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Abstract 

Moving refractive index fronts in dispersive waveguides is a special type of spatio-temporal 
modulation. The interaction of light with such fronts can be described in terms of an indirect 
transition where the frequency and wavenumber of a guided mode both are changed. In recent 
years front induced transitions were used in dispersion engineered waveguides for frequency 
conversion, optical delays, and bandwidth and pulse duration manipulation. These concepts 
have originated from different research areas of photonics, such as nonlinear fiber optics, slow 
light waveguides, plasma physics, moving media and relativistic effects. Here, we would like 
to review these concepts, providing a unifying theoretical description and highlight the potential 
of this exciting research field for light manipulation in guided optics. 

 

1. Introduction 

Optical waveguides are a basis for integrated and fiber optics 1-3. The perturbation of optical 
parameters in space along the propagation direction leads to the changes of the wavenumber of 
the propagating mode 1, 4. Such spatial perturbations can be used to engineer the accumulated 
phase, local group velocity and dispersion in guided systems 1, 2, 5-7. At the same time, the 
temporal variation of the optical parameters lead to the change of light frequency 8-10. Such 
temporal manipulations are the basis for the dynamic frequency manipulation on chip 9, 11-13. A 
moving perturbation combines both spatial and temporal changes. One of the prominent moving 
perturbations used in photonics is a periodical one. Interacting with the guided signal it induces 
an indirect transition where wavenumber and the frequency of light is changed 14-16. An example 
of such moving periodical perturbation is an acoustic wave which currently gains a lot of 
interest for realization of non-reciprocal light propagation 17, 18 and light storage 19-21. The 
frequency shift in this indirect transition is limited by the modulation frequency of the 
perturbation. Also, due to fixed frequency and wavenumber shift, there is a strict phase 
matching condition that significantly limits the bandwidth of coupling 16, 17. 

Here, we would like to discuss another prominent moving perturbation, namely a moving front. 
In recent years, several theoretical predictions and experimental demonstrations were presented 
where the light propagating in waveguides is manipulated by a refractive index front 22-43. The 
refractive index front is produced via Kerr nonlinearity 24, 25, 35, 36 or via free carrier injection 31, 



33, 40 by a switching pulse co- or counter-propagating with respect to the signal. This refractive 
index perturbation is relatively weak, significantly smaller than what is observed in plasma 
ionization fronts for microwave and THz frequencies 44-47, where, due to large induced carrier 
densities, mirror like reflections are observed. Notwithstanding, the weak refractive index 
perturbations still induce an efficient indirect transition of the optical state similar to a periodic 
perturbation. Notably, the achievable frequency shift now is not limited by the temporal profile 
of the front but is a function of the waveguide dispersion. Also, the indirect transition induced 
by the front is not limited by a strict phase matching condition and, thus, can manipulate 
broadband signals. The dispersion engineering of the guided modes becomes a very important 
parameter as it defines the final state for the signal after the interaction with the front. 
Waveguide dispersion and front velocity can be adjusted to transmit 30, 31, 33, 42, 48-50 or reflect 24-

29, 34-36, 38, 42, 43, 51 the signal or even to trap 52, 53 the signal in the front. Concepts of front induced 
transitions (FITs) are proposed and realized for frequency manipulation 23, 24, 35, 36, 41, 43, light 
stopping and optical delays 54, 55, bandwidth/time duration manipulation 30, 32, 52, 53, 56. Reflective 
FITs can also represent an optical analog of an event horizon 24, 25, 35, 36, 43 and are predicted to 
emit an analog of Hawking radiation 24, 30, 57, 58. Light trapping by FIT leads to a so called optical 
push broom effect 30, 52, 53, 59, where signal pulse can be collected inside the front.  

It should be mentioned that the FITs were discussed in different areas of photonics, sometimes 
not directly related to each other. We unite in this review concepts that appeared in the research 
on slow light 13, 31, 33, 38, 39, 41, 43, 54-56, silicon photonics 9, 11, 12, 22, 35, optical analogue of event 
horizon 24, 25, optical solitons 42, 60-62, fiber Bragg gratings 52, 53, 59, 63, Bragg stacks 32, 64, 65, 
ionization fronts 44-47 and moving media 8, 48, 66. Also different approaches were applied to 
explain the obtained effects, such as four wave mixing 25, 61, 62 indirect transitions in the band 
diagram 16, 31-33, 40, 45, geometrical optics approximation in space and time 24, 33, 38, 43, slow 
varying approximation leading to linear Schrödinger equation (LSE) 4, 34, 51, 67, Doppler effects 
38, 64, 65. 

Here, we will review the presented concepts, provide a unifying theoretical description, 
highlight their potential for light manipulation in guided optics, and draw an outlook for the 
further research in this field. The paper is organized as following: after a brief introduction to 
the theoretical background of FITs, we present examples of signal transmission, reflection and 
trapping. We will geometrically consider indirect transitions in the dispersion relation using the 
phase continuity relation at the front and present numerical solutions of the LSE which follows 
from the slowly varying envelope approximation of the wave equation. Then we discuss the 
concepts according to their application in frequency conversion, optical delays and bandwidth 
manipulation. Furthermore, we will estimate the maximal achievable effects for each of the 
application in different systems. We will compare the described effects with those obtained by 
other nonlinear phenomena, discuss advantages and disadvantages and draw the outlook. 

2. Theory and approaches 

2.1 The front and the dispersion 

We are considering a particular moving perturbation that changes the dispersion relation of the 
waveguide from one before the perturbation to one after the perturbation (Fig. 1). The fronts 



presented in this review were generated via either Kerr nonlinearity or free carrier generation 
or both. For a short pump pulse and Kerr nonlinearity, a tunnelling of the signal through the 
perturbation can be observed when the signal interacts with a negative front on the other side 
and compensates the effect 24, 29. In order to prevent the tunnelling, a special optical pulse should 
be used that has a sharp leading edge 53. On the other hand, free carrier-induced fronts have 
negligible negative front as free carriers typically have much longer life time than the front 
duration 22, 54, 68. It should be noted that the free carriers themselves are increasing absorption 
losses 69. We should also mention that the effect of the weak index perturbation can nevertheless 
be significant if the linear losses of the waveguide in which the index perturbation is moving is 
sufficiently low, allowing for long interaction distances. 

 

Figure 1: (a) Schematic of intense pump pulse propagation in a waveguide (up) and the corresponding induced 
index front (down). We consider here an example of an index front due to the effect of free carrier generation. 
Schematic of dispersion relations of the system before (solid curve) and after perturbation (dashed curve) as 
long as free carriers have not yet substantially recombined for (b) a dispersion relation close to inflection point, 
(c) dispersion relation close to the band edge. 

 

A dispersion relation is a function of frequency versus wavenumber 𝜔𝜔(𝛽𝛽) or wavenumber 
versus frequency 𝛽𝛽(𝜔𝜔). For the discussion of front induced transitions we would prefer to use 
the 𝜔𝜔(𝛽𝛽) dependency as any perturbation of the dispersion relation in a static waveguide before 
or after the front propagation is represented by a unique frequency 𝜔𝜔  defined for any 
wavenumber 𝛽𝛽. Typically, the perturbation of the dispersion relation is produced by a change 
of dielectric constant. For a dielectric constant perturbation as a function of space Δ𝜀𝜀(𝒓𝒓) for 
each wavenumber the frequency shift is [Ref. 70, Eq. (28)]: 

𝛥𝛥𝜔𝜔 = −
𝜔𝜔
2
∫𝛥𝛥𝜀𝜀(𝒓𝒓)|𝑬𝑬(𝒓𝒓)|2𝑑𝑑𝒓𝒓
∫ 𝜀𝜀(𝒓𝒓)|𝑬𝑬(𝒓𝒓)|2𝑑𝑑𝒓𝒓

  

Where the integration is done over the periodic unit in case of a photonic crystal waveguide or 
over the cross section of a continuous waveguide. If a relative perturbation Δ𝜀𝜀(𝒓𝒓)/𝜀𝜀(𝒓𝒓) is 
everywhere the same, then a vertical frequency shift of the band diagram is obtained 
proportional to the original frequency. In case of an inhomogeneous perturbation a geometrical 
distortion of the dispersion relation can be obtained (Fig. 1(b)). This distortion can be used to 
delay, stop or reverse light by a direct dynamic transition in a temporally varying system 9, 10, 

71-74. Such distortions are difficult to obtain as the index perturbation should vary locally. In 
many cases, the perturbations are close to homogeneous and just a small vertical shift of the 
dispersion relations is obtained (Fig. 1(c)). In this review we will limit our consideration to a 
vertical shift of the dispersion relation ∆𝜔𝜔𝐷𝐷  moving with constant velocity 𝑣𝑣𝑓𝑓  along the 



waveguide ∆𝜔𝜔𝐷𝐷(𝑡𝑡, 𝑧𝑧) = ∆𝜔𝜔𝐷𝐷(𝑧𝑧 − 𝑣𝑣𝑓𝑓𝑡𝑡). Through all examples presented in this article, we use 
a hyperbolic dispersion relation emulating an upper branch of a dispersion relation with a 
photonic band gap 52, 75 (Fig. 1(c)). We should mention that the dispersion relation near the band 
edge can be also approximated by a parabolic dependence. However, for the realisation of 
optical pushbroom effect, a hyperbolic dispersion is essential, as it converges to dispersionless 
behaviour away from the band edge 52, 53, 59, 63. Furthermore, we limit our consideration to the 
case of weak refractive index change with smooth transition where the non-adiabatic, Fresnel-
like reflection from the index front can be ignored. This is a typical situation for fronts excited 
by pump pulses. The band diagram shift induced by the front is described by the function 

∆𝜔𝜔𝐷𝐷(𝑡𝑡) = ∆𝜔𝜔𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 2⁄ ∙ �1 + tanh �1 Δ𝑡𝑡𝑓𝑓⁄ �𝑡𝑡 − 𝑧𝑧 𝑣𝑣𝑓𝑓⁄ ���, where Δ𝑡𝑡𝑓𝑓 is the temporal front width 
and ∆𝜔𝜔𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is the maximum vertical band diagram shift in frequency. This front function is a 
good approximation for a front induced by a pump pulse and was used in other publications 32, 

65. 

 

 

 

Box 1. Signal pulse interaction with a moving index front 

In case of a signal pulse propagating and interacting with the index front, its frequency and 
duration will change. As an example, schematic representation of signal pulse reflection at 
a moving front inside a periodically corrugated waveguide is shown in the figure below. 
The spatiotemporal change of refractive index ∆𝑛𝑛 is shown on the left, while the corrugated 
waveguide on the right. Here, the initial signal pulse (red colour) is counter-directed to the 
index front which has a finite steepness. The black arrow indicates the signal pulse 
trajectory. If the signal pulse cannot find states behind the front after interaction, it will 
reflect and therefore the new state of the signal will remain in the unchanged waveguide 
but with a frequency shift (blue colour). 

 

 



2.2 Indirect transitions 

A schematic representation of the different FITs is illustrated in Fig. 2. Black and orange arrows 
represent direct and indirect transitions, respectively, while the blue arrow shows the transition 
due to a spatial perturbation only as is observed when a signal enters a medium and just its 
wavenumber changes while its frequency stays the same. Interaction with a front leads to an 
indirect photonic transition (orange arrow in Fig. 2(a)) with a simultaneous change of frequency 
and wavenumber of the optical signal 24, 31, 33. Indirect photonic transitions between modes that 
belong to different photonic bands are called indirect inter-band transitions 16, 31, 33, 55, while 
transitions between modes that belong to the same photonic bands are called indirect intra-band 
transitions 38, 43. In contrast to direct (vertical) transitions, indirect transitions create an 
additional method for frequency control via the choice of the transition angle, marking the 
straight path which connects starting and end points within the unperturbed and perturbed 
dispersion relations (Fig. 2). 

 

Figure 2: Schematic representation of different photonic transitions. The solid curve represents the dispersion 
bands of an original (unperturbed) mode, while the dashed curves indicate the switched (perturbed) state. Red 
and black circles indicate the initial and final state of signal wave, respectively. (a) A dispersion-free case 
where the unperturbed and perturbed dispersion functions are linear functions with equal slopes. Presented 
are: direct transition (black arrow), indirect transition (orange arrow), transition due to a spatial perturbation 
with no frequency shift and wavenumber shift, only (blue arrow). (b) Different indirect transitions in a highly 
dispersive dispersion relation by only changing the front velocity, only, which determines the direction of the 
transition within the dispersion diagram. 1: transmission through the front (inter-band transition), 2 and 6: 
reflection from a co and counter-propagating front (intra-band transitions), respectively, 3: signal trapping, 4: 
signal stopping, and 5 signal reversal. The initial group velocities of the front and of the signal are co-directed 
for transitions 1, 2 and 3, and counter directed in the transitions 4,5 and 6. The grey line represents the phase 
continuity line with a slope equal to the group velocity of the front (we show only one line in case 1 for clarity). 

In case of a signal wave propagating and interacting with an index front, the change of its 
frequency and wavenumber upon interaction can be identified by assuming phase continuity at 
the front 31, 40, 66. If 𝜔𝜔1,𝛽𝛽1,𝜔𝜔2,𝛽𝛽2 denote the frequencies and wavenumbers of the signal on each 
side of the front, then the phase at the front is: 

𝜔𝜔1𝑡𝑡 − 𝑧𝑧𝑓𝑓𝛽𝛽1 = 𝜔𝜔2𝑡𝑡 − 𝑧𝑧𝑓𝑓𝛽𝛽2 

where 𝑧𝑧𝑓𝑓 = 𝑣𝑣𝑓𝑓𝑡𝑡 . Thus the ratio of the frequency change  ∆𝜔𝜔  and wavenumber change  ∆𝛽𝛽 
induced by the interaction with the moving front is given by: 

∆𝜔𝜔 ∆𝛽𝛽⁄ = (𝜔𝜔2 − 𝜔𝜔1) (𝛽𝛽2 − 𝛽𝛽1)⁄ = 𝑣𝑣𝑓𝑓   (1) 



This equation indicates that the ratio of the signal frequency change to the wavenumber change 
is identical to the velocity at which the front propagates 𝑣𝑣𝑓𝑓. Therefore, the angle of the indirect 
transition induced by the front is defined by the velocity of the front. We should mention that 
in case of a moving periodical perturbation not the ratio but the frequency and wavenumber 
shifts are fixed. This phase matching condition significantly limits the bandwidth of coupling 
in case of nonparallel dispersion bands 16, 17. However in case of FIT, this restriction is not 
present and different frequency components of the input signal can accumulate different 
frequency shifts. FIT can project any input signal bandwidth through the phase continuity lines 
on the nonparallel and curved dispersion band. 

Figure 2(b) shows a schematic representation of different indirect transitions in a highly 
dispersive system with hyperbolic dispersion as an example. The hyperbolic dispersion is a 
good approximation for the dispersion of a weak Bragg grating in an otherwise dispersionless 
waveguide 63. Also, this kind of dispersion relation appears in periodic structures, such as 
photonic crystal waveguides 76, photonic crystal fibers 77, and fiber Bragg gratings 63, 75, 78. In 
this schematic example, the initial group velocities of the front and of the signal are co-directed 
for transitions 1, 2 and 3, while are counter directed in the transitions 4, 5 and 6. The grey line 
represents the phase continuity line with a slope equal to the group velocity of the front/pump 
signal (we show only one line for clarity). The red and black circles indicate the initial and final 
states of the signal wave, respectively. Transitions 1 and 4 correspond to interband transitions 
where final states are those of the perturbed waveguide and, thus, the signal transmits through 
the front 31, 33. Case 4 corresponds to a transition to a state with zero group velocity leading to 
the light stopping effect. Transition 2 and 6 are intraband transitions with reflection from the 
front in the forward 24, 25, 27, 28, 34-36, 43, 61, 62 and backward direction 27, 38, correspondingly. The 
transition 3 is a special case when signal does not find states in the waveguide before or after 
the front and thus is trapped in the front. This is the case of an optical pushbroom effect 52, 53, 59, 

63. Transition 2 and 5 are intraband and interband transitions, respectively which causes signal 
reversal, i.e. the time order of the incident signal is reversed. It is similar to what is obtained 
with direct transitions by a fast switch of the dispersion relation from positive to negative group 
velocity 79-83. In transition 5, the signal spatial distribution is not reversed but signal is moving 
in the opposite direction after the transition leading to time reversal. In transition 2, the spatial 
distribution is reversed by reflection from the front, but direction of propagation stays the same, 
thus, again, leading to time reversal. In transition 6 there is no time reversal as spatial 
distribution and the direction of propagation are both reversed. 

If, after the interaction with the front, the signal leaves the front region, the frequency and 
wavenumber changes are independent of the front profile31, 32, 40. In this case, a complete 
transition takes place, which can be completely described by projecting the initial states to final 
states with phase continuity line. If the length of the waveguide was insufficient for the signal 
to leave the front the transition is incomplete. In case of the trapping effect, independent of the 
waveguide length, the signal cannot leave the front and the transition is incomplete, too, and its 
frequency shift depends on the interaction time with the front Δ𝑡𝑡 and front slope 40, 63: 

Δ𝜔𝜔 = �
𝜕𝜕𝛥𝛥𝜔𝜔𝐷𝐷

𝜕𝜕𝑡𝑡
� Δ𝑡𝑡 



Δ𝛽𝛽 = Δ𝜔𝜔/𝑣𝑣𝑓𝑓. (2) 

 

2.3Slow varying envelope (SVE) approximation  

Usually, the slowly varying approximation is used for the description of pulse propagation in a 
nonlinear medium which leads to a nonlinear Schrödinger equation 4, 34, 84, 85. For the case of 
the FIT the pump effect can be described by a smooth dielectric constant ∆𝜀𝜀(𝑟𝑟, 𝑡𝑡) perturbation 
in space and time 34, 52. Therefore a LSE can be used. In waveguides with weak dispersion 
usually the spatial evolution of the pulse temporal profile is tracked 4, 34, 35, 62, 67. In this case, the 
dispersion is taken into account as 𝛽𝛽(𝜔𝜔) and perturbation as 𝛥𝛥𝛽𝛽(𝜔𝜔). This is a natural choice 
for the comparison with experimental data as detectors are usually measuring temporal pulse 
profiles at certain positions in the optical signal line. However, for systems, which have non-
unique dispersion relations, the 𝛽𝛽(𝜔𝜔) description and the wavenumber shift approximation 
become inapplicable. For example, this equation cannot be applied to the pulse propagation 
close to the band edge where the 𝛽𝛽(𝜔𝜔) function is not unique and the dielectric constant 
perturbation leads mainly to a frequency shift of the band diagram and not to a wavenumber 
shift. These non-unique dispersion functions appear in periodic structures 70, such as photonic 
crystal waveguides 76, photonic crystal fibers 77, Bragg gratings 75. 

Thus, it is favorable to work with 𝜔𝜔(𝛽𝛽) representation of dispersion and with a symmetric 
version of a LSE where temporal evolution of the pulse spatial profile is tracked 51, 52, 59, 86. 
Signal wave propagation in a dispersive waveguide with SVE function 𝐴𝐴(𝑡𝑡, 𝑧𝑧) for the carrier 
angular frequency 𝜔𝜔0 and carrier wavenumber 𝛽𝛽0 can be described by 51:  

𝜕𝜕𝐴𝐴(𝑡𝑡, 𝑧𝑧′)
𝜕𝜕𝑡𝑡

= �𝑣𝑣𝑓𝑓 − 𝑣𝑣𝑔𝑔0�
𝜕𝜕𝐴𝐴
𝜕𝜕𝑧𝑧′

+ �𝑖𝑖(𝑛𝑛+1)
𝑁𝑁

𝑛𝑛=2

𝜔𝜔𝑛𝑛
𝑛𝑛!

𝜕𝜕𝑛𝑛𝐴𝐴
𝜕𝜕𝑧𝑧′𝑛𝑛

+ 𝑖𝑖∆𝜔𝜔𝐷𝐷(𝑧𝑧′)𝐴𝐴 

 (3) 

In this equation, 𝜔𝜔𝑛𝑛 = 𝜕𝜕𝑛𝑛𝜔𝜔 𝜕𝜕𝛽𝛽𝑛𝑛⁄  are the dispersion coefficients associated with the Taylor 
series expansion of the dispersion function 𝜔𝜔(𝛽𝛽)  and 𝑣𝑣𝑔𝑔0  is the group velocity at carrier 
wavenumber 𝛽𝛽0, and 𝑧𝑧′ = 𝑧𝑧 − 𝑣𝑣𝑓𝑓𝑡𝑡. The front is not moving in the considered frame (𝑡𝑡, 𝑧𝑧′) and 
thus represents a stationary perturbation where the frequency of the signal 𝐴𝐴(𝑡𝑡, 𝑧𝑧′) is not changed 
upon interaction. Thus the interaction with the front can be well understood in this corrected 
moving frame as a signal propagating in the waveguide with a dispersion relation 𝜔𝜔′(𝛽𝛽) =
𝜔𝜔(𝛽𝛽) − 𝑣𝑣𝑓𝑓 ∙ (𝛽𝛽 − 𝛽𝛽0) . The temporal profile of the signal can be obtained explicitly by 
converting the solution back to the original frame (𝑡𝑡, 𝑧𝑧) and observing the temporal evolution 
at a fixed position 𝑧𝑧, e.g., at the waveguide output.  
 

Transmission through the front 

Two transmission situations are possible: either the front completely overtakes the signal, 
as shown in Fig. 3(a), or vice versa, the signal overtakes the front 31, 33, 48. In both cases, the 
induced frequency shift of the signal is achieved upon transmission through the front, 
leading to an interband indirect transition either from the unshifted to the shifted band or 



vice versa. Exemplary simulation results of signal pulse interaction with a co-propagating 
front, corresponding to the scenario in Fig. 3(a) are presented in Fig. 3(b). Under these 
conditions, the phase continuity line will cut through the shifted band and the signal is 
transmitted through the front. The dashed orange lines represent the boundaries of ±2∆𝑧𝑧𝑓𝑓, 
where ∆𝑧𝑧𝑓𝑓 = 𝑣𝑣𝑓𝑓∆𝑡𝑡𝑓𝑓, while the input signal is a Gaussian pulse with duration 𝜏𝜏 = 4∆𝑡𝑡𝑓𝑓. 

 

Figure 3. Signal transmission through the front: (a) Schematic representation of the transition in the band 
diagram. In the inset, the arrows show the initial propagation directions and group velocities of the signal (red 
arrow) and the front (orange arrow). The grey line represents the phase continuity line with a slope equal to 
the group velocity of the front 𝑣𝑣𝑓𝑓 = 𝑐𝑐/1.6. (b) Temporal evolution of the signal represented in the stationary 
frame. The false color indicates the intensity of the electric field of the signal. (c)-(h) Experimental results of 
signal pulse transmission through a free carrier front in case of two different configurations:. (c); (d); (e) front 
faster than signal, and (f); (g); (h) signal faster than front. (a); (b) and (f); (g) schematic representation of the 
transitions, while (e) and (h) are the measured relative center wavelength shift as a function of delay between 
the signal pulse and the front for the same induced ∆𝜔𝜔𝐷𝐷. (c)-(h) Adapted from Ref. 31. 

Signal pulse transmission through a moving index front has been demonstrated in silicon PhC 
waveguides 31, 33, 41, microwave waveguides 49, 50, and by an ionization front in a magnetized 
plasma 45. Figures 3(c)-(h) presents experimental results of signal pulse transmission through a 
free carrier front in silicon slow light waveguide in case of two different configurations: front 
faster than the signal (Figs. 3(c); (d); (e)), and signal faster than the front (Figs. 3(f); (g); (h)) 
31. In case of the front completely overtaking the signal, the final state of the signal lies on the 
band corresponding to 𝑛𝑛2 (Figs. 3(c); (d)). However, in case of the signal completely overtaking 
the front, the initial state of the signal lies on the switched band, while the final state lies on the 
original band (Figs. 3(f); (g)). The measured relative center wavelength shift as a function of 
delay between the signal pulse and the front for the same induced ∆𝜔𝜔𝐷𝐷 corresponding to the 
transitions shown in Fig.3(c), and Fig. 3(f) are shown in Fig. 3(e) and Fig. 3(h), respectively. 
The wavelength shift is determined by the mean spectral frequency of the shifted signal. In the 



green regions of Figs. 3(e) and 3(h), the signal does not interact with the front, and therefore, 
no wavelength shift is observed. While in the grey regions, the front overtakes only part of the 
leading edge of the signal pulse in Fig. 3(e) or only the trailing edge of the signal overtakes the 
front in Fig. 3(h). A maximal wavelength shift is observed when signal completely transmits 
through the front within the slow light waveguide and thus for a slightly positive delay in case 
of the front taking over the signal and for a slightly negative delay when signal takes over the 
front. In the overtaking regime (white region) the wavelength shift decreases with larger delay 
as the overtaking takes place further in the waveguide, where due to linear and nonlinear losses 
the pump pulse already has reduced intensity. A maximal wavelength shift is observed when 
signal transmits through the front and thus for a slightly positive delay in case of the front taking 
over the signal and for a slightly negative delay when signal takes over the front.  

 

Reflection at the front  

A frequency shift of the signal also can be achieved upon reflection from a co/counter 
propagating fronts, however only under certain conditions 24, 27, 28, 32-36, 43, 64, 65. This can happen 
provided that the phase continuity line can reach the final state on the same band without cutting 
into the shifted band, as shown in Fig. 4(a). The phase continuity line #1 is shown for a co-
propagating front and #2 for a counter-propagating front. This intraband transition manifests 
itself as a forward/backward reflection from the co-propagating 24, 25, 28, 32, 34-36, 43, 50, 62, 67 and 
counter-propagating 27, 32, 38, 51, 64, 65 fronts, respectively. The reflection was demonstrated 
experimentally by employing either the Kerr effect 24, 25, 35 or two photon absorption-induced 
free carriers 43. 
 

Figure 4(b) presents the simulation result of a signal pulse interaction with a co-propagating 
front, corresponding to the scenario #1 in Fig. 4(a). As we can see in Fig. 4(b), the signal pulse 
penetrates the front up to a position where its group velocity has gradually increased until 
matching that of the front. After that, the signal pulse starts to recede from the front, in the 
forward direction, as its group velocity increases and it finally escapes (forward reflection). In 
this case also time reversal of the signal is obtained. 

 



 

Figure 4. Signal reflection from the front: (a) Schematic representation of the transition in the band diagram. 
Here, the signal and the front counter-propagating as shown in the inset. The group velocity of the front is 
𝑐𝑐/3.6. (b) Temporal evolution of the same signal represented in the stationary frame. The false color indicates 
the intensity of the electric field of the signal. (c) Experimental results of signal light reflection and blue-
shifting at a co-propagating Kerr induced index front in a fiber. The black curve shows the power spectrum 
of signal light that has not interacted with the front, whereas the green curve displays the result of the 



interaction. The difference between the spectra on a linear scale, shown in red color, exhibits a peak around 
the blue-shifted wavelength 𝜔𝜔2 and another peak around the spectral line of the signal light 𝜔𝜔1. Adapted from 
Ref. 24. (d) Wavenumber and corresponding laboratory-frame group velocity plotted as a function of frequency. 
Phase-matched signal (probe)-idler pairs experience group velocities with opposite signs relative to the pump 
pulse (soliton). Waves whose frequencies lie in the orange (blue)-shaded area propagate faster (slower) than 
the soliton. (e) The temporal and corresponding spectral evolution of a soliton pump and probe pulse in an 
optical fiber (p = probe , s = soliton , i = idler). In the time domain, the probe appears to reflect off the soliton, 
owing to the generation of an idler. (d) and (e) adapted from Ref. 25. (f) Temporal (left) and spectral (right) 
evolution of signal pulse reflected from a pair of fronts with positive and negative slopes acting as a temporal 
analog of planar dielectric waveguide. Adapted from Ref. 67. 

 

Figure 4(c) presents the experimental results of signal wave reflection at a Kerr-induced co-
propagating front in a silica fiber 24. The black curve shows the power spectrum of a CW signal 
light that has not interacted with the front, whereas the green curve displays the result of the 
interaction. The difference between the spectra on a linear scale, shown in red color, exhibits a 
peak around the blue-shifted wavelength 𝜔𝜔2 and another peak around the spectral line of the 
signal light 𝜔𝜔1. The blue shifted peak is a portion of the CW signal that was reflected by the 
front and the peak at the initial frequency corresponds to frequency components of a temporal 
‘shadow’ left inside the CW signal after the cut-out of the wavepackets interacting with the 
front. The side lobes are a diffraction effect due to rectangular shape of the converted signal 
and the ‘shadow’. Though the refractive index change in the glass fiber was in the order of 10-

6, only, a large wavelength shift of 13 nm (in the order of 1 %) is obtained due to the indirect 
intraband transition. This effect, as we mentioned before, is also considered as an optical 
analogue of an event horizon where light cannot leave the space on one side of the front 24, 87. 
In fibers usually a 𝛽𝛽(𝜔𝜔) dispersion representation is used and a corrected time frame 𝑡𝑡′ = 𝑡𝑡 −
𝑧𝑧/𝑣𝑣𝑓𝑓. In this corrected moving frame a band diagram is 𝛽𝛽′(𝜔𝜔) = 𝛽𝛽(𝜔𝜔) − 1/𝑣𝑣𝑓𝑓(𝜔𝜔 − 𝜔𝜔0) and 
the front is everywhere the same, representing a time perturbation only 34. Fig. 4(d) shows the 
dispersion relation of the fiber, as well as the corresponding laboratory-frame group velocity 25. 
While Fig. 4(e) presents the temporal and corresponding spectral evolution of a pump (soliton) 
and a weak signal (probe) pulse propagating in the fiber 25. We can see from Fig. 4(d) that a 
signal-idler pair will experience group velocities of opposite sign relative to the pump. This 
means that, when interacting with the pump, a signal travelling faster than the pump will be 
converted into an idler travelling slower than the pump, and vice versa. In the reference frame 
of the pump, the frequency conversion therefore gives rise to a reflection of the signal off the 
pump, as shown in Fig. 4(e). Fronts were also predicted to emit an analog of Hawking radiation 
in optical fiber waveguides 24, 57, 58, cavities 30, or ultrashort laser pulse filaments 88.  

A pair of fronts with opposite sign of the slope separated in time can be also used to confine 
light 67, 89. In this case such boundaries act as a temporal analog of planar dielectric waveguides. 
Figure 4(f) present the temporal (left) and spectral (right) evolution of pulse reflection from 
such boundaries. Discrete modes of such temporal waveguides can be defined and excited 67, 89. 

The dispersive wave launching used for supercontinuum generation 90 also bears similarity to 
the reflection from a refractive index front. In this case part of the soliton energy is accelerated 
or decelerated by the own refractive index modulation. An ionization front was used, for 
example, to extend the supercontinuum generation in gas-filled photonic crystal fiber to mid-
infrared range 91. 



A special type of the reflecting front is a front of a photonic band gap. In this case the band 
diagram is not just shifted, but degeneracy between forward and backward propagating waves 
is lifted and a band gap is opened. The FITs at such front were predicted theoretically and 
demonstrated by simulation in Ref. 32, 64, 65. It has been shown, that when the center frequency 
of an incident signal pulse lies at the center of the photonic band gap, pulse 
compression/broadening are observed when it counter/co-propagates with the moving front, 
respectively without change of the center frequency 32. Very strong shock fronts that 
significantly perturb the dispersion relation can even trap signals in the front 64 or provide 
inverse Doppler shifts 65. 

Trapping inside the front 

The signal can also undergo neither inter nor intra-band transitions and be trapped inside the 
front, as shown schematically in Fig. 5(a). This happens when the phase continuity line does 
not cut the unperturbed (solid black) and the completely perturbed (dashed black) dispersion 
curve. Before the approaching index front encounters the signal pulse, the signal moves along 
a straight line with constant group velocity 𝑣𝑣𝑔𝑔1. Upon contact with the front, the signal will be 
gradually frequency shifted along the phase continuity line, and correspondingly gradually 
accelerated, by the front until its velocity reaches the velocity of the front 𝑣𝑣𝑔𝑔2 = 𝑣𝑣𝑓𝑓 and stays 
trapped inside it. 

Simulation results of this phenomenon are presented in Fig. 5(b). The signal pulse will be 
compressed in time and space inside the front (see Fig. 5(b)) which is also accompanied by 
strong frequency broadening. Interesting is that the corrected dispersion relation 𝜔𝜔′(𝛽𝛽) =
𝜔𝜔(𝛽𝛽) − 𝑣𝑣𝑓𝑓 ∙ (𝛽𝛽 − 𝛽𝛽0)  in case of trapping represents a saturating function with zero group 
velocity at infinite wavenumber 𝛽𝛽. It reminds the dispersion relation of a surface plasmon 
polariton 92. When a surface plasmon polariton encounters a tapered perturbation that does not 
allow further propagation then it is not reflected but is trapped at the transition leading to 
nanofocusing effects 93, 94. The same is obtained now in a moving front in a medium with 
hyperbolic dispersion curve 𝜔𝜔(𝛽𝛽). 

Such signal pulse trapping in the front has been theoretically proposed 52, 59, 63 and 
experimentally realized in a fiber Bragg grating 53, named as optical pushbroom effect. In the 
experiment with fiber Bragg gratings a special optical pulse was used to generate a sharp front 
via Kerr nonlinearity 53. Due to a small shift of the dispersion relation in the fiber as well as due 
to the small velocity mismatch between front and signal pulse, only a small compression factor 
of 5 has been demonstrated (Figs. 5(c),(d)), Namely, the front has compressed an approximately 
500 ps portion of a CW signal into a 70 ps pulse. Using the same effect Eilenberger et. al. 
showed that light trapped in an optical cavity of a fiber Bragg grating can be extracted from that 
cavity in an ultrashort burst by means of an ultrafast intense pump pulse acting like a shock-
front propagating through the cavity 30 (see Fig. 5(e),(f)). The energy in the cavity has different 
wavevectors and is projected by phase continuity line on the photonic bands above and below 
bandgap. The new excited frequencies co-propagate with the pump pulse. They have 
frequencies above or below the band gap and thus are released from the cavity. 



 

Figure 5. Signal trapping inside the front: (a) Schematic representation of the transition in the band diagram. 
In the inset, the arrows show the initial propagation directions and group velocities of the signal (red arrow) 
and the front (orange arrow). The group velocity of the front is 𝑐𝑐/2. (b) Temporal evolution of the same signal 
represented in the stationary frame. The false color indicates the intensity of the electric field of the signal. (c) 
and (d) Experimental results of optical pushbroom in a fiber Bragg grating waveguide. (c) The measured 
reflection spectrum of the fiber Bragg grating used in the experiment. The dashed vertical line indicates the 
initial frequency of the signal. (d) The solid line shows the intensity of the signal light as a function of delay 
between the signal and front. The intensity of the signal light is normalized so that the transmitted power in 
the absence of the grating would be unity. The dashed line represents the transmitted pump pulse power that 
constitutes the front. The inset shows a zoomed in view of the front peak. 5 times intensity enhancement 
corresponds to approximately 5 times pulse compression. Adapted from Ref. 53.(e) and (f) light trapped in an 
optical cavity can be extracted from that cavity in an ultrashort burst by means of an ultrafast intense pump 
pulse acting like a shock-front propagating through the cavity. (e) and (f) are adapted from 30. 

 

3. Applications 



 
3.1 Frequency conversion 

As we discussed above, several contributions have experimentally demonstrated signal 
frequency conversion with FITs 24, 25, 31, 33, 35, 41. The coherent frequency manipulation of optical 
signals might play an important role in different areas, such as wavelength-division 
multiplexing (WDM) based optical communication 95 and quantum communication 96. 
According to Eq. (2) FIT of a signal at 200 THz (1550 nm) with dispersion shift of 𝜔𝜔𝐷𝐷 =
100 Hz   (0.75 nm), front duration of Δ𝑡𝑡𝑓𝑓 = 1 ps and interaction time of Δ𝑡𝑡 =100 ps in an 
integrated waveguide can induce a frequency shift of 10 THz (75 nm). Currently, the maximal 
wavelength shift of 84 nm was achieved in 22 mm silicon strip waveguides 35. A blue shift of a 
few nanometers is also obtained in PhC waveguides 31, 33, while a sub-nm red shift is 
demonstrated by dynamic carrier depletion using p-i-n diode 41. The fibres can provide much 
longer interaction time but usually have smaller nonlinearity. A wavelength shift of 13 nm was 
realised in a 1.5 m photonic crystal fibre 24. The quantum conversion efficiency of FIT can 
approach 100% if the front does not introduce additional absorption. In fibres a conversion 
efficiency of 10% was demonstrated, limited by the transmission through the Kerr induced 
perturbation 24. The free carrier induced front showed up to 30% efficiency, limited by free 
carrier absorption 43. 

The frequency shift induced by FIT has advantages in comparison to that induced by 
copropagating cross phase modulation (XPM) and compared to idler generation in four wave 
mixing (FWM) configurations. In contrast to XPM and FWM 97-99 the FITs function with large 
group velocity mismatch between signal and pump. Further, in FWM, the pump frequency 
always has to lie between signal frequency and idler frequency thus, if positioned in relatively 
narrow frequency band, causing a cross-talk, which is especially a problem for WDM systems. 
In case of FIT and XPM the front/pump can be positioned outside of the signal frequency 
window. 

Furthermore, in contrast to FWM and XPM, the signal shifted by FIT does not need to have the 
pulsed nature of the pump pulse, as front can convert a long portion of information. The shifted 
signal duration depends on both the group velocity differences between the pump and the signal 
and on the interaction length  𝐿𝐿 which is limited by the device length: 

𝜏𝜏𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑑𝑑 = 𝐿𝐿�
�𝑛𝑛𝑔𝑔𝑠𝑠 − 𝑛𝑛𝑔𝑔

𝑖𝑖�
𝑐𝑐 � 

Thus, with a front large portions of signal can be shifted in one step, for example a whole packet 
of binary optical signal information using a short pump pulse. As an example, if we assume a 
1mm long slow light waveguide and a group index difference between the pump and the signal 
of 30, then the time span of the converted signal by the front will be 100 ps. Thus FIT can profit 
from large index change of short pulses but is not limited by the time duration of these pulses. 
The complete FITs are not dependent on the slope of the front rising edge but depend only on 
the initial and final states. Thus, the exact shape of the pump pulse generating the front is not 
important. Additionally, the complete indirect intra-band transitions are defined by the 



unperturbed band and group velocity of the front only. Thus, the perturbed band does not 
influence the transition anymore and the frequency shift becomes also independent of the pump 
power.  

Here, we have considered smooth fronts and applied slowly varying approximation to describe 
interactions. Adiabatic frequency conversion in a dynamical system occur when an external 
perturbation of the system varies slowly in space and time compared to its frequency and 
wavelength, allowing the system to adapt to the external changes 8, 100. In FITs the adiabatic 
process occurs when the length over which the front rises is much larger than the wavelength 
and its duration is much longer than the optical oscillation. On the other hand, when the external 
perturbation of the system varies very fast, this constitutes an abrupt, highly non-adiabatic 
change in system parameters. Consequently, the system does not remain at one of its 
eigenmodes, rather, multiple eigenmodes are excited and superpose. Non-adiabatic frequency 
conversion using sharp fronts have been discussed 32, 38, 45, 65. The phase continuity line still 
applies, but now, also states on multiple dispersion curves, corresponding to higher order or 
lower order modes, can be excited. The transition efficiency from the initial state to individual 
modes depends on the mode overlap between initial and final states weighted by the 
perturbation function. This way much larger frequency shifts can be obtained but at a cost of 
lower efficiency. 

 

3.2 Bandwidth/time duration manipulation 

Compression or stretching of transform limited pulses involves frequency manipulation. 
Optical pulse temporal compression has been theoretically discussed and experimentally 
demonstrated using different approaches in the last years 101. A FWM 102, XPM 37 or 
electrooptic modulation 103 induced time lenses were used to build a temporal telescope with 
compression factors up to 27 102. Such time lenses require specially prepared pump pulses or 
fast electrooptic modulation and adjusted dispersion compensation elements. Spectral 
bandwidth compression has been also envisaged by direct transitions with fast tilting of the 
dispersion relation of the waveguide where signal pulse is propagating 13, 56, 71, 73. At the same 
time significant tilting of the dispersion relation requires strong and spatially varying changes 
of the refractive index. 

The pulse compression with FITs can be split into two categories: via complete (transmission 
or reflection) and incomplete transitions (trapping). The complete indirect transitions allow the 
projection to the part of the dispersion relation with a different slope without requirement for 
strong change in the shape of the dispersion relation 32. From this geometrical consideration the 
temporal compression factor can be derived as �(𝑣𝑣𝑓𝑓/𝑣𝑣𝑔𝑔2  − 1)/(1 − 𝑣𝑣𝑓𝑓/𝑣𝑣𝑔𝑔1 )�, where 𝑣𝑣𝑔𝑔1 and 
𝑣𝑣𝑔𝑔2 are the group velocities of the signal before and after the interaction with the front 51, 66. 
The compression factor will increase when the front velocity 𝑣𝑣𝑓𝑓  will approach the group 
velocity of the final state 𝑣𝑣𝑔𝑔2. Significant pulse compression was not realized so far with FITs 
involving reflection or transmission. In case of trapping the accumulated frequency shift is 
proportional to the time spend inside the front (see Eq. (2)), different parts of the signal 
automatically accumulate a linear chirp in frequency according to the time when they enter the 



front. This way, the signal time function is directly converted to frequency function, where the 
frequency distribution has a width equal to (𝛥𝛥𝜔𝜔𝐷𝐷/𝛥𝛥𝑡𝑡𝑓𝑓)𝜏𝜏, where 𝜏𝜏 is the pulse duration. For the 
band diagram shift 𝛥𝛥𝜔𝜔𝐷𝐷 corresponding to 1 nm wavelength shift, front duration of 𝛥𝛥𝑡𝑡𝑓𝑓 = 1 ps 
and signal of 100 ps the bandwidth can approach 100 nm. If the dispersion is compensated and 
a transform limited pulse is obtained then the compression factor of 3000 can be expected. Up 
to now only 5 times pulse compression was demonstrated using fibre Bragg gratings as 
dispersive waveguides 53. The compression was limited by a weak nonlinearity of the silica 
fibre and long front duration of 30 ps. 

 
A special situation is created by the frequency shift with a decaying front 39. In this case, the 
front induces a complete transition with a decaying frequency shift along the waveguide. Thus, 
the signal pulse accumulates a frequency chirp. The signal can be simultaneously compressed 
by introducing an additional linear chirp in the waveguide. A compression factor of 
approximately 10 times was realized 39. 

3.3 Light storage and optical delays 

Dynamic storing and delaying optical signals offer new possibilities in all-optical processing 
and enhanced light-matter interactions. Therefore, this field has been driven by a variety of 
research efforts in past years 19, 54, 104-106. Light storage and release by direct transition in 
photonic waveguides has been theoretically proposed by Yanik et. al. 10, 71. In this case, the 
dispersion relation is modified to have zero slope in a switched state and the signal bandwidth 
ideally collapses to a single frequency. To release the signal the system should be switched back 
to the original dispersion relation. Such strong modification of the dispersion relation requires 
fast and strong local refractive index changes 71, 74 which are difficult to achieve 56. Thus, several 
studies experimentally demonstrated similar operation by controlling the Q factor in a single 
cavity or coupled cavities 104, 107-110. First demonstration of storing light on-chip was obtained 
in two ring resonators with a storage time of approximately 200 ps 104. Upham et al. 
demonstrated a dynamic capture of 4 ps optical pulse inside a gallium arsenide photonic crystal 
nanocavity with negligible absorption losses, due to the short carrier lifetime of ~ 7 ps 110. The 
limitation of the dynamic storage in the cavity is the amount of stored information. Namely, 
only a single pulse can be stored but not a sequence of pulses. 

On the other hand, light stopping can be realized in waveguides by inducing indirect photonic 
transitions to point of zero group velocity (Fig. 2(b), transition 4), which was not discussed so 
far. The storage time will be limited by the residual dispersion at zero group velocity point. This 
approach is probably more feasible than the band tilting in a direct transition and would allow 
storing a sequence of pulses in the waveguide 10. The signal can be later released by a front with 
an opposite slope. In PhC waveguides a storage of ≈ 20 ps was realized in a two step transition 
55. Alternatively a special chirped PhC waveguide with ≈ 10 ps dynamic delay was realized 
(Fig. 6) 54. In the chirped structure the dispersion relation has a flat band dispersion relation (see 
Fig. 6(c)). The signal pulse transmits through the structure, gradually changing its wavenumber 
from the point before the flat band to the point behind the flat band. In the middle of the structure 
the signal is strongly slowed down and thus accumulates large optical delay. A control pulse 
generating the front runs over the signal. Due to the nature of the indirect transition it shifts the 



signal to smaller wavenumbers in the band diagram Fig. 6(c) and allows for the signal to be 
faster released from the flat band region. Depending on the delay between the signal and control 
pulse the release time can be controlled and thus the accumulated delay. 

 

Figure 6: Dynamic pulse delay in a PhC waveguide. (a) Schematic of the structure (left) and scanning electron 
micrograph of fabricated device (right). Pink color indicates the pump pulse, while blue color indicates the 
signal pulse. LD means low-dispersion, while DC means dispersion-compensated. The arrows indicate the 
group velocities. (b) Schematic of the index chirp. (c) An example of calculated photonic bands assuming the 
index chirp in (b). (d) The relative delay of output signal pulse ∆𝑡𝑡s at different incident timings of the front 
∆𝑡𝑡c. Here, ∆𝑡𝑡c = 0 corresponds to the pump (front) and signal pulses being incident simultaneously, and 
∆𝑡𝑡c > 0 is when the pump pulse is incident later. Adapted from Ref. 54. 

 

4. Conclusion and outlook 

A moving front in an optical waveguide usually induces only a small perturbation of the 
dispersion relation. But even this small perturbation combined with the dispersion of the 
waveguide and adjusted front velocity can be utilized to demonstrate a palette of optical 
interactions. Due to the fact that front induces an indirect transition that changes both frequency 
and wavenumber of a signal, even weak fronts can reflect or trap light. 

The application of FIT has two fundamental advantages in comparison to other established 
nonlinear interactions in guided media. First, the FIT is not directly related to the frequency and 
phase of the switching pulse as the refractive index modulation is a function of intensity, only. 
Thus, the switching pulse center frequency can be chosen far away from the signal window 
which strongly reduces crosstalk from the switching to the signal channel. Second, due to the 
indirect nature of FIT transitions large frequency shifts can be achieved even with small 
refractive index changes and transitions to states with very different group velocities or even a 
transition to zero or negative group velocity is possible. With an indirect transition the FIT 
provides the full freedom of frequency and wavenumber manipulation for signal processing. 
FITs show also the potential for realizing frequency conversion of quantum light, such as single 
photons 37.  



The FIT has strong potential for light manipulation in guided optics and many new concepts 
can be developed and existing concepts experimentally realized. Non-adiabatic transitions and 
fronts moving with varying velocity can be a further extension of the topic. We hope this review 
will allow for better understanding of FIT phenomena and pave the way for new FIT 
applications on chip. The review stayed in realm of classical electrodynamics. Better 
understanding of classical phenomena can also lead to the developments of front induced 
quantum effects, like the optical analog of Hawking radiation 24, 30, 58, 88, 111. 
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