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There are growing attentions to providing a simple and accurate shock detection method 
for computational fluid dynamics, not only for identifying the shocks in the post-processing 
but also for developing low-dissipation numerical schemes. However, most of conventional 
methods are designed for only either of them, as represented by Kanamori-Suzuki sensor 
[22] and Ducros sensor [1999]. The former method is quite accurate in inviscid flows 
but rather expensive to be incorporated into a numerical scheme, whereas the latter is 
very efficient and widely used while calling for an expert’s care in determining actual 
shocks. In order to achieve both efficiency and theoretical accuracy, we developed a novel 
shock detection method for two-dimensional viscous/inviscid flows on Cartesian grids 
based on Canny-Edge-Detection [29], which is a well-known image processing method. 
We successfully applied the Canny-Edge-Detection to computational fluid dynamics (CFD) 
solutions by replacing the brightness value of digital images with pressure in CFD solutions. 
Then, by taking advantages of the simplicity of Canny-Edge-Detection along with Rankine-
Hugoniot conditions across shocks (where 50% deviation is intentionally allowed only 
within the numerically captured shock), our method is designed to be both efficient and 
theoretically accurate, in contrast with the conventional schemes. The detection results of 
our method are examined in selected three test cases, in comparison with the Kanamori-
Suzuki sensor and the Ducros sensor. Through the tests, we confirmed that our sensor is as 
accurate as Kanamori-Suzuki method, while as cheap as the Ducros sensor. In addition, the 
present sensor successfully detects shocks even in a viscous flow, and smoothly represents 
shocks oblique to the grid lines. Therefore, our sensor is eventually expected to contribute 
not only to the post-processing in CFD but also to developing schemes for computing high-
speed flows with low cost and high accuracy.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

A shock wave is a crucial feature of compressible flows. From a physical point of view, the shock wave is regarded as a 
thin discontinuous layer in which Mach waves have been assembled, associated with abrupt changes in pressure, density, 
temperature, and other physical variables. As a result, the shock wave can be both harmful and beneficial in practical 
applications. For example, once the shock impinges on a body surface of aircraft/spacecraft, a boundary layer separation, 
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Table 1
Shock sensors.

Accuracy Efficiency Simplicity (free from threshold) Viscous flows

Ducros et al. [6] Fair Very high No Yes
Kanamori and Suzuki [22] Very high Low Yes No
Pagendarm and Scitz [51] Fair Fair No Yes
Lovely and Haimes [52] Fair High Yes Yes
Present High High Yes Yes

huge drag, and extreme aerodynamic heating can be induced, that can be disastrous to the vehicle structure [1]. In addition, 
the shock also generates a loud and startling sound called ‘sonic boom’ from cruising aircraft [2], which has been a primary 
obstacle of the practical use of a supersonic transport, in spite of the technological possibility.

On the other hand, the shock has been actually applied to the medical field: Extracorporeal Shock Wave Lithotripsy 
(ESWL), for example, is one of the most common treatments for kidney stones in the United States of America [3], in which 
the kidney stone is removed by the shock waves from outside the patient’s body. The shocks are also observed in detonation 
combustion (in which the shock travels through a duct) [4], which can be applied to a rocket engine. In astrophysics, a 
supernova explosion is associated with a shock wave, which is its key structure for the physical understanding of the stellar 
evolution [5]. For all the above cases, it is of great importance to identify the exact location of the shock wave.

Traditionally, in post-processing of computational fluid dynamics (CFD), the shocks have been detected (by human judg-
ment) as plotted, dense contour lines or iso-surfaces of physical values (e.g., pressure). With this manner, however, even 
experts can hardly identify shocks precisely because the boundaries between the shock waves and the other phenomena 
(i.e. endpoints of shocks) cannot be determined with confidence. In recent years, on the other hand, shock detectors (or 
sensors) have become powerful tools. In particular, the Ducros sensor [6] in which velocity divergence and vorticity are 
compared is popular nowadays because of its simplicity for implementation to distinguish the shocks form the turbulence 
[7]. Nevertheless, it is sensitive to velocity divergence even when vorticity is negligible [8], occasionally leading to wrong 
detected shocks (as will be demonstrated later). In addition, such a sensor usually calls for a user-specified threshold to de-
termine shocks, whose values are scattered among users [9–21]. Thus, beginners and non-specialists will likely to encounter 
difficulties in determining the appropriate value. Kanamori and Suzuki proposed a shock detector based on the method of 
characteristics [22]. Although this method can yield accurate results on the rigorous grounds without tunable parameters, 
it needs high computational cost. Moreover, this sensor can encounter difficulties at shocks inside the cells where the nu-
merically obtained values deviate from the theoretical value [23]. Also, the applicability of this scheme is limited to inviscid 
flows. There are other shock detection methods on post-processing, as summarized in a review article by Wu Ziniu [24] (and 
references therein), but no method seems to be free from the threshold values for accurate and efficient shock detections 
for viscous flows (see Table 1).

Shock sensors for CFD are not only useful for identifying the shocks in the post-process as mentioned above, but also 
important for developing low-dissipation numerical schemes for compressible flows where shocks are present [9–21]. In 
general, numerical methods with lower dissipation are preferred for simulating flows (specifically, turbulent flows) accu-
rately. However, it is well known that computing shocks with insufficient dissipation will destabilize the solution, and it is 
also known that low-dissipation schemes often give rise to anomalous solutions, represented by “Carbuncle Phenomenon” 
[25,26]. We can handle these problems by, i) adding numerical dissipation locally around shocks2 if their locations are 
clearly determined [27], or ii) increasing grid resolution near shocks, such as adaptive-mesh-refinement (AMR) [28]. For 
both the means, a technique for locating shocks is essential.

Now let us turn our attention to the information engineering community, where an image processing method called 
‘Canny-Edge-Detection’ is well-known [29]. This is one of the (economical) first-order edge detection methods, in which the 
“edge” stands for discontinuous changes of brightness in digital images. We expect that the Canny’s method can be applied 
to CFD solutions easily by replacing the brightness value with pressure, since the image pixel shares the structure of Cartesian grids in 
CFD. In derivation of the present shock detection method, a particular attention will be paid to the numerical errors inside 
the captured shockwave. The resultant method is potentially as cheap as the Ducros sensor, theoretically as accurate as 
the theory of characteristics (for inviscid flows), and successfully defines shocks without setting threshold values even for 
viscous flows (as will be demonstrated later).

The present work focuses on the Cartesian grids, that have been gaining growing attentions. In fact, there are many 
Cartesian grid generators and Cartesian-based CFD solvers available [30–45], presumably because i) AMR can be relatively 
easily implemented [4,32,42], ii) higher-order methods such as WENO [46] or Monotonicity-Preserving scheme [47] can be 
(almost) directly employed with slightest loss of accuracy [35,45], and iii) a very useful Immersed-Boundary-Method (IBM) 
[48] can be combined for flows with body-walls [38,39] (that are usually absent in astrophysical flow simulations, though), 
all for highly resolved flow solutions on Cartesian grids.

2 The low-dissipation schemes typically take the form of “(numerical flux) = (central difference) − (sensor)×(dissipation term)”, in which the “(sensor)” 
is near unity at shocks and zero otherwise [9–21].
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Fig. 1. Canny-Edge-Detection applied to a grayscale photograph.

The objective of this work is to develop a new method of shock wave detection designed to be both efficient and the-
oretically accurate, in contrast with the conventional schemes by combining Canny-Edge-Detection and Rankine-Hugoniot 
conditions for two-dimensional viscous/inviscid flows on Cartesian grids. Our paper is organized as follows. Section 2 will 
briefly review the original Canny-Edge-Detection for digital images, and then combine it with the Rankine-Hugoniot con-
ditions across the shock wave for the shock detection within compressible flow solutions on Cartesian grids. In Sec. 3, 
numerical examples will demonstrate accuracy, efficiency, and applicability to viscous flows of our method. Through the 
numerical experiments, the present method is expected to make a new option as a cheap, accurate, and easy-to-use (i.e., 
free from manually-operated thresholds) shock detector, and will eventually contribute to computing high-speed flows both 
in physics (i.e., thorough physical explanations of shockwave phenomena [49,50]) and in industries (i.e., development of 
quiet aircrafts [2]). Finally, Sec. 4 will summarize the current work.

2. Numerical method

In this Section, we will describe our shock wave detection method. 2.1 will describe a detailed algorithm of the orig-
inal Canny-Edge-Detection. Then, 2.2-2.4 will explain the proposed method in a step-by-step manner: 2.2 will explain a 
step for selecting “shock candidates” by modified Canny-Edge-Detection for the shock sensor; 2.3 will describe a method 
for selecting shock cells from the candidates by Rankine-Hugoniot conditions; and 2.4 will summarize our proposed 
method.

2.1. Canny-Edge-Detection

Canny-Edge-Detector [29] is an edge detection operator to detect a wide range of edges in images, developed by John 
F. Canny in 1986. The edge detection is an image processing technique for detecting discontinuities in brightness, that is, 
extracting large gradient magnitudes of brightness (see Fig. 1 for example).

The process of Canny-Edge-Detection algorithm can be divided into the following four steps:

1. Smoothing images (in order to remove noises by Gaussian filter),
2. Computing gradient magnitudes and edge directions in an image,
3. Non-maximum suppression (thinning edges),
4. A final determination by a double threshold.

1) Smoothing images: The first step is filtering out any noise on the original image by using the Gaussian smoothing filter: 
These image noises are inevitably produced during picture taking. Since these noises can strongly affect the edge detection 
results, it is essential to eliminate them by smoothing the image. The equation for a two-dimensional Gaussian filter is,

G = 1

2πσ 2
· exp

(
− x2 + y2

2σ 2

)
(1)

where x is the distance from the origin in the horizontal axis, y is the distance from the origin in the vertical axis, and σ
is the standard deviation of the Gaussian distribution.

2) Computing gradient magnitudes and edge directions in an image: The next step is to find the edge strength by 
computing the gradient magnitudes of brightness within the image. There are various algorithms to obtain the gradients. 
In this research, we use the Sobel operator [53], which is a widely used filter to compute gradients, as detailed in the 
following. The Sobel operator uses a pair of 3 × 3 convolution matrices/masks (Fig. 2), one for estimating the horizontal 
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Fig. 2. Sobel masks of 3 × 3 dimensions: (a) horizontal, (b) vertical.

gradient (Fig. 2(a)) and the other for the vertical one (Fig. 2(b)). For example, the horizontal gradient mask (Fig. 2(a)) was 
constructed by multiplying a horizontal averaging vector 

[
1 2 1

]T with a horizontal differential vector 
[ −1 0 +1

]
.

If we let aij be a brightness value on a cell (i, j) of the source image, and dxij and dyij be approximated horizontal and 
vertical gradients on the cell (i, j), respectively, they are computed by using the Sobel operator as follows:

dxij ≡
⎡
⎣ −1 0 +1

−2 0 +2
−1 0 +1

⎤
⎦ ·

⎡
⎣ ai−1 j+1 aij+1 ai+1 j+1

ai−1 j ai j ai+1 j
ai−1 j−1 aij−1 ai+1 j−1

⎤
⎦ ,

dyij ≡
⎡
⎣ +1 +2 +1

0 0 0
−1 −2 −1

⎤
⎦ ·

⎡
⎣ ai−1 j+1 aij+1 ai+1 j+1

ai−1 j ai j ai+1 j
ai−1 j−1 aij−1 ai+1 j−1

⎤
⎦ ,

(2)

where (·) means inner product calculation. After calculating the approximated gradients, we can calculate a gradient mag-
nitude dij and its direction θi j (hereinafter, this is called gradient direction) on the cell (i, j), by the following formula:

dij ≡
√

dx2
i j + dy2

i j (3)

θi j ≡ tan−1(dyij/dxij) (4)

For instance, for⎡
⎣ ai−1 j+1 aij+1 ai+1 j+1

ai−1 j ai j ai+1 j
ai−1 j−1 aij−1 ai+1 j−1

⎤
⎦ =

⎡
⎣ 0 −1 0

1 2 3
0 −1 2

⎤
⎦ ,

dxij ≡
⎡
⎣ −1 0 +1

−2 0 +2
−1 0 +1

⎤
⎦ ·

⎡
⎣ 0 −1 0

1 2 3
0 −1 2

⎤
⎦ = 0 + 0 + 0 + 2 + 0 + 2 + 0 + 0 + 2 = 6,

dyij ≡
⎡
⎣ +1 +2 +1

0 0 0
−1 −2 −1

⎤
⎦ ·

⎡
⎣ 0 −1 0

1 2 3
0 −1 2

⎤
⎦ = 0 + 2 + 0 + 0 + 0 + 0 + 0 − 6 − 2 = −6

and

dij ≡
√

dx2
i j + dy2

i j = 6
√

2

θi j ≡ tan−1(dyij/dxij) = tan−1(−1) = −π/4

that is, dij = 6
√

2 of the gradient magnitude exists with θi j = −π/4 direction (and a potential edge, as will be explained 
below, lies in +π/4 and −3π/4 directions) at the cell (i, j).

3) Non-maximum suppression: Non-maximum suppression is an edge extracting technique by excluding pixels where 
gradient values are not maximal. Specifically, for each cell, it is checked whether or not the gradient magnitude dij of 
the cell (i, j) is maximal among pixels in the “gradient direction θi j ” found in step 2. Then, the edge direction which is 
considered perpendicular to the gradient direction can be defined. We illustrated this procedure in Fig. 3. The algorithm 
executed for each pixel (i, j) to distinguish edge pixels from the others is:

3-1. Compare the edge magnitude value of the target pixel dij (red point in Fig. 3) with those of the pixels in the positive 
and negative gradient directions (blue points in Fig. 3).

3-2. If dij is the largest compared to the pixels with the same direction of the gradient θi j in the mask (we use a 3 ×3 mask 
in this paper), the target pixel is extracted as an edge “candidate.” Otherwise, the pixel is excluded from the candidates.
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Fig. 3. Non-maximum suppression. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 2
Discretization of edge detection.

θi j range 
[rad]

Quantized θi j

[rad]
Referenced cells

−π/8 ≤ θi j < π/8 0 (i + 1, j), (i − 1, j) (i)
π/8 ≤ θi j < 3π/8 π/4 (i + 1, j + 1), (i − 1, j − 1) (ii)
3π/8 ≤ θi j < π/2 π/2 (i, j + 1), (i, j − 1) (iii)
or
−π/2 ≤ θi j < −3π/8
−3π/8 ≤ θi j < −π/8 −π/4 (i + 1, j − 1), (i − 1, j + 1) (iv)

Fig. 4. Referenced cells in each case.

After conducting the above procedure, only extracted edge cells called “candidates” proceed to the final step (4. double 
threshold).

In the actual implementations, the algorithm discretizes the gradient directions θi j into a set of four discrete directions 
as shown in Table 2 and Fig. 4. In the case (i), for example, if the gradient magnitude dij of the target cell (i, j) (highlighted 
as red in Fig. 4) is higher than that of the referenced cells in the same direction of the gradient directions θi j (highlighted 
as blue in Fig. 4), the target cell is judged to be a candidate. Otherwise, the target cell is determined to be a non-edge.

4) A final determination by a double threshold: Finally, true edge cells are determined from the “candidate” pixels. While 
most candidates represent real edges in an image, the others were derived from merely noises and/or (continuous) color 
variations. In order to filter out these undesired edges, we introduce a pair of thresholds, one is higher (T pH ) and the other 
is lower (T pL ). Edge cells are finally determined under the following three conditions:

4-1. Determine as the edge when dij > T pH is true
4-2. Determine as the non-edge when dij < T pL is true
4-3. For the remaining cells, in which T pL ≤ dij ≤ T pH is true, determine as the edge if more than one edge cells determined 

in Step 4-1 (where dij > T pH is true) exist in the eight surrounding cells of the current cell (i, j).

Having briefly reviewed the Canny-Edge-Detection method in the image processing, let us extend it to shock wave 
detection in computational fluid dynamics solutions in the subsequent subsection.

2.2. (Preliminary, straightforward) application of Canny-Edge-Detection to shock waves

Here, we propose a novel shock detection method based on the Canny edge method. Our core concept is very simple: 
We will apply the Canny-Edge-Detection to CFD solutions simply by replacing the brightness value with pressure value in the 
computed flow on a computational grid (composed of cells). This concept can be easily realized for two reasons: i) the 
image pixels share the common structure of cells on the Cartesian grids in CFD, ii) the edges in the images are similar to 
the shock in CFD results in a sense that each of them can be described as (a set of) places at which the gradient magnitude 
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of brightness or pressure shows its local maximum value. The reason we use pressure rather than density, velocity or other 
physical values is that it is insensitive to other discontinuities such as slip line, shear layer or contact discontinuity.

The following is a procedure of our CFD version of the Canny-Edge-Detection applied to shocks.

1) Step 1: Smoothing [NOT included]

When we apply the Canny method to CFD, this smoothing process in the original method is intentionally omitted because 
smoothing can affect or even destroy the important, original, physical information; for example, it can smear out the original 
pressure jumps (shocks) in the numerical solution. In fact, unlike the photography, the CFD solutions are free from huge, 
camera-shaking noises.

1) Step 2: Computing gradient magnitudes and direction of edges

Instead of calculating edges of brightness in the digital image, we compute gradient magnitudes and the gradient direc-
tions of “pressure” to find edges within CFD results. If we let pij be a pressure value on a cell (i, j), and dpxij and dpyij

be the horizontal and vertical approximated gradients of pressure on the cell (i, j), respectively, we can calculate dpxij and 
dpyij by replacing aij with pij at the right-hand side of Eq. (2) as follows:

dpxij ≡
⎡
⎣ −1 0 +1

−2 0 +2
−1 0 +1

⎤
⎦ ·

⎡
⎣ pi−1 j+1 pij+1 pi+1 j+1

pi−1 j pi j pi+1 j
pi−1 j−1 pij−1 pi+1 j−1

⎤
⎦ ,

dpyij ≡
⎡
⎣ +1 +2 +1

0 0 0
−1 −2 −1

⎤
⎦ ·

⎡
⎣ pi−1 j+1 pij+1 pi+1 j+1

pi−1 j pi j pi+1 j
pi−1 j−1 pij−1 pi+1 j−1

⎤
⎦ ,

(5)

where (·) means the inner product calculation, again. As with the step 2 of Canny method,

dpij ≡
√

dpx2
i j + dpy2

i j (6)

θ pij ≡ tan−1(dpyij/dpxij) (7)

where dpij and θ pij denote the gradient magnitude and the direction of pressure on a cell (i, j), respectively.

3) Step 3: Non-maximum suppression (thinning edges)

As mentioned in 2.1, the edge pixels are extracted as the “candidates” by checking whether the gradient magnitude dij

on the target pixels are maximal among those of pixels in the “gradient direction.” Instead of using dij and θi j (both are 
concerned with brightness), we employ gradient magnitude of pressure dpij and its gradient direction θ pij to extract cells 
with local maximal value as “shock candidates.”

In the actual implementations, we adopt the discretized gradient directions θ pij as well as the original Canny-edge-
method (in Table 2, “θi j” shall be replaced with “θ pij”). Hereafter, we consider using detection methods only for the 
candidates.

4) Step 4: The final determination by a double threshold [NOT directly included, but to be modified]

When applying this step to the shock detection, we encounter some difficulties:

a) The indicator (dpij ) and threshold values are difficult to be evaluated based on the flow physics.
b) Threshold values (parameters) are problem dependent. In other words, each problem should have its own optimal 

parameters.

Regarding a), let us consider when we try to determine appropriate values of T pH and T pL to detect a certain shock wave. 
Recall that those thresholds are compared with the indicator (dpij ), for evaluating whether a shock candidate is an actual 
shock or not. According to Eqs. (5), (6), (7), dpij is the absolute value of a gradient vector of pressure, in which pressure is 
differentiated along the direction of pressure θ pij . However, in theory, a shock wave is a discontinuous layer, over which 
the derivative of pressure cannot be defined. That is why T pH and T pL are difficult to be evaluated in terms of flow physics.

As for b), each shock should have its own values of dpij , and we must set proper T pH and T pL for each problem. In other 
words, thresholds are problem dependent, and shocks outside the range between these (preset) values are not detected.

In the following subsection, therefore, we offer an alternative method for Step 4 to detect shocks automatically without 
user-defined parameters for (unknown) shocks.
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2.3. Theoretical estimation based on Rankine-Hugoniot conditions (Step 4 of present method)

Instead of the final determination by a double threshold (Step 4 of Canny-Edge-Detection), we offer a new method based 
on the Rankine-Hugoniot conditions. In general, the following formula holds for a normal shock wave.

M2t =
√

2 + (γ − 1)M2
1

2γ M2
1 − (γ − 1)

(8)

where γ is the specific heat ratio of the gas, M1 is the Mach number upstream the shock, and M2t represents the theoretical 
shock-downstream Mach number. The present, modified detection procedure (Step 4) is as follows:

4-1. Mach numbers M1 and M2 (ahead of and behind the shock, respectively) are extracted from computational results. 
Note that M2, different from M2t , is obtained from a CFD solution.

4-2. The theoretical post-shock Mach number (M2t ) is calculated by substituting M1 into Eq. (8).
4-3. A relative error ε between M2 and M2t is calculated as,

ε ≡ |M2 − M2t |
M2

(≤ 0.5) (9)

4-4. If ε is within 50% (ε ≤ 0.5), the target cell is determined to be as a shock wave.

Please note that we set the maximum permissible value as 50% to accept errors due to the intermediate region of the 
numerical shock, based on the fact that for a Mach 10 normal shock, these errors are known to be up to 40% [23], and the 
fact that these errors can increase when the shock is oblique to the grid lines. It should be kept in mind that: (a) we used 
values on the referenced cells as shown in Table 2 and Fig. 4 for acquiring M1 and M2; (b) Eq. (8) holds only for the normal 
shock; (c) Eq. (9) can be valid only when the shock wave is stationary, that is, the shock wave does not move.

Regarding (b), when this relation is applied to general (oblique) shocks, the shock can be detected by considering its 
shock-normal component value. As for (c), when the shock wave is moving with supersonic speed, further care must be 
taken because both pre- and post-shock regions might be subsonic. Let us define a shock-fixed coordinate system in order to 
treat all shocks as locally “steady” shocks. This system can be introduced by acquiring instantaneous shock speed. In order 
to determine the moving velocity of the shock wave, we consider the total enthalpy ht as in Ref. [22]. Immediate before 
and after the shock, total enthalpy should be conserved. In other words, by defining the velocity of the shock so that the 
total enthalpy is conserved, the shock-fixed coordinate system can be achieved as we set the shock speed to be the speed 
of the coordinate system. Then we estimate the velocity of coordinate systems as the velocity of the shock wave. With that 
velocity, the conservation of ht between pre- and post-shock region is described as follows:

ht = γ

γ − 1
· p1

ρ1
+ 1

2

{
(u1 − us)

2 − (v1 − vs)
2}

= γ

γ − 1
· p2

ρ2
+ 1

2

{
(u2 − us)

2 − (v2 − vs)
2} (10)

where us and vs denote the x and y components, respectively, of the moving velocity, respectively, of the shock wave, or of 
the shock-fixed coordinate, in which subscripts 1 and 2 represent regions upstream and downstream of the shock, respec-
tively, as shown in Fig. 5. When the angle between the velocity vector and the x-axis is designated as θ pij , us tan θ pij = vs

holds. Then Eq. (10) can be solved as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

us = (2h1 + u2
1 + v2

1) − (2h2 + u2
2 + v2

2)

2{(u1 − u2) + tan θ pij(v1 − v2)}

vs = (2h1 + u2
1 + v2

1) − (2h2 + u2
2 + v2

2)

2{(1/ tan θ pij)(u1 − u2) + (v1 − v2)}
(11)

where h = p/ρ · γ /(γ − 1). After acquiring the shock speed (us, vs), we can estimate M1 and M2 on the shock-fixed
coordinate as follows:{

M1 =
√

(u1 − us)2 − (v1 − vs)2

M2 =
√

(u2 − us)2 − (v2 − vs)2
(12)

Now the same method for steady shock can be used.
After the above procedures are executed for the candidate cells, there are still cells in which shocks are too “weak” to be 

distinguished from regular numerical jumps between cells. In this work, we exclude shocks with a small Mach ratio M1/M2

under 1.01 [1% change] by the following filter:
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Fig. 5. Localized steady flow in a shock-fixed coordinate system: (a) original coordinate system, (b) shock-fixed coordinate system.

Fig. 6. The flowchart of this method.

M1 − M2

M2
= M1

M2
− 1 ≥ 0.01 (13)

In summary, the whole procedure for this step is as follows:

1. Calculate the moving velocity of the shock wave, or of the shock-fixed coordinate (us , vs) as Eq. (11)
2. Estimate M1 and M2 on the shock-fixed coordinate as Eq. (12)
3. The theoretical post-shock Mach number (M2t ) is calculated by substituting M1 into Eq. (8)
4. Determine the candidates as shocks if Eqs. (9), (13) are both satisfied

2.4. Summary of this method

The following flowchart (Fig. 6) summarizes the descriptions of this section. Our shock detection method consists of 
three steps:

1. Compute gradient magnitudes and direction of edges by Eqs. (5), (6), (7) (Step 2 of Canny-Edge-Detection) [2.2 (2)].
2. Non-maximum suppression (Step 3 of Canny-Edge-Detection) [2.2 (3)].
3. Theoretical estimation based on Rankine-Hugoniot conditions as Eqs. (9), (13) [2.3].

In the Step 1 and Step 2, we adopted the modified Canny-Edge-Detection to select shock candidates at which a gradient 
magnitude of pressure shows a local maximum value. Then, in the Step 3, we adopted the Rankine-Hugoniot conditions 
to evaluate shock candidates based on the flow physics. In the next section, we will demonstrate the effectiveness of this 
method in three numerical cases in comparison with other shock detection methods.
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Fig. 7. Comparison of shock sensor values for Double Mach Reflection at t = 0.2, (a) density contours, (b) our proposed sensor, (c) Kanamori/Suzuki sensor 
and (d) Ducros sensor.

3. Numerical examples

In this chapter, our shock wave detection method is applied to selected numerical tests to demonstrate its effica-
cies, covering viscous/inviscid, supersonic/hypersonic flows: Double-Mach-Reflection (3.1); Shock/vortex-Interaction (3.2); 
Shock/Boundary-Layer Interaction (3.3). The above three calculations will be performed by solving the Euler or N-S equa-
tions with 2nd-order MUSCL interpolation [54] with the Van Albada’s limiter [55], HR-SLAU2 numerical flux [56], and 
two-stage, 2nd-order Runge-Kutta time integration method [57], unless mentioned otherwise. In 3.1–3.3, the simplicity and 
the accuracy of our sensor will be investigated by comparisons with Kanamori-Suzuki sensor and Ducros sensor. In 3.4, we 
will compare responses of two different limiters (minmod [58] and Van Albada’s limiter [55]) to our shock detector.
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Fig. 8. Comparison of CPU times for three shock sensors.

3.1. Double Mach reflection (inviscid and hypersonic)

A planar shock wave in an inviscid fluid at Mach 10 reflected by a 30-degree ramp is computed here. The computational 
domain is [0, 4] × [0, 1] divided by 1200 × 300 Cartesian cells (�x = �y = 1/300). The initial condition of the problem is:

(ρ, u, v, p) =
{

(8,8.25 cos(π
6 ),−8.25 sin(π

6 ),116.5) for x ≤ 1
6 + y√

3
,

(1.4,0,0,1) for x > 1
6 + y√

3
.

(14)

The lower boundary is treated as a slip wall, and the left and right boundary values are fixed to the left and right states of 
the shock, respectively. The condition on the upper boundary is changed every moment according to the shock propagation. 
The time step is prescribed at �t = 2.e −5 (CFL ≈ 0.08), and the computation is conducted to 10000 steps (t = 0.2). Fig. 7(a) 
shows density contours of the solution at t = 0.2.

Fig. 7(b), (c), (d) show the shock detection results by, (b) our proposed sensor, (c) Kanamori-Suzuki sensor and (d) Ducros 
sensor, respectively. In each example, detected cells are plotted as white. As for (d), the Ducros sensor values are displayed 
from 0 to 1 (the user must specify the threshold value, such as 0.65, beyond which the cell is regarded to contain the 
shock), with a grayscale (where the white color represents a high value).

A qualitative comparison of the density contours and the result of our proposed sensor suggests that our sensor de-
tects the shock structure quite well. It is also noteworthy that slip lines are successfully excluded, where density gradient 
magnitude (rather than pressure gradient magnitude) is large. Although a few false detected cells are observed in the neigh-
borhood of the reflected shock, these error cells account for only 0.7% of the shock candidate cells and are scattered (not 
forming a shock “wave”). Thus, they can easily be distinguished from the actual shock waves.

Also, the position of the detected shock wave by our sensor almost agrees with the result by the Kanamori-Suzuki sensor. 
Thus, in this case, it is considered that our sensor realizes almost as the same high accuracy as Kanamori-Suzuki sensor. 
Furthermore, our detected points are continuously connected along the shock waves, while in the result of Kanamori/Suzuki 
detected cells are discontinuous. This difference arises from the errors by the intermediate region of the numerical shock. 
Our method allows errors up to 50% from the intermediate region of the numerical shock in Eq. (9), whereas the Kanamori 
method does not.

We see that Ducros sensor is active, not only around shock waves, but in many other places where vorticity is negligible. 
This is one of typical examples that the Ducros sensor is sensitive to the velocity divergence when the vorticity is negligible, 
leading to erroneous detection (see Appendix for the formulation of Ducros sensor, Eq. (A.1)).

Next, the CPU time was measured (and averaged for 1,000 runs) for each case and compared in order to evaluate the 
calculation cost of our sensor. The results in Fig. 8 show that our method is approximately 18 times faster than Kanamori-
Suzuki sensor, and only three times slower than the Ducros sensor, i.e., its cost is within the same order of the Ducros 
sensor’s. Therefore, our sensor has been demonstrated to be as accurate as Kanamori-Suzuki sensor, and nearly as efficient 
as Ducros sensor.

3.2. Shock/vortex interaction (inviscid and supersonic)

Jiang–Shu’s (inviscid and unsteady) shock/vortex interaction [46] is computed here. The computational domain is [0, 2] ×
[0, 1] divided by 800 × 400 Cartesian cells. The inflow condition is imposed at the left boundary, the outflow condition at 
the right boundary (with pressure fixed), and the slip condition is applied to the top and bottom boundaries. The initial 
conditions are as follows. A Mach 1.1 shockwave is given at x = 0.5. Its left side is:

(ρ, u, v, p)L = (1,
√

γ ,0,1) for x ≤ 0.5 (15)
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Fig. 9. Comparison shock sensor value fields for Shock/vortex Interaction at t = 0.8: (a) density contours, (b) our proposed sensor, (c) Kanamori-Suzuki 
sensor and (d) Ducros sensor.

The right-side condition is then provided to satisfy the Rankine–Hugoniot conditions. Furthermore, the following vortex 
centered at (xc, yc) = (0.25, 0.5) is superimposed as perturbations to the initial flow.

�u = ετ exp
(
α

(
1 − τ 2)) · �y

r

�v = −ετ exp
(
α

(
1 − τ 2)) · �x

r

�T = − (γ − 1)ε2 exp(2α(1 − τ 2))

4αγ

�p = (�T + 1)
γ

γ −1 − 1

�ρ = (�p + 1)
1
γ − 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16a)

where

τ = r/rc, r =
√

(�x)2 + (�y)2, �x = x − xc, �y = y − yc, ε = 0.3, rc = 0.05, α = 0.204. (16b)

The time step is prescribed at �t = 5.e − 4 (CFL ≈ 0.54), and the computation is conducted to 1600 steps (t = 0.8). 
Fig. 9(a) shows density contours at t = 0.8, in which calculation was performed by solving the Euler equations with the 
same methods as in the previous subsection. There exists a bifurcation shock arising from interactions between initial shock, 
vortex, and reflected unsteady shock from the upper wall. Fig. 9(b), (c), (d) show the shock detection results by, (b) our 
proposed sensor, (c) Kanamori-Suzuki sensor and (d) Ducros sensor, respectively.

Qualitatively, compared with Fig. 9(a), all the shocks look successfully detected in our method. Also, false detection was 
not seen at all in this case. When comparing Kanamori-Suzuki sensor with our sensor, the position of the shock detected 
by Kanamori-Suzuki sensor coincides well with our detection. However, in the Kanamori-Suzuki sensor, it is found that i) 
the detection spots are scattered greatly, and that ii) almost no reflected shock waves are captured. This is because the 
reflected shocks are oblique to the Cartesian grid lines and the errors on the numerical shocks are especially so large that 
Kanamori/Suzuki sensor cannot capture these shocks in this case. On the contrary, since our method allows 50% errors from 
the theoretical value inside the shock, we succeeded in detecting all the shock waves smoothly including reflected shocks 
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Fig. 10. Comparison of shock sensor value fields for Shock/Boundary-Layer Interaction at t = 1: (a) density contours, (b) our proposed sensor, (c) 
Kanamori/Suzuki sensor and (d) Ducros sensor.

(no false detection was found in this case). From these results, it can be said that our method is suitable in the case where 
oblique shocks with larger numerical errors present.

Looking at the results of the Ducros sensor, we can see that the sensor is (unexpectedly) activated in most areas where 
vorticity is low (see Appendix for its formulation, Eq. (A.1)), and any amount of disturbance arises due to the shocks, except 
for a region near the vortex. Therefore, it is confirmed that the Ducros sensor is too sensitive to detect shocks. On the 
contrary, our sensor does not suffer from such a difficulty.

3.3. Shock/boundary-layer interaction (viscous and supersonic)

Then we will deal with a 2D shock/boundary-layer interaction problem proposed by Daru et al. [59]. The computational 
space is [0, 1] × [0, 0.5] divided by 500 × 250 Cartesian cells (�x = �y = 1/500). The symmetry condition is applied to the 
upper boundary, while the adiabatic wall condition is imposed on the other boundaries. The initial conditions are:

(ρ, u, v, p) =
{

(120,0,0,120/γ ) for x ≤ −0.5,

(1.2,0,0,1.2/γ ) for x > −0.5.
(17)

After the diaphragm rupture at t = 0, a shockwave traveling to the right reflects at the right boundary (t = 0.2 − 0.3) and 
comes back to left while interacting with a boundary-layer developed over the lower wall boundary, creating a bifurcation 
shock (or lambda-shock) followed by vortices. The AUSM+-up [60] is used for the inviscid term and the 2nd-order central 
difference for the viscous term. The time step is prescribed at �t = 1.25e-6 (CFL ≈ 0.52), and the computation is conducted 
to 800,000 steps (t = 1). The Reynolds number is set to 200 as in [59,61]. Fig. 10(a) shows density contours of the result at 
t = 1. Fig. 10(b), (c), (d) show the detection results by, (b) our proposed sensor, (c) Kanamori-Suzuki sensor and (d) Ducros 
sensor, respectively.

Compared with the density distribution, our method accurately captures the position of the shock wave near the bound-
ary layer. Although misdetections are found at several locations around the vortex in the boundary layer, these error cells 
are, again, easily be distinguished from actual shock waves.

When comparing Kanamori-Suzuki sensor with our sensor, the lower right part of the lambda shock was not detected 
by Kanamori-Suzuki sensor as opposed to the present sensor. This is understandable remembering the fact that Kanamori-
Suzuki was based on the theory of characteristics in inviscid flows. The Ducros sensor (Fig. 10(d)), again, yields many 
potentially shocked (white) cells. Considering these, our sensor nearly successfully detected the shocks even in this viscous 
flow example.
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Fig. 11. Density contours and detection results of our sensor at t = 0.2, (a) density contours (minmod limiter), (b) our detection result (minmod limiter), 
(c) density contours (Van Albada’s limiter), (d) our detection result (Van Albada’s limiter).

3.4. Effects of slope limiter

Finally, we will discuss influences of the slope limiter. The same example (Double-Mach-Reflection) as in 3.1 is calculated 
by changing the limiters from minmod to Van Albada’s, which is also widely-used. Fig. 11 shows density contours and 
detection results of our sensor at t = 0.2. We see that the shock geometry detected by our sensor is almost identical 
between both cases, except for a very small number of error cells. However, since these errors are less than 0.01% of all the 
cells, their influence can be almost ignored (the ratio of error cells to all the cells is 0.004% for minmod, and 0.01% for Van 
Albada).

Then, we will investigate the distribution of the relative error ε defined in Eq. (9) in the detected shocked cells. Fig. 12
shows a histogram of the relative error ε of the detected cells (i.e., cells with ε ≤ 0.5). The horizontal axis is the dimension-
less number of cells (= the number of cells of interest per total cell numbers). We can see that the distributions are similar 
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Fig. 12. Comparison of shocked cells having errors between limiters.

in that both results having a large peak around ε = 0.1 and small peaks near ε = 0.35. The cells distributed in the small 
peak near ε = 0.35 in Fig. 12 correspond to the primary Mach stem near x = 2.7 in Fig. 7(a), and the remaining shock waves 
are distributed in large peaks near ε = 0.1 in Fig. 12. It is noteworthy that there are only few cells with ε greater than 0.38 
for both cases. This result shows that, for either of the limiters, it will not significantly affect the detection result if we 
change the threshold of ε in Eq. (9) between 0.4 and 0.5. From these results, our sensor has been demonstrated consistent 
between the two limiters and also within the range of 0.4 < ε < 0.5.

4. Conclusions

In this study, we developed a new method of shock wave detection by combining Canny-Edge-Detection and Rankine-
Hugoniot conditions for two-dimensional viscous/inviscid flows on Cartesian grids. Our method is designed to achieve better 
efficiency and theoretical accuracy, compared with conventional schemes. A particular attention is paid to cells inside the 
numerically captured shock, by allowing 50% deviations from Hugoniot curve.

We examined the present shock detector in three test cases: Double-Mach-Reflection, Shock/Vortex-Interaction, and 
Shock/Boundary-Layer-Interaction. In these tests, we compared the result of our method with two representative shock 
sensors, i.e., Kanamori-Suzuki sensor and Ducros sensor. The former is based on the theory of characteristics and quite 
accurate in inviscid flows, whereas the latter is very efficient and widely used. In the numerical examples, we confirmed 
that our method is as accurate as Kanamori-Suzuki method, while as cheap as the Ducros sensor. Moreover, our sensor suc-
cessfully detected shocks even in a viscous flow, and smoothly represented shocks oblique to the grid lines. In addition, our 
sensor is free from threshold value settings within the recommended range, and insensitive to the selected slope limiters 
between minmod and Van Albada.
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Appendix. Ducros sensor

The Ducros sensor φ is written as:

φ = (∇ · u)2

(∇ · u)2 + (|∇ × u|)2 + δ
(A.1)

where δ is a small positive number (1 × 10−30) to prevent the division by zero where both ∇ · u and |∇ × u| are almost 
zero. This function varies from 0 for regions where the vorticity |∇ × u| is sufficiently large compared to velocity divergence 
(e.g., vortices, boundary-layers), to 1 where velocity divergence is dominant (e.g., shocks). Though this sensor is widely used 
because of its simplicity, it is sensitive to the velocity divergence ∇ · u even when the vorticity |∇ × u| is negligibly small 
(e.g., smooth flows), sometimes leading to erroneous detections. Therefore, it is of great importance to set an appropriate 
threshold φ, at what value the detected phenomenon is regarded as a shock. This threshold is, however, at the hands of 
users.
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