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PAPER
Extended Beamforming by Sum and Difference Composite
Co-Array for Real-Valued Signals

Sho IWAZAKI†, Student Member and Koichi ICHIGE†a), Member

SUMMARY We have developed a novel array configuration based on
the combination of sum and difference co-arrays. There have been many
studies on array antenna configurations that enhance the degree of freedom
(DOF) of an array, but the maximum DOF of the difference co-array con-
figuration is often limited. With our proposed array configuration, called
“sum and difference composite co-array”, we aim to further enhance the
DOF by combining the concept of sum co-array and difference co-array.
The performance of the proposed array configuration is evaluated through
computer simulated beamforming∗.
key words: adaptive beamforming, extended array signal processing, cor-
relation matrix

1. Introduction

Adaptive beamforming by array antenna plays an important
role in radar, sonar, indoor, and outdoor wireless commu-
nications [1]–[3]. Direction-of-arrival (DOA) estimation is
also an effective technique to accurately detect the direc-
tions of array input signals, and several accurate algorithms
for doing so have been proposed [4]–[6]. These methods
are based on the eigenvalue decomposition of the sample
covariance matrix of the array input signal, which can be re-
garded as algorithms with the degree of freedom (DOF) of
O(N), where N denotes the number of antenna elements.

There have been many studies on minimum redun-
dancy arrays (MRAs) and methods using fourth-order cu-
mulants in order to enhance the DOF [7]. However, MRAs
often require very complicated computation for optimiz-
ing the array configuration. Also, the fourth-order cumu-
lant approach can be utilized only for non-Gaussian signals.
The concept of the Khatri-Rao (KR) product [8] assumes
a quasi-stationary process and gives a difference co-array
(which forms part of a larger virtual array aperture) with the
DOF of (2N − 1), but it cannot be used with the stationary
process. Nested and co-prime arrays [9]–[12] have attracted
attention as a version of the difference co-array, and the two-
level nested array can achieve the DOF of O(N2). However,
the maximum DOF of these configurations based on the dif-
ference co-array is limited to N(N − 1) + 1.

In this paper, we present a novel array configuration
called “sum and difference composite co-array” that com-
bines the sum and difference co-arrays to further extend the
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DOF of the difference co-array. We introduce the sum co-
array on the receiver side and combine the sum and differ-
ence co-arrays to enable this configuration. Using the sum
and difference co-arrays together in a co-prime array has
been proposed before [13]–[16], but our approach enables
an array configuration with a longer continuous part in a vir-
tual array, thus resulting in a higher DOF than the co-prime
configuration [17], [18]. In addition, we can make the sum
co-array part with lower calculation cost because no tem-
poral autocorrelations of the array inputs are required. Our
aim is to develop a physical and virtual array configuration
that exceeds the maximum DOF of the difference co-array.
Moreover, most of the conventional sum and difference co-
arrays evaluate DOA estimation and/or beamforming per-
formance without transmission/reception system configura-
tion. We have developed digital modulation/demodulation
scheme for the proposed co-array, its transmission/reception
system configuration, and evaluated digital communication
performance by means of bit error ratio (BER).

The rest of the paper is organized as follows. In Sect. 2
of this paper, we briefly introduce the signal models of a
general array antenna and the difference co-array config-
urations. Section 3 describes the concept of the proposed
sum and difference composite co-array, and then Sect. 4 dis-
cusses its application to beamforming. After presenting the
simulation results in Sect. 5, we conclude with a brief sum-
mary and mention of future work in Sect. 6.

2. Preliminaries

In this section, we first prepare the basic signal model of
the difference co-array. Then we introduce a matrix rank
restoration technique based on spatial smoothing.

2.1 Signal Model of Difference Co-Array

Consider an N elements uniform linear array (ULA) with the
signal model given by N×1 array steering vector a(θ) corre-
sponding to the phase delays of each array input e j(2π/λ)dp sin θ

that come from the direction of θi at the p-th element. Here,
the parameter λ is the wavelength of the carrier wave and
dp = p · d is the distance between the reference (first) and
the p-th element positions where d = λ/2.

We assume D narrowband input waves impinging on

∗Preliminary versions of this manuscript have been presented
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this array with the powers
{
σ2

i , i = 1, 2, ...,D
}

from the di-
rections {θi, i = 1, 2, ...,D}, respectively; then, the received
signal vector x(k) = [x1(k), x2(k), . . . , xN(k)]T is written as

x(k) = As(k) + n(k), (1)

where the matrix A = [a(θ1), a(θ2), . . . , a(θD)] expresses the
array manifold matrix and s(k) = [s1(k), s2(k), . . . , sD(k)]T

is the plane source signal vector of which signals si(k) are
uncorrelated to each other and temporally uncorrelated with
itself. Its elements generally take complex values. The vec-
tor n(k) = [n1(k), n2(k), · · · , nN(k)]T is a noise vector that
has temporally and spatially white Gaussian signals that are
uncorrelated to each other in this case. The autocorrelation
matrix of the array input vector x(k) is denoted as

Rxx = E[x(k)xH(k)]
= ARss AH + σ2IN

' A


σ2

1 O
σ2

2
. . .

O σ2
D

 AH + σ2IN , (2)

where Rss = E[s(k)sH(k)] ∈ RD×D, A ∈ CN×D, σ2 denotes
the noise power and IN ∈ R

N×N denotes the identity matrix.
Then, we vectorize the matrix Rxx as

z = vec(Rxx)

= vec

 D∑
i=1

σ2
i (a(θi)aH(θi))

 + σ21N

= (A∗ � A)p + σ21N , (3)

where 1N = [eT
1 , e

T
2 , . . . , e

T
N]T ∈ RN2×1, p = [σ2

1, σ
2
2, . . .,

σ2
D]T ∈ RD×1, and � denote the Khatri-Rao product oper-

ator. The unit vector ei ∈ R
N×1 consists of the following

components: i-th column being one, and all the others being
zero.

It is important that the column component of A∗ � A ∈
CN2×D enable us to represent the extended array steering
vector, which includes the set of virtual sensor positions
{dp − dq | 1 ≤ p, q ≤ N }. This form is called the difference
co-array and can be applied to DOA estimation, adaptive
beamforming, and so on. Also, the difference co-array be-
haves in accordance with the second-order statistics of the
input vector, such that σ2

i , σ
2
j (i , j) behave like coher-

ent signals to each other. An earlier study [9] showed that
the maximum DOF in that case is given by DOFDiff−Max =

N(N − 1) + 1.
Furthermore, we remove redundant rows from the

above manifold A∗ � A, replace the rows that correspond
to the locations of virtual elements in ascending order. Let
denote this matrix as A1 ∈ C

N1×D, where N1 = N2/2 + N −1
in case of even N [9]. Then, the new observation vector
z1 ∈ C

N1×1 whose elements are in order without redundancy
is given by

z1 = A1 p + σ2ê, (4)

where ê ∈ RN1×1 is a vector of all zeros except a 1 at the
(N2/4 + N/2)-th position [9].

2.2 Rank Restoration by Diagonal Loading

The correlation matrix may become singular and then there
will be some problems of stability or accuracy. Therefore
we often add a constant to the diagonal elements of the
target matrix Rxx so that the matrix become non-singular.
This rank restoration approach is called as Diagonal Load-
ing (DL) and formulated as

RDL = Rxx + δIN , (5)

where δ is an adjustment factor. The DL approach does not
require a spatially smoothed matrix. This will lead to a more
robust beamforming performance, as seen in the next sec-
tion, and also has the great advantage that we can keep the
DOF without any spatial smoothing method.

3. Proposed Approach

In this section, we present our novel array configuration, the
“sum and difference composite co-array”, and show its nu-
merical model. The concept of the sum co-array assumes
that we can manage both the transmitter and receiver sides,
similar to the well-known MIMO system, and then a set of
virtual arrays (channels) {xT p+xRq | 1 ≤ p ≤ M, 1 ≤ q ≤ N }
can be realized, where M and N denote the number of trans-
mitters and receivers, respectively. Under the above condi-
tion, (M + N) array elements enable the DOF of MN.

The sum co-array can also be realized by the receiver
side only, via algebraic operation, as discussed later. Our
aim with the proposed sum and difference composite co-
array is to achieve a higher DOF than that of the difference
co-array, DOFDiff−Max = N(N − 1) + 1.

3.1 Definition of Correlation Matrix

As discussed in Sect. 2, the core procedure when generating
the difference co-array is to deduce the vectorized autocor-
relation matrix vec(Rxx). For simplification, we modify the
expression of z in (3) as

z = vec(Rxx)

= vec

 D∑
i=1

σ2
i (a(θi)aH(θi))

 + σ21N

=

 D∑
i=1

σ2
i (a∗(θi) ⊗ a(θi))

 + σ21N . (6)

The key fact here is that the manifold (a∗(θi) ⊗ a(θi)) rep-
resents the array steering vector of the virtual elements that
compose the difference co-array.

For example, consider a 6-element nested array with
the physical sensor location {0, 1, 2, 3, 7, 11}, which is a kind
of difference co-array. We see that the relation
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Fig. 1 Construction of 6-element nested array.

a∗p(θi)aq(θi) = aq−p(θi) (7)

holds, where p, q = {0, 1, 2, 3, 7, 11}. In the case of p = 2
and q = 7, a complex virtual array component a∗2(θi)a7(θi) =

a5(θi) can be obtained at the location q − p = 7 − 2 = 5.
The configuration of the 6-element nested array is shown in
Fig. 1, where the black and gray elements respectively mean
real (physical) and virtual array elements.

Now, we adopt the concept of the sum co-array. Its
original concept is to generate a virtual array element at (p+

q)-th location for any physical location p and q. We start
from the relation

aq+p(θi) = ap(θi)aq(θi), (8)

and trace back the deduction process of the extended array,
i.e.,  D∑

i=1

σ̃2
i (a(θi) ⊗ a(θi))

 + σ̃21N

= vec

 D∑
i=1

σ̃2
i (a(θi)aT (θi))

 + σ̃21N

= vec(R̃xx) =: z̃, (9)

where σ̃2
i and σ̃2 respectively denote the i-th impinging sig-

nal power and the noise power. Assume that the desired
wave takes real values that satisfy ss(k) = s∗s(k), as in [13].
That is, the relation σ̃2

1 = σ2
1 holds and we can realize the

sum co-array for the desired signal. In this case, the matrix
R̃xx is written as

R̃xx = E[x(k)xT (k)] = AR̃ss AT + σ̃2IN , (10)

where R̃ss is the correlation matrix corresponding to the
real-valued signal s̃. Then, the observation vector z̃ in (9)
is regarded as the extended array steering vector of the sum
co-array.

3.2 Sum and Difference Composite Co-Array

We investigate how the DOF can be enhanced to more than
that of the difference co-array by combining the sum co-
array model described in Sect. 3.1 with the difference co-
array. As stated above, the observation vector z̃ of the sum
co-array can be derived by a similar process to the difference
co-array, provided that the signal ss(k) takes a real value.

Now, we examine the formulation of array configura-
tion {dp | 0 ≤ p ≤ N − 1 }. The key concept is to use not only
the difference components but also the sum components and
not to generate any hole (position lacking any physical el-
ement). For the nested array, we first divide the array into
multiple groups. In the case of a 2-level array configura-
tion where N is even, the array sensors can be divided into

2 groups, both of which have N/2 elements. Assume that
1st-group is allocated from d0 to dN/2−1 at intervals of d:
expressed as {dp = pd | 0 ≤ p ≤ N/2 − 1 }, the virtual com-
ponents including the sum ones are generated up to dN−2
continuously. We also consider the allocation of 2nd-group
{dαp | 1 ≤ p ≤ N/2 }, where αp is given as {N/2 + p(N − 1)},
dαp means p-th position in 2nd-group, and each dαp repre-
sents the physical sensor position of 2nd-group. Each sen-
sor allocated at dαp produces the difference elements up to
dαp−(N/2−1) and the sum elements up to dαp+(N/2−1) without
holes. Therefore, the generated virtual elements are contin-
uously lined and do not overlap each other as much as pos-
sible if we install actual sensors with no less than (N − 1)d
distance between every dαp position. For this reason, the
condition

dαp+1 − dαp ≥ (N − 1)d,
where dαp+1 > dαp , 1 ≤ p ≤ N/2 − 1 (11)

is required, and the condition {dαp+1 − dαp = (N − 1)d} is
desirable when we need to arrange without holes. Here, the
sequences {d0, · · · , dN−2} of the 1st-group and {dαp+1 − dαp =

dN−1} of the 2nd-group are well-connected. We chose the
difference component dα1−(N/2−1) of dα1 to maintain the con-
tinuous allocation, so every position of dαp is determined
with (N − 1)d intervals. Figure 2 shows the 2-level sum and
difference composite co-array configuration with even ele-
ments, which is formulated as

dp = pd, (0 ≤ p ≤ N/2 − 1), (1st-level), (12)
dαp = {(N − 1) + N/2 + (p − 1)(N − 1)} d

= {N/2 + p(N − 1)} d
= αpd, (1 ≤ p ≤ N/2), (2nd-level). (13)

When the continuous virtual array elements in positive
positions are more than or equal to αN/2 + (N/2 − 1) + 1 =

(N + 1)N/2, the virtual element at dα1 + dαN/2−1 position is
also connected as the farthest position element. In addition,
the array elements at 0 and negative directions can also be
created (discussed in Sect. 3.3), and more than or equal to
N2 = 2 {(N + 1)N/2}+ 1 = (N + 1)N + 1 virtual components
appear continuously. We compare the DOF of the proposed
method DOFSum−Diff = (N + 1)N with the ideal maximum
DOF of the difference co-array DOFDiff−Max = N(N − 1) +

1 and find that it has the advantage of (2N + 1) elements
expansion; in other words, 1 + (2N − 1)/(N2 − N + 1) times
expansion. It expands by 1.54 times in the case of N = 4
and 1.35 times in the case of N = 6. The proposed method
has an advantage in the case of small values of N, which are
often used in real array applications.

Also, when compared with the DOF of the nested ar-
ray N1 = (N2/2 + N − 1), the proposed method has the
advantage of (N2/2 + 1) elements expansion, which means
2 − (N − 2)/(N2/2 + N − 1) times expansion. It expands by
1.82 times in the case of N = 4 and 1.87 times in the case of
N = 6. Figure 3 compares the number of virtual elements
as a function of the number of physical elements in each
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Fig. 2 Construction of N-element sum and difference co-array.

Fig. 3 Comparison of the numbers of physical and virtual elements.

Fig. 4 Comparison of the physical array size and the numbers of virtual
elements.

method. We see from Fig. 3 that the proposed array con-
figuration achieves the largest number of virtual elements.
We can confirm that the proposed method is more effective
than the conventional methods in terms of the DOF for the
number of physical elements.

Figure 4 also compares the number of virtual elements
as a function of the physical array size (aperture). We see
from Fig. 4 that the difference and sum co-prime array [13]
achieves the largest number of virtual elements per the ar-
ray size, and the proposed method is the 2nd largest. How-
ever, as discussed before with Fig. 3, the proposed approach
looks the most effective from the viewpoint of the number
of virtual element increments per physical elements (equiv-
alent to the distance between the marker symbols in Fig. 4,
as each marker shows the case of adding two more physical
elements). Choosing either the difference and sum co-prime
array [13] or the proposed array will depend on which is
regarded as more important factor, the number of physical
elements or the physical array size.

3.3 Practical Example of 6-Element Configuration

Let us consider array sensors with the positions of dp, dq
where {p, q} = {0, 1, 2, 8, 13, 18} as an example. The com-
ponents expressed by the difference set of dp and dq become
the following 27 positions:

{q − p} = {−18,−17,−16,−13,−12,−11,−10,
−8,−7,−6,−5,−2,−1, 0, 1, 2, 5, 6, 7,
8, 10, 11, 12, 13, 16, 17, 18}. (14)

The elements described by the addition become the follow-
ing 18 positions:

{q + p} = {0, 1, 2, 3, 4, 8, 9, 10, 13, 14, 15, 18,
19, 20, 21, 26, 31, 36}. (15)

Note that this method enables us to express some additional
positions that cannot be realized by the difference co-array.
However, the above set does not include negative values.

Recall that the conjugate of the array steering vector
becomes a∗p(θi) = a−p(θi) and this expression represents
the negative positions. The same as with the discussion on
a∗p(θi)a∗q(θi), we have

Řxx = E[x∗(k)xH(k)]. (16)
ž = vec(Řxx) (17)

Again, the necessary condition for the desired plane
signal ss(k) is real-valued. Then, the sum co-array can ex-
press the following 35 positions including the negative di-
rections:

{q + p} ∪ {−(q + p)}
= {−36,−31,−26,−21,−20,−19,−18,−15,−14,
−13,−10,−9,−8,−4,−3,−2,−1, 0, 1, 2, 3, 4, 8,
9, 10, 13, 14, 15, 18, 19, 20, 21, 26, 31, 36}. (18)

Moreover, the above set contains more positions than that
of the difference co-array from the reference point under `1-
norm (in the above case, less than −18 and more than 18).
The extended virtual elements expressed by both of the sets
(14) and (18) give us a total of 49 possible locations includ-
ing 43 continuous components from −21 to 21, as follows:

{q − p} ∪ {q + p} ∪ {−(q + p)}
= {−36,−31,−26,−21,−20, . . . , 20, 21, 26, 31, 36}.

(19)

As a result, the extended sum and difference “compos-
ite” co-array elements exist continuously from −21 to 21,



922
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.7 JULY 2019

Fig. 5 Construction of 6-element sum and difference co-array.

and DOFSum−Diff is raised to 42 in this case. The re-
sult of DOFSum−Diff = 42 is about 4/3 times greater than
DOFDiff−Max = N(N − 1) + 1 = 31 in the case of the 6-
element array.

Figure 5 shows an example configuration of the pro-
posed 6-element sum and difference composite co-array,
where the red elements express the sensors that can be de-
scribed only by the sum co-array. The concept of the pro-
posed array configuration is based on interpolating the holes
in the difference co-array with the help of the sum co-array,
and consequently it can create a long continuous array ele-
ment configuration.

4. Discussion

4.1 Application to MVDR Beamforming

As an application, we simulate MVDR beamforming in
the next section to determine how the proposed co-array
works. The extended input vector z̄ = [zT , z̃T , žT ]T ∈

C3N2×1 corresponds to the power of the extended array,
and we consider the beamforming via the weight vector
w̄ = [wT

Diff ,w
T
Sum−Pos,w

T
Sum−Neg]T ∈ C3N2×1. Its signal model

is described as

y = w̄H z̄

=

 D∑
i=1

wH
Diff(a∗(θi) ⊗ a(θi))σ2

i

 + σ2wH
Diff1N

+

 D∑
i=1

wH
Sum−Pos(a(θi) ⊗ a(θi))σ̃2

i

 + σ̃2wH
Sum−Pos1N

+

 D∑
i=1

wH
Sum−Neg(a∗(θi) ⊗ a∗(θi))σ̌2

i

 + σ̌2wH
Sum−Neg1N ,

(20)

where the terms wDiff ,wSum−Pos,wSum−Neg mean the weight
vector of the difference co-array, that of the sum co-arrays
for positive direction, and that for negative direction, respec-
tively. The parameters σ2

i , σ̃
2
i , σ̌

2
i describe the energies of

the extended signals which comes from i-th DOA on the
difference co-array and the sum co-arrays for positive and
negative directions, respectively. Then, the weight vector
w̄MVDR ∈ C

N2×1 in the MVDR beamformer is expressed as
the solution of an optimization problem under the condition
of the constraint:

w̄MVDR =
R̄−1

DL ā1(θ1)

ā1(θ1)H R̄−1
DL ā1(θ1)

, (21)

where

R̄DL = R̄zz + δIN2 ∈ C
N2×N2 , (22)

Fig. 6 Tx and Rx system models of simulations.

R̄zz = z̄1 z̄H
1 , (23)

where z̄1 ∈ C
N2×1 denotes the shortened vector from z̄ by

removing repeated rows, as to shorten z into z1 in (4). Be-
sides, the vector ā1(θ1) ∈ CN2×1 is the ideal steering vector
without repeated elements to the desired wave direction θ1.
This will lead to more robust beamforming performance as
seen in the next section, and also has the great advantage
that we can keep the DOF without any spatial smoothing
method.

4.2 System Configuration

Figure 6 shows a transmitter (Tx) system model of the
proposed beamformer. We first generate the symbol se-
quence ŝs(k) as a pseudo random signal of BPSK, and then
the sequence ŝs(k) is filtered into ss(k) by using a root-
cosine rolloff filter after oversampling to avoid any prob-
lems caused by Inter Symbol Interference (ISI). After that,
the carrier wave e− j(2π fck) is multiplied to ss(k) and then
transmitted from the transmission antenna. Note that the
center value of the amplitude is shifted to 1 to avoid neg-
ative amplitudes for squared extended array operation, i.e.,
s1(k) = ss(k)e− j(2π fck) + 1. This amplitude allocated in a pos-
itive quadrant works effectively; indeed, we do not have to
distinguish whether squared signals were originally positive
or not.

In the receiver (Rx) system shown in Fig. 6(b), we do
not have to distinguish if the squared value was originally
positive or not. The weights w̄MVDR and the extended sig-
nal z̄ are used to recover the output signal s̃ ≈ ŝs by spa-
tial filtering. Note that the number of snapshots used in the
autocorrelation process (2) and (3) should be within a sym-
bol period, and is often common (but could be different) for
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Table 1 Specifications of simulation no. 1.

Array configuration Nested array
No. of array elements N 6
Sensor allocations {p, q} {0, 1, 2, 3, 7, 11}
No. of input signals D 14

Array interval d1 λ/2
Modulation BPSK

DOA of desired wave −20◦

DOAs of interference waves −80◦,−60◦,−45◦,−25◦,
−22◦,−18◦, 5◦, 20◦, 30◦,

40◦, 45◦, 60◦, 70◦

SNR 10 dB
SIR −3 dB

No. of snapshots 500

Fig. 7 Example beamforming results for 6-element nested array with and
without DL method.

the generating processes of the weight vector w̄MVDR in (21)
and the extended signal vector z̄ in (3). Then, we trans-
form the spatial filtered output yMVDR containing powered
behaviors into the original amplitude expression by means
of the square-root operation. The output yc is acquired by
the zero-centering shift operation, and now we use the tem-
poral average of (yMVDR)1/2 as an example of shift operator.
After that, we apply the inverse processing of Tx, which in-
cludes the carrier wave rejection by multiplying the phase-
term e j(2π fck), the root-cosine rolloff filtering, and the deci-
mation. As a result, the processed output signal s̃(k) is ob-
tained. In the next section, it is compared with the ideal
source symbol sequence ŝs(k) in terms of BER performance.

5. Simulation

In this section, we evaluate the performance of the proposed
array configuration through computer simulation.

5.1 Effect of Diagonal Loading (DL)

First, we clarify the effect of the DL method (described in
Sect. 4.1). The nested array often utilizes spatial smoothing
to solve the rank deficiency problem of the array covariance

Table 2 Specifications of simulation no. 2.

No. of array elements N 6
Sensor allocations {p, q}

Nested array {0, 1, 2, 3, 7, 11}
Proposed array {0, 1, 2, 8, 13, 18}

No. of input signals D 14
Array interval d1 λ/2

Modulation BPSK
DOA of desired wave −20◦

DOAs of interference waves
−80◦,−60◦,−45◦,−25◦,
−22◦,−18◦, 5◦, 20◦, 30◦,

40◦, 45◦, 60◦, 70◦

SNR −20 to 20 dB
SIR 20 dB (ex. 1), 10 dB (ex. 2)

No. of snapshots 500

matrix. However, in the case of high SNRs or a small num-
ber of snapshots, the covariance matrix Rxx becomes unsta-
ble and rank deficient. It may result in an undesired main-
lobe direction or large sidelobes. Here, we confirm that the
application of DL will solve the rank deficient problem and
produce desired beamforming results. Specifications of the
simulation are listed in Table 1. We used BPSK modulation
to both desired and interference signals. Modulation of in-
terference signals does not affect to beamforming result; we
can also suppress complex digital modulations like QPSK
or QAMs. Case of desired signal with complex modulation
remains as one of future studies.

Figure 7 shows the beamforming results, where the red
and yellow arrows respectively suggest the desired and in-
terference directions. We see from Fig. 7 that the method
without DL could not focus the mainlobe only to the desired
direction. The DL method with a small value of δ (= 0.1)
could focus the mainlobe but still has large sidelobes. The
DL method with a large value of δ (= 105 or larger) suf-
ficiently suppresses the sidelobe level and can make null
beams to the interference directions, thus demonstrating that
the DL works effectively.

5.2 Evaluation of the Proposed Array Configuration

Next, we compare the performance of the proposed array
configuration and the nested array. Specifications of the sim-
ulation are listed in Table 2, where the same six elements are
used but allocated to different positions.

Figure 8 shows the beam patterns formed by the pro-
posed and conventional nested array configurations under
the specifications in Table 2. Note that the DL method is
applied to both the proposed and conventional nested arrays
and we apply δ = 105 to both configurations. We see from
Fig. 8 that the proposed method can make better beam char-
acteristics. As a result of creating a higher number of vir-
tual array elements and enhancing the DOF, the proposed
method can make 42 nulls while the conventional nested ar-
ray makes only 22. Moreover, the narrow mainbeam width
enables us to distinguish the close angles of −20◦ (desired)
and −18◦,−22◦ (interference), so we conclude that this char-
acter works effectively in this simulation. Figure 8 also
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Fig. 8 Comparison of beam patterns for SNR = 20 dB.

shows that the sidelobe levels are well suppressed by the
proposed array configuration. The effect of DL is robust but
quite powerful, as Figs. 8(a) and (b) have similar character-
istics.

Next, we evaluate BER to determine the performance
of the whole array system (Figs. 6(a) and (b)). Figure 9(a)
compares the BER performance in the case of 13 interfer-
ence waves (Table 2). We can see from Fig. 9(a) that the
proposed approach achieves a much better BER than the
others in the case of an appropriate value δ = 105 when
SNR > −15 dB. Also, we can see from Fig. 9(b) that the
proposed method works efficiently even under bad condi-
tions (e.g., SIR = 0 dB).

We also evaluate the BER characteristics in a
situation where the number of interference waves is
changed: (a) six interferences from the DOAs of
{−60◦,−45◦,−22◦,−18◦, 20◦, 30◦} and (b) 29 interferences
from the DOAs of {−40◦,−35◦,−30◦,−27◦,−23◦,−15◦,
−12◦,−10◦,−5◦, 0◦, 10◦, 15◦, 55◦, 60◦, 80◦, 85◦}, plus 13
DOAs used in Fig. 9. The results are respectively shown
in Figs. 10(a) and (b). We can see from Fig. 10 that the pro-
posed method again achieves a better BER performance, and
its characteristics are similar to the case of the 13 interfer-

Fig. 9 Comparison of BER characteristics for 13 interference waves.

Fig. 10 Comparison of BER characteristics for SIR = 20 dB.
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ence waves in Fig. 9. These results demonstrate that the pro-
posed method is solid and robust, and that it can suppress
interference waves coming from the close-angles with the
desired signal.

6. Concluding Remarks

In this paper, we presented a novel array configuration called
a “sum and difference composite co-array” based on the
combination of the sum and difference co-arrays. The pro-
posed array could further enhance the DOF and make better
beam patterns with narrow mainlobe widths and a higher
number of nulls beams. The results of computer simula-
tion showed that the proposed array configuration had a
better BER performance than the conventional configura-
tion. Evaluating the DOA estimation performance of the
proposed array configuration remains our future work.
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