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TOPOLOGICAL TYPES |
OF FINITELY- C"- K-DETERMINED MAP-GERMS

TAKASHI NISHIMURA:

ABSTRACT. In this article, we investigate the following two problems
Problem 1. Is finite- CO- K- determmacy a topological ‘invariant: among analytzc
map-germs?
Problem 2. Do the topologzcal types of all ﬁmtely— Co- K determmed map- germs
have topologzcal moduli, i.e. do they have infinitely many topological types with
the cardinal number of continuum?

Problem 1 is solved alﬁrmatlvely in the complex case. Problem 2 is solved
negatively in the complex case; and aﬂirmatlvely in the real case.

Let K=Ror C. Two map-germs f and g: (K", 0) — (K”,0) are topolog-
lcally equlvalent or C° - A-equivalent if there exist germs of homeomorphisms
h: (K",0) — (K", 0) and hy: (K”,0) — (K, ) such that g =hyofoh, . A
map-germ [ is finitely- c® - A- determlned or C A ﬁmte if there i 1s an 1nteger
k such that any germ g with j (g) = j* Ff) is - 4- equlvalent of S . This
is the topological versmn of Mather s A- equlvalence and A-determmacy We
can also define c? -K, c’. R, C L ,and c’-c equlvalences and their de-
terminacies in a s1m11ar way replacmg d1ffeomorphlsms in the C verswn by
homeomorphisms. '

We will glve a pre01se deﬁmtlon of C - K-equivalence at the end of the In-
troductlon '

Let JX k(7 , p) denote the set of all polynomlal map-germs: (K ,0).— (Kp 0)
with degree < k and let JE (7, p)c0 ¢ denote the set of all ﬁnltely-C K-
determined elements of J x(n,p). Let JE K, p)CO-K/C -A denote the set of
topological equ1valence classes of elements: of JK(n P)cog - Then our main
results are ;

Theorem 1. Let f, g: (C” 0) (C” ) O) be holomorphic map-germs satisfying
the following: '

(1) the map- germ f is C -K- ﬁnzte

(2) the map-germs f and g are C - A-equivalent.
Then gis also Cc’-K- -finite.
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Theorem 2. The set J& cln, p)Co &l C -A isa ﬁmte set for any positive zntegers
n,p.k. . ,

Theorem 3 (1) The set JR(n p)Co K/C -A zs aﬁmte set for p=1,2, any
positive integers n k.

(2) The set JR(n p)Cn K/C A is an mﬁmte setifn>4, p>4, k>12.
In fact they have topologzcal moduli. r

When we compare our Theorem 2 and Theorem 3(2) with the results in [3, 2
and 10], 1t is interesting that there is a difference of cardinal numbers between
the real case and the complex case. Our Theorems 1 and 2, combined w1th
the fact that C° - K-finiteness is a genenc property, tell us that finitely- C’-k-
determined holomorphic map-germs are fascmatlng objects to- study from the
toplogical viewpoint.

Theorem 1 is deduced from Theorem 4 followmg

Theorem 4. Let f, g: (C 0) — (C?,0) be holomorphic map-germs satisfying
the following: ) : s :

(1) the map- germ fis nonsmgular

(2) the map- germs f and g are c° A-equzvalent

Then g .is also. nonsmgular

Definition 1. Two map-germs f and g: (K",0) — (K”,0) are 'CO- K-equiv-
alent if there exist germs of homeomorphisms .

h:(K",0) = (K",0) and H:(K"xK’, 0) ~ (K" xK”,0)
such that the following diagram commutes:
| (K" x K” 0)

K",0) —— (&0
&0 @) (K" xK?, K”x{O}) SR )

I L
G (K x K?, K ><{0})

K",0
K0 —= ‘(KxK”O)

— (K ,0)

where (i, f)(x) = (x, f(x)) and 7,(x,y) =x

In §§3 and 6, we recall quickly some concepts and results; Milnor fibration
and geometric characterizations (§3) and Thom’s example having topological
~moduli (§6), which are used in our proof of Theorem 1 and 3(2). Theorem 1
and Theorem 4 are proved in §4, Theorem 2 and Theorem 3(1) are proved in
§5 and Theorem' 3(2) is proved in §7.
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The author would like to express his sincere gratitude to the referee who
was kind enough to give a clearer proof of Theorem 1 and to make valuable
suggestions. He also wishes to thank T. Fukuda for his kind advice. ,

2. REMARKS/RELATED TOPICS

(A) The followmg snnple example shows that the real version of Theorem 1
: does not hold R :

Example 1. f(x y) xy, g(x y)

" Function f is finitely C°- K-determined but- g isnot, although f and g
are topologically equivalent as real functions. :

(B) Let G beanyof A, K, R, L and C. Then the followmg questmns
are more natural to be asked than our Problems 1 and 2.

Problem 3 Is: ﬁmte- C°- G- determmacy a C° G-invariant among analytlc map-
germs? SRy Lt v :

‘ Pmblem 4. Is: J (n p) ce G/ c’- G a ﬁmte set for any posmve mtegers n, p k‘?
We easﬂy have the followmg answers to these problems
Problem (3) |G=4| K| R L C

1 3-1) | (3-2) [(3-3)| 3-5) :
IK=R | No | No | No | No | (3-6)

Answer : R —t ——— Yes
1. . 1 e ~(3_4’)‘ o
K=Cc | 2 "2 | Yes | 2
Problemj(4) |G=4| K ,“;R L | C |
1ofen) | fey|
|K=R| finite | (4-3)| (4-4) | finite |(4-6)|
Answer ; { finite | finite finite| .
EEREE IR N C ) N S
K =C | finite e | ?

(3-1) Example 1.
~-(3-2) Example 1.

(3-3) Example 1.

(3-4) Thisisa corollary of Theorem 1 (see the end of §4) ‘

(3-5) Cons1der the followmg two map-germs f g (R ,0) — (R3 0),
)= 82 +0%), glx, )= (%, y.x).

(3-6) Recall the geometric characterization of C C-ﬁmteness of analytlc
map-germs (Proposition 2(c) in §3). ' ‘

/(4-1) This is'a Thom’s result [12].

(4-2) This is a corollary of Theorem 2.
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(4-3) Recall the geometric characterization of C°- K-finitenes (Proposition
2(b) in §3) and use the local version of Thom’s second isotopy lemma for the
sequence :

Image(F) L K" xJ x(n, p)CoK JK(n p)COK,

where F: K" x JK(n P)cogx = K x KP x J (n p)COK is the mapping defined
by F(x,f)=(x,f(x),f) and m,,m, are canomcal projections.

(4-4) Recall the geometric characterization of c’- R-finiteness (Proposmon
2(a) in §3). Then we see that (4-4) is essentially due to King [6 or 7].

(4-5) Recall the geometric characterization of Cc’-L- finiteness (Proposition -
2(b) in §3) and use the local version of Thom’s first isotopy lemma for the
stratified mapping

Image(G)_irR X JR(n ,'p)co_,L ,

where G: R" x J’,{(n D)oy — RY x Jl’;(n‘, D)co.; is the mapping defined by
G(x,f)=(f(x),f) and = is the mapping defined by n(f(x),f)=(x,f).
(4-6) Recall the .geometric characterization of. C’- C-finiteness (Proposition
2(c) in §3) and use the local version of Thom’s second 1sotopy lemma for the
sequence
Image(F) K XJ (I’l p)coc _’J (n p)(;OC’ .

where F, n, and =, are the same as those of (4-3).

(C) In [11] where his second isotopy lemma and his condition a + were an-
nounced for’ the first tlme, Thom gave an example of a fam11y of polynomial
mappings of R? into R® ‘which contains continuously many topologlcal types.
Fukuda [3] and Aoki [2] showed that every fam11y of polynom1a1 functlons of
several variables or of polynomial map-germs of R? into R? (or C? into C? )
has only finitely many topologmal types. Nakai gave examples of families of
polynomial map-germs of R" into R? (or C" into C?) of degree k with
n, p, k>3 or n >3, p> 2 k>4 wh1ch conta1n contmuously many
topological types.. :

The examples of Thom and Naka1 motivate us to con51der what will happen
if we restrict objects of study within better map-germs, for example finitely- c’-
K-determined ones? Thus our Problems 1 and 2 arise.

(D) In the complex case, Wall proved that C’- G- ﬁmteness 1mp11ed G-finite-
ness (except poss1bly if G=L, p> >2n—1 and G=4)[14, . 532]. But the
notion of C°- G-finiteness is topologlcally better than the one of G-finiteness
in the real case and since ‘we are interested to see whether or not variously
topological phenomena in the real case contrast with the ones in the complex
case, we adopt the notion of CO- G-finiteness as one of our restrictedv objects.

3 MILNOR FIBRATION AND 'GEOMETRIC CHARACTERIZATION

(A) Let f: (C ,2%) — (C?, f(z°)) be a nonconstant holomorphlc funcuon-
germ. There exists a positive number & such that for any positive. numbe;' r
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(r< &) the space rS*- 1(z )—f _1( f (z )) is a smooth fibration over S -with
projection mapping o :

Ko = fa-D) I -, _
where rS%”'l(zo) ={z=(zy,...,2,)€C" ||lz—z ol =r?) and S' is a unit
circle; ‘We call this fibration the Milnor fibration of f at Z°. Moreover the
fiber of the Milnor fibration (which is called the Milnor fiber) of f at z°
diffeomorphic to a smooth manifold wh1ch is the 1ntersectlon of the open .r-
disk centered at 2° and the level set f~ (c) where ¢ (7é f (z ) is suﬂi01ently

close to' f(z") (see [9]). :
The following result due to A Campo plays an essential role in.our. proof of

Theorem 1.

Proposition 1[1]. Let f:(c", 2 — (C f @ )) bea nonconstant holomorphzc
ﬁmctzon—germ Then the ﬁber of Milnor fibration of f at 2° has the homology
of a point if and only lf 2 is a regular point of. f o R

- (B) Let f (X", 0) = (K?,0) be an analytic map-germ (K= R or C) Then
we have the followmg propos1tlon wlnch is called the geometnc characterization

Proposmon 2. (a) The map- germ f is C° ‘R ﬁmte if and onlyzf Smg( f )— {0} =
¢ as germs, where Sing(f ) {x eK"| the dzﬁ"erentzal df at x is not surjective}.
(b) The map-germ’ [ is c° K ﬁmte zf and only zf Sing( f )n f (0) {O} ¢
as germs. -
~ (c) The map-germ f is C°-C- ﬁmte if and only zf f (0) {O} as germs
(d) In the real case, the ‘map-germ. f zs C L ﬁmte zf and only zf f isan
embeddmg except at 0 as agerm.

@

Proposmon 2is very useful and one of the essent1a1 tools in thls artlcle For
detalls on C G-ﬁmteness see Wall’s promment survey [14].

4 PROOFS OF THEOREM 1 AND THEOREM 4

Proof of Theorem 4. The author’s original proof is needlessly complicated. The
followmg proof due to the referee is ' much clear and 51mpler

By the deﬁmtron of smgular pomts the hypothes1s (1) 1mp11es that n > p
By hypothesis (2), we can put «

(*) S e wog°¢(x Y) Y, S e
where ¢: (C ,0) — (C ,0) and y: (C”,0) — (C”,0) are germs of home-
omorphisms. Put h(x,y) = ¢(x,¥(y)). By (+), wogoh(x,y) = wogo
d(x;w(y)) = w(y). Since ¥ is abl_]ectlve germ, we have ‘goh(x,y) =y. Since
h is a germ of homeomorphism g is c’ -'R-equivalent'to a projection ge'r_m.'
Now suppose g issingular. Then the differential dg-at 0 is not sutjective.
Therefore there is a linear function p: C’f — C such that po g is singular.
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Since g is c’- R-equivalent to a projection germ, pog is c’- - R-equivalent to

p composed with a projection germ. However, p composed with a projection

germ is of course nonsingular. Hence we have reduced the problem to the case
=1.

, From now on, assume that p = l and g(C",0) — (C,0) is singular. Pick
one representative g of g. Let D" stand for the closed disc in C" of radius
¢ centered at the origin. Let 4: (eDZ" 2xeD? ,0x0) - (C",0) beatopologlca_l
embedding so that g oh(x,y) =y forall (x,y) e aDZ” “2xeD?.

Pick d > 0 so small that & 1s nonsingular at all points of §D2" _1(0)
and éD*" ¢ Int(h(eD*"™* x eD ), where Int stands for the interior. Pick
¢’ >'0 50 small that A(e'D** > X ¢'D*) c Int(6D*). Pick &' > 0 so small
that 6'D* ¢ Int(h(a ‘D% x ¢'D? )). Let r: C" — R be the function of the
form r(z) ||z|| Then by [9] if we ple z, small enough, then r- restncted

to & (Zo) ‘has no singular points on D" - (5 '12)D™".
So prcka small enough z, # 0 with ”zoll <é¢ . Let W, = ~"l(zo)ﬁé Dz" let
W, = &' (2,) nh(e' D> "> x ¢'D%) = h(¢' D" x z,), and let W, =g""(z,)N

6D 2" Then we have that Wy, C Wy € W, and W, and W, are Mllnor
ﬁbers of . Let X, ;j denote W - Int( w.) for i > j. Since the function
restricted to X,, has no singular pomts X 50 18 dlﬂ‘eomorphlc to oW, x [0 1]
Therefore W 1s a deformation retract of W,. Hence the 1nclus1on mapplng
W - W mduces surjective homomorphlsms of homology. However W1 isa
topologlcal disk. Hence W, has the homology of a point. So [1] 1mp11es that
& is nonsingular and we have our conclusion. Q.ED.

Proof of T heorem 1 If n <p, all points X eC” are smgular pomts of f If f '
is C°- K-finite s (0) {0} as germs at 0 by Proposition 2(b). Hence by the
hypothe51s 2), g~ (0) is also {0} as a germ at 0 Therefore g is C K-ﬁmte
by Proposition 2(b). :

Hence our 1nterest is essentlally in the case nzp. By the hypothe51s (2)
we can put

(%) | | (h)“ofoh

on a certain nelghborhood of the origin in . .C", where f (resp g) is a rep-
resentative of f (resp. g)and % (resp. ' ) isa homeomorphlsm between
neighborhoods of the ongrn in C" (resp. C? )-

Suppose that ‘g is not C°- K-finite. “Then: by Proposition 2(b),

Slng(g) ng='0) - - {0} # ¢,

where Smg(g) {z eC": z is a smgular point of g} By the hypothes1s (l)‘
and (*x), for any point z, € Sing(g) N g—l(O) - {0}, h(zo) isa regular point
of f and f (h(zy)) = 0. Therefore our situation is as follows:

(1) the map-germ f:(C", h(z,)) = (C”,0) is nonsingular,
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(2) two map-germs f:(C", h(z,)) — (C”,0) and %: (C",z;) — (C”,0)
are C°- A-equivalent
(3) the map-germ g: (C" ,Zy) = — (C?,0) is singular.
This contradicts Theorem 4, Therefore the map—germ g must be C’-k-
finite. Q.E.D.

Corollary 1. Let f,g: (C",0) — (C?,0) be holomorphic map-germs satisfying
the following: '

(1) f is C° R-finite,

(2) f and g are C°- R-equivalent.
Then g is also Cc’-R -finite.

Proof of Corollary 1. By Proposition 2(a) and the definition of singular points,
the hypothesis (1) implies that n > p. By Theorem 4, we may assume that
the origin of C” is a singular point of f. Then by the same argument as in
the proof of Theorem 1, we have that the origin is an isolated singular pomt
for any representative of g. Hence by Proposmon 2(a), g must be C’-R-
finite. Q E.D.

5. PROOFs OF THEOREM 2 AND THEOREM 3(1) |
We 1deht1fy C‘ with R?". We also identify K(n , p) not only with the set
of all polynomial mappings of (K", 0) into (K” 0), with degree < k, but also
with an Euclidean space R PN of a suitable dimension epN (e=1if K=R

and ¢ =2 if K=C) as usual.
Under these identifications, the mapping
F: Jllz(n ,p) xR — J]’;(n;p)'x R?

defined by  F(f,x) = (f, f(x)) can be considered as a real polynomial map-
ping, where f € Ji(n,p), x € R” and ¢ = 1 if K=R and & = 2 if
K=C. , : ,
Lemma 1. The set J- k(M. D)oy i5a semzalgebrazc subset in J (n p) Rep N ‘
Jor any positive integers n,p and k.

Proof of Lemma 1. By Proposmon 2(b), for each polynomlal mapping f in
J]lz(n D), -f is contained in JE k(. D)o if and only if there exists a neigh-

borhood. ¥V of 0 in K" such that ¥ N Sing( f YN £71(0) - {0} = ¢, which is
equivalent to the statement that there exists a neighborhood ¥ of 0 in R™
such that

({f}x V) nSing(F)n F~' (Jg(n, p) x {0}) — {f x 0} = ¢

Clearly A c RxR* xJI’z(n , 0)xR*", comprised of all quadruples (¢,y, f ,X)
with (f,x) € F~'(0) N Sing(F) — JX(n, p) x {0} and |lx — | < f, is semi-
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algebraic. Consider the following polynomial prqjections:
(R x R™ x J,Iz(n .p) xR" 2L R R” x Jg(n, p)
‘ N £ Re"x.l(n,p)’—”%;(n,p)‘.
The Tarskl-Seldenberg theorem 1mphes
(R x J(n, p) = (R x R” X Jg(n, p) = p,(4))) N ({0} x Jg(n b))

is semialgebraic. This set is denoted by B
A minor computatlon verifies that

Je(n, D)oy = Jh(n, p) - p3(B)
Wthh is also semlalgebralc Q E.D.

Now we cons1der the followmg sequence

Ren,F 'n

(n p)>< JEm, p)st”—> K(n D),

where 7 is the canomcal prowctlon Since F and 7 are polynomlal map-
, pmgs by Lemma 1 there exists semialgebraic stratlﬁcatlons S (JK(n p)xR™),
S(JK(n p) xR?) and S(JK(n p)) with which F and 7 are stratified map-
‘pings and JK(n , p)x{O} (n p)x{0} and JK(n P)co x are stratified subsets
of JE(n, p) xR™, (n p) x R and JE(n, p) respectlvely (see [3]).

| Note that Slng(F ) isa stratified subset of the set JE (. p) x R . Then for
- each stratum Z of S(JK(n P)co K) the sequence of restricted mappmgs :

(% %) - ZxR" L ZxR? L 7

is also a sequence of stratlﬁed maps with the canonically mduced semlalge-

braic stratifications §(Z ><R6") S(ZxR”) and {Z} from S(JE(n, p)xR™),

S(JK(n p) x R?) and S(JK(n p)) respectively, where F and 7z in (x % %)

stand for F lz><nw and 7|, ., Tespectively. : :
We use this sequence (* % %) to prove Theorem 2 and Theorem 3(1)

N

Proof of Theorem 2. We consider the stratlﬁed sequence - (% * ). We want to
state that for each stratum Z of S(Jc(n p)Co k) there exists a semialgebraic
stratlﬁcatlon S'(Z) of Z such that for each stratum W of S'(Z) there exists
a semialgebraic nelghborhood U, of Wx {0} in W x R* and the restncted
mapping .

U, 5 wxR?

is a Thom mapping: w1th respect to the canonically induced semialgebraic strat-
ifications S((W x R "YNUy,) and S(W xR*?).
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By Proposition 2(b), any polynomial mapping f € Z has the condmon that

Sing(f)Nf~'(0)— {0} = ¢ as germs. It is well known that if Sing( nnsf” L0)-
{0} = ¢ as germs then there ex1sts a nelghborhood U of 0 in C” such that
the restriction

Flunsinstyy® U N Sing(f) = €

is proper and finite to one (for example see [4, p. 493])). As Sing(F) =
H{(f, Sing(f)): f € JE k(7. D)}, we can deduce that there exists a semialge-
braic stratification s’ (Z) of Z such that for any stratum W of S’ (Z) there
exists a semialgebraic neighborhood U, of W x {0} in W x R*" and the
restricted mapping .

Uy n Sing(F) £, w xR
is propér and finite to one. Also the restricted mapping
U, = W xR?

is a stratified mapping with respect to the canonically induced semialgebraic
stratifications S((WxRZ")n Uy), S(W xR*P) and Uy nSmg(F ) 1sastrat1ﬁed
subset of (W x R*")NU,,

For any point ( f.x) € U N Sing(F') , as the restncted mapping: U , N
Sing(F) — W x R* is proper and finite to one, ker(d(F| X)( g X)) =0. Here X

is the stratum of the stratification S((W x R")nU ) which contains ( f.x).
For any pair of nonsingular strata (X, Y) suchthat X,Y € S(W x R "YnU,)
and X DY, the pair (X,Y) always satisfies condition a; . Here nonsingular
means that for any point (f,x) €Y (f.,x) ¢ Uy NSing(F).

These observations show that the restricted mapping :

U, < W xR

is a Thom mapping with respect to the canonically induced semialgebraic strat-
ifications S((W x R”)nU,,) and S(W x R*”). Now Theorem 2 follows from
a local version of Thom’s second isotopy lemma (see [4 or 11]). Q.E.D.

Proof of Theorem 3(1). In the function case, that is p = 1, for any positive
integers n and k, our theorem is contained in the local case of Fukuda’s
theorem [3]. Hence we prove our theorem only in the case p=2.

Consider the stratified sequence (x * *). Let X, ¥ be strata of S(Z x R")
such that X - X > Z x {0}, Y-Y > Z x {0} and XovY, where X denotes
the closure of X in Z x R". Let X.,Y be strata of S(Z x R? ) such that
F(X) c X and F (Y) c Y. In the case X = , the existence theorem of
tubular neighborhoods of strata shows that the pair (X Y) satisfies condition
ap (see [8]).
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There are three possibilities of dimensions of a pair of strata (X Y) when
X # Y and X oY as follows where X denotes the closure of X in Z x R2

dmX | dim?¥
R+dimZ|1+dimZ
R+dimz|0+dimz
1+dimZ | 0+ dimZ|

(1) The case (dim X, dim Y) - (2+dimZ, 0+ dlmZ) or (1 + dlmZ 0+
dimZ).
In this case, by Prop0s1t10n 2(b) and

Sing(F) = {(f. Smg(F ):f €T, D)},
there exists a semlalgebralc nelghborhood U, of Zx{0} in. ZxR" such that
the pair (XnU,,YNU,) is a nonsingular pair. Hence the pair 0.¢ nU ,YNU 2)
satisﬁes.condition aF; Sl -
(2) The case (dimX, dimY)=(2+dimZ,1+dimZ).

.. It is sufficient to consider only the case Y C Sing(F). In this case there
exists a semlalgebralc neighborhood U, of Z x {0} in Z x R” such that
for each point (f%,x% € ¥ n U , Tank F at (f°,x°) is 1+d1mJR(n 2).

By a suitable analytic coordinate transformatlon ‘we can assume that F(f,x)

=(f, x1 &(f.x;,...,x,)) in a sufficiently small nelghborhood (19 x9) ‘of
(f X ) in UZ, where x = (x1 seeesX,) and g: V, (0 .50) R is an analytic
function. ‘ e -

We set x’ = (x1 s e ,xn) ‘under this Coordinate chart. We also set

D= {(f,x) € »I/,'(fo'.xo):vc1 =vx?,f‘= fO},
D' ={(f %) €V yoy: %, =%} and |
D {(f Vis yZ)GZXR (f yl yz)eF( (fox0))}y1=.x:)}.

We may assume that g~ (g( f X )) ny, ( 70.0) = =Y ND’. In the sufficiently

small neighborhood V, (£9.x0) “of ( f b ) in U, , we can assume that the stratum
Y is transversal to the submamfold D. Smce the mapping g: V( 70 x0) —Risa
function, the existence theorem of a good stratification implies that there exists
a stratification S(Y N D) such that the restricted function

glxurynp s (XUY)ND = (Xu¥)nD
is a Thom mappmg with tespect to the stratlﬁcatlons {XnD,S(¥n D)} and
{Xnb, YﬂD} (see [3 or 5]).

“We also see that in the sufficiently small nelghborhood V( fo X0) of (f 0 xo)_
in U the restncted mappmg

Fly,y: XUY - XU ¥
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is considered as an analytically trivial unfolding of the restricted function

glxurynp: (XU Y)ﬂD—+(XU Y)nD.

Thcrefore the restricted mapping

Flixurnrge ot XUTIN Vo 0 (XUY)

is a Thom mappmg with respect to the canomcally extended stratlﬁcatlons from
{XnD,S(YND)} and {XnD, YnD}. '
By (1) and (2) above. We see that for each stratum Z of S(J (n 2)cox)
there exist a neighborhood U, of 0 in Z X R and stratifications S”(Z xR"),
"(Z x R?) such that the restricted mapping

F]U U —>ZXR

is a Thom mapping w1th respect to the canonically mduced stratifications -
S"((Z xR")NU,), S"(Z xR*). Now Theotem 3(2) follows from a local
version of Thom’s second isotopy lemma (see‘ 4 or ll]) QED

6 THOM S EXAMPLE ‘

Let K=R or C and let f g: K" = K be C° (for K = R) or holo-
morphic (K = C) mappings. We say f and g are topologlcally equiva-
lent if there are homeomorphisms #: K" — K" ‘and #': K” - K” such that

f=H)"ogoh. _
In [11], Thom cons1dered the followmg one-parameter real polynomlal map-
ping family P(k): R - R ‘where k is a real parameter, and he proved that
if any two fixed nonzero real numbers k; ,k, are not equal then P(k ) and
P(k,) are not topologlcally equivalent. .
- = [x(x* + y* — a®)=2ayz)[(x + ky‘)(x2+y2 - az)—Za(y - Ifx)z]. )
P(k): Y’=‘x2+y2—_a2‘,_ T e RS e
. Z - Z ) ~s: -

where (x,y,z), (X,Y,Z) are coordinates of the source space and the target
space respectively, a isa nonzero fixed real number and k is a real parameter.

In this section, we recall qulckly Thom s idea of proof, which is used in our
proof of Theorem 3(2).. : ~

Thom’s Idea of Proof. Let k bea fixed real number We cons1der the followmg :
surface H(k,) and circle C (ko)

H(ky) ={(x,y.z) € R’: [x(x2 + y2 - az) - 2ayz]2
X[ k) 4y —a) - 2a(y — k)2 = 0},
Clky) ={(x,y,0)eR’: x* + y* —a" =0},

Then C(k,) C H(k,) and C(k,) C Sing(P(k,)).
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We also consider the following two surfaces H,(k,) and H,(k,):"

H (k) ={(x,y,2) eR: x(x" + y* - a*) - 2ayz = 0},

Hyky) = {(x,y,2) € R’: (x + kyy)(x” + ¥" = &°) = 2a(y — kox)z = O}.
We see that these two surfaces H, (ko) and H,(k,) are irreducible components
of Sing(P(k,)),. H(ky) = H,(ky) U H,(ky) and H, (k) N H. (ko) = C(ky) U
{(0 0,z)e R3} (prov1ded that k, ;é 0). Furthermore we have

' P(ko)(H (kp) N {(x y.2)€ R Ix + my 0})
_{(O Y, Z)eR mY+2alZ O}
and .
_ P(k )(Hz(ko)n{(x v, z)eR lx+my 0})
= {(O Y, Z) eR (m-—k 1)Y+2a(l+k m)Z 0}

for any two real numbers l m such that I + m 7é 0
Now if there exist homeomorphlsms h, h R’ — R® such that P(ky) =

(n' )' o P(k;) o h for any two ﬁxed nonzero real numbers k0 .k, (k #k),
then We have the followmg : »
Lemma 2. (l) h(H(ko)) = H(k )

(2) h(C(ky)) = C(k,) and

(3) for any germ of a continuous curve q(t) at any point. p € C(kO) (resp
C(k,)) in H(k,) (resp. H(k ) Plky) (resp. P(k )) maps q(t) to a germ
of a.continuous curve at (0,0,0) € {(0,Y,Z) erR’ }.in {(0,Y,2Z) eR’} and“
this germ of a curve has a tangent line at (0,0,0). :

By Lemma 2, if k;, k; are both nonzero, then the restricted homeomorph1sm
h| Clho)* C(ko) - ( ) must have the property that for any two points x,y €

r—— -1
C(k,) such that angle /xy = Tan™~ (ko) angle / h(x)h(y) = Tan™ (k, ). But
thls contradicts Van Kampen’s theorem in [13]. i

Remark 1. It is easily seen that if' we change the one—parameter real polynomlalf
mapping family P(k): RS R¥ 10 P(k) R> LR as follows, then we also
have the property that 1f k, 9é k, (k # 0) then P(k ) and P(k ) are not . -
topologlcally equivalent;

_ [x(x +y —a’) - yz} [(x+ky)(x +y? —a) (y kx)Z]
Pk):§ Y=x*+y'-d°,
Z=z.
7. PRooF oF THEOREM 3(2)

Our proof splits into the following three cases.
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(Casel) n=4,p>4,
(Case2) n>4,n<p,
(Case3) n>p, p=>4.

Proof in the Case 1. Let Q(k) (R O) - (R ,0) be a one-parameter polyno-
mial map-germ family defined as follows: - , 5

[x(x +y?—u?) - yz] [(x + k) + y —u );— - k;,x)z‘], :
Y= x+y —uz, o LT s
Z=z , '

U= u2 o | ,
where (x,y,z,u), (X, Y Z,U) are coordmates of the source and the target’
spaces respectively and k isa real parameter. Let P (k) be a one-parameter/
polynomial map-germ family deﬁned as follows: s

P(k) (R ,0) = (R”,0), P(k)(x Y2, u)—(Q(k) 0)-

" For any fixed ko, P(ko)"l({O}) = {0}. Hence P(ko) is a, c K—ﬁmte
olynomlal map-germ by Proposmon 2(b) ; . _ I
Let Hl(kO) H, 5 (ko) 5 H' (ko) and C' (ko) be as follows:

O(k):

Hl(k0)={(x,y,z,u)eR :x(x +y —-u ) yz—'vO}
Hy(ky) = {(x,y .z, u) €R": (x +ﬂk0y)<x2;+;y — )= (v~ kox)z =0},
H(k) H(kO)UH(k) U
‘ C(ko)-{(x ¥, 0 u)eR x +y —u ‘—0} 7
Then we see that H (k) and H. (k ) are. both 1rredu01ble components of
Smg(Q(ko)) and H,(k,) N H, H(ky) = Ko (ky) U{(0,0,z,u) € R} (prov1ded
that k, # 0). We also have : , , .
P(ko)(H (k)N {(x.,y.z, u)eR lx+my 0})
={(0.Y,Z,U,0)eR’: mY +1Z =0},
5 P(k )(Hy (k) N{(x.,7 .2, u)GR Ix + mu = 0) s i v
'—{(o Y.Z,U, 0)cR?: (m~ kI)Y+(l+k m)Z 0}
for any two real numbers l m such that I + m #0. o o
If there are germs of homeomorphisms /: (R ,0) — (R 0) K (R" 0)
(R?,0) such that P’ (ky) = (h )_loP (k )oh as germs at 0 for two fixed nonzero
real numbers k. k, (k, # k,) , then we have the following lemma like Lemma
2 in §6.
Lemma 3. (1) h(H'(ko)) = H'(k, ) ‘as germs at 0
(2) h(C' (ky)) = c (k ) as germsat 0,
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(3)
h(C'(ky) N P'(ky) ™' ((0,0,0,u,,0)))
H—C(k)nP(k) ((o 0,0 h4((0 0,0,%,,0)),0))

as germs at 0 for any real number u, close to zero- and h4 is the fourth com-
ponent function of K (see Figure 1),

(4 for any germ of a continuous curve q(t) at any pomt p (x y,0,u) €
C(ko) (resp. C(k )) in H(k) (resp. H(k )) P'(k, o) (resp. P'(k))) maps
q(t) toagerm ofacontmuous curveat (0,0,0, u* O)GR" in {(0,Y,Z, U, 0)
€R?} and mo P (ko)(q(t)) (resp. mwo P (k )4a(t))) is a germ of a continuous
curve at (0,0,0) € R in {(0,Y,Z) € R } and this germ ofa curve has a
tangent line at. (0, 0, O) where n:R® — R isa natural pro;ectzon

(X.Y.Z, UV, 0. .V, )~ (X, ¥,Z).

Our proof of Lemma 3 is ahalogo'us to that of Lemma 2 and we omit it.
By this lemma, we have a contradlctmn to Van Kampen s theorem 81m11ar to
Thom’s' proof "Q.E. D. , T :

Proofin the Case 2. Let P"(k) be aone—parameter polynom1a1 map-germ famﬂy
as follows: :
P"(k): (R",0) - (R" 0), ; R T
P;"(k-)(x’,,yf’, Z, U,y ,'un 4) = (Q(k)(x .z, u) s ooy Uy 4,0), :
. where (x,y,z,u,v,,...,v,_ 4) isa coordmate of the source space and Q(k)
is as before.
For any fixed &, P"(ko)_l({O}) = {0} Hence P"(k) is a C K-ﬁmte
polynom1al map-germ by Proposition 2(b) : o
~ Let H"(ky) and C”(k,) be as follows:

H'(ky)={(x,y.z,u, vl,..; v,_ 4)eR
x +y =) - yz][(x+koy)(x +y -uz)- (v = kyx)z] = 0O},
C"(ko)={(x y.0,u,v,,...,v,_)eR: X +y -’ =0}.

If there are germs of homeomorphism A: (R",0) — (R ,0) and A': (R?,0)
— (R”,0) such that P"(ky) = (h")"" o P"(k,) o h as germs at 0 for any fixed
real numbers k;,k, (k, ;é k), then we have the followmg lemma which is
analogous to Lemma 3.

Lemma4 (1) h(H"(ko)) = H (k) as germs at 0,
(2) H(C"(ky)=C"(k,) as germs at 0,.
3)
h(C"(ky) N P"(ky)™'((0,0,0,u°, 07, ... ,v2,,0))

= C"(k,) N P" (k)T (K ((0,0,0,4°,07, ... ,v°_,,0)))
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u-axis

u-axis

P' (ko)

B (k)

T h'(0, 0, 0y u,,.0)

ty-axis. g-axis

= FIGURE 1

as germs at 0 for any real numbers u° (> 0) ”1 RS ,vO 4;. suﬁicie\ntly clbse«,
to. zero. : : s .
(4) for any germ of a contznuous curve q(t) at any pomt p=(x, y 0 u, ”1
,_,) €C"(ky) (resp. C"(k,))in H"(ky) (resp. H"(k})), P"(ky) (resp.
"(k )) maps q(t) . to a germ of a continuous. curve at (0,0,0,
W0, 0) ER” in {0,Y,Z,U,V;, ..., V,_4,0) €R’} and mo
P (ky)(a(t)) (resp. noP"(k )a(2)) ) is a germ of a contmuous curveat (0,0,0)
eRin{0,Y,Z2) € R’ } and this germ of curve has a tangent line at (0,0,0),
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where n: R? — R is a natural projection
XxX,Yy,zZz,U,V,... ,Vp_4)v—>(X,Y;Z). '
Our proof of Lemma 4 is almost the same as the proof of Lemma 3 and we
omit it. Lemma 4 yields a contradiction to Van Kampen’s theorem. Q.E.D.
Proofin the Case 3. Let Q(k) be a one-parameter polynomial map-germ fémily

as follows: ;
| O(k): R ,00— ®r*,0),

X=[x(x2+y2—u2—vf—-“—v,f_p);— J’Z]2
><[(x+ky)(x2+y2—uz—vlz—--~—v3_p)—(y—kx)z]2,
k): 2 2 2 2 2 : :
Q(k): 4 Y=x Y W v Y,
Z=1z,
@U—u+v+ +v_p, ‘
where (x,y,z,u,v;,...,0,_ p) (xX,vY,Z, U) are coordmates of the source

and the target spaces respectively and & is a parameter.
Let P'"(k) be a one-parameter polynomial map-germ as follows:

P"(k): (R",0) > (R”,0),
P (k) (x,y, 2, 4,0, 0,0, W, Wy-s)
= (QK)(x, Y, 28,0, o, 0, ) Wy e W, y).

' ‘Forany fixed k,, P" (k,)™" ({0}) {0}. Hence P"( k) is C°- K-ﬁmte
Let H"(k,) and C"'(k,) be as follows:

H"(ky)={(x,y.z,u,v,...,0,_,, 0w, ...~,'wp_4)‘e'R":
[x(x2+y2—uz—'vf'—---t—vi_p)—yz] /
X [(x + k) + 3" = 0] = =i )= (y —kox)z] = 0},
C"(ky) ={(x,y,0,u,v,...,v,_,,w,... ,wp_4)éR":
‘ x2+y2—u2"-—'vf—---—’u:_p=0}.

If there are germs of homeomorphlsms h: (R",0)— (R",0) and #': (R”,0)
— (R?,0) such that P"'(k)) = (#' )" o P"(k,)oh as germs at 0 for any two
fixed nonzero real numbers k; .k, , (ko # k 1)» then we have the following
lemma, which is analogous to Lemma 3 and Lemma 4; hence no proof is glven

Lemma 5. (1) '‘h(H" (k,)) = H"'(k) as germs at 0
(2) h(C"'( 0)) = C'"(k ) as germs at 0 ‘ ’
(3) for any real numbers W (> 0) wl R wg suﬁiczently close to zero,

") NP ) T (0,0,0,4 w} . w)_)))
~_.C"'(k)an(k) (h (0,0,0; u w?,..; p;4)7 :

as germs at 0,
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- (4) for any germ of a continuous curve q(t) at any point. p = = (x,y.0,u,

Vysee s Uy Wy e W, ) € C(kg) (resp. C’”(k ) in H'"(ko) (resp.
H"(k,)), P'"(ko) (resp. P"(k,)) maps q(t) toagermofa contmuous curve at
0,0,0, "+ v, w,, ..., w,_ 4)eR”m{OYZUW,... W,_ )} C

R’ and mo P" (k) (q()) (resp.. mo P"'(k )a(t)) is a germ of a continuous
curve at (0,0,0) € R® in {(0,Y,Z) € R } and this germ of a curve has a
tangent line at (0,0,0), where n: R® — R? is a natural projection

(X, Y.Z,U,W,, ... W,_ 4)n—>(X,Y,Z).f

As C”’(ko)nP”’(k;)) 0,0,0,4°,w°, ..., w’_) is aspace Vu’S'x Vi

S"Pif u’>0, the restriction of the homeomorphlsm h to Vils' x Vs ?

mapsrt.tov\/ 08" x Vi®s" P, where i’ = 1,(0,0,0, u w?,... p_4)

Definition 2. ‘In the space \/_Sl x eS"P = {(x,y,u,v,, ... U, p) e

R"PPx? 4yt =42 +Zv = constc} the spaces
{(x,y,’u,'vl,..., _,) ERY ”+3|x—const y—-const}
and - o . ‘
{ v €R "0, Ly, const)
X, U,V U, U,Vy, ..., U, ,: cOnS

are called longitude spheres, meridian circles respectively.
To conclude our proof in Case 3, we need the following lemma.

Lemma 6. In each

Cf”(ko) nP"'(ko)_l((O'o!O’fuo ,w? y e ,\wg_‘;))

=Vu®S' x Vuls" 7
for u°, (> 0) close to zero, each longitude sphere is:mdpped to a longitude sphere

C"(l) N P (k)™ (H((0,0,0,4 .. wp_)

—\/_SX\/_‘S””

by the restriction of the homeomorphism . h of the source space
Proof of Lemma 6. We take any germ of a contmuous curve q(¢) at (0 0.0,

L, w), .. w o 9 ) in {(0 Y,Z, u w?,... w,_ 9 ,) € R’} which has a tan-

gent line at(0,0,0,%°,w?, ... ,w)_,). Then P"(k, )_l(q(t)) is homeomor-

phic to ‘S" P x I with a certain longltude sphere in H"(k,) as its center,
where I is an open interval. If the . 1nverse image of thls longitude ' sphere by
the homeomorphism h of the source space is not a longltude sphere, then :

"

P" (k)™ (P (ky) ™ (a(0))))
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is not a germ of continuous curve at ‘4’'(0, 0 0,4°, w? )
contradiction to the commutativity P"'(ko) =)o P"(k, )o h with homeo-
morphlsms h, k. Q E D.

.,wp 4)- Thisis a

longitude sphere

fs‘xfsn'é \ o ‘./.1—051x/uTs“'p

meridian circle

- FIGURE 2"

By Lemma 6, we have the following:”

Lemma 7. For any

n

c"(k) n P" (k) ~'((0,0,0, uo,w?;"... ,wﬁ-_‘,’))

= Vu's' x \/u's"?

Jfor-any positive number u° close to zero, the image of any meridian circle by the
restriction of homeomorphism h is isotopic to any meridian circle in

: -1 ) 0
C" (k)N P (k)T (H(0,0,0,u",w,, ..., w,_,)
by an isotopy with (x , y)-coordinates preserving

Now Lemma 5 and Lemma 7 yleld a contradlctlon to Van Kampen S theorem
as same as we see in.Cases 1 and 2. - Q:E.D. » :
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