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Abstract 7 
In this paper, a numerical computation method is proposed to simulate tides in coastal regions. The 8 
proposed method is based on the hyperbolic form of governing equations and employs a semi-9 
Lagrangian scheme to ensure the accuracy and stability of numerical computations. Open and wall 10 
boundary conditions can be treated universally by combining them with the semi-Lagrangian scheme. 11 
Furthermore, the method is applied to some benchmark problems of shallow water to examine its 12 
performances in wave propagation, wave transparency through open boundaries, and tides in semi-13 
enclosed bays. The results obtained demonstrate that the proposed method can be utilized as a practical 14 
tool to investigate tidal dynamics in coastal regions. 15 
Keywords: tides; semi-Lagrangian; open boundary condition; wall boundary condition; coastal region 16 
  17 



Introduction 18 
Computer simulation of tides and tidal currents in coastal seas is a research topic of great interest due 19 
to its critical role in predicting the fate of pollutants in seawater and evaluating the potential power of 20 
an ocean current. Several numerical computation codes have been constructed to numerically simulate 21 
the tides, tidal current, and thermohaline fields. For example, the Princeton Ocean Model (POM) [1] 22 
and finite-volume, primitive equation Community Ocean Model (FVCOM) [2] have been widely used 23 
by several researchers of physical oceanography and coastal ocean environment because of their ease 24 
of usage and excellent performances in theoretical investigations. 25 
 However, the numerical ocean model needs to eventually become a practical tool that could be 26 
employed in environmental impact assessment against ocean-space utilization and evaluation of 27 
environmental risk due to marine pollutants. Therefore, there is a need for continuous efforts to refine 28 
the model in order to realize more stable, accurate, and efficient computations. This study aims to 29 
provide a fundamental approach to improve numerical ocean model practicality by implementing a 30 
new scheme and algorithm. 31 
 When predicting the fate of marine pollutants using the ocean model, the tide is one of the most 32 
critical factors among a variety of phenomena occurring in the coastal sea; therefore, this study focuses 33 
on it primarily. Ocean models developed by earlier studies on tidal simulation can be roughly 34 
categorized into the following three groups. The first group refers to models that handle only the 35 
external mode of the equations governing the ocean dynamics; whereas the second group includes 36 
models that treat the external and internal modes separately and consider the interaction between the 37 
two modes as well. The third group is comprised of models that handle the primitive form of the 38 
governing equations, which involve the two modes. The model developed in this study falls in the first 39 
group since the tidal dynamics addressed by this study can be described as the external mode. 40 

The tidal dynamics can be regarded as the propagation of shallow water wave (long wave). Through 41 
mathematical manipulations, the primitive form of the shallow water equation can be transformed into 42 
a set of hyperbolic partial differential equations, that is, wave equations. The fact that the performance 43 
of the simulation of the external mode depends considerably on the property of numerical computation 44 
schemes utilized in solving these hyperbolic-type equations motivated computational fluid dynamics 45 
researchers to accurately and stably solve this type of equations. For example, the weighted essentially 46 
non-oscillatory (WENO) scheme [3] and constraint interpolation profile (CIP) scheme [4] have been 47 
utilized to simulate shallow water successfully. Nonetheless, these schemes have been rarely applied 48 
to numerical ocean models. 49 
Accurate solving of the hyperbolic form favors the use of the semi-Lagrangian scheme rather than 50 

the Eulerian scheme. When applying the latter scheme, which was employed by most of the existing 51 
ocean models, modelers often suffer from unphysical outputs arising from the property of the scheme, 52 
thus are required to tune parameters used in the algorithms for providing a balance between the 53 



numerical stability and accuracy. The property of the semi-Lagrangian scheme has been improved by 54 
the refinement of the method for interpolating values at neighboring two discrete points (e.g., [4]). 55 
When the semi-Lagrangian scheme is applied for solving a hyperbolic-type equation, it searches for 56 
the solution on a characteristic curve drawn on the spatial-temporal space. This aspect advantages the 57 
semi-Lagrangian scheme over the Eulerian one which requires one to implement separately spatial 58 
and temporal schemes. 59 

Numerical simulations of coastal ocean dynamics, in general, clips only a part of the area in the ocean 60 
within which numerical computations are performed. This treatment requires the boundaries, which 61 
do not actually exist, to permit smooth propagation of waves without reflections. Several methods 62 
have been proposed to satisfy this boundary condition, which we refer to as open boundary condition. 63 

Most of the previous methods for satisfying this condition are based on the Sommerfeld radiation 64 
condition expressed by wave equations. There are varieties of methods for specifying the phase speed 65 
included in the equations [5-7]. The theoretical integrity of these methods is however, insufficient, 66 
because the governing equations of ocean dynamics involve multiple modes of the waves, thus it is 67 
impossible to represent all these waves by a single phase speed. On the other hand, the method 68 
proposed by this study has a consistency with the governing equations, because the wave equations 69 
used in this study are derived from the governing equation itself, and because they are combined with 70 
a fundamental physical law of the wave reflection at an end where the open boundary condition is 71 
satisfied. 72 

In the simulation of coastal sea, the condition on the boundary between the land and water, i.e., wall 73 
boundary condition, has to be satisfied—the component of flow normal to the wall is inhibited. In 74 
previous studies, this condition was satisfied by setting that component to zero. Thus, we can say that 75 
the open and wall boundary conditions were treated independently. 76 
It is worth noting that these two boundary conditions can be satisfied in a unified manner. This aspect 77 

simplifies the computation algorithm, making a computational code more practicable. In this paper, 78 
we propose a method for the unified treatment of the open and wall boundary conditions based on the 79 
semi-Lagrangian scheme and prove that the proposed method yields efficient tidal simulations. 80 
In what follows, we describe the numerical simulation method developed in this study, and present 81 

results obtained from applications to some problems of interest. By comparing the results with 82 
analytical ones, we discuss the performance of the proposed method in order to provide a basis for 83 
improving ocean models. 84 
 85 
Governing equations of external mode and derivation of hyperbolic-type equations 86 
The primitive form of the equations governing the dynamics of shallow water on a rotating plane is, 87 
 88 
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 90 
where ( ),x y  is a pair whose components respectively represents the eastward and northward axes 91 
of the horizontal two-dimensional spatial coordinate system, and t  is the time. The notations92 
( ), ,h u v  are variables, among which u and v are respectively the eastward and northward 93 
components of the flow velocity, and h  is the water column height. f  and g , which are constants 94 
denote the Coriolis parameter and gravitational acceleration, respectively. Further, ( ),=z z x y  is the 95 
height of the sea bottom from the reference level; while uE  and vE  are respectively the eastward 96 
and northward components of acceleration due to other forces. In this study, we assumed that 97 

. 98 
To transform the primitive form, given in Eq. (1), into a form of a hyperbolic-type equation, the terms 99 

on the left-hand sides are expressed in the matrix form as, 100 
 101 
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 104 

Linearly superimposing Α  and B  with the weights xn  and yn , respectively, a matrix C  is 105 

defined as (e.g., [8]), 106 
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 110 

By changing xn  and yn , which satisfied Eq. (3), the velocity vectors in the transformed form of Eq. 111 

( ) ( ), 0, 0u vE E =



(1) are rotated. 112 
 In this study, the two-dimensional problem is split into two one-dimensional problems: x and y-113 

directional problems. We solved these two problems, sequentially. By setting ( ) ( ), 1, 0x yn n = , we 114 

obtained the hyperbolic-type equation in the x-direction as, 115 
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 118 

where c gh≡  is the phase speed of long wave without the effect of self-rotation of the Earth. +
xR  119 

and −
xR  represent newly defined variables which are obtained by solving the above one-dimensional 120 

hyperbolic-type equations in the x-direction. 121 

On the other hand, by setting the weights ( ) ( ), 0,1x yn n = , we obtained the following one-122 

dimensional hyperbolic-type equations in the y-direction, 123 
 124 
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 126 

where +
yR  and −

yR  are newly defined variables. 127 

The two sets of the three variables, ( ), ,x xR R v+ −  and ( ), ,y yR R u+ − , are commonly governed by the 128 

hyperbolic-type equations, the solution of which can be determined by identifying the value at the 129 



upstream point on the characteristic curves. As the time evolves, the six variables ( ), ,x xR R v+ −  and 130 

( ), ,y yR R u+ −  are transported on the characteristic curves (Fig. 1). The velocities with which these 131 

variables are transported are equivalent to the eigenvalues of Α  and B , written as the diagonal 132 

elements of x∆  and , respectively. 133 

 134 
Fig. 1. Schematics of characteristic curves in the x-directional. 1ix − , ix , and 1ix +  are three 135 
consecutive points on the x-axis. The arrows denote characteristic curves extending from upstream 136 
points at time t  (gray circles) to the point ix  at time . The symbols “+,” “-,” and “up” at the 137 
upstream points means that the locations of these upstream points are determined by the transportation 138 
velocities +u c , −u c , and u , respectively. 139 
 140 
Assuming that the right-hand sides of Eqs. (4) and (5) are zero, that is, that there are no source terms, 141 

the six variables remain constant during the transportation (Riemann invariant). The semi-Lagrangian 142 
scheme searches the characteristic curves for the point upstream by the transportation distance for a 143 
time step. 144 
Among the semi-Lagrangian schemes, in this study, we employed the constraint interpolation profile-145 

conservative semi-Lagrangian 3 (CIP-CSL3) [9] scheme. The split algorithm for solving the 2-D 146 
problem considered herein can elicit the excellent accuracy and stability of the scheme. Compared 147 
with the Eulerian method with the staggered grid collocation, higher numbers of variables have to be 148 
evaluated when the CIP-CSL3 scheme is used (Fig. 2); thus, requiring larger computational memories. 149 
However, its outstanding accuracy and stability properties are evident in the simulation of the coastal 150 
sea as well as in the benchmarks of computational fluid dynamics studies, to compensate the drawback. 151 
We employed the CIP-CSL3 scheme in the x and y-directional steps. The variables on the upstream 152 
points of the western, central, and eastern collocation points are determined in the x-directional step 153 
(E, C, and W collocation points in Fig. 2); while the variables on the upstream points of the southern, 154 
central, and northern collocation points are determined in the y-directional step (S, C, and N 155 
collocation points in Fig. 2). 156 

If the source terms such as uE , vE , and Coriolis force terms are included in the governing 157 
equations—while being transported on the characteristic curves—then the six variables will vary, 158 
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causing the value at the downstream point to deviate from that at the upstream point. Even in such a 159 
situation, an efficient algorithm can be constructed as described in the next section. 160 
 161 

 162 

Fig. 2. Western (W), eastern (E), southern (S), northern (N), and central (C) collocation points in a 163 
grid. Gray circles represent water column height ( h ), whereas horizontal and vertical arrows 164 
respectively represent eastward ( u ) and northward ( ) components of flow velocity. 165 
 166 
An algorithm for numerical computations 167 
Fig. 3 illustrates the flowchart of the time-marching of the variables. 168 
 169 
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 170 

Fig. 3. A flowchart of the algorithm for the time-marching of the variables. 171 
 172 
Let values at upstream points in the x-direction be indexed by the superscripts “ + ,” “ − ,” and “ up ,” 173 

which mean that the locations of these upstream points are determined by the transportation velocities 174 
+u c , −u c , and u , respectively. Let t∆  denotes a discrete time step, and the superscript “* ” 175 

indexes values at a new time step ( t t+ ∆ ). The accumulated effect of the Coriolis force in a time step 176 
is calculated by the line integration of the Coriolis force on the characteristic curve (Fig. 4), which is 177 
approximated in this study using the trapezoid rule (e.g., [4, 10]). 178 
 179 
 180 

Determine in-going variables on eastern and western boundaries 
using constraint conditions

Update variables h, u, and v

Time evolution converting of variables on northern and southern 
collocation points

Identify upstream points with three velocities in x-direction

Set initial condition

Determine in-going variables on northern and southern 
boundaries using constraint conditions

Update variables h, v, and u

Time evolution converting of variables on western and eastern 
collocation points

Identify upstream points with three velocities in y-direction

Is time marching completed?

End

No

Yes



 181 
Fig. 4. Schematic view of the integration of source term on the characteristic curve, where S  denotes 182 
the source term, and the gray square represents the trapezoid approximation of the integration. 183 
 184 
The discretized forms of the transformed equation in the x-direction are given as, 185 
 186 
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 188 
Once all the upstream values are determined, the values *h , *u , and *v at a new time step, are 189 
updated by the following algebraic formulas, 190 
 191 
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where the new notations are defined as follows: 193 
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 196 
The discretized forms for the y-directional equations are derived in the same manner as those for the 197 

x-directional ones, and are thus obtained as, 198 
 199 
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 201 
The superscripts “ + ,” “ − ,” and “ up ” are used to distinguish the upstream points whose locations are 202 
determined by the transportation velocities +v c , −v c , and v  in the y-direction, respectively. The 203 
variables are updated using the following formulas, 204 
 205 
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 207 
where the new notations in the above equations are defined as 208 
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 210 
Time evolution converting 211 
The preceding section presents methods for updating the variables h , u , and v  separately in the x 212 
and y-directions. The proposed algorithm, i.e., the directional splitting algorithm, is a kind of fractional 213 
time evolution algorithm, in which an auxiliary step is needed to ensure that the time marching of all 214 
the variables is aligned before each of the directionally-split algorithms begins. 215 
 In the x-directional evolution step, only the three variables collocated at the western, central, and 216 
eastern collocation points (W, C, and E collocation points in Fig. 2) are evolved (Eq. 7), while the two 217 
variables collocated at the southern and northern points (S and N collocation points in Fig. 2) are left 218 
unchanged. After the time evolutions of the center, east, and west variables are terminated, the southern 219 
and northern variables are evolved by linear interpolation of two neighboring variables at the center 220 
point (The box NS in Fig. 5), which is referred to as time evolution converting in [11]. Similarly, in 221 
the y-directional evolution step, after the temporal evolutions of h , v , and u  by Eq. (10), the 222 
variables collocated at the western and eastern points need to be evolved by the linear interpolation 223 
(The box EW in Fig. 5). An interpolation at the northern point is given by, 224 
 225 
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,x i jφ∆  is an increment of the variable φ  at the central point ( ),i j  during an x-directional 228 
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2

x i j
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+
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during the same step. The interpolation at the southern point is given in a similar manner as that at 230 
the northern point. The interpolation at the eastern point is given by, 231 
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where C
,y i jφ∆  is an increment of the variable φ  at the central point ( ),i j  during a y-directional 235 

time evolution step, and E
1,
2

y i j
φ

+
∆  is an increment of the same variable φ  at the eastern point during 236 

the same step. The interpolation at the western point is written in a similar manner as that at the eastern 237 
point. 238 
 239 

 240 
Fig. 5. Collocation points referred to during time evolution converting. After x and y-directional steps 241 
are terminated, the variables on the gray circle in boxes NS and EW, respectively are updated by linear 242 
interpolation using variables on the collocation points C. 243 
 244 
The imposition of wall and open boundary conditions 245 
Variables traveling toward the open or wall boundary from the inner region, referred to as out-going 246 
variables, can be determined by semi-Lagrangian scheme; however, variables traveling from the outer 247 
region into the inner region, referred to as in-going variables, cannot be determined by identifying 248 
their upstream points because the upstream points are located outside the computational region (Fig. 249 
6). 250 
Therefore, we determined the in-going variables using relations that constrain the variables to satisfy 251 

the boundary conditions. Once the unknown parameters on the boundary are determined, the updated 252 
formulas (Eqs. 7 and 10) can be applied regardless of the locations of the grid (whether in the inner 253 
region or on the boundary) and the types of boundary conditions (wall or open). 254 
 This universal handling of the evolving variables owes to the collocation of the normal velocity and 255 
water column height variables at the same point—it differs from the staggered collocation (e.g., [12-256 
15]) with the velocity and water column height arranged at different points. The staggered collocation 257 
requires that only grid widths near the open boundary should be treated specially (e.g., [13-14]), which 258 

nevertheless, can allow the wave with the phase speed of gh only to be transparent; whereas the 259 

collocation employed in this study allows the passage of all types of waves without reflection. 260 
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 261 

 262 
Fig. 6. Schematics of methods for determining in-going variables on open and wall boundaries in the 263 
x-directional step. The characteristic curves as solid arrows originate from upstream points inside a 264 
computational domain (gray circles), and the ones as dashed arrows originate from an upstream point 265 
outside the domain (dashed circle). 266 
 267 
Constraint relation for wall boundary condition 268 
The constraint relation among the variables on the wall boundary is determined such that the 269 
component of the velocity normal to the wall vanishes at that point. The constraint relation in the x-270 
direction is given by, 271 
 272 

0 + − ′= − + ∆U U fv t ,                             (14) 273 
 274 
and the one in the y-direction is given by, 275 
 276 

0 + − ′= − − ∆V V fu t .                             (15) 277 
 278 
The in-going variables on the wall boundaries are specified using these relations. 279 
 280 
Constraint relation for open boundary condition 281 
This subsection explains the method for determining the in-going variables (Fig. 6) by deriving 282 
constraint relations among the variables based on a fundamental physical law. Waves propagating from 283 
the inner region must pass through the open boundary without producing unnatural reflections. To this 284 
end, in [13-14], the authors presented a simple and reliable method based on the physical law of fixed 285 
end reflection of wave: a virtual wall is first placed along the open boundary, and the water column 286 
height is computed once. Following this law, the presence of the virtual wall makes the displacement 287 
of the water surface on the wall twice as high as that of the transmitted wave. Hence, the displacement 288 
of the transmitted wave can be calculated by halving the displacement of the wave determined in the 289 
presence of the virtual wall. 290 
 The constraint relations among the variables which satisfy the open boundary condition are obtained 291 

t

t t∆+

x

x

  



by equating the displacement of the transmitted wave, computed based on the method discussed above, 292 
with the displacement of the water surface at the new time step. By denoting the water column height 293 
under the calm state by 0h , and the displacement of the water surface by an incident wave propagating 294 
from the outer region by Iη , the constraint relations are expressed as, 295 
 296 
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 298 
on the western open boundary, and 299 
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 302 
on the eastern open boundary. 303 
For the northern and southern open boundaries, the constraint relations in the y-direction are; 304 
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 307 
on the southern open boundary, and 308 
 309 

( )0 I
1 2
2

η− ′= − ∆ + +
gV fu t h
c

,                       (19) 310 

 311 
on the northern open boundary. 312 
 313 
Applications of the proposed method 314 
Propagation of shallow water wave on undulating sea bottom topography 315 
The semi-Lagrangian code implemented in this study is first applied to a shallow water wave 316 
propagation on an undulating sea bottom topography (Fig. 7). Under the assumption that the steepness 317 
of the topography and the amplitude of incident wave are small, we obtained an approximated 318 
analytical solution of the wave with a perturbation technique (Appendix A), and compared it with 319 
numerical results obtained by the method proposed in this study. Table 1 shows a list of the parameters 320 
for this numerical computation. 321 
 322 
 323 



Table 1. List of parameters for numerical computation of propagation on an undulating sea bottom 324 
topography. 325 

Time step 2.0 sec 

Grid length 2.8*102 m 

Dimension of area 1.4*104 m 

Coriolis parameter 0.0 sec−1 

 326 

 327 
Fig. 7. Vertical coordinate of sea bottom topography ( z ). The water column height ( h ) is illustrated 328 
as the distance from z  to the water surface. 329 
 330 
Transparency of waves through an open boundary 331 
To check the effectiveness and efficiency of the proposed method for imposing an open boundary 332 
condition, we applied it is applied to one-dimensional (1-D) and two-dimensional (2-D) waves 333 
propagating and passing through open boundaries. In the 1-D problem (Fig. 8), at one boundary, a 334 
sinusoidal incident wave is specified, and at the other boundary, the open boundary condition is 335 
imposed. In the 2-D problem (Fig. 9), at the western and southern boundaries, a sinusoidal incident 336 
wave is specified in a direction oblique to the x and y-axes. We performed two simulations for small 337 
and large sizes of computational domains in both the 1-D and 2-D problems. Further, we examined 338 
the wave transparency by comparing the results of the two simulations. 339 
Table 2. List of parameters for one-dimensional numerical computation of the transparency of waves 340 
at an open boundary. 341 

 Small domain Large domain 

Time step 6.0 sec 

Grid length 4.0 × 103 m 

Dimension of area 8.0 × 105 m 2.4 × 106 m 

Water depth 50.0 m 

Coriolis parameter 0.0 sec−1 
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Period of incident wave 4.47 × 104 sec 

Amplitude of incident wave 0.30 m 

 342 

 343 
Fig. 8. Schematics of the one-dimensional domain. Sinusoidal time variation of the water surface is 344 
specified at the left-end, and open boundary condition is imposed at the right-end. 345 
 346 
Table 3. List of parameters for two-dimensional numerical computation of the transparency of waves 347 
at an open boundary. 348 
 Small domain Large domain 

Time step 6.0 sec 

Grid length in x- and y-directions 4.0 × 103 m and 4.0 × 103 m, 

Dimensions of area in x- and y-directions 8.0 × 105 m and 8.0 × 105 m 2.4 × 106 m and 2.4 × 106 m 

Water depth 50.0 m 

Coriolis parameter 0.0 sec−1 

Direction of incident wave 45° 

Period of incident wave 4.47*104 sec 

Amplitude of incident wave 0.30 m 

 349 

 350 
Fig. 9. Schematic views of small (left figure) and large (right figure) two-dimensional domains. Waves 351 
are incident obliquely from western and southern boundaries. Arrows denote the wavenumber vector 352 
of this wave. The letters “a”, “b”, and “c” indicate the points where results of the small and large 353 
domains are compared. 354 
 355 
Tides in a semi-enclosed rectangular bay 356 
We examined the performance of the proposed method in tidal simulation by conducting numerical 357 

x

 

x

y

  

 
 

x

y
Open

  

 
 



computations for tides in a semi-enclosed bay with a rectangular coastal topography, (Fig. 10) (Taylor 358 
problem, [16]). The idealized configuration of the coast and the linearization of the shallow water 359 
model allow us to express the tidal dynamics solution analytically (Appendix B), which we compared 360 
with the numerical results to verify the effectiveness and efficiency of the method. 361 
 362 
Table. 4 List of parameters for two-dimensional numerical computation of tides in a semi-enclosed 363 
rectangular bay. 364 

Time step 6.0 sec 

Grid lengths in x-, and y-direction 5.0 × 103 m, and 5.0 × 103 m 

Dimensions of area in x-, and y-direction 1.0 × 106 m, and 0.6 × 106 m 

Water depth 50.0 m 

Coriolis parameter 1.2 × 10−4 sec−1 

Period of incident wave 4.4712 × 104 sec 

Amplitude of incident wave 0.30 m 

 365 

 366 
Fig. 10. Schematics of a semi-enclosed rectangular bay. A sinusoidal time variation is imposed as tidal 367 
wave incidence on the eastern boundary. The open boundary condition is imposed on the eastern 368 
boundary. The closed circles (a-e) indicates the points at which results of numerical and analytical 369 
calculations are compared in Fig. 16. 370 
 371 
Results and discussion 372 
Propagation of shallow water wave on an undulating sea bottom topography 373 
This problem can be used as a benchmark to check the ability of numerical computation methods (e.g., 374 
[17-18, 3]). 375 

The analytical solution has two local maxima of the water flow velocity (Fig. 11), which are formed 376 
through the interference of the bottom mounts with the water flows. As these flows are being formed, 377 
the water column height varies uniformly in the entire computational domain at the period of the 378 



incident wave. The numerical computation captured these shapes and time variations. 379 
 380 

 381 

Fig. 11. Snapshots of flow velocity and surface elevation at times 13500 sec and 34400 sec. Solid lines 382 
denote analytical results, while opened circles indicate numerical results. 383 
 384 
The analytical result shows that the velocity is uniformly distributed similarly as the water column 385 

height, while its sign changes at the period of the incident wave. Additionally, the two local maxima 386 
and minima of the velocity are formed during flood and ebb tides, respectively. These features of the 387 
analytical result are accurately simulated by the numerical computation. 388 
The agreements of the numerical results with the analytical ones demonstrate that the method 389 

proposed in this study can efficiently estimate the tidal mechanics. In particular, it can appropriately 390 
capture the effect of the undulation of the sea bottom topography on the water flow. 391 
 392 
Transmission of waves through an open boundary 393 
If the scheme for the open boundary properly works, the sinusoidal wave entering at x = 0 m is 394 
expected to pass through the point x .= × 58 0 10 m where the open boundary is placed in the small 395 
domain (Fig. 12). The water column height in the small domain is sinusoidal with the same period and 396 
amplitude as those in the incident wave and conforms with those in the large domain. 397 



 398 

Fig. 12. Temporal evolutions of water surface elevation measured from the water surface height under 399 
the calm state. The solid line represents the result at x .= × 58 0 10 m in the large domain, While the 400 
open circles are the result at x .= × 58 0 10 m, the left-end of the small domain. 401 
 402 
 The 1-D calculation considers the wave propagation in the same direction as the characteristic curve, 403 
allowing the open boundary scheme to exhibit the desirable performance easily. However, a more 404 
rigorous test is required to test the scheme. Thus, a 2-D computation was performed to examine if the 405 
proposed open boundary scheme applies to waves approaching from an oblique direction. At the 406 
southern and western boundaries, a sinusoidal wave is an incident in the direction of 45° from the x-407 
axis. The wave direction, in this case, differs from the directions of both the characteristic curves in 408 
the x and y-directional steps. In the same manner, as in the 1-D computations, the 2-D computations 409 
were performed for the small and large domains. 410 
 In the simulation for the small domain, the wave phase obliquely propagates in the north-eastern 411 
direction (Fig. 13). The configurations of the water surface were consistent with the corresponding 412 
ones in the large domain (Fig. 14). This shows that the wave propagation yielded by the two 413 
computations are equivalent. 414 
 The results obtained demonstrate that the scheme for imposing the open boundary condition enables 415 
waves arriving the boundary to pass through without being unnaturally reflected and deformed; 416 
moreover, this desirable performance occurs whether the direction of wave propagation matches the 417 
directions of characteristic curves or not. 418 
 419 



 420 

Fig. 13. Distributions of water surface elevation measured from the water surface height under the 421 
calm state at (a) t = 96000 sec and (b) t = 117600 sec. Left and right panels are results of the large 422 
and small domain simulations, respectively. The dashed lines in the large domain correspond to the 423 
northern and eastern boundaries of the small domain. The contour interval is 0.1 m. 424 

 425 



Fig. 14. Temporal evolutions of water surface elevation measured from the water surface height under 426 
the calm state at (a) point a; (b) point b, and (c) point c in Fig. 9. Solid lines and open circles denote 427 
the result of the large and small domain simulations, respectively. 428 
 429 
Tides in a semi-enclosed rectangular bay 430 
The bay addressed in this study has the same order of spatial dimensions as the Rossby deformation 431 
radius ( . × 61 84 10 m). In this spatial scale, the tidal wave in the bay is expected to behave as the Kelvin 432 
wave mostly, its excellent simulation performance is the objective of this subsection. 433 
The analytical procedure for the rectangular bay (Appendix B) includes the two modes (westward 434 

and eastward) of the Kelvin wave and multiple modes of the Poincaré wave. The disturbances of water 435 
surface move westward along the northern coastline, and eastward along the southern coastline (left 436 
panels of Fig. 15). The Kelvin wave theory can explain this spatial-temporal pattern. For the present 437 
case, the amplitudes of the Poincaré wave modes are quite smaller than those of the Kelvin wave 438 
modes. 439 
 In the numerical results, at a short time after its incidence on the eastern boundary, the disturbances 440 
occur uniformly from the north edge to the south edge of the eastern boundary, then begin to move 441 
westward along the northern coastline, turn to the south after arriving at the western boundary, and 442 
subsequently moves eastward along the southern coastline. The travel path trapped to the coast 443 
computed numerically is consistent with that computed analytically. 444 
 However, the response, as mentioned above for a short time just after the incidences in the numerical 445 
result, is not seen in the analytical result. The analytical procedure (Appendix B) considers the forced 446 
oscillation component only, while it excludes the transient component which prevails for a short time 447 
just after the incidences of water surface movement at the eastern boundary. 448 
 A comparison of the numerical and analytical results demonstrates that the former reasonably agree 449 
with the latter in the following respects: the wavelength in the propagation direction, phase of the 450 
propagation, the evanescence of disturbances toward the offshore, and the locations of amphidromic 451 
points where the water surface disturbances occur minimally. 452 
 Tidal ellipses obtained from the numerical and analytical calculations (Fig. 16) are compared at the 453 
points indicated in Fig. 10. The lengths and directions of the major and minor axes reasonably well 454 
agree between the numerical and analytical calculations. 455 



 456 
Fig. 15. Snapshots of water surface elevations measured from the water surface height under the calm 457 
state at (a) t = 138000 sec, (b) t = 150000 sec, (c) t = 162000 sec, and (d) t = 174000 sec. Left and 458 
right panels are numerical and analytical results, respectively. The contour interval is 0.1 m. 459 
 460 
 The employment of the semi-Lagrangian scheme enables one to capture the coastally trapped 461 
propagation of waves with few numerical dissipations and to conduct the numerical computations 462 
stably. This result allows us to conclude that the proposed method could be utilized to simulate the 463 
external mode of marine dynamics. 464 
 Nevertheless, this study has some limitations which we briefly highlight here. In this study, the 465 
verification of the numerical computation method was performed by addressing a straightforward 466 
problem. Moreover, the performance of the proposed method should be compared with observed 467 
results; however, we will consider this in a future study of our project. This study addresses the external 468 



mode of marine dynamics only but excluded the internal mode. It should be noted that the algorithm 469 
constructed in this study can be combined with an algorithm for solving the internal mode. In a coupled 470 
external-internal computation, the external force terms ( ),u vE E  will be activated. 471 

 472 

 473 
Fig. 16. Tidal ellipses obtained from numerical (closed circles) and analytical (solid lines) calculations. 474 
Panels (a) through (e) correspond to the points “a” through “e” indicated in Fig. 10, respectively. 475 
 476 
Conclusion 477 
This study constructed a numerical computation method of shallow water equation with Coriolis effect 478 
to simulate tides. The method adopted a semi-Lagrangian scheme to solve the hyperbolic form of the 479 
shallow water model, providing more accurate and stable computations than the traditional finite-480 
difference schemes. Additionally, a new semi-Lagrangian treatment for realizing no unnatural 481 
reflections on open boundaries are incorporated into the method. By applying the proposed method to 482 
some problems, this study drew the following conclusions: 483 
1. The implemented semi-Lagrangian scheme accurately computes the solution of the shallow water 484 
model. 485 
2. An exact imposition of the open boundary condition is realizable by applying the non-reflective 486 



scheme in the framework of the semi-Lagrangian scheme. 487 
3. The proposed method is applicable to tidal simulations of semi-enclosed bays. 488 
 489 
Appendix A: 490 
The mathematical treatment for obtaining the analytical solution in [17] is briefly described here. 491 

By applying the perturbation technique, the solution of the 1-D shallow water equation can be 492 
mathematically obtained under the assumption that the Froude number F  is small. 493 
The initial condition is given as; 494 

( ) ( )
( )

, 0 ,

, 0 0,

h x t H x

u x t

 = =


= =
 495 

where ( )H x is the water depth in the calm state. The boundary condition is; 496 

( ) ( )
( )

0, ,

, 0.

h x t t

u x L t

ϕ = =


= =
 497 

The variables (water column height and flow velocity) are asymptotically expanded as power series 498 
of the bookkeeping parameter in the following manner, 499 

2
0 1 2

2
0 1 2

,

.

h h Fh F h

u u Fu F u

 = + + +


= + + +




 500 

Substituting these perturbation expansions into the governing equations, equating the coefficients with 501 
the same powers of F , we have the partial differential equations with respect to the expansion 502 

coefficients ( ), , , , , , ,h h h u u u0 1 2 0 1 2  . Further, the solution of the zeroth-order is given by; 503 

( ) ( ) ( )

( ) ( ) ( ) ( ){ }

, ,

, .
,

h x t t H x

u x t x L t
h x t

ϕ

ϕ

 = +

 ′= − −


0

0

0

1  504 

 The benchmark problem in this study assumes the incidence of a sinusoidal wave at m, 505 

( ) ( ) 20 1 sin ,
2

t H dH t
T
π πϕ   = + − +  

  
 506 

where the amplitude of the incident wave is m.= 4 00dH , and its period is s.T = 43200 0 . 507 

Another assumption of the benchmark is the topographic undulation expressed by the sinusoidal 508 
function as, 509 

( ) 4sin ,
2

xH x A B C x
L L

π π = − − − 
 

 510 

where ( ) ( )m, m, m, , . . .A B C = 50 5 40 0 10 0 . 511 

F

x = 0



 512 
Appendix B: 513 
The linearized shallow water equation is solvable by mathematical techniques (e.g., [16, 19]). In this 514 
study, the solution was obtained assuming a constant water depth, denoted by 

0h . The modeled bay 515 
(Fig. 10) is rectangular with an open boundary along x = 0 , and coasts along x L= , y = 0 , and 516 
y B= . The variables are assumed to have a common frequency, σ , as expressed by the equation: 517 

( ) ( ){ }Re ˆ ˆ ˆ, , , , i tu v u v e ση η= , where ( )ˆ ˆ ˆ, ,u vη  are the complex amplitudes. 518 

 The applications of the variable separation and eigenfunction expansion methods yield the solution 519 
comprising four modes: positive Kelvin and Poincaré modes, and negative Kelvin and Poincaré modes. 520 
Here the terms “positive” and “negative” indicate wave propagations in positive and negative x-521 
directions, respectively. Though the theoretically exact solution requires the superimposition of 522 
infinite numbers of Poincaré modes, the computations in this study truncate the number maximally at 523 

. 524 
The complex amplitudes of the positive Kelvin and Poincaré modes are 525 
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and 528 
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 530 
respectively. 531 
The complex amplitudes of the negative Kelvin and Poincaré modes are 532 
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and 534 
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The notations ( ), , ,n n n nA B C D  in the Poincaré modes are defined as 536 
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 537 

where f f σ′ ≡  is a dimensionless Coriolis parameter normalized by the frequency . 538 
 The y-component of the wavenumber of Poincaré modes is forced to have discrete values by the 539 
condition that the bay is bounded along y = 0  and y B= , written as, 540 

.n
n
B

γ π=  541 

The x and y-components of the wavenumber ( ),n nl γ  of the Poincaré modes are related to the 542 

frequency (dispersion relation) as follows; 543 

( ) ,
.

γ

σ

′= − + −

≡

2 2 2 2

0

1n nl k f

k
gh

 544 

Here, α  defined as 545 

α ′≡ =
0

f k f
gh

, 546 

is the inverse of the Rossby radius of deformation. 547 
 548 
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