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A first-principles phase field method for
quantitatively predicting multi-composition phase
separation without thermodynamic empirical
parameter
Swastibrata Bhattacharyya 1, Ryoji Sahara2 & Kaoru Ohno 1

To design tailored materials, it is highly desirable to predict microstructures of alloys without

empirical parameter. Phase field models (PFMs) rely on parameters adjusted to match

experimental information, while first-principles methods cannot directly treat the typical

length scale of 10 μm. Combining density functional theory, cluster expansion theory and

potential renormalization theory, we derive the free energy as a function of compositions and

construct a parameter-free PFM, which can predict microstructures in high-temperature

regions of alloy phase diagrams. Applying this method to Ni-Al alloys at 1027 °C, we succeed

in reproducing evolution of microstructures as a function of only compositions without

thermodynamic empirical parameter. The resulting patterns including cuboidal shaped pre-

cipitations are in excellent agreement with the experimental microstructures in each region of

the Ni-Al phase diagram. Our method is in principle applicable to any kind of alloys as a

reliable theoretical tool to predict microstructures of new materials.
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M icrostructures involving precipitations, grain bound-
aries, dislocations, and other defects play a decisive role
in many important properties of alloys such as ductility,

plasticity, toughness, magnetism, oxidation- and heat-resistances.
The quest of new materials with desirable properties requires
microstructure engineering of materials by changing composi-
tion, morphology, pressure, and temperature as well as doping,
casting, and forging. Since there are many degrees of freedom, it
is highly desirable to find fundamental breakthrough toward the
design of tailored materials. For this purpose, powerful compu-
tational techniques are required to predict microstructures. Since
the length scale of microstructures is typically 1–100 μm and the
number of atoms involved is 1011–1017, first-principles methods
such as density functional theory (DFT)1 are not applicable.
Phase field models (PFMs)2–4 offer a promising computational
tool to study such phenomena, where microstructures are
described by order parameters. However, PFMs are purely
empirical and adjustable parameters must be used so that the
computational output matches the experimental one. Therefore,
they are not widely accepted in industries5.

In this paper we first introduce how to combine first-principles
method and PFM, and solve the previous problems of PFMs
relying on parameters. Although, a number of theoretical studies
have been conducted using atomistic methods6–8, they are lim-
ited, for example, to the level of the cluster variation method
(CVM)9, which relies on a particular crystal lattice and a parti-
cular alloy composition. A CVM-based phase field method has
been also developed to study microstructure evolution in
alloys10,11. In this method the alloy composition was kept fixed
and the order–disorder phase transformation was treated at dif-
ferent temperatures. However, this method cannot discuss the
entire phase diagram. Here, we propose a first-principles and
non-parameter based PFM. The method can clearly discriminate
the local composition and evolution mechanism of micro-
structures of alloys without any material parameter.

Although our method is in principle applicable to any kind of
alloys, we demonstrate its ability by treating Ni–Al binary alloys
as an example, which have attracted considerable attention for
their excellent mechanical properties; very hard and good oxi-
dation- and heat-resistances suitable for turbine disks and
blades12,13. With varying Ni and Al compositions, they undergo
many phase transformations. We will reproduce the experimental
phase diagram14 and show the time evolution of microstructures.
We will focus on the ordered phases only, because the description
of liquid and disordered phases requires to introduce another
non-conserved order parameter.

In conventional PFMs, the order parameters are described by
continuous functions of space and time. The free energy is
defined as a polynomial of these order parameters and therefore
are continuous too. These kind of representations do not take into
account of the local structures and compositions, which are very
important to find phases and microstructures in materials. By
decomposing the space into a fine regular 3D grid of unit cells
containing tetrahedron or other polygon (Fig. 1) and then taking
the continuous limit where the lattice constant goes to zero, one
can consider number density as the order parameter, which will
include the atomic arrangement and local composition and
eventually can construct a more effective free energy. In case of
Ni–Al alloys, the four atomic sites of each tetrahedron can be
filled with either Ni, Al, or vacancy, as shown in Fig. 1b. Thus,
instead of continuous order parameter, one will obtain integer
functions defined as the local composition of NinAlm: φNi, φAl=
0–1, 1–2, 2–3, 3–4, 4–5 for n, m= 0, 1, 2, 3, 4, and use cluster
expansion theory15–17 to determine the local energy from ab
initio DFT. To include off-lattice effects, the potential renorma-
lization theory can be implemented, where the atomic

displacement is renormalized in a length scale shorter than the
lattice constant18. This theory is applicable at high temperatures
where Einstein model is valid. Using this discretized free energy
definition, together with the potential renormalization theory for
the temperature effect, we simulate the evolution of micro-
structures and phases in Ni–Al alloy systems at various compo-
sitions. We fix the temperature at T= 1027 °C (=1300 K), which
is typical in jet-engine turbines. Our results are of great match
with the experimental and conventional phase field findings.

Results
The first-principles free energy and the diffusion equation. The
resulting local free energies F(φNi, φAl) are shown in Figs. 2 and 3,
and are plotted in 1D and 2D in Fig. 4a, b. Each block (plateau) in
the 2D (1D) plot corresponds to an integer (n, m) composition of
the NinAlm alloy, including vacancies for 0 ≤ (n+m) ≤ 4 and
interstitial atoms for (n+m) > 4. For n+m= 5, the most stable
trigonal unit cell19 is chosen with the same volume as the cubic
unit cell. The explicit functional form for the free energy can be
represented as:

FðφNi;φAlÞ ¼
X6

n;m
0�ðnþmÞ�6

fnðφNiÞfmðφAlÞENinAlm : ð1Þ

Where, fi(x)= θ(x− i)− θ(x− i− 1) and ENinAlm is the energy/
renormalized energy of the NinAlm cluster. The free energy is
non-negative when (n+m) > 6 and increases sharply, which is
described by a polynomial for (n+m) < 0 and (n+m) > 6 so as
to avoid unrealistic compositions. The chemical potentials are
given by

μNi ¼ FðφNi þ 0:5;φAlÞ � FðφNi � 0:5;φAlÞ � εNi∇
2φNi; ð2aÞ

μAl ¼ FðφNi;φAl þ 0:5Þ � FðφNi;φAl � 0:5Þ � εAl∇
2φAl; ð2bÞ

where εX (X=Ni or Al) denotes the gradient energy coefficient of
φX, and εX∇2φX represents the interface energy contribution.
From the continuity equation ∂φX/∂t=−∇ · JX and the flux
introduced by JX=−MX∇μX, the generalized Cahn–Hilliard
equation is derived as

∂φX

∂t
¼ MX∇

2μX : ð3Þ

Cahn–Hilliard equation is applicable to conserved order para-
meters such as the composition and the atomic density, while for
non-conserved order parameters, Allen-Cahn equation should be
used in the phase field model. We assume that MX and εX are
independent of the species X. Then, MX and εX can be set arbi-
trary, e.g., at 0.00125 and 0.5, respectively, by rescaling time with
MX and length with εX. Unlike atomistic simulations, in our
coarse-grained model, there is only the change in the con-
centration and in this case to determine the time and length scales
becomes particularly difficult. In order to avoid this difficulty, we
assume simulation time and simulation cell size to be arbitrary
units, which can be scaled to the experimental time and length if
required. To obtain an exact relation between the simulation time
(cell size) and the experimental time (length), one need to develop
a method to calculate the mobility (interface energy) from first-
principles and give this as an input parameter. But this generally
requires a huge computation, and the method we are proposing
here is to simply avoid this difficulty. Because the free energy is
replaced with its local values, it is basically necessary to include
the random force in the phase field equation. However, this does
not affect the final pattern much. We have chosen the amplitude
of the random force as 0.5 for all the calculations. For simplicity,
we use a 2D model in a grid space of 124 × 124. The grid space
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Fig. 1 Pictorial representation of cluster expansion and potential renormalization theory. a The real space is divided into a fine regular 3D grid. One grid
cube represents one unit cell and different colors represent different alloy composition within the unit cell. One unit cell of the Ni–Al alloy containing a
tetrahedron formed by four nearest neighbor atomic positions for b fcc lattice, c bcc lattice. d Unit cell of trigonal structure. These atomic positions are
occupied by n Ni atoms (yellow) and m Al atoms (orange) representing the composition NinAlm, in the cluster expansion theory. The 3D grids around each
of the atoms are the points, where the atom was displaced during potential renormalization calculation

One vacancy Four vacancies

VacuumNi2Al NiAl2

–13.852 eV –14.127 eV –12.896 eV –10.475 eV 0.0 eV

NiNiAl Al2

Al3

Al

–7.099 eV –7.515 eV –6.030 eV –1.717 eV –1.895 eV

Two vacancies Three vacancies

No vacancy

Ni4

Ni3

Ni2

Ni3Al Ni2Al2 NiAl3 Al4

–21.322 eV –21.543 eV –20.537 eV –17.631 eV –14.225 eV

–21.250 eV –21.447 eV –20.433 eV –17.523 eV –14.113 eV

0.072 eV 0.096 eV 0.104 eV 0.108 eV 0.112 eV

Total energy

Renormalization
correction

Renormalized
energy

Atomic structure

Alloy composition

Total energy

Atomic structure

Alloy composition

Total energy

Atomic structure

Alloy composition

Fig. 2 Possible clusters and their energies in the cluster expansion theory (fcc lattice). Tetrahedral clusters with all the possible non equivalent
combinations of Ni and Al, including vacancies at the lattice sites in a cubic unit cell. The total energies, calculated by ab initio DFT, renormalization
corrections at T= 1300 K and the renormalized energies are shown below each structure of the no vacancy clusters, respectively. For the clusters with
vacancy, total energies are shown. The Ni and Al atoms are represented by magenta and blue circles, while for vacancy cites white circles with dotted line
are used
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(Δx) and the time step (Δt) are set at 0.8 and 1.0, respectively. The
PFM simulations are performed for a time step, until the
microstructure becomes almost stable (typically around t= 105

for most of the compositions).

Microstructure evolution at various alloy compositions. Here,
we restrict ourselves to the solid-state phases of NinAl4−n with
n > 0.88 (Ni > 22%) as shown in Fig. 5a. The initial structure
contains Al- and Ni-rich seeds in a uniform matrix as shown in
Fig. 5b. The resulting structures (φNi) are plotted in Fig. 5c–t for
the distinct eight solid phases at 1027 °C, corresponding to the
number percentages of Ni as 22, 25.5, 30, and 35.5% for region
I; 40% for region II; 41% for region III; 47, 52.5, and 60% for
region IV; 65 and 70% for region V; 75% for region VI; 78, 79, 80,
82, and 84% for region VII, and 92% for region VIII. The
resulting microstructures vary distinctively with the alloy com-
position for each phase region as explained below.

The variation in microstructures for region I ranging from Ni
22 to 38% is shown in Fig. 5c–f. For small Ni concentrations, the
Ni-rich seeds start dissolving followed by Al-rich seeds forming a
homogeneous solid solution with very small variation (Fig. 5c). In

the middle of this region, Al4 precipitates are obtained within a
matrix formed by mixed Ni2Al3 and NiAl3. These precipitates
were random with dendritic signatures for Ni 25.5% and
rectangular for Ni 30% as shown in Fig. 5d, e. For snapshots of
the simulation, see Fig. 6a. The Al-rich seeds grow and Ni-rich
seeds dissolve with time, showing Ostwald ripening. The particle
size decreases with increasing Ni concentration and the
microstructure becomes almost homogeneous for Ni 35.5%
(Fig. 5f) as we enter region II.

In the next region II ranging from Ni 38 to 40%, the initial
structure disappears (Fig. 5g for Ni 40%) by Ni-rich seeds first
getting dissolved followed by the Al-rich seeds. Figure 6b shows
the snapshots. This region is the single phase region of Ni2Al3,
where the total composition is n+m= 5.

In region III also, we obtained homogeneous pattern with some
slight variation as shown in Fig. 5h for Ni 41%. The snapshots in
Fig. 6c shows similar time evolution as Ni 40%.

Region IV is the widest among all solid phase regions. We
observe uniform solid solution (Fig. 5i, j for Ni 47 and 52.5%) in
this region except near the right boundary. Near the right
boundary, Ni-rich seeds precipitate. First, circular shaped Ni3Al
particles are formed in a matrix of Ni2Al2, which transformed

No vacancy
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–21.033 eV –21.417 eV –21.046 eV –17.090 eV –13.712 eV
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Total energy

Renormalization
correction

Renormalized
      energy

Supercell structure

Alloy composition

Atomic structure

Fig. 3 No vacancy clusters, and their energies in the cluster expansion theory (bcc lattice). Tetrahedral clusters formed by lattice points of two bcc cubic
unit cells with all the possible non equivalent combinations of Ni (red sphere) and Al (blue sphere), without vacancies. The second row shows the
corresponding 2 × 2 × 2 supercells for the total energy calculation. The total energies per one tetragonal cluster, calculated by ab initio DFT, renormalization
corrections at T= 1300 K and the renormalized energies are shown below each structure, respectively
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into square shapes at t= 104 as shown in Fig. 6d for Ni 60%.
The particle size grows and coalesced particles are formed by
some particles at t= 6 × 104 along with the formation of some
smaller particles in the matrix. With increasing Ni concentration,
the particle size increases.

The microstructure composition changes in region V ranging
from Ni 62 to 73% (Fig. 5l, m for Ni 65 and 70%). Here, Al-rich
seeds precipitate as shown in Fig. 6e for Ni 65%. Spherical Ni2Al2
particles are formed within a uniform matrix of Ni3Al at t= 4 ×
103. They transform into rectangular shapes along with the
formation of some coalesced ones (t= 4 × 104). The particle
size increases as the time proceeds (t= 105). The particle size
decreases with increasing Ni concentration and distribution
becomes homogeneous in the next region. Region VI is a single
phase having no microstructure as shown in Fig. 5n for Ni 75%.
The corresponding snapshots are shown in Fig. 6f.

In region VII, rectangular Ni particles are formed in the Ni3Al
matrix from the Ni-rich seeds of the input structure. Internal
structures appear in these particles as shown in Fig. 6g for Ni 78%
at t= 2 × 103. These particles grow further at later times to form
square shapes composed of Ni4 only (t= 8 × 104). The particle
size further increases and rectangular particles with various sizes
are formed at t= 1.4 × 105 (Fig. 5o). With increasing Ni
concentration, the particle size increases and some coalesced

particles are formed (Fig. 5p). Some smaller particles with
irregular shapes appear for Ni 80% (Fig. 5q). For Ni concentra-
tion higher than 80%, Al-rich seeds grow forming spherical
shapes, that transform into rectangular shape as shown in Figs. 5r
and 6h for Ni 82%. The resulting microstructure consists of Ni3Al
particles embedded in pure Ni4 matrix. For higher Ni concentra-
tions, the particle size reduces and the microstructure disappears
forming a uniform phase in the next region; see Figs. 5t and 6i for
Ni 92%.

Disscussion
To understand the growth mechanism of the microstructures
from the initial pattern, we plot the change in local concentration
and hence the local free energy at various time steps, as shown in
Supplementary Fig. 1a, b for Ni 60%. We also plot the magnitude
of the free energy gradient (|∇F|), which corresponds to the local
stress of the system at each grid point in Supplementary Fig. 1c.
As expected the local stress is non-zero only at the interface. The
interfacial thickness is related to the (visible) non-zero gradient
region. These plots show a sharp interface and we can expect bulk
region even in the smallest precipitates of the microstructures.
The plot of the total stress of the system versus the simulation
time step shows an initial increase in stress until a maxima is
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reached. After this increase, the stress decreases slightly and
becomes constant after sufficient simulation time (see Supple-
mentary Fig. 1d). This initial increase in the stress corresponds to
the diffusion of the individual species. After the system forms a
stable microstructure, the stress also becomes constant. In addi-
tion to the growth mechanism, this inherent local stress in par-
ticular at the phase boundaries influences the shape of the
precipitates too and we have obtained cuboidal precipitates,
which are peculiar feature of the NiAl alloy without explicitly
introducing any external parameter for coherency stresses and/or
strain. In atomic scale, the lattice mismatch is the basic origin of
the coherency strain. The difference in the lattice parameter can
be included in our PFM as vacancies and interstitials as well as
the mixture of the two phases. This effect can be included in our
PFM in which the free energy is a discrete variable for integer
compositions. This is not possible in all previous PFMs, in which
the free energy is a continuous variable with respect to compo-
sitions. This is a distinct advantage of the present PFM. The most
important point is that, in our PFM, the density is automatically
fine tuned by the clusters with vacancies and interstitials as well as
the mixture of the phases. Therefore, the detailed lattice mis-
match can be handled without introducing anisotropic elastic
energies. Thus, we can conclude that the main origin of the
cuboidal precipitates is that our free energy is a discrete variable.
Indeed, if we change the definition of the free energy to be a
continuous variable with respect to compositions, we obtain
round precipitates.

The resulting microstructures and phases from our phase field
method are listed in Table 1 for each region in the solid phase
diagram and compared with the experimental and/or empirical
phase field model results. In region VII, we show inversion of
microstructure from γ-Ni precipitates in γ′-Ni3Al matrix
(Fig. 5o–q), to γ′-Ni3Al precipitates in γ matrix (Fig. 5r, s).
However, there is not yet any experimental demonstration of
microstructures having Ni precipitates in Ni3Al matrix, com-
monly termed as inverse superalloy. However, there is indication
of possibility of such microstructure in some experimental papers
as these microstructures are expected to have better hardness
compared to the normal alloys (γ′ precipitates in γ matrix). Vogel
et al.20 showed γ-Ni particles in the γ′-Ni3Al precipitates in
hierarchical microstructures of Ni–Al alloy. A very recent paper21

established an analogy between the inverse alloy and the hieir-
archical Ni86.1Al8.5Ti5.4 alloy. Therefore, we believe that the pre-
diction of such an inverse alloy will be seen in experiments too.

Our results are everywhere in excellent agreement with the
previously reported microstructures. We compare the rectangular
particles in Fig. 5r with that of Fig. 1 (heat-treated at 1350 °C) of
ref. 22, both for Ni 82%, in terms of its size, and estimated our
length scale as Δx≅ 0.03 μm. With this value we estimate εX to be

8.9 × 10−11 Jm−1 (see Supplementary Note 1), which is compar-
able to the gradient energy coefficient used in the previous
phase field calculation on Ni–Al alloys23.

We have assumed fcc lattice for various compositions of the
Ni–Al alloy system for our phase field calculation. The exceptions
were for n+m= 5 cases and Ni2Al2 composition. For all the n+
m= 5 compositions, we have used trigonal unit cell (similar to
Ni2Al3 structure). Ni2Al2 on the other hand is known to have a
bcc (CsCl) structure. For a more accurate calculation, we have
modified the free energy by constructing a tetragonal cluster from
the bcc lattice point as described by Allen et al.24. Unlike fcc
lattice, the cluster is formed by two adjacent unit cells as shown in
Fig. 3. We kept the volume of the unit cell containing one tet-
ragonal cluster same as that of the fcc cluster such that the
number density is preserved. For the free energy calculation, we
constructed a 2 × 2 × 2 supercell for each Ni–Al combination. The
structures, total energy per tetragonal cluster, renormalization
correction and the renormalized energies are shown in Fig. 3 for
each no vacancy Ni–Al combination, respectively. The dotted
plateaus in Fig. 4a denote the free energies for the clusters in a bcc
lattice. As expected, the bcc energy is lower than the fcc energy
for the Ni2Al2 composition only. We first repeated the first-
principles phase field calculation for Ni 47, 52.5, and 60% using
this free energy, and confirmed that the resulting microstructures
are similar to the ones obtained with fcc lattice. Next, we replaced
the fcc energy with the bcc energy only for the Ni2Al2 compo-
sition, and repeated more realistic phase field simulations shown
here. In all regions of the phase diagram, the resulting micro-
structures using the bcc Ni2Al2 energy perfectly coincide with
those using the fcc Ni2Al2 energy. This suggests the validity of
using the fcc energy only. This is due to the fact that the differ-
ence between these two energies was occasionally small. Of
course, it is better to choose the most favorable lattice having the
lowest energy for each NinAlm composition as in the present
simulation. This example nicely demonstrates the validity of this
treatment. The most important point is that the lattice (unit cell)
can be different in different composition. Our method is a uni-
versal one and can be used for any alloys in any lattice structure.

Since a 3D model with those parameters determined by first-
principles calculations can be used for constructing a more rea-
listic model, we performed 3D simulations for some of the alloy
compositions by taking a smaller system size of 40 × 40 × 40 grid
points, using the same simulation parameters as in the 2D
simulations. The initial structure consists of two seeds in a uni-
form matrix of the alloy. The resulting microstructures (shown in
Fig. 7) are very similar to the ones obtained in the 2D simulation
even for the spatial scale of the resulting patterns. This suggests
that the 2D simulations are good enough to reproduce the real
microstructures. Using this model, we confirmed that the

Table 1 Summary of the resulting microstructures/phases for various regions in the phase diagram

Region Our results Experiments

I Al4 precipitate in Ni2Al3+NiAl3 matrix Ni2Al3, NiAl3 and Al eutectic phase in Ni 31.5% Ni–Al alloy29

II, III Single-phase region Ni2Al3 single phase for Ni 40% at 800 K30

IV Single-phase region Single phase for Ni 45%31

Right boundary: Ni3Al particles in Ni2Al2 matrix Ni3Al microstructures in martensitic Ni2Al2 phase at 1150 and 1275 °C for
64.8 at% Ni–Al alloy32

V Ni2Al2 particles in Ni3Al matrix NiAl particles in a matrix of Ni3Al with some pure Ni phase for Ni 64.8% at
920 °C32

VI Single-phase region Ni3Al single phase at Ni 75%33

VII <Ni 80%: Ni particles in Ni3Al matrix Ni precipitation in the Ni3Al matrix (empirical PFM)34

>Ni 80%: Ni3Al precipitates in pure Ni4 matrix containing
small Ni3Al particles

γ′-Ni3Al precipitates in the matrix of γ phase, containing fine cuboidal γ′
particles for Ni 82%22,35

VIII Single-phase region Ni–Al solid solution at 570 K36
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resulting PFM works well giving the reliable time evolution of
microstructures for various compositions with no empirical
parameter in the thermodynamic part of the model.

Thus, our first-principles phase field method is definitely a
successful achievement in determining microstructures of the
length scale of 1–100 μm purely from quantum mechanical ab
initio theory. We strongly believe that the present method
becomes a future theoretical standard for materials, which is
fundamentally different from the existing methods limited only
within explanation of experimental observations with empirical
parameters. We are creating an automatic submission protocol
for potential renormalization calculation that can be used to
provide all the necessary input data for any system. This method
has a potential to predict new useful materials in industries by
supplying T–C phase diagram with microstructures, which is
crucial to discuss about material properties in realistic applica-
tions. Our first-principles PFM is a universal method to perform
large scale simulation for variety of materials at less
computation time.

Methods
Coarse graining procedure. In this model we have considered the number density
φX of the constituent elements, i.e., X=Ni and Al as the conserved order para-
meters. We calculate the free energy, F as a functional of these phase field variables
by using cluster expansion theory15–17. It provides a very simple yet powerful
approximation to calculate total energy of a system with a large number of sub-
stitutional structures. It allows us to calculate thermodynamic properties of a very
large system by simplifying it into Ising-type models which deals with much

simpler and discretized coarse-grained systems. This method has been widely used
in the calculations such as formation energies of random alloys and
temperature–composition phase diagrams. For Ni–Al alloys, which are mostly
found in an fcc structure, we use the tetrahedral approximation15,16. In a tetra-
hedron cluster (as shown in Figs. 1b, 2, and 3) there are maximum four possible
atomic sites to be filled by the two atomic species Ni and Al or left vacant. In cluster
expansion theory, the total energy can be expressed as a summation of the product
of many-body interaction potentials (Ji) and multisite correlation functions ξi for
the ith order cluster (i= 0, .., 4 for tetrahedron approximation). The sum is over all
the ith order clusters for this lattice type. Using DFT, the interaction potentials (Ji)
and the total energy for various configurations NinAlm (0 ≤m+ n ≤ 4) are calcu-
lated by filling the four sites of the tetrahedral unit cell by Ni or Al or vacancy. For
Fe–Pt alloys with vacancies, see ref. 25. In our model, there are total 20 such
possible structures as shown in Figs. 2 and 3. For n+m= 5, a trigonal structure is
chosen separately. The many-body interactions are evaluated by first-principles
calculations based on density functional theory (DFT) using Vienna Ab initio
Simulation Package (VASP)26.

Effect of temperature. In the total energy calculations, the internal entropy arising
by the displacement of the atoms in a length scale shorter than the lattice constant
is very important in describing, e.g., nucleation, defects, crack propagation, and
crystal growth. Without this effect, lattice models overestimate the order–disorder
phase transition temperature. To include the internal entropy effect into our model,
we apply potential renormalization theory18, in which, the bare interparticle
interaction in the off-lattice system is renormalized so as to give the same local
partition function at a given temperature. This is done by discretizing the con-
figuration space (Fig. 1b) and then taking the trace of the local movement of the
atom from the lattice point for each of the configurations as follows:

ΔF
kBT

¼ �log
X

j

Cj

X

k

e�
ΔEjk
kBT : ð4Þ

Here, ΔF denotes the change in the free energy due to the movement of the atom,
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ΔEjk is the increase in energy when one atom of the species j=Ni or Al is moved to
ri, and Cj is the concentration ratio. For normalization correction, Misumi's pro-
cedure [18] of dividing by 8 is inappropriate and a more suitable procedure is to
divide by 4. The details about the potential renormalization calculation can be
found in the Supplementary Note 2. Adding ΔF calculated in this way to the on-site
energy, we obtain the required local free energy for each of the compositions shown
in Figs. 2 and 3. The energies are renormalized at T= 1300 K (1027 °C). This
procedure is valid at high temperatures, where the Einstein model becomes
applicable. To partially incorporate the magnetism of Ni in the free energy, we
performed spin polarized energy and renormalization (for non vacancy clusters)
calculations for all the clusters containing Ni atom in VASP. The 1D and 2D plots
of the free energy calculated in this way as a function of φNi and φAl are shown
in Fig. 2.

Free energy functional. In the previous PFMs, the free energy functional is
expressed by a very simple polynomial of a continuous field variable27. In our PFM,
the field variables φX (X=Ni or Al) have numbers varying from 0 to 5 such that
φX= 1 ~ 2 corresponds to one site in the tetrahedron being occupied by X atom,
φX= 2 ~ 3 corresponds to two sites in the tetrahedron being occupied by X atom,
and so on. Because of this definition of φX, the condition for all sites of the
tetrahedron to be filled by either Ni or Al is given by φNi+ φAl= 5. This is
equivalent to the condition in terms of atomic fraction, i.e., n+m= 4 for the
NinAlm alloy. For a uniform definition, we normalize φX to x of NixAl4−x as
x ¼ 4

5φX þ ðφX
10 � 1

4Þ[tanh 5(φX− 1)− tanh 5(φX− 3.8)]. This relation roughly
produces x ¼ 4

5 φX for x < 1.0 and x > 3.8, and x= φX− 0.5 for 1.0 < x < 3.8. Then
our results can be compared with the experimental results, with any mixing
composition of Ni and Al.

Phase field simulation. We have used this free energy, to perform phase field
simulation at various regions in the phase diagram along the temperature line as
shown in Fig. 3a. For the effect of temperature on the microstructures please see
Supplementary Fig. 2 (for Ni 60% composition). For each of the global composi-
tions NinAlm, we define the initial phase field densities, φNi and φAl by giving a
constant value each corresponding to n and m, respectively, calculated using the
expression relating x to φX. In this uniform matrix we introduce some random
circular seeds, half of them having composition Nin+cAlm−c and the remaining half
as Nin−cAlm+c, so that the total composition of the complete system remains the
same as NinAlm as shown in Fig. 3b for Ni 30% alloy. Here, c is a very small
constant parameter in our simulation (typically around 0.3). Defining this initial
pattern, we perform the phase field simulation as per the above method. It is very
important to input an initial pattern, without which the microstructures will not be
formed. This is because a homogeneous pattern is a trivial solution to Eq. (3)
corresponding to a stable distribution. To avoid the system going to such local
minimum position, we need to assign some initial fluctuation in the input structure
for example, by distributing random initial seeds. The amplitude c of these seeds is
of more importance than the number and distribution within the matrix. We
observed that if c < 0.3, the system becomes homogeneous. This result strongly
suggests the nucleation growth mechanism, which coincides with the experimental
evidence of NiAl alloys as discussed by R. Moskovic28.

Data availability
All data generated and analysed during this study are included in the published article
and its Supplementary Information.

Code availability
Code that supports the findings of this study is available in the published article
as Supplementary Information.
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