internet of Things (IoT) is a network of physical devices,
such as vehicles, furniture, and buildings, that are embedded
with electronics, sensors, and networking abilities. Connec-
tivity enables these objects to collect and exchange data for
further application. However, in October 2016, the IoT mal-
ware called Mirai executed the largest-ever distributed de-
nial of service (DDoS) attack against Dyn DNS in 2016, en-
listing approximately 100,000 Mirai IoT botnet nodes for
a reported attack rate of up to 1.2 Tbps [1]. According
to the report from Kaspersky in Sept. 2018, Mirai is still
the most popular IoT malware family for cybercriminals
(20.9%). Moreover, the most popular attack and infection
vector against devices remains the telnet service (75.4%)
[2]. Although signature-based detection methods are sen-
sitive to the structures of existing malware samples, even a

Manuscript received February 15, 2019.
Manuscript revised June 3, 2019.
Manuscript publicized August 5, 2019.
†The authors are with the Graduate School of Environment and

Information Sciences, Yokohama National University, Yokohama-
shi, 240-8501 Japan.
††The author is with Cybersecurity Technology Institute, Insti-

tute for Information Industry, 105 Taipei, Taiwan.
†††The authors are with Institute of Advanced Sciences, Yoko-

hama National University, Yokohama-shi, 240-8501 Japan.
a) E-mail: wu-chun-jung-zt@ynu.jp

DOI: 10.1587/transcom.2019CPP0009

small change in a malware program could alter its signature
sufficiently to thwart antivirus detection. Therefore, an ur-
gent necessity is to analyze IoT malware and related logs to
recognize the behavior of unfamiliar threats and thus assist
organizations in mounting a timely and appropriate defense.

Gartner estimated that 6.4 billion IoT devices were in
use in 2016, and this number is projected to grow to 20.8
billion by 2020 [3]. Embedding information and commu-
nication technology into devices thus represents an ongoing
trend. The nature of IoT presents challenges in establish-
ing a comprehensive security mechanism. These challenges
arising from IoT devices are as follows:

1. Most IoT devices are always online.
2. Most utilize simple, low-level hardware.
3. IoT devices have a variety of CPU architectures and

OS.
4. Antivirus and monitoring services are lacking.
5. Diverse developers result in a lack of unified standards.
6. IoT malware attack patterns are continually evolving,

with an extremely large damage scope.

Few of them are protected by antivirus software. To
analyze the threat of IoT malware, Pa et al. [4] proposed
IoTPOT, a honeypot that observes cyberattacks against IoT
devices, focusing on telnet-based attacks; it emulated IoT
devices that accepting telnet protocol connections. When
attackers access IoTPOT, it records the entire netflow and
maintains logs for further analysis, such as downloading
samples. Since 2015, 6,016,030 download attempts from
1,085,664 different hosts have been successfully observed
and over 40,000 malware samples downloaded. Moreover,
124,517,838 telnet session logs have been collected, record-
ing all the shell command input sent by the attackers. IoT-
POT thus represents a useful method of collecting samples,
analyzing threat behavior, and understanding IoT cyberat-
tacks. However, the enormous data size resulted in huge
time and resource cost when analyzing their patterns and re-
lationship. It is an urgent necessity to create an appropriate
view which analyzes the incoming data in depth and utilize
our resource efficiently.

The purpose of this study is to apply machine learning
techniques to create a simplified and accurate view of IoT
cyberattacks. The method determines categories of malware
by analyzing its meta-features and command sequences. Its
contributions may be summarized as follows:

1. We proved that similar IoT malware binaries conduct
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similar infection commands. Moreover, through simi-
larity analysis of command sequences, we can identify
the malware category of unknown threats.

2. By clustering telnet logs, we discovered a new DoS cy-
berattack executed using pure Linux commands, with-
out IoT malware binaries.

3. Using malware samples from the IoT honeypot, our
proposed method could identify malware categories
with 96.70% accuracy.

2. Related Works

In this section, we review the literature on the malware clas-
sification problem. Yen et al. (2013) conducted an epidemi-
ological study of malware encountered in a large, multina-
tional enterprise. They collected security and network in-
frastructure logs to determine the key behavioral features of
web-based malware. Moreover, they used a logistical re-
gression model to identify and rank the malware risk [5].
Masud, Khan, and Thuraisingham presented a method of de-
tecting malicious executables that combined three types of
features: binary N-grams, assembly instruction sequences,
and dynamic-link library function calls [6].

In 2015, Microsoft and Kaggle held the Malware Clas-
sification Challenge (BIG 2015), in which Microsoft pro-
vided 20,000 Windows malware binary and assembler code
files, with nine categories of malware. Contestants had to
classify the malware categories as well as possible. The
winning team extracted different features from the ASM file
opcode and gathered pixel data from malware disk images,
then applied an N-gram algorithm to predict the malware
category, thereby achieving 99.7% accuracy. Ahmadi et al.
subsequently used similar features to improve the classifica-
tion algorithm and achieve 99.8% accuracy with lower com-
putational costs [7].

Drew, Moore, and Hahsler applies the Strand gene se-
quence classifier, which offers a robust classification strat-
egy that easily accommodates unstructured data, to malware
classification. Their method was used on approximately
500 GB of data to predict nine polymorphic malware cat-
egories, and the results indicated that, with minimal adapta-
tions, it achieved an accuracy of well over 95% [8]. Most
research has analyzed Windows-based malware and devised
experiments in MS Windows platforms.

For Linux/Unix malware, Shahzad and Farooq ana-
lyzed 709 Linux executable and linkable format (ELF) files,
extracting features from the ELF header and then apply-
ing machine-learning classifiers to detect malware. Their
method achieved 99% detection accuracy, with a false alarm
rate of less than 0.1% [9]. Bai et al. gathered features from
ELF file system calls and tested four classification algo-
rithms (J48, Random Forests, AdboostM1, and IBK) for de-
tecting Linux malware, achieving a detection accuracy of
approximately 98% [10].

Given that serious worm attacks have occurred through
the Internet, Wang et al. proposed a worm detection method

based on mining dynamic program executions. They ana-
lyzed system calls from MS Windows and Linux and traced
system call sequences using a natural language processing
algorithm. They also applied the machine-learning algo-
rithms Naive Bayes and Support Vector Machines (SVM),
with SVM achieving a 99.5% worm detection rate and a
2.22% false positive rate [11].

For Android malware, Ham et al. [12] extracted fea-
tures about the network, phone, message, CPU, battery, and
memory for each process in Android devices. They apply
a linear SVM to detect Android malware and compare the
malware detection performance of SVM with that of other
machine learning classifiers. They show that the SVM out-
performs other machine learning classifiers with 0.995 Ac-
curacy and 0.957 Precision.

Azmoodeh, Dehghantanha, and Choo [13] presented a
deep learning based method to detect Internet of Battlefield
Things (IoBT) malware via the device’s Operational Code
(OpCode) sequence. They transmuted OpCodes into a vec-
tor space and apply a deep Eigenspace learning approach
to classify malicious and benign application. Their method
could achieve 99.68% accuracy and 98.37% recall.

Su et al. [14] proposed a novel lightweight method of
detecting DDoS malware in IoT environments. First, one-
channel grayscale images converted from binaries were ex-
tracted, and then a lightweight convolutional neural network
was used to classify IoT malware families. The experimen-
tal results indicated that this system could achieve 94.0%
accuracy in goodware and DDoS malware classification and
81.8% accuracy in classification of goodware and the two
main malware families.

Our study examined Linux malware. Its major differ-
ence from other research lay in the dataset. We primarily
analyzed shell commands from IoT malware, also examin-
ing the file meta-information when necessary.

3. Methods

3.1 Preliminaries

All the data in this research were observed in IoTPOT [3].
We used VirusTotal malware labels as the ground truth of
data. Command sequences were extracted from IoTPOT tel-
net session logs and concatenated into a sequence accord-
ing to the input order. A command sequence could con-
tain single or multiple shell command clauses. In this study,
we mainly analyzed infection sequences according to tar-
get, purpose, and frequency, and found that most of them
consisted of five types of atomic behavior:

1. Authentication behavior
Login with ID and password

2. Resource scan behavior
Resource scan is a command that finds available func-
tions and writable folders in an IoT device; for ex-
ample, “/bin/busybox Mirai” tests “/bin/busybox,” and
“/bin/busybox cat /proc/mounts” aims to find a writable
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folder.
3. Change directory behavior

Changes the directory/folder of the terminal’s shell.
4. Create or download files behavior

Uses “echo” to produce binary files or “wget,” “tftp” to
download files.

5. Execution behavior
Uses “sh” to execute downloaded binary or script files.

Malware sometimes executes “chmod” to alter file
privileges, “history –c –r” to purge the system log, “rm”
to remove files, and “exit” to terminate the session. These
commands may be executed multiple times to ensure that
the infection is successful. Only a few “kill” and “killall”
commands were found in our data, they mostly tighter with
the “while true;” loop and “wget” commands.

We collected 69 million command sequences contain-
ing the Mirai signature, all of the sequences were recog-
nition type, which only contains login credentials and sev-
eral Linux commands such as “enable, system, shell, sh,
and /bin/busybox echo.” These commands were not related
to malware binaries, and the information of each sequence
was too few for analysis. IoTPOT did not capture any Mirai
infection command sequences because dozens of verifica-
tion steps are performed by the attacker’s server, each of
which must receive a corresponding response, such as the
“echo,” “cat /etc/mounts,” and “cp /bin/echo” commands.
We determined these steps based on the Mirai source code
[15], [16]. To observe Mirai’s infection command sequence,
we developed new honeypots consisting of real IoT de-
vices that could respond correctly to Mirai. We thereby
captured 578,671 Mirai command sequences from Decem-
ber 11, 2016, to February 28, 2017, approximately 32% of
which were infection command sequences executed by Mi-
rai and 68% of which were simple recognition command se-
quences. We, therefore, had to narrow the scope of the com-
mand sequences, focusing on those that related to down-
loaded malware binaries or cause the serious cyber security
threat. Table 1 shows the results of other research [4] with a
comparison of labels.

In this study, VirusTotal was used to obtain scan results
from 66 antivirus engines. We sent 12,821 unique malware
MD5s from IoTPOT and received 3,306 reports. We then
chose the most frequent malware family name as the rep-
resentative malware category. Table 2 shows the top five
antivirus engines for IoT malware.

We chose Kaspersky, DrWeb, and ESET-NOD32 to
locally scan 40,203 different IoT malware binaries and
found that DrWeb could label 39,245 of them, represent-
ing 97.61% of the submitted malware and thus surpassing
Kaspersky (69.82%) and ESET-NOD32 (74.57%). There-
fore, we employed DrWeb to label the IoT malware as the
basis for malware categories.

3.2 Encoding and Measurement of Command Sequences

Data encoding. To process numerous complex sequences

Table 1 Comparison of labels and infection command sequence [4].

Table 2 Top 5 antivirus engines for IoT malware.

Table 3 An example of the command mapping table.

we used a simplified representative form called extracted
command tokens (ECTs). For example, sequences of the
command [‘cd /tmp || cd /var/run || cd /dev/shm || cd /mnt
|| cd /var; tftp -r tftp.sh -g test.test.org; sh tftp.sh; busybox
wget http’] can be expressed as the encoded sequence “cc-
ccctsw,” which represents each command by a single letter,
such as “w” for “wget” and “c” for “cd.” Then applying a
natural language processing algorithm to classify the ECTs,
having made a table mapping each of the 51 commands to
a corresponding letter. An example of a command mapping
table is shown in Table 3. These commands were derived
from historical observation data in the IoTPOT.

Comparison of distance measures. The following six
distances [17] are applied to measure similarity between dif-
ferent categories.

1. Cosine: Cosine similarity is a measure of similarity be-
tween two non-zero vectors of an inner product space
that measures the cosine of the angle between them.
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2. Trigram: Apply trigram distance to determine how
similar two strings are.

3. Normalized longest common subsequence (NLCS):
The longest common subsequence can be considered
the sequential analog of the cosine distance between
two ordered sets.

4. Metric longest common subsequence (MLCS): Mea-
sure the degree of similarity between the two series.

5. Normalized Levenshtein Distance (NLD): The sum of
the length normalized Levenshtein distance between
the words occupying the same meaning slot divided by
the number of word pairs.

6. Jaro-Winkler: A string metric measuring an edit dis-
tance between two sequence with favorable ratings to
strings that match from the beginning for a set prefix
length.

We choose the top 500 command sequences in the four
categories and then calculated the average and minimum
distances between categories, with the results shown in Ta-
ble 4 and Table 5. Specifically, we apply six distance mea-
surement methods and calculate the adjacency matrix be-
tween pairs of malware categories, and then calculate the
average and minimum distance. The columns under the “B-
N” header indicate the distance between Bashlite and nttpd
using the six measurements, the columns under “M-Z” the
distance between Mirai and ZORRO, and so on. We deter-
mined that cosine was the best distance for distinguishing
ECTs, with trigram just slightly lower. However, we found
a few command sequences in the same session containing
both Bashlite and nttpd. The command sequence from the
Bashlite source code of has been leaked, so that other attack-
ers can copy its function and use it in their malware [18].
Therefore, the malware executes the command sequence us-
ing multiple categories’ signatures. Because cosine distance
cannot distinguish this type of Bashlite command sequence,

Table 4 Distance measures for different malware labels (average).

Table 5 Distance measures for different malware labels (minimum).

trigram provides a better solution for combined or mixed
command sequences. Moreover, the source code for Mirai
has similarly been leaked [19]. Based on the distance mea-
sure results, we chose trigram for use in this study.

Malware category Feature extraction. N-gram is an
algorithm based on computational linguistics and probabil-
ity [20], which can be used to estimate the likelihood of a
sentence occurring at all or following a given word. N-gram
can also provide efficient approximate string matching. Us-
ing N-gram to index lexicon terms, a signature file can be
compressed to a smaller size. Moreover, N-gram can be
used to calculate the similarity between two strings [21].

In this study, we used N-gram to collect ECT occur-
rence patterns. For each malware category, we collected the
top 10 N-gram features, representing the major behavior in
each category, and presented them as a histogram. These
features were all based on a trigram model, namely, n = 3.
We calculated the trigram histogram using four months data
for two categories. The command sequence distribution of
Bashlite, Mirai, and Satori are shown in Figs. 1, 2, and 3, re-
spectively. Based on the common command patterns of each
malware category, we found that Bashlite tended to contain
“cd,” “sh,” and “rm” behavior, Mirai often contained terms
such as “busybox,” “cat,” and “echo,” and Satori tended to
use terms such as “&&,” “cp,” and “busybox.” The results
indicated that trigram could assist in revealing distinctive at-
tack patterns among different IoT malware categories.

Fig. 1 Trigram statistics of Bashlite IoT malware.

 

Fig. 2 Trigram statistics of Mirai IoT malware.
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Fig. 3 Trigram statistics of Satori IoT malware.

Fig. 4 Data analysis flow.

3.3 Data Analysis

The complete analytical process is illustrated in Fig. 4. First,
command sequences were extracted from pcap files, filtering
for infection command sequences. Next, the command se-
quence was encoded to create ECTs, and then the N-gram
model was used to extract trigram features from them. Fi-
nally, classification and clustering analysis was performed
to determine malware categories and new patterns.

Clustering algorithms. The IoT cyberattacks are keep
evolving and the pattern of attacks is uncertain. There-
fore, we choose the hierarchical clustering method because
it does not require to predefine the number of clusters. To
identify new patterns, we chose a single-linkage hierarchi-
cal clustering algorithm sensitive to outliers. The hierarchi-
cal clustering method works by successively combining in-
dividual data into cluster [22]. To our knowledge, the use
of clustering algorithms in malware-related datasets was in-
troduced Bailey et al. [23], who also employed hierarchical
clustering.

Classification algorithms. We have transformed the
telnet logs into a smaller ECTs’ dataset. However, trigram
still generated hundreds of features. According to our statis-
tics of trigrams, some Linux commands occurrence tightly
in order, such as malware would like to utilize “cd” to move
to a writable folder and then conduct the download tasks
via “wget” or “tftp” commands. In text categorization re-
search, Joachims [24] has shown SVM could handle high
dimensional input space and few irrelevant features. Instead,
The Naive Bayes classifier assumes that the distribution of
different terms is independent of each other. Even though

the independence assumption is false in many real-world
applications, Naive Bayes performs surprisingly well [25].
Therefore, we chose SVM as our classification algorithm
and Naive Bayes classifier as the baseline. After conduct-
ing the same experiments with these two algorithms, we can
determine which was better for our research.
• Naive Bayes
Naive Bayes classifiers assume that an attribute value’s ef-
fect on a given class is independent of the values of other
attributes; this is called “class-conditional independence”
[26]. The Naive Bayes classifier greatly simplifies learn-
ing by assuming that features are independent given class.
Although independence is generally a poor assumption, in
practice Naive Bayes often competes well with more sophis-
ticated classifiers [27]
• Support Vector Machines
SVM is a useful technique of data classification, whose aim
is to produce a model that predicts the target values of the
test data based solely on their attributes [24]. Given a train-
ing set of instance–label pairs (xi, yi), i = 1, . . . , l, where
xi ∈ Rn and yi ∈ {1,−1}, SVM requires solution of the fol-
lowing optimization problem:

min
w,bζ

1
2
wTw + c

l∑
i=0

ξi (1)

Subject to yi (wTϕ(xi) + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , l

In Eq. (1), K (xi, x j) ≡ φ(xi)Tφ(x j) is called the ker-
nel function. Many kinds of kernel function options are
available, such as linear, polynomial, and sigmoid. For our
dataset, we chose a linear kernel function according to our
ECT numbers [23], [24].

Classification evaluation. We used a confusion ma-
trix and accuracy to measure the classification result. Given
a target category, let TP (true positive) be the number of
ECTs correctly classified as the target category; FN (false
negative) the number of sequences from the target category
misclassified as another; TN (true negative) the number of
sequences from other categories that are correctly classified;
and FP (false positive) the number of sequences incorrectly
classified as the target category. The precision (P) is defined
as precision = TP/ (TP + FP), and the recall rate (R) is de-
fined as recall = TP/ (TP + FN). The F-score represents the
harmonic mean of (P) and (R) and provides a balance be-
tween them: F-score = 2 PR/ (P + R). The F-score assists
in identifying a threshold of similarity. Accuracy (A) is de-
fined as accuracy = (TP+TN) / (TP + FP + FN + TN), and
the error rate is defined as error rate = (FP+FN) / (TP + FP
+ FN + TN) [22].

4. Experiments

4.1 Dataset and Environment

Data collection for classification was undertaken from De-
cember 2016 to September 2017. The dataset contained data
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Table 6 Dataset for analysis.

Table 7 Malware categories and ECTs’ distribution.

Table 8 Statistics of time cost.

for 284 days from real IoT devices in the IoTPOT. As illus-
trated in Table 6, the dataset included 2.7 million infection
command sequences related to malware that we downloaded
to another server in real time. These sequences could be re-
duced to 44,843 unique command sequences through corre-
lation and deduplication. Moreover, our encoding method
was able to reduce the command sequences to 2,925 ECTs.
To discover hidden patterns, we chose the data for a one-
month period as dataset 2 for the clustering experiment.

DrWeb was used to scan the malware binaries, after
which malware labels and corresponding ECTs could be ob-
tained. The distribution of labels is shown in Table 7, in-
dicating that the majority of malware in the IoTPOT came
from Bashlite and Mirai.

From Dec. 7th, 2016 to Sept. 16th, 2017, our honey-
pot has collected 1.36 terabyte (TB) pcap files. We extract
22.9 gigabytes (GB) telnet logs via a server with ten cores
Intel 2.20 GHz CPU, 62 GB RAM, and 4 Terabytes disk.
This task is scheduled automatically run every day. Pro-
cessing 1.36 TB pcap files will cost about eight days. The
other time cost of our method is shown in Table 8. The data
preprocessing begins at filter infection command from tel-
net logs. For filter out and label the malware related telnet
logs in dataset 1, we utilize Google BigQuery [28] to pro-
cess 22.9 GB telnet logs. ECTs transformation and machine
learning algorithms were conducted via a machine with two
quad-core Intel 3.70 GHz CPU, 16 GB RAM, and 1 TB disk.
The SciPy 0.18.1 [29] is used for supporting clustering and
classification algorithms.

4.2 Clustering Experiments

The hierarchical clustering method involves successively
combining individual data into clusters. We conducted a
hierarchical clustering analysis using dataset 2. As shown
in Fig. 5, the algorithm separated 4,636 ECTs into 30 clus-
ters according to the trigram distance. We labeled the clus-
ters according to antivirus engine scan results of malware
binaries or with reference to malware analysis reports from
cybersecurity researchers. Detail text features of malware
families are summarized in Appendix A.

Our method successfully differentiated three known
malware families and their variants and also discovered
one new IoT cyberattack pattern, called “Fileless DoS.” Al-
though the four best-known malware families are Mirai,
Bashlite, Hajime, and Tsunami, Tsunami employs Linux
commands in a similar manner to Bashlite and be assigned
to the leaf cluster named “(10)”. The MD5 of Tsunami
which shares similar infection pattern of Bashlite, shown in
Appendix B.

The clustering results helped to discover the following
malware variants and new cyberattack pattern:

• Mirai/A and Bashlite/A are malware variants that trun-
cate ptmx files after login. The ptmx file is used to
create a pseudoterminal master–slave pair [30]. Both
Mirai/A and Bashlite/A contain this command, and the
maximum distance to separate them must be less than
0.58.

• Mirai/B targets devices with weak default credentials
which login ID is root or Admin and password is 5up,
such as TP-Link (TL-WR740N) [31]. The Mirai/B
commands are more straightforward than those of the
original Mirai. For example, Mirai/B does not check
device partitions such as cat /proc/mounts [16].

• Fileless DoS is a shell script that employs an infinite
while loop and multiple wget commands to mount a
DoS attack. Downloaded web contents are sent to
/dev/null, and thus no binaries are stored in devices.
A total of 934 Fileless DoS ECTs were discovered in
April 2017. The top ten victim websites are shown in
Table 9, including those of a music band, a construction
company, and an IT solutions company.

4.3 Classification Experiments

Because the data amounts varied greatly among categories,
we designed two experiments to identify whether data bias
affected classification accuracy. Two datasets were prepared
for our experiments. The first contained 1000 ECT types per
malware category; Bashlite, Hajime, and Tsunami data were
repeated up to 1000. The second dataset contained all ECT
types from every category. Our program randomly chose
50% of the data as a training set and then tested the remain-
ing 50%. To avoid selecting only Mirai data, however, we
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Fig. 5 Labeled hierarchical clustering results of ECTs in April 2017.

Table 9 Victims of Fileless DoS.

Table 10 Classification performance of even sampling- Naive Bayes.

randomly chose the training dataset for the second experi-
ment. The precision and recall scores are listed as Table 10,
Table 11, Table 12, and Table 13.

Based on the results of these experiments, SVM per-
formed better than Naive Bayes. However, Tsunami was
easily misclassified as Bashlite. We believe that second-
stage training is necessary for real cases. Such reinforce-
ment learning — also called active learning — involves fine-
tuning the model during the training process. Therefore,

Table 11 Classification performance of even sampling- SVM.

Table 12 Classification performance of random sampling- Naive Bayes.

Table 13 Classification performance of random sampling- SVM.

based on the prediction results for Bashlite and Tsunami,
we further developed a sub-training approach by adding an
additional feature (file size) and performing sub-classifier
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Table 14 Precision/recall of SVM – second stage (reinforcement learn-
ing).

training. As shown in Table 14, the precision of Tsunami
classification improved because its file sample metadata dif-
fered from that of Bashlite. Using additional features can
thus help to prevent misidentifying classes that share the
same command line pattern, without requiring static and dy-
namic analyses and simply by looking at the command line
and file meta-information. Mirai’s open source code pro-
vides hackers with an entry point for developing new vari-
ants. It has been noted that hackers rely on using known or
zero-day vulnerabilities for developing new Mirai variants
to attack IoT devices [32]. Hence, these evaluations may
incur new patterns of ECTs.

5. Discussion

For IoT malware which attacks via the telnet protocol, our
clustering experiments show our method can find new cyber-
attack, “Fileless DoS” and changes from malware variants.
Moreover, our trigram features could help classification of
IoT malware. Comparisons with previous studies are as fol-
lows:

• The method proposed by Ham et al. [12] rely on fea-
tures about the network, phone, message, CPU, bat-
tery, and memory for each process in Android de-
vices. However, IoT devices are hard to extend and
install third-party packages. Our method only analyzes
the telnet traffic between attacker and victim devices.
There is not any modification for IoT devices.

• Azmoodeh, Dehghantanha, and Choo [13] analyzed
the OpCode sequence and applied a deep Eigenspace
learning approach to classify malicious and benign ap-
plication. Their method is excellent that could achieve
99.68% accuracy. The OpCode sequence generated
by malware binaries, but IoT malware, such as Mirai
and Bashlite may remove their binaries after execution.
Moreover, many IoT devices utilized flash storage, re-
booting will erase the malware binaries. However, our
method does not need to convert binaries to OpCode
and graph, can infer the malware family by telnet traf-
fic and demonstrates 96.70% accuracy.

• Su et al. [14] investigated a lightweight method of de-
tecting DDoS malware in IoT environments. They
converted binaries to grayscale images and then clas-
sified IoT malware families by a convolutional neu-
ral network. The system could achieve 94.0% accu-
racy in goodware and DDoS malware classification and
81.8% accuracy in classification of goodware and the
two main malware families. Su’s method only exam-
ines Mirai and Bashlite family. Our method examines

four malware families and achieves 96.70% accuracy.

In this paper, we utilize real IoT devices as honeypot
to obtain the dataset. These devices are known to have
been targeted by IoT malware and in that sense we believe
that the dataset can provide partial view of real cyberattacks
against IoT devices in the wild. We cannot claim that the
dataset represents the whole attacks in IoT as we have only
limited number of devices for honeypot. However, we be-
lieve the study is meaningful as the honeypot was indeed
able to observe and capture samples from four major IoT
malware families targeting IoT telnet services and the pro-
posed method was able to discover evolving attack like file-
less DoS.

The limitations of this paper may come from the attack
vector of IoT malware: (1) our method does not analyze
HTTP or SSH protocol, and (2) our method might be af-
fected if hackers intentionally add parts of other malware
codes to their malware.

6. Conclusion

The confusion tables and the accuracy of our classification
method led to several clear conclusions. First, the lowest ac-
curacy of all the ECTs was 0.9675, indicating that even for
a dataset spanning eight months our method remained valid.
Although command sequences can change many times, the
use of trigram features can properly distinguish Mirai, Bash-
lite, and Hajime malware, based on differences in their in-
fection command patterns. These malware categories have
distinctive command patterns and the hidden feature can be
extracted for further analysis. Second, we demonstrated that
using clustering with a trigram sequence can detect variant
attack patterns (for example, wget DoS attack) and facilitate
identification of similarities between different malware fam-
ilies, without requiring the collection of malware binaries.

Although the present study has yielded findings with
both theoretical and practical implications, its design is not
without shortcomings. However, despite this study’s limi-
tations, we conclude that applying a text-mining algorithm
to malware behavior analysis is effective. Future research
would include (1) identifying the target device type, (2)
identifying malware variant and feedbacking to malware
family classification, and (3) analyzing the common net-
work traffic behavior of IoT malware.

7. Future Work

Many different adaptations, tests, and experiments have
been left for the future due to lack of time. Future work
concerns more in-depth analysis of the optimal clustering
algorithm and efficient ways to put the proposed method in
practices as follows.
1. To find the best clustering algorithm, we should imple-
ment and conduct experiments to compare the quality of dif-
ferent clustering algorithms.
2. To verify if the trained classifier could act as an instruc-
tion detection system.
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The step of extracting data from pcap files is time
costly. However, if the proposed method can deal with TCP
flow directly, which can economize time. As an example,
IT infrastructure engineers could mirror telnet flow or de-
ploy our classifier at the Man-in-the-middle proxy. These
telnet logs and network traffic header information were used
to compare the similarity with our trained model. There-
fore, we can examine if the trained classifier could act as an
instruction detection system which indicate suspicious con-
nections using malicious command sequences and also the
corresponding malicious categories.
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Appendix:

Table A· 1 The text features and family of clusters.
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Table A· 2 The MD5 of malware Tsunami (April 2017, Feature ID 3 of
Table A· 1).
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