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ABSTRACT 

In the present study, an attempt is made to predict the occurrence of externally 

retrained thermal cracking and maximum width of externally restrained thermal 

cracks in massive RC abutments using artificial neural network (ANN) and actual 

construction data. Feed forward multilayer perceptron artificial neural networks were 

developed by considering basic geometric and material properties, and ambient 

environmental conditions. After obtaining the most efficient ANNs by performing 

enormous trials, parametric studies were performed to study the influence of various 

parameters i.e., width, thickness, height, reinforcement ratio, lift interval, initial 

concrete temperature and concrete strength on maximum crack width. All parametric 

studies were performed in three environmental conditions i.e., cold weather, normal 

weather and hot weather. 

In this study, dataset was chosen from Yamaguchi prefecture database in Japan, 

which contains data of all high-quality RC abutments constructed in the prefecture 

since 2005. A sophisticated dataset for developing ANNs was considered by 

removing all apparently wrong entries and cross verification was performed for all 

individual entries of dataset. 362 reliable lifts of RC abutments were selected, in 

which, 248 lifts were categorised as vertical walls and remaining 114 lifts as parapets. 

For data analysis and neural networks, IBM SPSS Statistics with neural network 

package and MATLAB with machine learning and deep learning toolboxes were 

employed. 

The results from the ANNs have shown an appreciable potential in predicting 

occurrence of thermal cracking and maximum width of thermal cracks. In predicting 

the occurrence of thermal cracking, the accuracy level of 81.5% and 87.6% was 

achieved for vertical walls and parapets, respectively. In predicting the maximum 

width of thermal cracking for vertical walls, the accuracy level of 90.95 % with ±0.1 

mm allowable error and 69 % with ±0.05 mm allowable error in residual crack width 

was achieved. In predicting the maximum width of thermal cracking for parapets, the 

accuracy level of 94.7 % with ±0.1 mm allowable error and 90.8 % with ±0.05 mm 

allowable error in residual crack width was achieved. 
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The results of parametric studies have shown strong influence of seasonal 

variations, cement content, width, thickness, height, reinforcement ratio, lift interval 

and initial concrete temperature on maximum crack width for vertical walls. These 

results will be helpful in mitigating the harmful thermal cracks by providing the 

understanding of the influence of various input parameters which are relatively easy 

to control in practice and valuable inputs for the establishment of the guidelines to 

mitigate thermal cracks. 
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1 Introduction 

1.1 Thermal cracks 

Thermal stresses are generated in the concrete resulting from restraint in volume change 

due to heat of hydration of cement and autogenous shrinkage. Sometimes, the thermal 

stress can exceed the sum of the stresses caused by other external loads. In a massive 

concrete structure, the thermal stress can not only cause cracking but also have an impact 

on the stress state of the structure. If thermal stresses exceed from the tensile strength of 

the concrete, then cracks may generate as shown in figure 1-1. 

  

Figure 1-1 Typical development of stress and tensile strength in externally restrained 

wall 

The restraint may be external, internal or combined. Internal restraint is caused by the 

temperature gradient between inner and outer part of the concrete mass, and/or 

reinforcement. Whereas external restraint is caused by the foundation or the previous lift. 

This study is focused on the externally restraint thermal cracks. A typical example of 

externally restraint thermal cracks is shown in figure 1-2. There are several factors which 

affect the thermal cracking, i.e., type of structures, boundary conditions, materials, 

mixture proportions, construction methods, weather conditions, etc. Cracks are serious 

concerns towards construction management, durability, water tightness, and aesthetics. 

If the crack width exceeds a certain limit, then it may initial several durability issues, i.e., 
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reinforcement corrosion etc. [1]–[4]. Due to influence of several factors, it is not easy to 

predict the thermal cracking. Presently, JCI has a system to predict the cracking 

probability and crack width using thermal and stress analysis[1]. But there is a 

considerable variation in prediction and actual cracking conditions as shown in the Figure 

1-3 [3].   So, there is a need of an alternative approach to counter this issue and predict 

the cracking condition.  

 

Figure 1-2 Typical example of RC abutment with multiple lifts and externally 

restrained cracks  

 

Figure 1-3 Relationship between actual and predicted crack width by JCI system 
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1.2 Yamaguchi prefecture database 

Yamaguchi prefecture is among 47 prefectures of Japan which has established a crack 

control system for massive concrete structures by engaging all key stakeholders, i.e., 

local government, private companies, and academic institutions. PDCA cycle of Crack 

control system in Yamaguchi prefecture is shown in Figure 1-4.  

 

Figure 1-4 PDCA cycle of Crack control system in Yamaguchi prefecture 

One vital component of this system is the database of structures established in 2005, in 

which all important geometric and material properties of structures are enlisted. Thermal 

properties measured in the structures are also included for some structures. This crack 

control system has shown an appreciable effectiveness in controlling thermal cracks with 

the passage of time. One of the reasons for the success of this system is that good 

concreting work has been achieved in their system. In this system, cracks with 0.15mm 

width (or more) have to be repaired. Data of each lift of structures with good concreting 

work has been accumulated in Yamaguchi prefecture database [3]. The performance of 

the Yamaguchi system for attaining the quality is demonstrated in Figures 1-5 and 1-6 

for vertical walls considered in this study. It can be observed that with the passage of 

time, maximum crack width and percentage of harmful crack width reduced significantly.  
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Figure 1-5 Year wise maximum crack width observed in vertical walls  

 

Figure 1-6 Year wise percentage of lifts of vertical walls with harmful cracking  

1.3 Machine learning  

Machine learning comes under the big umbrella of artificial intelligence (AI). It has been 

used to develop predictive models using empirical data without the necessity of having 

deep knowledge of the actual hidden physical mechanism [5], [6]. There are several types 

of machine leaning algorithms, for example, supervised learning, unsupervised learning, 

semi-supervised learning, reinforcement learning, transduction and learning to learn [7]. 

In supervised learning, the generated algorithms map the given outputs based on given 

inputs. Whereas, in unsupervised learning, models are generated without labelled 

responses. In semi-supervised learning, both labelled and unlabelled responses are 
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combined. In reinforced learning, algorithms learn according to a particular environment 

and environment provides the feedback to guide the learning environment. Transduction 

is like supervised learning, but instead of constructing a complicit function, it predicts 

new outputs by taking account the training inputs, training inputs and new outputs. 

Whereas, in learning to learn algorithms, algorithm learns its own bias based on its past 

experience [7].  

1.3.1 Types of machine learning algorithms 

The commonly used types of supervised learning algorithms are given as follows [8]; 

• Regression 

o Neural Networks 

o Decision Trees 

o Ensemble Methods 

o Nonlinear Regression  

• Classification 

o Support Vector Machines 

o Naive Bayes 

o Discriminate Analysis 

o Nearest Neighbour 

o Neural Networks 

o Decision Trees 

o Ensemble Methods 

o Nonlinear Regression 

The types of unsupervised learning algorithms are given as follows [8]; 

• Clustering  

o k-Means 

o Neural Networks 

o Gaussian Mixture 

o Hidden Markov Model 

o Hierarchical 
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1.4 Artificial neural networks  

Artificial neural networks (ANNs) are based on the concept of biological neural networks 

in order to develop intelligent machines. ANNs consist of numerous numbers of parallel 

computing systems having a large number of interconnected simple processors. ANNs 

are powerful tools for classification, categorization, approximation, recognition and 

prediction [9]. They work as black-box and model-free with strong capability of learning 

and capturing essence of training data. Complex problems which are difficult to model 

and solve by conventional mathematical procedures can be good target problems for 

ANNs [10]. 

In the literature, ample applications of neural networks are reported in different fields. 

ANNs have been used in the field of structural engineering for structural analysis and 

design, design automation and optimization, damage diagnosis, fracture mechanics 

problems, structural system identification, structural condition assessment and 

monitoring, structural control, finite element mesh generation, structural material 

characterization and modelling, etc. [10]. 

Previously, using Yamaguchi prefecture database, Inadsu et al. made an attempt to 

predict the occurrence of thermal cracking and maximum accuracy was reported as 

82.6 % for RC abutments [11].  

1.5 Objectives 

The key objectives of this research are as follows; 

• Prediction of occurrence of thermal cracks in massive RC abutments using ANNs.  

• Prediction of maximum thermal crack width of RC abutments using ANNs. 

• Study on the influential parameters for maximum crack width using ANNs. 

And the ultimate goal is to contribute in the guidelines to counter harmful thermal 

cracking for actual structures. 

1.6 Methodology 

In this study, an attempt is made to predict the occurrence of externally restrained thermal 

cracking and maximum crack width for RC abutments by using actual construction data 

from Yamaguchi prefecture database and Artificial neural networks (ANNs). One of the 
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key aspects is the choice of dataset. To obtain a reliable dataset to train, test and validate 

ANNs, dataset is sophisticated by removing suspicious entries and cross verification is 

performed for all entries of dataset. Dataset is divided into three portions, i.e., training, 

testing and holdouts for validation. 5-folds cross validation is also performed for 

performance evaluation of ANNs as shown in Table 1-1. T shows training and testing 

data and H shows holdouts for cross validation. 

Table 1-1 Division of dataset in training and holdouts samples  

K-Fold Cross Validation  
Dataset 1 2 3 4 5 
Fold1 T T T T H 
Fold2 T T T H T 
Fold3 T T H T T 
Fold4 T H T T T 
Fold5 H T T T T 

 

In this study, a feedforward type artificial network named as multilayer perception (MLP) 

was adopted. In MLP, supervised learning is carried out by backpropagation. It has three 

or more layers of nodes; input layer, hidden layer/layers and output layer. There can be 

one or more hidden layers. Each node in a layer is connected to all nodes of succeeding 

layer by a certain synaptic weight. Bias in input and hidden layers help the weighted sum 

of other nodes to obtain output. Values of biases are always 1 or some other constant 

that’s why they are not connected to previous layers. When ANNs run, they use random 

number generation for subsamples selection and initialization of synaptic weights, which 

results into unidentical output after every run. So, it is important to optimize the results 

by ample number of trials. The details of ANNs used are categorically explained as 

follows; 

1.6.1 Architecture of neural networks for prediction of occurrence of thermal 

cracking 

In this study, the basic architecture of the ANN used to predict occurrence of thermal 

cracking is shown in Figure 1-7.  
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Figure 1-7 Architecture of ANN for prediction of cracks occurrence 

To link the weighted sums of the nodes to the nodes of succeeding layer, activation 

function is needed [12], [13]. For hidden layer, hyperbolic tangent was used as an 

activation function. Equation for hyperbolic tangent function is given below in eq. 1. By 

this function, real-valued inputs (c) are transformed to the range from -1 to 1 [12]. 

𝛶(𝑐) = tanh(𝑐) =
𝑒𝑐− 𝑒−𝑐

𝑒𝑐+𝑒−𝑐   (1) 

Softmax function was used as an activation function for output layer. The equation for 

softmax function is given below in eq. 2. This function transforms the vector of real-

valued arguments (c) to a vector with the elements in the range from 0 to 1 and sum of 1 

[12]. 

𝛶(𝑐𝑘) =
exp (𝐶𝑘)

∑ exp (𝐶𝑘)𝑘
𝑖=1

  (2) 

Scaled conjugate gradient was used as training function for estimation of synaptic 

weights. Output results are highly influenced by the input parameters, number of hidden 

layers and number of nodes in each hidden layer which depend on several factors i.e. 

quality and quantity of dataset, type of dataset, etc. So, it is important to select appropriate 

size of the network to avoid underfitting and overfitting. In this study, hit and trial method 

was employed to select appropriate number of nodes in the hidden layer. The trials were 

made by changing nodes in the hidden layer and those number were selected for which 
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prediction accuracy for holdout samples was higher to avoid overfitting. One hidden 

layer was used in all cases. 

1.6.2 Architecture of neural networks for prediction of maximum thermal crack 

width 

In this study, the basic architecture of the ANN used to predict maximum width of 

thermal cracking is shown in Figure 1-8.  

 

Figure 1-8 Architecture of ANN for prediction of maximum crack width 

MATLAB with Machine Learning and Deep Learning Package was used for neural 

networks. For hidden layers, hyperbolic tangent was used as an activation function. 

Linear function was used as an activation function for output layer. Levenberg-Marquardt 

was used as training function for estimation of synaptic weights. 

After development of appropriate machines, parametric studies were performed to give 

for proposals for design and construction practice.  

1.6.3 Parametric studies on influential factors for maximum crack width  

To study about the influential factors on maximum crack width, parametric studies are 

performed under different seasonal variations i.e., cold season, normal season and hot 

season. The effect of cement content, width, thickness, height, reinforcement ratio, lift 

interval and concrete strength are categorically studied.  
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2 Literature review 

2.1 Prediction of early-age thermal-shrinkage cracking 

In literature, some numerical methods are reported to predict thermal-shrinkage cracks. 

Some of those are summarized as follows; 

JCI has a thermal and stress analysis-based system to predict probability of thermal 

cracking and maximum crack width. JCI also have an empirical equation to predict 

maximum crack width[1]. But, a considerable variation in the prediction and actual 

condition of cracking is reported. Yuan and Wan (2002) combined synthetic physical–

mechanical processes, three-dimensional finite element and finite difference method to 

predict potential thermal-shrinkage cracks by considering effects of hydration, moisture 

transport and creep. Environmental influencing parameters, such as form removal time, 

curing conditions and ambient temperature and relative humidity. The study was 

performed on laboratory size specimen to obtain shrinkage strain and stress development 

with age. A good agreement was achieved between analytical and experimental results 

[14]. 

2.2 Applications of machine learning in civil engineering 

In literatures, several applications of machine learning have been reported in the field of 

civil engineering. Many researchers used machine learning to predict compressive 

strength of concrete which is a vital characteristic of concrete. Young et al. (2019) 

predicted compressive strength of concrete mix proportions using a large dataset 

(<10,000 observations) by adopting machine learning approach. The developed models 

were used to design mixture proportions to satisfy strength requirement by minimizing 

cost and CO2 emission. The root mean square error in prediction was reported as <10% 

[6]. Yu et al. (2018) used artificial neural networks to predict compressive strength of 

high-performance concrete using 1761 observation and reported a high accuracy with R2 

0.96. They also proposed a novel optimised self-learning method which resulted into 

least mean square error [15]. Deng et al. (2018) used deep learning to predict compressive 

strength of recycled concrete by using 74 sets of observations and reported that 

convolution neural network outperformed the conventional backpropagation neural 

network and support vector machine [16]. Naderpour et al. (2018) used artificial neural 
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networks to predict compressive strength of environmentally friendly concrete using 139 

test samples and correlation coefficient  was reported as 0.89 [17]. Chopra et al. (2018) 

predicted compressive strength of concrete using machine learning techniques to predict 

the compressive strength of concrete and reported that neural networks with R2 0.91 

outperformed the random forest and decision trees [18]. Nguyen et al. (2018) used high-

order neural network to predict the strength of foamed concrete and a high correlation 

coefficient (0.9921) was reported [19]. Behnood et al. (2017) used M5P model tree 

algorithm to predict the compressive strength of normal and high-performance concrete 

using 1912 observations which showed R2 0.9 [20]. Yaseen et al. (2017) proposed a 

machine learning algorithm named as extreme learning machine to predict compressive 

strength of foamed concrete and reported its superiority over multivariate adaptive 

regression spline (MARS), M5 Tree models and support vector regression (SVR) [21]. 

Chithra et al. (2016) used artificial neural networks in predicting compressive strength 

of high performance concrete containing Nano silica and copper slag using 264 

observations and maximum reported R2 was 0995 with root  mean square error 1.0361 

[22]. Abd and Abd (2016) used support vector machine to predict strength of lightweight 

foamed concrete and reported correlation was 0.99 with mean square error 3.267 [23]. 

Chou et al. (2014) reported the use of machine learning in predicting compressive 

strength of high strength concrete and reported that ensemble learning techniques 

(multiple classifiers, the voting, bagging, and stacking combination methods) were 

superior in performance than individual learning techniques (multilayer perceptron 

neural network, support vector machine, classification and regression tree, and linear 

regression [24]. Chou and Tsai (2012) also used machine learning to predict compressive 

strength of high strength concrete. Thy used hierarchical classification and regression 

approach which was reported as superior than the other conventional machine learning 

algorithms [25]. Dantas et al. (2012) used artificial neural networks in predicting 

compressive strength of concrete at 3, 7, 28, 91 days and achieved R2 was 0.928 and 

0.971 for training and testing phase, respectively [26]. Slonski (2010) used feed-forward 

layered neural networks to predict compressive strength of high strength concrete and 

reported Bayesian neural network as the most efficient among others with Pearson 

correlation coefficient R as high as 0.955 for testing phase [27].  
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Ding and An (2018) predicted workability of self-compacting concrete using deep 

learning approach and appreciable performance was reported for convolutional neural 

network and long short-term memory [28].  

Mangalathu and Jeon (2018) used machine learning techniques to classify failure mode 

and predicted shear strength for RC beam-column joints using 536 experimental tests. 

Various machine learning techniques such as logistic, lasso logistic, discriminant 

analysis, k nearest neighbours, Naïve Bayes classification, support vector machines, 

decision trees, and random forest were used to establish a model to predict the failure 

mode and lasso regression model was suggested to predict failure modes [29]. Taffese 

and Sistonen (2017) reported the potential use of machine learning in structural health 

monitoring [8]. Reuter et al. (2017) predicted failure surfaces for concrete using machine 

learning approach using 88 experimental tests. Artificial neural networks, support vector 

machines and support vector regression were used to simulate the failure surface. Support 

vector regression outperformed the other methods as the total error was 1.94% which was 

lower than that given by the other machine learning methods and results were compared 

with the conventional methods, i.e. Drucker–Prager and Bresler–Pister surfaces [30]. 

Cheng and Shen (2017) used supervised learning to detect concrete abnormality [31]. Ye 

et al. (2018) used online machine learning for computerized hammer sound interpretation 

to assess the quality of concrete and reported its high efficiency [32]. 

Mangalathu and Jeon performed fragility analysis using support vector machine and 

reported its potential use in generating or updating the fragility curves for concrete 

bridges [33]. 

Cha et al. (2017) used convolution neural networks to detect crack damage using images. 

Activation function for hidden layer and output layer were ReLU and Softmax, 

respectively. The reported accuracy was 97.95% for training and validation [34]. 

Chatterjee et al. proposed a particle swarm optimization-based approach to train the 

neural networks to predict structural failure damage. The reported accuracy level was 

more than 90% which was claimed to be superior than common neural networks [35]. 

Pandey and Barai (1995) used MLP with two hidden layers and sigmoid function as an 

activation function for hidden layers were used to detect damage in steel bridges [36].  

Aguilar et al. (2016) used artificial neural networks to predict the in-plane shear strength 

of reinforced masonry walls by utilising large experimental dataset (285 results). One 
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hidden layer was used with sigmoid activation function. The Lavenberg–Marquardt 

algorithm for training was used and training was performed by back propagation. 

Maximum achieved R2 was greater than 0.9 [37].  Gupta et al. (2015) proposed the use 

of neural networks for predicting deflection in multi-span continuous steel-concrete 

composite bridges by taking input from numerical simulation technique. The Lavenberg–

Marquardt algorithm for training was used and training was performed by back 

propagation using one hidden layer. A high level of accuracy (>95%) was achieved [38]. 

Lee and Lee (2014) used artificial neural networks to predict the shear strength of FRP-

reinforced concrete flexural members using 106 tests set. Network was trained by back 

propagation and two hidden layers were used. A high level accuracy (>95%) was reported 

[39]. Plevris and Asteris (2014) used ANNs to predict masonry failure surface. 

Hyperbolic tangent activation function was used for hidden layers [40]. Mansouri and 

Kisb (2015) used neuro fuzzy and neural networks to predict debonding strength of 

masonry elements retrofitted with FRP composites and reported that combination of 

neuro fuzzy interface and ANN outperformed the other methods, i.e. multiple nonlinear 

regression, multiple linear regression and existing bond strength models [41]. Sanad and 

Saka (2001) used ANNs to predict the ultimate shear strength of RC deep beams using 

111 samples. The results from ANNs were compared with other conventional methods, 

i.e. ACI, strut-and-tie, and Mau-Hsu methods. Performance of ANNs was reported as 

superior than the other methods [42].  

Gopalakrishnan et al. (2017) used pre-trained deep convolution neural networks to detect 

pavement distress using transfer learning and big data of images (1056 samples). ReLU 

activation function was used in all hidden layers. The accuracy level in case of deep 

neural network was more than 0.9 and it outperformed other classifiers i.e. random forest, 

extremely random trees classifier, support vector machine and logistic regression [43]. 

Ling et al. (2017) predicted top-down cracking for asphalt pavement using numerical 

modelling and artificial networks. Using FEM, 194,400 cases were generated to give 

input for ANNs. Training was performed by back propagation. The Levenberg-

Marquardt algorithm was employed for training. Reported R2 was 0.99 which showed 

the potential of using ANNs [44]. Mirabdolazimi and Shafabakhsh (2017) used genetic 

programming and ANNs to predict rutting depth. The Levenberg-Marquardt algorithm 

was employed for training and high level of accuracy was achieved [45]. Gajewski and 

Sadowski (2014) used a hybrid artificial neural networks and finite element method to 
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perform sensitivity analysis of crack propagation in pavement bituminous layered 

structures. Some inputs for neural networks were obtained by preforming finite element 

analysis. The purpose of using ANNs was analogues to non-destructive testing to 

evaluate the material behaviours and crack propagation. Multilayer perceptron neural 

network reportedly performed better than Radial basis function neural network. Accuracy 

level of MLP NN was more than 90% [46].  Wu et al. (2014) used an ANN approach 

based on semi analytical FEA to predict stress intensity factor in pavement cracking. The 

activation functions for hidden layers and output layers were sigmoid and linear function, 

respectively. A high level of accuracy with 0.99 R2 was reported [47]. Zhang et al. (2016) 

predicted road cracks using deep convolution neural network using images using ReLU 

as an activation function. The performance of CNN was reportedly superior than SVM 

and Boosting [48]. 

Ghafari et al. (2015) predicted fresh and hardened state properties of Ultra-high-

performance-concrete using 53 mixtures. Binary sigmoid function was used as an 

activation function. A high level of accuracy (>95%) was reported [49]. Suleiman and 

Nehdi (2017) used hybrid genetic algorithm artificial neural network to model self-

healing of concrete. Self-healing shows the way of modelling the width. Feed forward 

ANN with one hidden layer was used and tan-sigmoid function was used as an activation 

function for hidden layer and linear function for output layer. A high accuracy level 

(R2>0.95) was reported [50]. Park et al. used ANNs to predict the properties of cement 

paste and sigmoid function was used as an activation function for hidden layers. ANNs 

showed good agreement with experimental results [51].  

Jiang et al. (2016) used artificial neural networks to predict corrosion of concrete sewers 

using 4.5 years long corrosion data. Performance of ANNs was reportedly superior than 

multiple regression and a high accuracy level (>90%) was achieved for ANNs [52].  
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3 Characteristics of dataset 

3.1 General 

In Yamaguchi prefecture database, around 1555 lifts of concrete structures are enlisted 

since 2005 to date. For this research, 386 lifts of abutments were chosen. Among the 

reliable dataset, 24 lifts were ignored in which some other types of reinforcing materials 

than steel were used. Remaining 362 lifts of RC abutments were further categorized into 

248 lifts of vertical walls and 114 lifts of parapet walls.  

Table 3-1 Number of valid samples, missing data points and range of properties for 

vertical walls and parapets 

Property 

Lifts of Vertical Walls Lifts of Parapet Walls 

Valid Missing Range of 

Data 

Valid Missing Range of 

Data 

Maximum Crack Width (mm) 248 0 0~0.4 113 0 0.04~0.3 

Thickness (m) 248 0 0.7~3.0 113 0 0.4~1.5 

Width (m) 248 0 3.1~25 113 0 4.2~28.5 

Lift Hight (m) 248 0 0.6~5.4 113 0 0.5~4.3 

Reinforcement Ratio (%) 247 1 0.03~ 0.64 101 12 0.08~1.13 

W/C (%) 242 6 49~55 110 3 49~55 

Cement Content (kg/m3) 233 15 282~333 106 7 277~331 

Expansive Additive (kg/m3) 248 0 0 or 20 113 0 0 or 20 

Slump (mm) 228 20 6~10.5 103 10 6.5~10 

Air Content (%) 228 20 3.6~5.8 103 10 3.7~5.6 

Initial Concrete Temperature (oC) 247 1 6~32 102 11 6~32 

Initial Ambient Temperature (oC) 247 1 -1.3~31 104 9 1~31 

Concrete Strength (MPa) 235 13 28.1~ 40.9 99 14 28.9~40.8 

Lift Interval (day) 235 13 3~139 106 7 1~94 

Maximum Temperature (oC) 200 48 16~75.5 77 36 13.6~69.1 

Maximum Temperature Time (hr) 198 50 15~119 80 33 5.8~106 

Form Removal Time (day) 238 10 2~74 96 17 2~35 

Curing Period (day) 232 16 1~42 92 21 1~28 
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Among 248 lifts of vertical walls, 96 lifts were cracked, and 152 lifts were uncracked. 

And, maximum crack width was ranging from 0.04 mm to 0.4 mm. Among 114 lifts of 

parapet walls, 23 lifts were cracked, and 91 lifts were uncracked. And, maximum crack 

width was ranging from 0.04 mm to 0.3 mm.  

Number of valid samples, missing data points and range of the data for both vertical and 

parapet walls are summarized in Table 3-1. Missing data points are partially those which 

were not measured in actual structures and remaining due to removal of ambiguous and 

apparently wrong entries to get reliable dataset. 

Other properties which were not used in the study but represent the range of the properties 

in the dataset are summarised in Table 3-2. 

Table 3-2 Number of valid samples, missing data points and range of other properties 

for vertical walls and parapets 

Property 

Lifts of Vertical Walls Lifts of Parapet Walls 

Valid Missing Range of 

Data 

Valid Missing Range of 

Data 

Chloride Content (%) 228 20 0.01~0.1 113 0 0.04~0.3 

7-days Concrete Strength  222 26 16~29.7 113 0 0.4~1.5 

Casting Month 248 0 Jan ~ Dec 113 0 4.2~28.5 

Seasons 248 0 All 113 0 0.5~4.3 

Maximum Temperature 

Rise (oC) 

198 50 6~57.4 113 41 2.7~38.1 

 

In this study, several geometric and material properties of RC abutments were used, for 

example, thickness (m), width (m), lift height (m), reinforcement ratio in horizontal 

direction (%), water to cement ratio, unit cement content (kg/m3), unit content of 

expansive additive (kg/m3), slump (mm), air content (%), initial concrete temperature 

(oC), initial ambient temperature (oC), 28-days concrete strength (MPa), lift interval (day), 

maximum temperature (oC), maximum temperature time (hour), form removal time (day) 

and curing period (day).  

Lift interval is the time gap between previous lift and the lift under consideration. 

Maximum temperature and maximum temperature rise were measured in the middle 

thickness of the lift. Curing period is the time for which the finished surface of a lift is 
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cured. Several diverse types of curing methods are included, for example, water 

sprinkling, blue sheets, blue sheet + sprinkling, curing mat, ponding etc., however the 

difference of curing methods were not investigated in this research. Characteristics of 

vertical and parapet walls are categorically explained in the following section. 

3.2 Characteristics of vertical walls 

3.2.1 Geometric properties   

In the dataset, the lifts of vertical walls were 0.7 to 3.0 m thick with mean thickness 1.72 

m and standard deviation was 0.439. The width was in the range of 3.1 to 25 m with mean 

width 10.92 m and standard deviation was 4.655. The range of the height of the lifts was 

0.6 to 5.4 m with mean height 2.6 m and standard deviation was 0.92. The histograms 

for thickness, width and the height of the lifts of vertical walls are shown in Figures 3-1 

and 3-2. 

 
Figure 3-1 Histograms of thickness and width of the lifts of vertical walls  

 
Figure 3-2 Histogram of heights of the lifts of vertical walls  
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3.2.2 Properties of materials  

The range of properties of difference materials used in the vertical walls are summarised 

in this section. The range for reinforcement ratio was from 0.03 to 0.64 % with mean 

reinforcement ratio 0.21 % and standard deviation was 0.125.  The range of unit cement 

content was from 282 to 333 kg/m3 with mean unit cement content 301.04 kg/m3 and 

standard deviation was 9.137. The range of water to cement ratio was from 49 to 55% 

with mean water to cement 53.71 % and standard deviation was 1.525. Among 248 lifts 

of vertical walls, expansive additive was used only in 5 lifts. The histograms for 

reinforcement ratio, unit cement content and water to cement ratio are shown in Figures 

3-3 and 3-4. 

 
Figure 3-3 Histograms of reinforcement ratio and unit cement content of the lifts of 

vertical walls  

 
Figure 3-4 Histogram of water to cement ratio of the lifts of vertical walls  
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3.2.3 Properties of fresh concrete 

The properties of fresh concrete are summarised in this section. The range of initial 

concrete temperature was from 6 to 32 oC with mean temperature 16.35 oC and standard 

deviation was 6.46. The range of slump was from 6 to 10.5 mm with mean slump 8.57 

mm and standard deviation was 0.787. The range of air content was from 3.6 to 5.8%, 

with mean air content 4.73 % and standard deviation was 0.766. The range of chloride 

content in concrete was from 0.01 to 0.1 %, with mean chloride content 0.03 % and 

standard deviation was 0.014. the histograms of initial concrete temperature, slum, air 

content and chloride content are shown in Figures 3-5 and 3-6. 

 
Figure 3-5 Histogram of initial concrete temperature and slump of the lifts of vertical 

walls   

 
Figure 3-6 Histograms of air content and chloride content of the lifts of vertical walls  

3.2.4 Strength properties of concrete 

The strength properties of concrete are summarised in this section. The range of 7-day 

concrete strength was from 16 to 29.7 MPa with mean strength 21.58 MPa and standard 
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deviation was 2.27. The range of 28-day concrete strength was from 28.1 to 40.9 MPa 

with mean strength 34.25 MPa and standard deviation was 2.09. The histograms of 7-day 

concrete strength and 28-day concrete strength are shown in Figure 3-7. 

 
Figure 3-7 Histograms of 7-day and 28-day concrete strength of the lifts of vertical 

walls  

3.2.5 Ambient environmental properties  

The ambient environmental properties are summarised in this section. The range of initial 

ambient temperature was from -1.3 to 31 oC with mean temperature 13.13 oC and 

standard deviation was 7.73. The data contained distributed representation of lifts 

constructed throughout the year. The number of vertical walls constructed in autumn, 

spring, summer and winter were 52, 68, 39 and 89, respectively. The histograms for 

initial ambient temperature and month of construction are shown in Figure 3-8. 

 
Figure 3-8 Histograms of initial ambient temperature and casting month of the lifts of 

vertical walls 
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3.2.6 Temperature properties  

Temperature properties are referred to the change in temperature of concrete temperature 

due to heat of hydration. Temperature was measured at middle thickness of the lift. The 

range of maximum temperature at middle thickness of lifts was from 16 to 75.5 oC with 

mean temperature 52.34 oC and standard deviation was 11.51. The range of maximum 

temperature rise at middle thickness of lifts was from 6 to 57.4 oC with mean temperature 

rise 35 oC and standard deviation was 9.1. The range of maximum temperature time at 

middle thickness of lifts was from 15 to 119 hrs with mean time 59.09 hrs and standard 

deviation was 19.22. The histograms of maximum temperature in the middle thickness, 

maximum temperature rise, and maximum temperature time are shown in Figures 3-9 

and 3-10. 

 
Figure 3-9 Histograms of maximum temperature and temperature rise of the lifts of 

vertical walls 

 
Figure 3-10 Histogram of the maximum temperature time of the lifts of vertical walls 
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3.2.7 Other properties 

Some other properties which were also recorded in the database are summarised in this 

section. The range of lift interval was from 3 to 139 day with mean time 23.91 day and 

standard deviation was 18.59. Lift interval was referred to the time gap between two 

consecutive lifts. The range of form removal time was from 2 to 74 day with mean time 

14.95 day and standard deviation was 11.443. The range of curing period was from 1 to 

42 day with mean time 9.37 day and standard deviation was 4.528. Curing period is 

referred to the curing time for top finished surface of lift under consideration. The range 

of restraint level was from 1 to 7.24 with mean time 2.13 and standard deviation was 

1.275. The restraint level is referred to the ratio of area of restraining surface to the area 

of retrained surface. The histograms of lift interval, form removal time, curing period and 

restraint level are shown in the Figures 3-11 and 3-12.  

 
Figure 3-11 Histogram of the lift interval and form removal time of the lifts of vertical 

walls 

 

 
Figure 3-12 Histogram of the curing period and restraint level of the lifts of vertical 

walls 
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3.2.8 Cracking condition of the lifts of the vertical walls 

In the dataset, among 248 lifts of vertical walls, 94 lifts were cracked whereas 154 lifts 

were uncracked. The range of maximum thermal crack width was from 0.04 to 0.4 mm 

with mean maximum crack width 0.06 mm and standard deviation was 0.089. The range 

of total thermal crack width was from 0.04 to 1.45 mm with mean total crack width 0.12 

mm and standard deviation was 0.21. The range of number of cracks was from 1 to 10 

cracks. The histograms for maximum crack width, total crack width and number of cracks 

are shown in Figures 3-13 and 3-14. 

 
Figure 3-13 Histograms of the maximum crack width and total crack width of the lifts 

of vertical walls 

 

 
Figure 3-14 Histogram of the number of cracks of the lifts of vertical walls 
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3.3 Characteristics of parapet walls 

3.3.1 Geometric properties   

In the dataset, the lifts of parapet walls were 0.4 to 1.5 m thick with mean thickness 0.6 

m and standard deviation was 0.195. The width was in the range of 3.1 to 28.5 m with 

mean width 11.51 m and standard deviation was 4.998. The range of the height of the 

lifts was 0.5 to 4.3 m with mean height 1.67 m and standard deviation was 0.96. The 

histograms for thickness, width and the height of the lifts of vertical walls are shown in 

Figures 3-15 and 3-16 

 
Figure 3-15 Histograms of the thickness and width of the lifts of parapet walls 

 

 
Figure 3-16 Histogram of the height of the lifts of parapet walls 

3.3.2 Properties of materials  

The range of properties of difference materials used in the vertical walls are summarised 

in this section. The range for reinforcement ratio was from 0.08 to 1.13 % with mean 

reinforcement ratio 0.42 % and standard deviation was 0.212.  The range of unit cement 
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content was from 277 to 331 kg/m3 with mean unit cement content 300.09 kg/m3 and 

standard deviation was 9.881. The range of water to cement ratio was from 49 to 55% 

with mean water to cement 53.67 % and standard deviation was 1.569. Among 248 lifts 

of vertical walls, expansive additive was used in 15 lifts. The histograms for 

reinforcement ratio, unit cement content and water to cement ratio are shown in Figures 

3-17 and 3-18. 

 
Figure 3-17 Histograms of the reinforcement ratio and unit cement content of the lifts 

of parapet walls 

 
Figure 3-18 Histogram of the water to cement content of the lifts of parapet walls 

3.3.3 Properties of fresh concrete 

The properties of fresh concrete are summarised in this section. The range of initial 

concrete temperature was from 6 to 34 oC with mean temperature 17.72 oC and standard 

deviation was 7.332. The range of slump was from 6.5 to 10.0 mm with mean slump 8.38 

mm and standard deviation was 0.872. The range of air content was from 3.7 to 5.6%, 

with mean air content 4.56 % and standard deviation was 0.472. The range of chloride 

content in concrete was from 0.01 to 0.07 %, with mean chloride content 0.03 % and 
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standard deviation was 0.012. the histograms of initial concrete temperature, slum, air 

content and chloride content are shown in Figures 3-19 and 3-20. 

 
Figure 3-19 Histograms of the initial concrete temperature and slump of the lifts of 

parapet walls 

 

 
Figure 3-20 Histograms of the air content and chloride content of the lifts of parapet 

walls 

3.3.4 Strength properties of concrete 

The strength properties of concrete are summarised in this section. The range of 7-day 

concrete strength was from 17 to 27.1 MPa with mean strength 21.76 MPa and standard 

deviation was 2.203. The range of 28-day concrete strength was from 28.9 to 40.8 MPa 

with mean strength 34.25 MPa and standard deviation was 2.391. The histograms of 7-

day concrete strength and 28-day concrete strength are shown in Figure 3-21. 
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Figure 3-21 Histograms of the 7- day and 28- day concrete strength of the lifts of 

parapet walls 

3.3.5 Ambient environmental properties  

The ambient environmental properties are summarised in this section. The range of initial 

ambient temperature was from 1 to 31 oC with mean temperature 15.03 oC and standard 

deviation was 8.07. The data contained distributed representation of lifts constructed 

throughout the year. The number of vertical walls constructed in autumn, spring, summer 

and winter were 20, 34, 28 and 32, respectively. The histograms for initial ambient 

temperature and month of construction are shown in Figure 3-22. 

 
Figure 3-22 Histograms of the initial ambient temperature and casting month of the lifts 

of parapet walls 

3.3.6 Temperature properties  

Temperature properties are referred to the change in temperature of concrete temperature 

due to heat of hydration. Temperature was measured at middle thickness of the lift. The 

range of maximum temperature at middle thickness of lifts was from 13.6 to 69.1 oC with 
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mean temperature 38.96 oC and standard deviation was 12.58. The range of maximum 

temperature rise at middle thickness of lifts was from 2.7 to 38.1 oC with mean 

temperature rise 20.79 oC and standard deviation was 9.299. The range of maximum 

temperature time at middle thickness of lifts was from 5.8 to 106 hrs with mean time 

39.03 hrs and standard deviation was 18.149. The histograms of maximum temperature 

in the middle thickness, maximum temperature rise, and maximum temperature time are 

shown in Figures 3-23 and 3-24.  

 
Figure 3-23 Histograms of the maximum temperature and temperature rise of the lifts 

of parapet walls 

 
Figure 3-24 Histograms of the maximum temperature time of the lifts of parapet walls 

3.3.7 Other properties 

Some other properties which were also recorded in the database are summarised in this 

section. The range of lift interval was from 1 to 94 day with mean time 16.52 day and 

standard deviation was 15.587. Lift interval was referred to the time gap between two 

consecutive lifts. The range of form removal time was from 2 to 35 day with mean time 

9.79 day and standard deviation was 5.306. The range of curing period was from 1 to 28 
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day with mean time 8.81 day and standard deviation was 3.7. Curing period is referred 

to the curing time for top finished surface of lift under consideration. The range of 

restraint level was from 1 to 7 with mean time 2.95 and standard deviation was 0.914. 

The restraint level is referred to the ratio of area of restraining surface to the area of 

retrained surface. The histograms of lift interval, form removal time, curing period and 

restraint level are shown in the Figures 3-25 and 3-26.  

 
Figure 3-25 Histograms of the lift interval and form removal time of the lifts of parapet 

walls 

 
Figure 3-26 Histograms of the curing period and restraint level of the lifts of parapet 

walls 

3.3.8 Cracking condition of the lifts of the parapet walls 

In the dataset, among 114 lifts of parapet walls, 23 lifts were cracked whereas 91 lifts 

were uncracked. The range of maximum thermal crack width was from 0.04 to 0.3 mm 

with mean maximum crack width 0.03 mm and standard deviation was 0.066. The range 

of total thermal crack width was from 0.04 to 1.06 mm with mean total crack width 0.07 

mm and standard deviation was 0.188. The range of number of cracks was from 1 to 9 
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cracks. The histograms for maximum crack width, total crack width and number of cracks 

are shown in Figures 3-27 and 3-28. 

 
Figure 3-27 Histograms of the maximum crack width and total crack width of the lifts 

of parapet walls 

 
Figure 3-28 Histogram of the number or cracks of the lifts of parapet walls 
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4 Prediction of occurrence of thermal cracking by artificial 

neural networks 

In this chapter, prediction of occurrence of thermal cracking is explained. In other words, 

these ANNs give output that whether the wall will be cracked or not. In this study, neural 

networks for vertical walls and parapet walls were developed separately. The details are 

categorically described in the following sections. 

4.1 Neural networks for vertical walls 

In this study, two neural networks for vertical walls were developed. Difference in both 

ANNs was the number of input parameters. 

1st ANN named as ANN-V(a) was developed by substantial number of input parameters 

available for dataset. Number of nodes in the input layer were 18, 1 for bias and 17 nodes 

for input parameters. The input parameters were thickness, width, lift height, 

reinforcement ratio, water to cement ratio, cement content, expansive additive, slump, air 

content, initial concrete temperature, initial ambient temperature, 28-days concrete 

strength, lift interval, maximum temperature, maximum temperature time, form removal 

time and curing period. The summary of the dataset used in all 5-folds of ANN-V(a) is 

shown in Table 4-1. 

Table 4-1 Case processing summary for ANN-V(a) 

  Valid Training Testing Holdouts 

Sample 
Size (N) 

Fold 1 150 101 21 28 

Fold 2 150 99 21 30 

Fold 3 150 90 32 28 

Fold 4 150 94 24 32 

Fold 5 150 95 23 32 
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Table 4-2 Efficiency table of ANN-V(a) 

  Training Testing Holdouts 

Prediction 

Accuracy 

(%) 

Fold 1 89.1 71.4 89.3 

Fold 2 86.9 76.2 76.6 

Fold 3 83.3 84.4 75.0 

Fold 4 87.2 75 81.3 

Fold 5 90.7 95.2 72.0 

Average 87.4 80.4 78.8 

 

Out of 248 lifts of vertical walls, 150 were usable due to elimination of the remaining 

lifts containing missing or ambiguous inputs entries. In this ANN, 6 number of units were 

obtained for the hidden layer by hit and trial method. This network was able to predict 

average 87.4%, 80.4% and 78.8% correct answers for training, testing and validation 

phase, respectively. The variation in the accuracy of holdout samples was from 72 to 

89.3% as shown in Table 4-2. Normalized importance of the input parameters in 

prediction of occurrence of thermal cracking for fold 1 of ANN-V(a) are summarized in 

figure 4-1.  

 

Figure 4-1 Normalized importance of input parameters for ANN-V(a) 
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It can be observed from figure 4-1 that width, lift interval and air content are the most 

important whereas water to cement ratio, initial ambient temperature and slump are the 

least important input parameters for ANN-V(a). As the ANNs are developed by using 

random initialization of synaptic weights so all of them may produce different normalized 

importance. In this study, normalized importance given by the most efficient ANNs 

among other ANNs are reported. The order of the normalized importance might be 

changed a little bit by retraining of the same ANNs as well. Least important parameters 

cannot be neglected because sometimes it becomes extremely difficult or impossible to 

obtain an efficient ANN without inclusion of least important parameters. 

ANN-V(a) contained many input parameters which were not easy to obtain in all cases, 

for example, maximum temperature, maximum temperature time, etc. It also reduced the 

size of dataset due to many missing values along with the chances of overfitting due to 

the presence of large number of input parameters. So, an attempt was made to develop 

an alternative ANN named as ANN-V(b) by using less input parameters from the dataset 

which were easy to obtain in field and necessary to obtain an efficient network. In this 

case, the number of nodes in the input layer was 11, 1 for bias and 12 nodes for input 

parameters. The input parameters were thickness, width, lift height, reinforcement ratio, 

cement content, initial concrete temperature, initial ambient temperature, lift interval, 

form removal time and curing period. The lifts with expansive additive were also ignored 

as there were only 5 such lifts. The summary of the dataset used in all 5-folds of ANN-

V(b) is shown in Table 4-3. 

Out of 248 lifts of vertical walls, 201 lifts were usable due to elimination of the remaining 

lifts containing missing or ambiguous inputs entries for many parameters. In this ANN, 

6 number of units were obtained for the hidden layer by hit and trial method. This network 

was able to predict average 85.1%, 76.2% and 81.5% correct answers for training, testing 

and validation phase, respectively. The variation in the accuracy of holdout samples was 

from 75 to 89.5% as shown in Table 4-4. ANN-V(b) exhibited nearly the same 

performance to ANN-V(a) during training and testing phase but ANN-V(b) performed 

better than ANN-V(a) for holdout samples. Overall, ANN-V(b) should be ranked 

superior because it used less number of input parameters which were easy to obtain for 

actual structures and incorporated bigger training and testing dataset.   
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Table 4-3 Case processing summary for ANN-V(b) 

  Valid Training Testing Holdouts 

Sample 
Size (N) 

Fold 1 201 132 31 38 

Fold 2 201 120 37 44 

Fold 3 201 135 26 40 

Fold 4 201 135 31 35 

Fold 5 201 131 25 45 

 

Table 4-4 Efficiency table of ANN-V(b) 

  Training Testing Holdouts 

Prediction 

Accuracy 

(%) 

Fold 1 85.6 76.5 89.5 

Fold 2 83.3 82.5 75.0 

Fold 3 83.7 76.9 80.0 

Fold 4 82.2 73.5 82.8 

Fold 5 90.8 71.4 80.0 

Average 85.1 76.2 81.5 

 

Normalized importance of the input parameters in prediction of occurrence of thermal 

cracking for fold 1 of ANN-V(b) are summarized in figure 4-2. It can be observed from 

figure 4-2 that width, lift height and cement content are the most important whereas form 

removal time, initial ambient temperature and thickness are the least important input 

parameters for ANN-V(b). 
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Figure 4-2 Normalized importance of input parameters for ANN-V(b) 

4.2 Neural networks for parapet walls 

 In this study, two neural networks for parapet walls were developed. Difference in the 

two ANNs is the number of input parameters. 

1st ANN named as ANN-P(a) was developed by substantial number of input variables 

available for dataset. The number of nodes in the input layer were 18, 1 for bias and 17 

nodes for input parameters. The input parameters were thickness, width, lift height, 

reinforcement ratio, water to cement ratio, unit cement content, unit content of expansive 

additive, slump, air content, initial concrete temperature, initial ambient temperature, 28-

days concrete strength, lift interval, maximum temperature, maximum temperature time, 

form removal time and curing period.  The summary of the dataset used in all 5-folds of 

ANN-P(a) is shown in Table 4-5. 

Out of 114 lifts of parapet walls, only 49 lifts were usable due to elimination of the 

remaining lifts containing missing or ambiguous inputs entries for many parameters. In 

this ANN, 5 number of units were obtained for the hidden layer by hit and trial method. 

This network was able to predict average 92.2%, 98% and 92.4% correct answers for 

training, testing and validation phase, respectively. The variation in the accuracy of 

holdout samples was from 83.3 to 100% as shown in Table 4-6. Normalized importance 

of the input parameters in prediction of occurrence of thermal cracking for fold 1 of 

ANN-P(a) are summarized in figure 4-3. 
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Table 4-5 Case processing summary for ANN-P(a) 

  Valid Training Testing Holdouts 

Sample 
Size (N) 

Fold 1 49 34 7 8 

Fold 2 49 29 10 10 

Fold 3 49 34 9 6 

Fold 4 49 31 8 10 

Fold 5 49 32 8 9 
 

Table 4-6 Efficiency table of ANN-P(a) 

  Training Testing Holdouts 

Prediction 

Accuracy 

(%) 

Fold 1 94.1 100 100 

Fold 2 86.2 90 88.9 

Fold 3 97.1 100 83.3 

Fold 4 93.1 100 90.0 

Fold 5 90.6 100 100 

Average 92.2 98 92.4 

 

 

Figure 4-3 Normalized importance of input parameters for ANN-P(a) 
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It can be observed from figure 4-3 that lift interval, cement content and width are the 

most important whereas concrete strength maximum temperature time and lift height are 

the least important input parameters for ANN-P(a). 

ANN-P(a) was developed on similar concept as of ANN-V(a). So, an attempt was made 

to develop an alternative ANN named as ANN-P(b) by using less input variables from 

the dataset. In this case, the   number of nodes in the input layer were 12, 1 for bias and 

11 nodes for input parameters. The input parameters were thickness, width, lift height, 

reinforcement ratio, unit cement content, unit content of expansive additive, initial 

concrete temperature, initial ambient temperature, lift interval, form removal time and 

curing period. The summary of the dataset used in all 5-folds of ANN-P(b) is shown in 

Table 4-7. 

Out of 114 lifts of parapet walls, 85 lifts were usable due to elimination of the remaining 

lifts containing missing or ambiguous inputs entries for many parameters. In this ANN, 

6 number of units were obtained for the hidden layer by hit and trial method. This network 

was able to predict average 96.0%, 98.5% and 87.6% correct answers for training, testing 

and validation phase, respectively. The variation in the accuracy of holdout samples was 

from 82.4 to 94.4% as shown in Table 4-8. So, ANN-P(b) exhibited a little better 

performance for training and testing phase but little lower performance for validation 

phase than ANN-P(a). Overall, ANN-P(b) should be ranked superior because it used less 

number of input parameters which were easy to obtain for actual structures and 

incorporated bigger training and testing dataset. 

Table 4-7 Case processing summary for ANN-P(b) 

  Valid Training Testing Holdouts 

Sample 
Size (N) 

Fold 1 85 54 13 18 

Fold 2 85 53 14 18 

Fold 3 85 57 15 13 

Fold 4 85 55 13 17 

Fold 5 85 55 13 17 
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Table 4-8 Efficiency table of ANN-P(b) 

  Training Testing Holdouts 

Prediction 

Accuracy 

(%) 

Fold 1 94.5 100 94.4 

Fold 2 98.2 100 94.0 

Fold 3 96.5 100 84.6 

Fold 4 98.2 100 82.4 

Fold 5 92.7 92.3 82.4 

Average 96.0 98.5 87.6 

Normalized importance of the input parameters in prediction of occurrence of thermal 

cracking for fold 1 of ANN-P(b) are summarized in figure 4-4. It can be observed from 

figure 4-4 that width, lift interval and thickness are the most important whereas curing 

period, reinforcement ratio and lift height are the least important input parameters for 

ANN-P(b). 

If we compare the important parameters for ANNs of both vertical walls and parapets, 

width was an important parameter, and influence of width of the wall is a well-known 

fact. Lift interval was another common influential factor for all ANNs which is one of 

the decisive parameters for external restraints for the walls. The influence of unit cement 

content was also quite pronounced which is a key parameter for maximum temperature 

rise. 

 

Figure 4-4 Normalized importance of input parameters for ANN-P(b) 
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4.3 Conclusions 

Based on the findings of this study, which was focused on predicting the occurrence of 

thermal cracking of RC abutments using feedforward multilayer perceptron artificial 

neural networks and reliable actual construction data, following conclusions are drawn: 

(i) Performance of ANNs with less number of input parameters for both vertical 

walls and parapets was promising, which was a good step towards prediction of 

occurrence of thermal cracking in RC abutments with basic information such as 

geometric and material properties, and ambient environmental conditions. 

(ii) For vertical walls, ANN-V(b) which was the preferred ANN found in this study 

showed average accuracy level 81.5% for holdout samples by considering thickness, 

width, lift height, reinforcement ratio, cement content, initial concrete temperature, initial 

ambient temperature, lift interval, form removal time and curing period as input 

parameters. 

(iii) For parapet walls, ANN-P(b) which was the preferred ANN found in this study 

showed average accuracy level 87.6% for holdout samples by considering thickness, 

width, lift height, reinforcement ratio, cement content, expansive additive, initial 

concrete temperature, initial ambient temperature, lift interval, form removal time and 

curing period as input parameters. 
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5 Prediction of maximum width of thermal cracking by 

artificial neural networks 

In this chapter, prediction of maximum width of thermal cracking is explained. In this 

study, neural networks for vertical walls and parapet walls were developed separately. 

The details are categorically described in the following sections. 

5.1 Neural networks for vertical walls 

In this study, ANNs were developed by using less number of parameters which were easy 

to obtain in the field. The input parameters were thickness, width, lift height, 

reinforcement ratio, unit cement content, expansive additive, initial concrete temperature, 

initial ambient temperature, 28-days concrete strength, lift interval, form removal time 

and curing period. The size of the network was decided by hit and trial method and that 

network was selected for which accuracy of holdout samples was maximum among 

others to avoid overfitting. By performing hit and trial method, 2 hidden layers with 6 

nodes in first layer and 3 nodes in second layer were selected. The performance of the 

selected ANN in terms of relationship between actual and predicted maximum crack 

width ±0.1 mm allowable error lines and ±0.075 mm allowable error lines is shown in 

Figures 5-1 and 5-2, respectively.  

 

Figure 5-1 Relationship between actual and predicted maximum crack width for 
selected ANN with ±0.1 mm allowable error lines for vertical walls 
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Figure 5-2 Relationship between actual and predicted maximum crack width for 
selected ANN with ±0.075 mm allowable error lines 

 

Figure 5-3 Normal distribution of residual crack width with 1sigma and 2sigma lines 
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achieved. 

To avoid overfitting, 5- fold cross validation was also performed. The case processing 

summary of the dataset used in all 5-folds of ANN-MCW-V(b) is shown in Table 5-1. 
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Table 5-1Case processing summary for ANN-MCW-V(b) 

Case processing summary for ANN-V(b) 

For 
All 5 
Folds 

Valid Training, Testing 
and Validation 

Holdouts 

188 155 33 
 

Table 5-2 Efficiency table of ANN-MCW-V(b) 

Efficiency table of ANN-MCW-V(b) 

  
Training, Testing & 

Validation 
Holdouts 

Tolerance 
Level 

 
0.075 (mm) 0.1 (mm) 0.075 (mm) 0.1 (mm) 

Prediction 
Accuracy 

(%) 

Fold 1 91.3 % 96.00 % 78.94 % 84.21 % 

Fold 2 88.6% 93.96% 79.49 % 87.18 % 

Fold 3 91.95% 95.3% 78.38 % 81.09 % 

Fold 4 89.26% 93.29% 78.38 % 83.78 % 

Fold 5 91.27% 92.62% 75.67 % 83.78 % 

Avg. 90.48% 94.23% 78.17% 84.0 % 
 

It can be observed from Table 5-2 that in predicting maximum width of thermal cracking, 

the selected ANN showed the average accuracy level of 94.23 % with ±0.1 mm allowable 

error during training, testing and validation and 84% with ±0.1 mm allowable error 

during for holdout samples was achieved. The average accuracy level of 90.48 % with 

±0.075 mm allowable error during training, testing and validation and 78.17 % with 

±0.075 mm allowable error during for holdout samples was achieved. 

The performance of ANN for holdouts is shown in the Figure 5-4. 
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Figure 5-4 Relationship between actual crack width and predicted crack width for 5 
Folds for vertical walls 
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5.2 Neural networks for parapets 

In this study, ANNs were developed by using less number of parameters which were easy 

to obtain in the field. The input parameters were thickness, width, lift height, 

reinforcement ratio, unit cement content, expansive additive, initial concrete temperature, 

initial ambient temperature, 28-days concrete strength, lift interval, form removal time 

and curing period. The size of the network was decided by hit and trial method and that 

network was selected for which accuracy of holdout samples was maximum among 

others to avoid overfitting. By performing hit and trial method, 2 hidden layers with 6 

nodes in first layer and 3 nodes in second layer were selected. The performance of the 

selected ANN in terms of relationship between actual is shown in Figures 5-5. It can be 

seen from Figures 5-5 that the ANN showed a high level of accuracy. 

 

Figure 5-5 Relationship between actual and predicted maximum crack width for 
selected ANN for parapets 

Although ANNs showed high level of accuracy but it is important to validate the ANN 
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Table 5-3 Case processing summary for ANN-MCW-P(b) 

Case processing summary for ANN-V(b) 

For 
All 5 
Folds 

Valid Training, Testing 
and Validation 

Holdouts 

76 61 15 

 

Table 5-4 Efficiency table of ANN-MCW-P(b) 

Efficiency table of ANN-MCW-P(b) 

  
Training, Testing & 

Validation 
Holdouts 

Tolerance 
Level 

 
0.075 (mm) 0.1 (mm) 0.075 (mm) 0.1 (mm) 

Prediction 
Accuracy 

(%) 

Fold 1 90 % 93 % 100 % 100% 
Fold 2 91 % 93 % 73.3 % 80 % 
Fold 3 93% 96% 73.3 % 80 % 
Fold 4 95% 98% 80 % 86 % 
Fold 5 95% 98% 80 % 86 % 
Avg. 93% 96% 81% 86% 
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Figure 5-6 Relationship between actual crack width and predicted crack width for 5 
Folds for parapets 
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5.3 Conclusions  

Based on the developed ANN to predict maximum width of thermal cracking in vertical 

walls, following conclusions are drawn; 

• Present ANN could predict 90.95 % (171 lifts out of 188) correctly if the 

permissible error in prediction is considered as ± 0.1 mm. 

• 16 lifts out of 17 lifts for which prediction error was more than ± 0.1 mm were 

constructed from 2007 to 2009. 

• If ± 0.075 mm is considered as permissible error in prediction, then prediction 

accuracy was 83 % (156 lifts out of 188 were correctly predicted). 

• If ± 0.05 mm is considered as permissible error in prediction, then prediction 

accuracy was 69 % (130 lifts out of 188 were correctly predicted). 

• ANNs are potential candidates to perform this type of complex problems by using 

reliable data. 

Based on the developed ANN to predict maximum width of thermal cracking in parapets, 

following conclusions are drawn; 

• Present ANN could predict 94.74 % (72 lifts out of 76) correctly if the permissible 

error in prediction is considered as ± 0.1 mm. 

• If ± 0.075 mm is considered as permissible error in prediction, then prediction 

accuracy was 93.42 % (71 lifts out of 76 were correctly predicted). 

• If ± 0.05 mm is considered as permissible error in prediction, then prediction 

accuracy was 90.8 % (69 lifts out of 76 were correctly predicted). 

• Although accuracy level of prediction is high, but this high accuracy is for small 

crack widths as the ANN is unable to predict larger crack width for holdout 

samples. The possible reasons are as follows; 

o The dataset is very small, so it is insufficient to build an appropriate ANN. 

o There are very few number of lifts with larger crack widths which are 

causing insufficiency in data with larger crack widths. 
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6 Parametric studies on influential parameters 

In this chapter, influential parameters on thermal crack width are categorically explained 

for vertical walls. 

6.1 Parametric studies on influential parameters for vertical walls 

In this section, influential parameters on thermal crack width are categorically explained 

for vertical walls. Parametric studies were conducted at different seasonal conditions i.e., 

cold, normal and hot weather. To simulate cold weather, initial ambient temperature was 

kept as 0oC and initial concrete temperature as 10oC. To simulate normal weather, initial 

ambient temperature was kept as 20oC and initial concrete temperature as 20oC. To 

simulate hot weather, initial ambient temperature was kept as 30oC and initial concrete 

temperature as 30oC. All the studies were carried out at varying level of unit cement 

content which was from 280 to 330 kg/m3. 

6.1.1 Effect of cement content and thickness of the lift 

Parametric studies were conducted to observe the effect of thickness of the lift at different 

amount of unit cement content. This study was conducted on three different widths of the 

wall i.e., 10 m, 15 m and 25 m which represent relatively small, medium and relatively 

larger width walls, respectively. The results of different width lifts are categorically 

explained below. Other input values used in this parametric study are summarized in the 

following table. 

Lift 
Height 

Rebar 
Ratio  

Expansive 
Additives 

28 Days 
Strength 

Lift 
Interval 

Formwork 
Removal 

Time 

Curing 
Period 

3 m 0.3 % 0 25 MPa 7 Day 7 Day 7 Day 
 

For 10 m wide wall: 

The results for parametric studies about the effect of thickness of the lift in cold weather, 

normal weather and hot weather are shown in Figures 6-1 through 6-3 for 10 m wide lifts. 

It can observe from Figures 6-1 that in cold weather, cement content is very influential 

in determining maximum crack width (MCW) as by increasing cement content from 280 
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kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to around 0.05 

mm and from 0 mm to 0.07 mm for 0.5 m thick lift and 3 m thick lift, respectively.  

Increase in thickness of the wall is also little influential as it can increase MCW up to 

around 0.02 mm, but this increase is not considerably high. But in all cases, MCW is 

considerably less than 0.15 mm which is the threshold value for MCW. 

 

Figure 6-1 Effect of the lift thickness in cold weather for 10 m wide lift 

It can observe from Figures 6-2 that in normal weather, cement content is very influential 

in determining maximum crack width (MCW) as by increasing cement content from 280 

kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to around 0.05 

mm and from 0 mm to 0.11 mm for 0.5 m thick lift and 3 m thick lift, respectively.  

Increase in thickness of the wall is also more influential than that in cold weather as it 

can increase MCW up to around 0.06 mm when cement content is high, which is a 

considerable increase in MCW. But in all cases, MCW is considerably less than 0.15 mm 

which is the threshold value for MCW. 

It can observe from Figures 6-3 that in hot weather, cement content is very influential in 

determining maximum crack width (MCW) as by increasing cement content from 280 

kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to around 0.05 

mm and from 0 mm to 0.10 mm for 0.5 m thick lift and 3 m thick lift, respectively.  

Increase in thickness of the wall is also more influential than that in cold weather as it 

can increase MCW up to around 0.05 mm when cement content is high, which is a 
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considerable increase in MCW. But in all cases, MCW is considerably less than 0.15 mm 

which is the threshold value for MCW. 

Overall, the effect of the thickness of the wall is considerably influential when high 

cement content is used whereas this effect can be neglected at low and normal cement 

content. But in all conditions as mentioned in this section, MCW is less than 0.15 mm.  

 

Figure 6-2 Effect of the lift thickness in normal weather for 10 m wide lift 

 

Figure 6-3 Effect of the lift thickness in hot weather for 10 m wide lift 

For 15 m wide wall: 

The results for parametric studies about the effect of thickness of the lift in cold weather, 

normal weather and hot weather are shown in Figures 6-4 through 6-6 for 15 m wide lifts. 
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It can observe from Figures 6-4 that in cold weather, cement content is very influential 

in determining maximum crack width (MCW) as by increasing cement content from 280 

kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to around 0.04 

mm and from 0 mm to 0.12 mm for 0.5 m thick lift and 3 m thick lift, respectively.  

Increase in thickness of the wall is also influential as it can increase MCW up to around 

0.05 mm and 0.08 mm for normal unit cement content and high unit cement content, 

respectively, and this increase is considerably high. But in all cases, MCW is 

considerably less than 0.15 mm which is the threshold value for MCW. 

 

Figure 6-4 Effect of the lift thickness in cold weather for 15 m wide lift 

It can observe from Figures 6-5 that in normal weather, cement content is very influential 

in determining maximum crack width (MCW) as by increasing cement content from 280 

kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to around 0.05 

mm and from 0.01 mm to 0.16 mm for 0.5 m thick lift and 3 m thick lift, respectively.  

Increase in thickness of the wall is also influential as it can increase MCW up to around 

0.06 mm and 0.11 mm for normal unit cement content and high unit cement content, 

respectively, and this increase is considerably high. In these scenarios, if the lift thickness 

is greater than 2 m, then cement content greater than 310 kg/m3 may cause harmful 

cracking.  

It can observe from Figures 6-6 that in hot weather, cement content is very influential in 

determining maximum crack width (MCW) as by increasing cement content from 280 
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kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to around 0.06 

mm and from 0.03 mm to 0.17 mm for 0.5 m thick lift and 3 m thick lift, respectively.  

Increase in thickness of the wall is also influential as it can increase MCW up to around 

0.09 mm for both normal unit cement content and high unit cement content, and this 

increase is considerably high. In these scenarios, if the lift thickness is greater than 2 m, 

then cement content greater than 310 kg/m3 may cause harmful cracking.   

Overall, the effect of the thickness of the wall is considerably high. For 15 m wide lift 

udder the conditions mentioned earlier, if the lift thickness is greater than 2 m, then 

cement content greater than 310 kg/m3 may cause harmful cracking.    

 

Figure 6-5 Effect of the lift thickness in normal weather for 15 m wide lift 

 

Figure 6-6 Effect of the lift thickness in hot weather for 15 m wide lift 
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For 25 m wide lifts: 

The results for parametric studies about the effect of thickness of the lift in cold weather, 

normal weather and hot weather for 25 m wide lifts are shown in Figures 6-7 through 6-

9. 

It can observe from Figures 6-7 that in cold weather, cement content is very influential 

in determining maximum crack width (MCW) as by increasing cement content from 280 

kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to around 0.02 

mm and from 0.02 mm to 0.18 mm for 0.5 m thick lift and 3 m thick lift, respectively.  

Increase in thickness of the wall is also influential as it can increase MCW up to around 

0.1 mm and 0.16 mm for normal unit cement content and high unit cement content, 

respectively, and this increase is considerably high. In these scenarios, if the lift thickness 

is greater than 2 m, then cement content greater than 300 kg/m3 may cause harmful 

cracking.   

 

Figure 6-7 Effect of the lift thickness in cold weather for 25 m wide lift 

It can observe from Figures 6-8 that in normal weather, cement content is very influential 

in determining maximum crack width (MCW) as by increasing cement content from 280 

kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to around 0.05 

mm and from 0.08 mm to 0.21 mm for 0.5 m thick lift and 3 m thick lift, respectively.  

Increase in thickness of the wall is also influential as it can increase MCW up to around 

0.16 mm for both normal unit cement content and high unit cement content, and this 

increase is considerably high. In these scenarios, if the lift thickness is greater than 2 m, 
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then cement content equal to or greater than 300 kg/m3 may cause harmful cracking.  

Even for 2 m thick lift, unit cement content greater than 300 kg/m3 may cause harmful 

cracking. 

 

Figure 6-8 Effect of the lift thickness in normal weather for 25 m wide lift 

It can observe from Figure 6-9 that in hot weather, cement content is very influential in 

determining maximum crack width (MCW) as by increasing cement content from 280 

kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to around 0.09 

mm and from 0.13 mm to 0.21 mm for 0.5 m thick lift and 3 m thick lift, respectively.  

Increase in thickness of the wall is also influential as it can increase MCW up to around 

0.19 mm and 0.12 mm for normal unit cement content and high unit cement content, 

respectively, and this increase is considerably high. In these scenarios, if the lift thickness 

is greater than 2 m, then even a low unit cement content may cause harmful cracking.  

Even for 2 m thick lift, unit cement content greater than 300 kg/m3 may cause harmful 

cracking. 

Overall, the effect of the thickness of the wall is considerably high. For 25 m wide lift 

udder the conditions mentioned earlier, if the lift thickness is greater than 2 m, then 

cement content greater than 300 kg/m3 for cold weather, 290 kg/m3 for normal weather 

may cause harmful cracking. For hot weather, even a low unit cement content may cause 

harmful cracking. 
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Figure 6-9 Effect of the lift thickness in hot weather for 25 m wide lift 

 

6.1.2 Effect of cement content and width of the lift 

Parametric studies were conducted to observe the effect of width of the lift at different 

amount of unit cement content. This study was conducted on four different ratios of 

reinforcement of the wall i.e., 0.05%, 0.1%, 0.3% and 0.5% which represent very small, 

relatively small, normal and relatively larger reinforcement amount, respectively. The 

results of different width lifts are categorically explained below. Other input values used 

in this parametric study are summarized in the following table. 

Thickness Lift 

Height 

Expansive 

Additives 

28 Days 

Strength 

Lift 

Interval 

Formwork 

Removal Time 

Curing 

Period 

2 m 3 m 0 25 MPa 7 Day 7 Day 7 Day 

 

For 0.05% Reinforcement Ratio: 

The results for parametric studies about the effect of width of the lifts in cold weather, 

normal weather and hot weather for 0.05% reinforcement ratio are shown in Figures 6-

10 through 6-12. 

It can observe from Figure 6-10 that in cold weather, cement content is very influential 

in determining maximum crack width (MCW) as by increasing cement content from 280 
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kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to around 0.06 

mm and from 0.12 mm to 0.18 mm for 5 m wide lift and 25 m wide lift, respectively.  

Increase in width of the wall is also influential as it can increase MCW up to around 0.12 

mm for all low, normal and high unit cement content, and this increase is considerably 

high. In these scenarios, if the lift width is greater than 15 m, then unit cement content 

greater than 300 kg/m3 may cause harmful cracking. 

 

Figure 6-10 Effect of the width of the lift with 0.05% reinforcement ratio in cold 
weather 

It can observe from Figure 6-11 that in normal weather, cement content is very influential 

in determining maximum crack width (MCW) as by increasing cement content from 280 

kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to around 0.09 

mm and from 0.13 mm to 0.21 mm for 5 m and 25 m wide lift, respectively.  

Increase in width of the wall is also influential as it can increase MCW up to around 0.12 

mm for all low, normal and high unit cement content, and this increase is considerably 

high. In these scenarios, if the lift width is large as 25 m, then even relatively low unit 

cement content may cause harmful cracking. If the lift width is 15 m, then unit cement 

content greater than 300 kg/m3 may cause harmful cracking. 

It can observe from Figure 6-12 that in hot weather, cement content is very influential in 

determining maximum crack width (MCW) as by increasing cement content from 280 

kg/m3 to 330 kg/m3, the maximum crack width may increase from 0.1 mm to around 0.1 

mm and from 0.15 mm to 0.21 mm for 5 m and 25 m wide lift, respectively.  
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Increase in width of the wall is also influential as it can increase MCW up to around 0.12 

mm for all low, normal and high unit cement content, and this increase is considerably 

high. In these scenarios, if the lift width is 15 m, then unit cement content greater than 

300 kg/m3 may cause harmful cracking. If the lift width is 25 m, then even at a small 

amount of unit cement content level may cause harmful cracking. 

 

Figure 6-11 Effect of the width of the lift with 0.05% reinforcement ratio in normal 
weather 

 

Figure 6-12 Effect of the width of the lift with 0.05% reinforcement ratio in hot weather 
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For 0.1% Reinforcement Ratio: 

The results for parametric studies about the effect of width of the lifts in cold weather, 

normal weather and hot weather for 0.1% reinforcement ratio are shown in Figures 6-13 

through 6-15. 

It can observe from Figure 6-13 that in cold weather, cement content is very influential 

in determining maximum crack width (MCW) as by increasing cement content from 280 

kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to around 0.05 

mm and from 0.09 mm to 0.17 mm for 5 m and 25 m wide lift, respectively.  

Increase in width of the wall is also influential as it can increase MCW up to around 0.09 

to 0.12 mm for all low, normal and high unit cement content, and this increase is 

considerably high. In these scenarios, if the lift width is 25 m, then unit cement content 

greater than 310 kg/m3 may cause harmful cracking.  

 

Figure 6-13 Effect of the width of the lift with 0.1% reinforcement ratio in cold weather 

It can observe from Figure 6-14 that in normal weather, cement content is very influential 

in determining maximum crack width (MCW) as by increasing cement content from 280 

kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to around 0.08 

mm and from 0.1 mm to 0.2 mm for 5 m and 25 m wide lift, respectively.  

Increase in width of the wall is also influential as it can increase MCW up to around 0.12 

to 0.15 mm for all low, normal and high unit cement content, and this increase is 

considerably high. In these scenarios, if the lift width is 15 m, then unit cement content 

0.00

0.05

0.10

0.15

0.20

280 290 300 310 320 330M
ax

im
um

 C
ra

ck
 W

id
th

 (m
m

)

Cement Content (kg/m3)

Cement Content & Width

5 m
10 m
15 m
25 m



61 
 

greater than 320 kg/m3 may cause harmful cracking. If the lift width is 25 m, then even 

at a small amount of unit cement content level may cause harmful cracking. 

 

Figure 6-14 Effect of the width of the lift with 0.1% reinforcement ratio in normal 
weather 

It can observe from Figure 6-15 that in hot weather, cement content is very influential in 

determining maximum crack width (MCW) as by increasing cement content from 280 

kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to around 0.08 

mm and from 0.13 mm to 0.21 mm for 5 m and 25 m wide lift, respectively.  

Increase in width of the wall is also influential as it can increase MCW up to around 0.13 

to 0.16 mm for all low, normal and high unit cement content, and this increase is 

considerably high. In these scenarios, if the lift width is 15 m, then unit cement content 

greater than 310 kg/m3 may cause harmful cracking. If the lift width is 25 m, then even 

at a small amount of unit cement content level may cause harmful cracking. 

For 0.3 % Reinforcement Ratio: 

The results for parametric studies about the effect of width of the lifts in cold weather, 

normal weather and hot weather for 0.3% reinforcement ratio are shown in Figures 6-16 

through 6-18. 

It can observe from Figure 6-16 that in cold weather, cement content is very influential 

in determining maximum crack width (MCW) as by increasing cement content from 280 

kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to around 0.04 

mm and from 0 mm to 0.12 mm for 5 m and 25 m wide lift, respectively.  
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Increase in width of the wall is also influential as it can increase MCW up to around 0.06 

mm for all high unit cement content, and this increase is considerably high. In these 

scenarios, there is no potential for harmful cracking. 

 

Figure 6-15 Effect of the width of the lift with 0.1% reinforcement ratio in hot weather 

  

 

Figure 6-16 Effect of the width of the lift with 0.3% reinforcement ratio in cold weather 

It can observe from Figure 6-17 that in normal weather, cement content is quite 

influential in determining maximum crack width (MCW) as by increasing cement content 

from 280 kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to 

around 0.03 mm and from 0 mm to 0.18 mm for 5 m and 25 m wide lift, respectively.  
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Increase in width of the wall is also influential as it can increase MCW up to around 0.15 

mm for high unit cement content, and this increase is considerably high. In these 

scenarios, if the lift width is till 15 m, then there is not much potential for harmful 

cracking. If the lift width is 25 m, then unit cement content greater than 310 kg/m3 level 

may cause harmful cracking. 

 

Figure 6-17 Effect of the width of the lift with 0.3% reinforcement ratio in normal 
weather 

It can observe from Figure 6-18 that in hot weather, cement content is quite influential in 

case of larger width lifts in determining maximum crack width (MCW) as by increasing 

cement content from 280 kg/m3 to 330 kg/m3, the maximum crack width may increase 

from 0 mm to 0.19 mm for 25 m wide lift.  

Increase in width of the wall is also influential as it can increase MCW up to around 0.19 

mm for high unit cement content, and this increase is considerably high. In these 

scenarios, if the lift width is till 15 m, then there is not much potential for harmful 

cracking. If the lift width is 25 m, then unit cement content greater than 300 kg/m3 level 

may cause harmful cracking. 
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Figure 6-18 Effect of the width of the lift with 0.3% reinforcement ratio in hot weather 

For 0.5 % Reinforcement Ratio: 

The results for parametric studies about the effect of width of the lifts in cold weather, 

normal weather and hot weather for 0.5% reinforcement ratio are shown in Figures 6-19 

through 6-21. 

It can observe from Figure 6-19 that in cold weather, cement content is little influential 

for larger width walls in determining maximum crack width (MCW) as by increasing 

cement content from 280 kg/m3 to 330 kg/m3, the maximum crack width may increase 

from 0 mm to 0.06 mm for 25 m wide lift. 

Increase in width of the wall is not so influential as it can increase MCW up to around 

0.04 mm for high unit cement content, and this increase is negligible. In these scenarios, 

for all lifts, there is not much potential for harmful cracking. 

It can observe from Figure 6-20 that in normal weather, cement content is quite 

influential for larger width lifts in determining maximum crack width (MCW) as by 

increasing cement content from 280 kg/m3 to 330 kg/m3, the maximum crack width may 

increase from 0 mm to 0.12 mm for 25 m wide lift.  

Increase in width of the wall is also influential as it can increase MCW up to around 0.12 

mm for high unit cement content, and this increase is considerably high. In these 

scenarios, for all lifts, then there is not much potential for harmful cracking. 
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Figure 6-19 Effect of the width of the lift with 0.5% reinforcement ratio in cold weather 

 

Figure 6-20 Effect of the width of the lift with 0.5% reinforcement ratio in normal 
weather 

It can observe from Figure 6-21 that in hot weather, cement content is quite influential 

for larger width lifts in determining maximum crack width (MCW) as by increasing 

cement content from 280 kg/m3 to 330 kg/m3, the maximum crack width may increase 

from 0 mm to 0.15 mm for 25 m wide lift.  

Increase in width of the wall is also influential as it can increase MCW up to around 0.15 

mm for high unit cement content, and this increase is considerably high. In these 

scenarios, for all lifts, there is not much potential for harmful cracking except 25 m long 

lifts with 330 kg/m3 unit cement content. 
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Figure 6-21 Effect of the width of the lift with 0.5% reinforcement ratio in hot weather 

6.1.3 Effect of cement content and height of the lift 

Parametric studies were conducted to observe the effect of height of the lift at different 

amount of unit cement content. This study was conducted on three different widths of the 

wall i.e., 10 m, 15 m and 25 m which represent relatively small, medium and relatively 

larger width walls, respectively. The results of different width lifts are categorically 

explained below. Other input values used in this parametric study are summarized in the 

following table. 

Thickness Rebar 
Ratio  

Expansive 
Additives 

28 Days 
Strength 

Lift 
Interval 

Formwork 
Removal 

Time 

Curing 
Period 

2 m 0.3 % 0 25 MPa 7 Day 7 Day 7 Day 
 

For 10 m wide wall: 

The results for parametric studies about the effect of height of the lift in cold weather, 

normal weather and hot weather are shown in Figures 6-22 through 6-24 for 10 m wide 

lifts. It can observe from Figures 6-22 that in cold weather, cement content is very 

influential in case of larger lift height in determining maximum crack width (MCW) as 

by increasing cement content from 280 kg/m3 to 330 kg/m3, the maximum crack width 

may increase from 0 mm to 0.08 mm for 4 m lift height.  
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Increase in lift height is also influential at high unit cement content as it can increase 

MCW up to around 0.05 mm. But in all cases, MCW is considerably less than 0.15 mm 

which is the threshold value for MCW. 

 

Figure 6-22 Effect of the lift height in cold weather for 10 m wide lift 

It can observe from Figures 6-23 that in normal weather, cement content is very 

influential in case of larger lift height in determining maximum crack width (MCW) as 

by increasing cement content from 280 kg/m3 to 330 kg/m3, the maximum crack width 

may increase from 0 mm to 0.11 mm for 4 m lift height.  

Increase in lift height is also influential at high unit cement content as it can increase 

MCW up to around 0.06 mm. But in all cases, MCW is considerably less than 0.15 mm 

which is the threshold value for MCW. 

It can observe from Figures 6-24 that in hot weather, cement content is very influential 

in case of larger lift height in determining maximum crack width (MCW) as by increasing 

cement content from 280 kg/m3 to 330 kg/m3, the maximum crack width may increase 

from 0 mm to 0.09 mm for 4 m lift height.  

Increase in lift height is also little influential at high unit cement content as it can increase 

MCW up to around 0.04 mm. But in all cases, MCW is considerably less than 0.15 mm 

which is the threshold value for MCW. 
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Figure 6-23 Effect of the lift height in normal weather for 10 m wide lift 

 

Figure 6-24 Effect of the lift height in hot weather for 10 m wide lift 

For 15 m wide wall: 

The results for parametric studies about the effect of height of the lift in cold weather, 

normal weather and hot weather are shown in Figures 6-25 through 6-27 for 15 m wide 

lifts. It can observe from Figures 6-25 that in cold weather, cement content is very 

influential in case of larger lift height in determining maximum crack width (MCW) as 

by increasing cement content from 280 kg/m3 to 330 kg/m3, the maximum crack width 

may increase from 0 mm to 0.11 mm for 4 m lift height.  
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Increase in lift height is also influential at high unit cement content as it can increase 

MCW up to around 0.05 mm. But in all cases, MCW is considerably less than 0.15 mm 

which is the threshold value for MCW. 

 

Figure 6-25 Effect of the lift height in cold weather for 15 m wide lift 

It can observe from Figures 6-26 that in normal weather, cement content is quite 

influential in determining maximum crack width (MCW) as by increasing cement content 

from 280 kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to 

0.05 mm and 0 to 0.15 mm for 1 m lift height and 4 m lift height, respectively.  

Increase in lift height is also influential at high unit cement content as it can increase 

MCW up to around 0.1 mm. But in all cases, MCW is considerably less than 0.15 mm 

which is the threshold value for MCW except 4 m high lift at high cement content for 

which MCW is 0.15mm. 

It can observe from Figures 6-27 that in hot weather, cement content is quite influential 

in determining maximum crack width (MCW) as by increasing cement content from 280 

kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to 0.07 mm and 

0 to 0.16 mm for 1 m and 4 m lift height, respectively.  

Increase in lift height is also influential at high unit cement content as it can increase 

MCW up to around 0.09 mm. But in all cases till 3 m high lifts, MCW is less than 0.15 

mm which is the threshold value for MCW. But for 4 m high lift at high cement content 

MCW is more than 0.15mm. 
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Figure 6-26 Effect of the lift height in normal weather for 15 m wide lift 

 

Figure 6-27 Effect of the lift height in hot weather for 15 m wide lift 

For 25 m wide wall: 

The results for parametric studies about the effect of height of the lift in cold weather, 

normal weather and hot weather are shown in Figures 6-28 through 6-30 for 25 m wide 

lifts. It can observe from Figures 6-28 that in cold weather, cement content is quite 

influential in determining maximum crack width (MCW) as by increasing cement content 

from 280 kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to 

0.07 mm and 0 to 0.16 mm for 1 m and 4 m lift height, respectively.  
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Increase in lift height is also influential as it can increase MCW up to around 0.09 mm. 

But in all cases till 3 m high lifts, MCW is less than 0.15 mm which is the threshold value 

for MCW. But for 4 m high lift at high cement content MCW is more than 0.15mm. 

 

Figure 6-28 Effect of the lift height in cold weather for 25 m wide lift 

It can observe from Figures 6-29 that in normal weather, cement content is quite 

influential in determining maximum crack width (MCW) as by increasing cement content 

from 280 kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to 

0.14 mm and 0 to 0.2 mm for 1 m and 4 m lift height, respectively.  

Increase in lift height is also influential as it can increase MCW up to around 0.12 mm. 

But in all cases till 2 m high lifts, MCW is less than 0.15 mm which is the threshold value 

for MCW. But for 3 m and 4 m high lift at cement content higher than 310 kg/m3, MCW 

is greater than 0.15mm. 

It can observe from Figures 6-30 that in hot weather, cement content is quite influential 

in determining maximum crack width (MCW) as by increasing cement content from 280 

kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to 0.17 mm and 

0 to 0.22 mm for 1 m and 4 m lift height, respectively.  

Increase in lift height is also influential as it can increase MCW up to around 0.11 mm. 

For 1 m high lifts, MCW is greater than 0.15 mm which is the threshold value for MCW 

for unit cement content higher than 310 kg/m3. But for 4 m high lift even at unit cement 

content higher than 290 kg/m3, MCW is greater than 0.15mm. 
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Figure 6-29 Effect of the lift height in normal weather for 25 m wide lift 

 

Figure 6-30 Effect of the lift height in hot weather for 25 m wide lift 

6.1.4 Effect of cement content and reinforcement ratio 

Parametric studies were conducted to observe the effect of reinforcement ratio at different 

amount of unit cement content. This study was conducted on three different widths of the 

wall i.e., 10 m, 15 m and 25 m which represent relatively small, medium and relatively 

larger width walls, respectively. The results of different width lifts are categorically 

explained below. Other input values used in this parametric study are summarized in the 

following table. 
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Thickness Height Expansive 
Additives 

28 Days 
Strength 

Lift 
Interval 

Formwork 
Removal 

Time 

Curing 
Period 

2 m 3 m 0 25 MPa 7 Day 7 Day 7 Day 
 

For 10 m wide wall: 

The results for parametric studies about the effect of the reinforcement ratio in cold 

weather, normal weather and hot weather are shown in Figures 6-31 through 6-33 for 10 

m wide lifts. It can observe from Figures 6-31 that in cold weather, cement content is 

quite influential in case of very low reinforcement ratio in determining maximum crack 

width (MCW) as by increasing cement content from 280 kg/m3 to 330 kg/m3, the 

maximum crack width may increase from 0.03 mm to 0.15 mm for 0.05% reinforcement 

ratio. 

Increase in reinforcement ratio is also influential at it can reduce MCW up to around 0.15 

mm by increasing reinforcement ratio from 0.05% to 0.5%. MCW is less than 0.15 mm 

which is the threshold value for MCW when reinforcement ration is 0.1% or higher. 

 

Figure 6-31 Effect of the reinforcement ratio in cold weather for 10 m wide lift 

It can observe from Figures 6-32 that in normal weather, cement content is quite 

influential in case of very low reinforcement ratio in determining maximum crack width 

(MCW) as by increasing cement content from 280 kg/m3 to 330 kg/m3, the maximum 

crack width may increase from 0.01 mm to 0.12 mm for 0.05% reinforcement ratio. 
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Increase in reinforcement ratio is also influential at it can reduce MCW up to around 0.10 

mm by increasing reinforcement ratio from 0.05% to 0.5% at high cement content. MCW 

is less than 0.15 mm which is the threshold value for MCW for all cases. 

 

Figure 6-32 Effect of the reinforcement ratio in normal weather for 10 m wide lift 

It can observe from Figures 6-33 that in hot weather, cement content is quite influential 

in case of very low reinforcement ratio in determining maximum crack width (MCW) as 

by increasing cement content from 280 kg/m3 to 330 kg/m3, the maximum crack width 

may increase from 0.03 mm to 0.15 mm for 0.05% reinforcement ratio. 

Increase in reinforcement ratio is also influential at it can reduce MCW up to around 0.15 

mm by increasing reinforcement ratio from 0.05% to 0.5%. MCW is less than 0.15 mm 

which is the threshold value for MCW when reinforcement ration is 0.1% or higher even 

at high unit cement content. 

For 15 m wide wall: 

The results for parametric studies about the effect of the reinforcement ratio in cold 

weather, normal weather and hot weather are shown in Figures 6-34 through 6-36 for 15 

m wide lifts. It can observe from Figures 6-34 that in cold weather, cement content is 

quite influential in case of very low reinforcement ratio in determining maximum crack 

width (MCW) as by increasing cement content from 280 kg/m3 to 330 kg/m3, the 

maximum crack width may increase from 0.03 mm to 0.12 mm for 0.05% reinforcement 

ratio. 

0.00

0.05

0.10

0.15

280 290 300 310 320 330M
ax

im
um

 C
ra

ck
 W

id
th

 (m
m

)

Cement Content (kg/m3)

Cement Content & Reinforcement Ratio

0.05%
0.10%
0.30%
0.50%



75 
 

Increase in reinforcement ratio is also influential at it can reduce MCW up to around 0.07 

mm by increasing reinforcement ratio from 0.05% to 0.5%. MCW is less than 0.15 mm 

which is the threshold value for MCW in all cases. 

 

Figure 6-33 Effect of the reinforcement ratio in hot weather for 10 m wide lift 

 

Figure 6-34 Effect of the reinforcement ratio in cold weather for 15 m wide lift 

It can observe from Figures 6-35 that in normal weather, cement content is quite 

influential in case of very low reinforcement ratio in determining maximum crack width 

(MCW) as by increasing cement content from 280 kg/m3 to 330 kg/m3, the maximum 

crack width may increase from 0.04 mm to 0.17 mm for 0.05% reinforcement ratio. 

Increase in reinforcement ratio is also influential at it can reduce MCW up to around 0.11 

mm by increasing reinforcement ratio from 0.05% to 0.5%. MCW is less than 0.15 mm 
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which is the threshold value for MCW when reinforcement ration is 0.3% or higher in all 

cases. MCW is less than 0.15 mm in all cases when cement content is 320 kg/m3 or less.  

 

Figure 6-35 Effect of the reinforcement ratio in normal weather for 15 m wide lift 

It can observe from Figures 6-36 that in hot weather, cement content is quite influential 

in case of very low reinforcement ratio in determining maximum crack width (MCW) as 

by increasing cement content from 280 kg/m3 to 330 kg/m3, the maximum crack width 

may increase from 0.06 mm to 0.18 mm for 0.05% reinforcement ratio. 

Increase in reinforcement ratio is also influential at it can reduce MCW up to around 0.16 

mm by increasing reinforcement ratio from 0.05% to 0.5% at high level of cement content. 

MCW is less than 0.15 mm which is the threshold value for MCW when reinforcement 

ration is 0.3% or higher in all cases. MCW is less than 0.15 mm in all cases when cement 

content is 300 kg/m3 or less.  

For 25 m wide wall: 

The results for parametric studies about the effect of the reinforcement ratio in cold 

weather, normal weather and hot weather are shown in Figures 6-37 through 6-39 for 25 

m wide lifts. It can observe from Figures 6-37 that in cold weather, cement content is 

quite influential in case of very low reinforcement ratio in determining maximum crack 

width (MCW) as by increasing cement content from 280 kg/m3 to 330 kg/m3, the 

maximum crack width may increase from 0.12 mm to 0.18 mm for 0.05% reinforcement 

ratio. 
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Increase in reinforcement ratio is also influential at it can reduce MCW up to around 0.15 

mm by increasing reinforcement ratio from 0.05% to 0.5% % at medium level of cement 

content. MCW is less than 0.15 mm which is the threshold value for MCW when 

reinforcement ration is 0.3% or higher in all cases. MCW is less than 0.15 mm in all cases 

when cement content is 300 kg/m3 or less.  

 

Figure 6-36 Effect of the reinforcement ratio in hot weather for 15 m wide lift 

 

Figure 6-37 Effect of the reinforcement ratio in cold weather for 25 m wide lift 

It can observe from Figures 6-38 that in normal weather, cement content is quite 

influential in case of very low reinforcement ratio in determining maximum crack width 

(MCW) as by increasing cement content from 280 kg/m3 to 330 kg/m3, the maximum 

crack width may increase from 0.13 mm to 0.21 mm for 0.05% reinforcement ratio. 
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Increase in reinforcement ratio is also influential at it can reduce MCW up to around 0.16 

mm by increasing reinforcement ratio from 0.05% to 0.5% % at medium level of cement 

content. MCW is less than 0.15 mm which is the threshold value for MCW when 

reinforcement ration is 0.3% or higher in all cases.  

 

Figure 6-38 Effect of the reinforcement ratio in normal weather for 25 m wide lift 

It can observe from Figures 6-39 that in hot weather, cement content is quite influential 

in case of very low reinforcement ratio in determining maximum crack width (MCW) as 

by increasing cement content from 280 kg/m3 to 330 kg/m3, the maximum crack width 

may increase from 0.15 mm to 0.21 mm for 0.05% reinforcement ratio. 

Increase in reinforcement ratio is also influential at it can reduce MCW up to around 0.15 

mm by increasing reinforcement ratio from 0.05% to 0.5% % at medium level of cement 

content. MCW is less than 0.15 mm which is the threshold value for MCW when 

reinforcement ration is 0.5% or higher in all cases. MCW is less than 0.15 mm in all cases 

when cement content is 300 kg/m3 or less. In this scenario, MCW can be controlled more 

efficiently by controlling cement content. 
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Figure 6-39 Effect of the reinforcement ratio in hot weather for 25 m wide lift 

6.1.5 Effect of cement content and lift interval 

Parametric studies were conducted to observe the effect of lift interval at different amount 

of unit cement content. This study was conducted on three different widths of the wall 

i.e., 10 m, 15 m and 25 m which represent relatively small, medium and relatively larger 

width walls, respectively. The results of different width lifts are categorically explained 

below. Other input values used in this parametric study are summarized in the following 

table. 

Thickness Height Expansive 
Additives 

28 Days 
Strength 

Lift 
Interval 

Formwork 
Removal 

Time 

Curing 
Period 

2 m 3 m 0 25 MPa 7 Day 7 Day 7 Day 
 

For 10 m wide wall: 

The results for parametric studies about the effect of lift interval in cold weather, normal 

weather and hot weather are shown in Figures 6-40 through 6-42 for 10 m wide lifts. It 

can observe from Figures 6-40 that in cold weather, cement content is very influential in 

determining maximum crack width (MCW) as by increasing cement content from 280 

kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to around 0.06 

mm and from 0 mm to 0.08 mm for 3 day and 28 day lift interval, respectively.  
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Increase in lift interval is also little influential as it can increase MCW up to around 0.02 

mm, but this increase is not considerably high. But in all cases, MCW is considerably 

less than 0.15 mm which is the threshold value for MCW. 

 

Figure 6-40 Effect of the lift interval in hot weather for 10 m wide lift 

It can observe from Figures 6-41 that in normal weather, cement content is very 

influential in determining maximum crack width (MCW) as by increasing cement content 

from 280 kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to 

around 0.08 mm and from 0 mm to 0.11 mm for 3 day and 28 day lift interval, 

respectively.  

Increase in lift interval is also little influential as it can increase MCW up to around 0.03 

mm, but this increase is not considerably high. But in all cases, MCW is considerably 

less than 0.15 mm which is the threshold value for MCW. 

It can observe from Figures 6-42 that in hot weather, cement content is very influential 

in determining maximum crack width (MCW) as by increasing cement content from 280 

kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to around 0.06 

mm and from 0 mm to 0.12 mm for 3 day and 28 day lift interval, respectively.  

Increase in lift interval is also little influential as it can increase MCW up to around 0.06 

mm, but this increase is not considerably high. But in all cases, MCW is considerably 

less than 0.15 mm which is the threshold value for MCW. 
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Figure 6-41 Effect of the lift interval in normal weather for 10 m wide lift 

 

Figure 6-42 Effect of the lift interval in hot weather for 10 m wide lift 

For 15 m wide wall: 

The results for parametric studies about the effect of lift interval in cold weather, normal 

weather and hot weather are shown in Figures 6-43 through 6-45 for 15 m wide lifts. It 

can observe from Figures 6-43 that in cold weather, cement content is very influential in 

determining maximum crack width (MCW) as by increasing cement content from 280 

kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to around 0.07 

mm and from 0 mm to 0.1 mm for 3 day and 28 day lift interval, respectively.  
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Increase in lift interval is also little influential as it can increase MCW up to around 0.02 

mm, but this increase is not considerably high. But in all cases, MCW is considerably 

less than 0.15 mm which is the threshold value for MCW. 

 

Figure 6-43 Effect of the lift interval in cold weather for 15 m wide lift 

It can observe from Figures 6-44 that in normal weather, cement content is very 

influential in determining maximum crack width (MCW) as by increasing cement content 

from 280 kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to 

around 0.11 mm and from 0 mm to 0.14 mm for 3 day and 28 day lift interval, 

respectively.  

Increase in lift interval is also little influential as it can increase MCW up to around 0.03 

mm, but this increase is not considerably high. But in all cases, MCW is considerably 

less than 0.15 mm which is the threshold value for MCW. 

It can observe from Figures 6-45 that in hot weather, cement content is very influential 

in determining maximum crack width (MCW) as by increasing cement content from 280 

kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to around 0.12 

mm and from 0 mm to 0.16 mm for 3 day and 28 day lift interval, respectively.  

Increase in lift interval is also little influential as it can increase MCW up to around 0.03 

mm, but this increase is not considerably high. But in all cases, MCW is less than 0.15 

mm which is the threshold value for MCW except for a lift with 28 day interval at high 

cement content. 
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Figure 6-44 Effect of the lift interval in normal weather for 15 m wide lift 

 

Figure 6-45 Effect of the lift interval in hot weather for 15 m wide lift 

For 25 m wide wall: 

The results for parametric studies about the effect of lift interval in cold weather, normal 

weather and hot weather are shown in Figures 6-46 through 6-48 for 25 m wide lifts. It 

can observe from Figures 6-46 that in cold weather, cement content is very influential in 

determining maximum crack width (MCW) as by increasing cement content from 280 

kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to around 0.12 

mm and from 0 mm to 0.15 mm for 3 day and 28 day lift interval, respectively.  

Increase in lift interval is also little influential as it can increase MCW up to around 0.03 

mm, but this increase is not considerably high. But in all cases, MCW is less than 0.15 
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mm which is the threshold value for MCW except for a lift with 28 day interval at high 

cement content.  

 

Figure 6-46 Effect of the lift interval in cold weather for 25 m wide lift 

It can observe from Figures 6-47 that in cold weather, cement content is very influential 

in determining maximum crack width (MCW) as by increasing cement content from 280 

kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to around 0.17 

mm and from 0.06 mm to 0.19 mm for 3 day and 28 day lift interval, respectively.  

Increase in lift interval is also little influential as it can increase MCW up to around 0.02 

mm, but this increase is not considerably high. MCW is less than 0.15 mm which is the 

threshold value for MCW when unit cement content is 300 kg/m3 or less.  

It can observe from Figures 6-48 that in hot weather, cement content is very influential 

in determining maximum crack width (MCW) as by increasing cement content from 280 

kg/m3 to 330 kg/m3, the maximum crack width may increase from 0.03 mm to around 

0.19 mm and from 0.09 mm to 0.21 mm for 3 day and 28 day lift interval, respectively.  

Increase in lift interval is also little influential as it can increase MCW up to around 0.03 

mm, but this increase is not considerably high. But in all cases, MCW is greater than 0.15 

mm which is the threshold value for MCW when unit cement content is 300 kg/m3 or 

more 
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Figure 6-47 Effect of the lift interval in normal weather for 25 m wide lift 

 

Figure 6-48 Effect of the lift interval in hot weather for 25 m wide lift 

6.1.6 Effect of cement content and initial concrete temperature 

Parametric studies were conducted to observe the effect of initial concrete temperature 

at different amount of unit cement content. This study was conducted in three different 

seasonal variations i.e., when initial ambient temperature is 0oC, 20oC and 30oC which 

represent cold weather, normal weather and hot weather, respectively. The results are 

categorically explained below. Other input values used in this parametric study are 

summarized in the following table. 
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Thickness Height Width Expansive 
Additives 

28 Days 
Strength 

Lift 
Interval 

Formwork 
Removal 

Time 

Curing 
Period 

2 m 3 m 15 m 0 25 MPa 7 Day 7 Day 7 Day 
 

The results for parametric studies about the effect of initial concrete temperature in cold 

weather, normal weather and hot weather are shown in Figures 6-49 through 6-51 for 15 

m wide lifts. It can observe from Figures 6-49 that in cold weather, cement content is 

very influential in determining maximum crack width (MCW) as by increasing cement 

content from 280 kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 

mm to around 0.07 mm and from 0.01 mm to 0.09 mm for 5oC and 20oC initial concrete 

temperature, respectively.  

Increase in initial concrete temperature is also little influential as it can increase MCW 

up to around 0.04 mm, but this increase is not considerably high. But in all cases, MCW 

is considerably less than 0.15 mm which is the threshold value for MCW. 

 

Figure 6-49 Effect of the initial concrete temperature in cold weather for 15 m wide lift 

It can observe from Figures 6-50 that in normal weather, cement content is very 

influential in determining maximum crack width (MCW) as by increasing cement content 

from 280 kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to 

around 0.1 mm and from 0.01 mm to 0.12 mm for 10oC and 30oC initial concrete 

temperature, respectively.  
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Increase in initial concrete temperature is also influential as it can increase MCW up to 

around 0.05 mm, but this increase is not considerably high. But in all cases, MCW is 

considerably less than 0.15 mm which is the threshold value for MCW. 

 

Figure 6-50 Effect of the initial concrete temperature in normal weather for 15 m wide 
lift 

It can observe from Figures 6-51 that in hot weather, cement content is very influential 

in determining maximum crack width (MCW) as by increasing cement content from 280 

kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to around 0.07 

mm and from 0 mm to 0.13 mm for both 15oC and 30oC initial concrete temperature.  

Increase in initial concrete temperature is also little influential as it can increase MCW 

up to around 0.04 mm, but this increase is not considerably high. But in all cases, MCW 

is considerably less than 0.15 mm which is the threshold value for MCW. 
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Figure 6-51 Effect of the initial concrete temperature in hot weather for 15 m wide lift 

6.1.7 Effect of cement content and 28 day concrete strength 

Parametric studies were conducted to observe the effect of concrete strength at different 

amount of unit cement content. This study was conducted in three different seasonal 

variations i.e., when initial ambient temperature is 0oC, 20oC and 30oC which represent 

cold weather, normal weather and hot weather, respectively. The results are categorically 

explained below. Other input values used in this parametric study are summarized in the 

following table. 

Thickness Height Width Expansive 
Additives 

Rebar 
ratio 

Lift 
Interval 

Formwork 
Removal 

Time 

Curing 
Period 

2 m 3 m 15 m 0 0.3 % 7 Day 7 Day 7 Day 
 

The results for parametric studies about the effect of concrete strength in cold weather, 

normal weather and hot weather are shown in Figures 6-52 through 6-54 for 15 m wide 

lifts. It can observe from Figures 6-52 that in cold weather, cement content is very 

influential in determining maximum crack width (MCW) as by increasing cement content 

from 280 kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to 

around 0.08 mm and from 0.02 mm to 0.13 mm for 25MPa and 40 MPa concrete strength, 

respectively.  
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Increase in concrete strength is also influential as it can increase MCW up to around 0.05 

mm. But in all cases, MCW is considerably less than 0.15 mm which is the threshold 

value for MCW. 

It can observe from Figures 6-53 that in normal weather, cement content is very 

influential in determining maximum crack width (MCW) as by increasing cement content 

from 280 kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to 

around 0.11 mm and from 0.03 mm to 0.16 mm for 25MPa and 40 MPa concrete strength, 

respectively.  

Increase in concrete strength is also influential as it can increase MCW up to around 0.05 

mm. But in all cases, MCW is considerably less than 0.15 mm which is the threshold 

value for MCW except for the case when 40MPa concrete with high cement content is 

used. 

 

Figure 6-52 Effect of the 28 day concrete strength in cold weather for 15 m wide lift 
with 0.3% reinforcement ratio 
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Figure 6-53 Effect of the 28 day concrete strength in normal weather for 15 m wide lift 
with 0.3% reinforcement ratio 

It can observe from Figures 6-54 that in hot weather, cement content is very influential 

in determining maximum crack width (MCW) as by increasing cement content from 280 

kg/m3 to 330 kg/m3, the maximum crack width may increase from 0 mm to around 0.13 

mm and from 0.03 mm to 0.16 mm for 25MPa and 40 MPa concrete strength, respectively.  

Increase in concrete strength is also influential as it can increase MCW up to around 0.04 

mm. But in all cases, MCW is considerably less than 0.15 mm which is the threshold 

value for MCW except for the case when 40MPa concrete with high cement content is 

used. 

 

Figure 6-54 Effect of the 28 day concrete strength in hot weather for 15 m wide lift 
with 0.3% reinforcement ratio 
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6.2 Conclusions on parametric studies on vertical walls 

Based on the parametric studies for vertical walls using previously trained ANN, 

following conclusions are drawn. 

• ANNs are very useful tools to establish systematic relationship among different 

parameters which influence maximum crack width. 

• The increase in cement content is very influential in every condition as it can 

significantly increase maximum crack width.  

•  In hotter weather, the tendency of increasing maximum crack width is more as 

compared to colder weather. 

• The increase in thickness of the lift is quite significant as increase in thickness 

can increase maximum crack width. This effect is more pronounces in wider lifts. 

• The increase in height of the lift is quite significant as increase in height can 

increase maximum crack width. This effect is more pronounces in wider lifts. 

• The increase in width of the lift is very significant as increase in width can 

increase maximum crack width significantly. This effect is more pronounces in 

the lifts with less reinforcement ratio. 

• The increase in reinforcement ratio of the lift is very significant as increase in 

reinforcement ratio can reduce maximum crack width significantly. 

• The increase in lift interval is little significant as increase in lift interval can 

increase maximum crack width. This effect is more pronounces in the hotter 

season. 

• The increase in initial concrete temperature is little significant as increase in 

initial concrete temperature can increase maximum crack width. This effect is 

more pronounces when unit cement content is in the normal range. 

• The increase in concrete strength is also significant as increase in concrete 

strength can increase maximum crack width.  

• These studies will provide the threshold limits for input parameters to control 

harmful thermal cracking. 

 

 

 



92 
 

7 Conclusions 

In this chapter, conclusions obtained from different parts of the research are categorically 

explained. 

7.1 Prediction of occurrence of thermal cracking by artificial neural 

networks 

Based on the findings of this study, which was focused on predicting the occurrence of 

thermal cracking of RC abutments using feedforward multilayer perceptron artificial 

neural networks and reliable actual construction data, following conclusions are drawn: 

i. Performance of ANNs with less number of input parameters for both vertical 

walls and parapets was promising, which was a good step towards prediction of 

occurrence of thermal cracking in RC abutments with basic information such as 

geometric and material properties, and ambient environmental conditions. 

ii. For vertical walls, ANN-V(b) which was the preferred ANN found in this study 

showed average accuracy level 81.5% for holdout samples by considering 

thickness, width, lift height, reinforcement ratio, cement content, initial concrete 

temperature, initial ambient temperature, lift interval, form removal time and 

curing period as input parameters. 

iii. For parapet walls, ANN-P(b) which was the preferred ANN found in this study 

showed average accuracy level 87.6% for holdout samples by considering 

thickness, width, lift height, reinforcement ratio, cement content, expansive 

additive, initial concrete temperature, initial ambient temperature, lift interval, 

form removal time and curing period as input parameters. 

7.2 Prediction of maximum width of thermal cracking by artificial 

neural networks 

Based on the developed ANN to predict maximum width of thermal cracking, following 

conclusions are drawn; 

i. Present ANN could predict 90.95 % (171 lifts out of 188) correctly if the 

permissible error in prediction is considered as ± 0.1 mm. 
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ii. 16 lifts out of 17 lifts for which prediction error was more than ± 0.1 mm were 

constructed from 2007 to 2009. 

iii. If ± 0.075 mm is considered as permissible error in prediction, then prediction 

accuracy was 83 % (156 lifts out of 188 were correctly predicted). 

iv. If ± 0.05 mm is considered as permissible error in prediction, then prediction 

accuracy was 69 % (130 lifts out of 188 were correctly predicted). 

v. ANNs are potential candidates to perform this type of complex problems by using 

reliable data. 

Based on the developed ANN to predict maximum width of thermal cracking in parapets, 

following conclusions are drawn; 

i. Present ANN could predict 94.74 % (72 lifts out of 76) correctly if the permissible 

error in prediction is considered as ± 0.1 mm. 

ii. If ± 0.075 mm is considered as permissible error in prediction, then prediction 

accuracy was 93.42 % (71 lifts out of 76 were correctly predicted). 

iii. If ± 0.05 mm is considered as permissible error in prediction, then prediction 

accuracy was 90.8 % (69 lifts out of 76 were correctly predicted). 

iv. Although accuracy level of prediction is high, but this high accuracy is for small 

crack widths as the ANN is unable to predict larger crack width for holdout 

samples. The possible reasons are as follows; 

a. The dataset is very small, so it is insufficient to build an appropriate ANN. 

b. There are very few number of lifts with larger crack widths which are 

causing insufficiency in data with larger crack widths. 

7.3 Parametric studies on influential parameters for vertical walls 

Based on parametric studies for vertical walls using previously trained ANN, following 

conclusions are drawn. 

i. ANNs are very useful tools to establish systematic relationship among different 

parameters which influence maximum crack width. 

ii. The increase in cement content is very influential in every condition as it can 

significantly increase maximum crack width.  

iii.  In hotter weather, the tendency of increasing maximum crack width is more as 

compared to colder weather. 
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iv. The increase in thickness of the lift is quite significant as increase in thickness 

can increase maximum crack width. This effect is more pronounces in wider lifts. 

v. The increase in height of the lift is quite significant as increase in height can 

increase maximum crack width. This effect is more pronounces in wider lifts. 

vi. The increase in width of the lift is very significant as increase in width can 

increase maximum crack width significantly. This effect is more pronounces in 

the lifts with less reinforcement ratio. 

vii. The increase in reinforcement ratio of the lift is very significant as increase in 

reinforcement ratio can reduce maximum crack width significantly. 

viii. The increase in lift interval is little significant as increase in lift interval can 

increase maximum crack width. This effect is more pronounces in the hotter 

season. 

ix. The increase in initial concrete temperature is little significant as increase in 

initial concrete temperature can increase maximum crack width. This effect is 

more pronounces when unit cement content is in the normal range. 

x. The increase in concrete strength is also significant as increase in concrete 

strength can increase maximum crack width.  

xi. These studies will provide the threshold limits for input parameters to control 
harmful thermal cracking. 

7.4 Recommendations for future studies 

Based on present research following topics of research are proposed; 

i. Along with Yamaguchi prefecture, Gunma prefecture has also started a crack 

control system. So, it is suggested to validate the present research methodology 

and ANNs for Gunma prefecture database. 

ii. As mentioned earlier, there is a room to improve crack prediction method for 

parapets due to lack of appropriate dataset, so an alternative methodology must 

be studies to cater the problem of limited data and utilization of small datasets 

efficiently. 

iii. Proposal for the remedial measures by providing threshold limits for input 

parameters to control harmful thermal cracking under various circumstances. And, 

contribution in the “Crack Control Guidelines”. 
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