The effect of terminal dimethyl and diethyl substituents on the J-aggregate-like molecular arrangement of bisazomethine dye molecules

Takumi Jindo, Byung-Soon Kim, Naho Sasaki, Yohei Shinohara, Young-A Son, Sung-Hoon Kim, and Shinya Matsumoto.*

*Graduate School of Environmental and Information Sciences, Yokohama National University, 79-7, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.

School of Chemical and Biological Engineering, Chungnam National University, Daejeon 305-764, Korea.

Department of Textile System Engineering, Kyungpook National University, Daegu 702-701, Korea.

School of Chemical Science & Technology, Zhanjiang National University, Zhanjiang 524048, PR China.

Abstract

Derivatives of 2,3-bis[(E)-4-(diethylamino)-2-alkoxybenzylideneamino]fumaronitrile (DEA) form J-aggregate-like 2-dimensional (2-D) arrangements of \(\pi-\pi \) stacked molecules in the solid state. The structural features of the 2-D molecular arrangements were controlled by the alkoxy substituents of the DEA derivatives. In this study, single crystal structures of the six 2,3-bis[(E)-4-(dimethylamino)-2-alkoxybenzylideneamino]fumaronitrile (DMA) derivatives are reported, five of which formed J-aggregate-like 2-D molecular arrangements in the solid state. The molecular arrangements of four of the six DMA derivatives were geometrically compared with those of the corresponding four DEA derivatives, to evaluate the effect of the terminal dimethyl and diethyl substituents on the J-aggregate-like 2-D molecular arrangement. Lattice energy calculations were also carried out to interpret the effects of the terminal dialkyl substituents on the crystal structures from an energetic perspective. The dialkyl substituents of the selected DMA and DEA derivatives did not influence the formation of 1-D \(\pi-\pi \) stacking motifs. However, the location of the terminal dialkyl substituents influenced the spacing between molecules aligned along the long axis and this was found to be key in determining the formation of J-aggregate-like 2-D arrangements.

Keywords

bisazomethine dyes, J-aggregates, crystal structure, substitution effects, lattice energy calculation

*Corresponding author. Tel.: +81-45-339-3366; Fax: +81-45-339-3345. E-mail address: smatsu@ynu.ac.jp (Shinya Matsumoto).
1. Introduction

J-aggregates are known as low-dimensional aggregates of molecules.1–18 They exhibit a characteristic narrow and intense visible absorption band at longer wavelengths,2 a large optical nonlinearity3–5 and ultrafast photoexcitation decay4 that is attributed to intermolecular interactions in certain arrangement of molecules.7–18 Because of these optical properties, J-aggregates are attracting increasing attention as candidates to improve the functionality of organic optoelectronic devices.

A non-ionic bisazomethine dye, \textit{N,N}'-bis[4-(\textit{N,N}-diethylamino)benzylidene]diaminomaleonitrile (DE2), derived from diaminomaleonitrile and 4-diethylaminobenzaldehyde has been reported to exhibit a J-aggregate-like narrow and intense absorption band at around 650 nm in vapour-deposited films.19 DE2 films also show good emission characteristics20 and an enhancement in the third-order non-linear optical response21,22 due to the J-aggregates formed in the solid state. Possible applications of these films include organic semiconductors and field-effect transistors.23–26 However, these DE2 films also include non-aggregated solid phases, and these are responsible for the broad absorptions seen at shorter wavelengths.27 In order to solve this problem, novel bisazomethine dyes have been synthesised28–31 based on the reported crystal structures of DE2 and other bisazomethine dyes32–35 and the proposed structural models of J-aggregates.2,7–10,14 The optical properties28,29,31 and the solid-state structures29,30 of the novel bisazomethine derivatives have been investigated to try to develop purer J-aggregates.

2,3-bis[(\textit{E})-4-(diethylamino)-2-alkoxybenzylideneamino]fumaronitrile (DEA) are alkoxylated derivatives of DE2. The DEA derivatives show J-aggregate-like bathochromic absorption shifts between the solution state and solid state, for example, in vapour deposited films.28 Crystal structures of the dye molecules show that they form J-aggregate-like two-dimensional (2-D) stacked layers.30,35 The features of the crystal structures of the nine reported DEA derivatives are schematically summarised in Figure 1. Within the 2-D layers that are formed, the molecules are stacked with two different types of small slip angles along the long molecular axes.30,35 As shown in Figure 1(b), the stacked molecules form a staircase-like arrangement in the 2-D layers. The 2-D molecular arrangements of the DEA derivatives are similar to the proposed 2-D molecular arrangements of J-aggregates.8–10,14 The 2-D layers of the DEA derivatives are aligned along the short molecular axes to form the 3-D crystal structure. The interlayer separation between the adjacent 2-D layers is controlled by the alkoxy substituents. Figure 1(c) shows that larger alkoxy substituents lead to a greater interlayer separation. The alkoxy groups are parallel to the molecular \(\pi\)-planes. However, the larger decyloxyl substituents project out of the \(\pi\)-plane; this leads to a dislocation of the \(\pi-\pi\) stacking in the short molecular axis, and consequently small interlayer separations (Figure 1(d)).30 The 3-D crystal structures of the DEA derivatives are clearly partitioned into two parts. One part corresponds to the 2-D \(\pi-\pi\) stacking molecular layer. The other part consists of the flexible alkyl substituents. This two part structural feature in the solid state is also regarded as one of the promising structural motifs in spin-coated organic semiconductors that could contribute to realization of high performance organic field-effect transistors36 and organic flexible devices.37 The 2-D molecular arrangement of the DE2 derivatives and the effects of the substituents on this arrangement is an intriguing research area for the discussion of possible molecular designs for organic optoelectronic devices.

In this study, single crystal structures of 2,3-bis[(\textit{E})-4-(dimethylamino)-2-alkoxybenzylideneamino]fumaronitrile (DMA) were investigated. All of these derivatives have dimethyl substituents on the terminal amino group. The
chemical structure of the six DMA derivatives, 1a–1f, are shown in Figure 2. Bathochromic absorption shifts in vapour deposited films of 1a–1f have been reported.28 The single crystal X-ray structures of 1a–1f indicate that the J-aggregate-like 2-D molecular stacking layers formed in 1b–1f, but 1a did not form these 2-D layers. A dislocation of the π-π stacked molecules along the short molecular axes was found in the 2-D layers of 1b–1f, this is similar to that of the DEA derivatives with decyloxy substituents.30 In order to systematically evaluate the effects of the terminal dimethyl and diethyl substituents on the J-aggregate-like 2-D molecular arrangements, the four crystal structures of 1c–1f were geometrically compared to the four reported crystal structures of the corresponding DEA derivatives, 2c–2f. The lattice energies were also calculated for 1c–1f and 2c–2f to interpret the substitution effects from an energetic perspective. Effects of alkyl substitutions of organic small molecules on crystal structures are a very important topic in the field of crystal engineering. Our systematic investigation refers to the effect of the slight differences of the length of the terminal dialkyl substituents on the supramolecular arrangement of the molecules. This can guide the molecular design of bisazomethine dyes.19–35 Also, the relationship between substitution and the bulk structure can be extended to design organic compounds used in semiconductors.36–38

2. Experimental

The six DMA derivatives, 1a–1f, are derived from the reaction of diaminomaleonitrile with 4-(dimethylamino)benzaldehyde.28 They were synthesised and characterised by conventional analytical methods.28 The syntheses, solution and solid-state optical properties, and the electronic states of 1a–1f are reported elsewhere.28,31 The syntheses, crystal structures, solution and solid-state optical properties, and the electronic states of 2c–2f,28,35 and also lattice energy calculations, for 2c, 2e and 2f,30 have been reported. The published crystal structures of 2c–2f and the results of lattice energy calculations of 2c, 2e and 2f, are quoted and included in some figures and tables for completeness. These published data regarding crystal structures of 2c–2f are introduced to this work to systematically interpret the effects of the terminal dimethyl and diethyl substituents on the J-aggregate-like 2-D molecular arrangements.

2.1. Crystal growth and data collection

The purple (1a–1e) and reddish-purple (1f) single crystals were grown by solvent diffusion. Dichloroethane, dichloromethane and chloroform were used as the good solvent for 1a and 1f, 1b–1d and 1e, respectively. For 1a–1e n-hexane was used as a poor solvent, and for 1f diethyl ether was used as a poor solvent. Among the six compounds, 1a is only crystallised concomitantly with its solvate crystals. The homogenous crystals of 1a are thin needles and normally have low crystallinity. The diffraction data of 1a–1e were collected at room temperature (298 K) on a Rigaku R-AXIS RAPID with an image plate area detector using graphite monochromated CuKα radiation (λ = 1.54187 Å) at 40 kV and 30 mA. The
diffraction data of 1f was measured on the same method. However, the refinement using the reflections did not converge well, despite long collection times and re-measurements on the same method. Therefore, the diffraction data of 1f was re-measured at low temperature (93 K) on a Rigaku XtaLAB P200 with a hybrid pixel array detector using multi-layer mirror monochromated CuKα radiation (λ = 1.54187 Å) at 40 kV and 30 mA. Finally, the refinement in 1f fully converged.

The structures were solved by direct methods using SIR2004 for 1b, 1d and 1e and SHELXT for 1a, 1c and 1f and refined by full-matrix least-squares against F². All non-hydrogen atoms were refined anisotropically. The positions of all hydrogen atoms were calculated geometrically and were refined by the riding model. All calculations were performed using the CrystalStructure crystallographic software packages. The final R-factors and structure refinement parameters for 1a–1f are given in Table 1 together with the published data of 2c–2f. The crystal structures of 1a–1f and 2c–2f were visualised and evaluated using Mercury 3.5.

[Table 1]

2.2. Lattice energy calculations

Lattice energy calculations were performed by using the ZipOpec module of the OPiX program package. This module calculates the total lattice energy using the unit cell parameters, space group, and atomic coordinates. The positions of hydrogen atoms were normalised to the standard values of a C–H bond length (1.08 Å) and R–CH bond angles (120° and 109.5° corresponding to the bond angles of sp² and sp³ hybridised orbitals of the adjacent carbon atom, respectively) estimated from the results of neutron-diffraction. An empirical atom-atom potential method (UNI force field) was applied in the calculations.

3. Results and discussion

3.1. Crystal structures of the DMA derivatives

The crystallographic data for 1a–1f are listed in Table 1. Among the six DMA derivatives, 1a crystallised in the monoclinic crystal system, whereas the crystal structures of 1b–1f crystallised in the triclinic crystal system. There was no similarity found between the lattice parameters of 1a–1f.

Ellipsoid plots of the DMA derivatives 1a, 1c, 1e and 1f are shown in Figure 3. Bond angles, distances and the deviations of the atoms from the molecular π-planes of 1a–1f were measured. These data are provided in the supporting information.

The DMA molecules in 1a–1f sit on an inversion centre, half of the molecule comprising the asymmetric unit (Z' = 0.5). An almost identical planar geometry of the π-conjugated systems was found in 1a–1f, shown in Figures S1 and S2, and Table S1. The π-conjugated systems in 1a–1f had similar intramolecular bond angles and bond distances (Figure S3 and Table S2). These geometrical features are similar to the DEA derivatives reported previously, as shown in Table S2.

The terminal dimethyl groups of 1a–1f were parallel to the molecular π-planes, as shown in Table S1. Two distinct geometries of the alkoxy substituents relative to the π-planes were observed. In 1b, 1c and 1f they were parallel,
and in 1a, 1d and 1e they projected out from the π-planes. In the latter type, the largest deviation of the carbon atoms of the alkoxy substituents from the π-planes was more than 1 Å, as shown in Table S1. As discussed in our previous work, the geometries of the alkoxy substituents of the DEA derivatives depends on the size of the alkoxy substituents. The substituents are parallel to the molecular π-plane for alkyl lengths of 2–8 and for the phenoxy substituent, but the decyloxy and benzoxy substituents project out of the π-plane. In contrast, for 1a–1f, the size of the alkoxy substituent did not correlate with its geometry. Molecular conformation in solid states should minimize cavities and the total lattice energies in solid state. Thus, the differences in alkoxy geometry lead to differences in crystal packing.

[Figure 3]

The crystal structures of 1a, 1c, 1e and 1f are shown in Figures 4–7, respectively. Among the structures 1a–1f, 1a was the only one that crystallised in the monoclinic crystal system, and formed a herringbone arrangement of DMA molecules (Figure 4). In the crystal structure of 1a, the dye molecules are π-π stacked in the [010] direction; the molecules have an intermolecular slip angle of 26° along the long molecular axis. In this dye system, a large transition dipole moment, corresponding to an intense visible absorption, is known to lie on a line aligned along its long molecular axes. According to the theory of excitonic interactions, small slip angles between transition dipoles of molecules are an important feature of J-aggregates. The small slip angle between the π–π stacking molecules in the 1-D arrangement of 1a satisfies the one of the geometrical requirements of J-aggregates. However, the J-aggregate-like 2-D staircase molecular arrangement that is observed in the crystal structures of the DEA derivatives was not formed in the crystal structure of 1a.

[Figure 4]

In the triclinic crystal structures of 1b–1f, J-aggregate-like 2-D molecular stacking layers were observed. The 2-D layers were found to lie on the (202) plane in 1b, the (010) plane in 1c, the (01-1) plane in 1d, the (001) plane in 1e and the (01-1) plane in 1f. The staircase molecular arrangements in the 2-D layers of 1c, 1e and 1f are shown in Figures 5(a), 6(a) and 7(a), respectively. Within the 2-D layers of 1b–1e, the molecules were stacked with two types of intermolecular slip angles along the long molecular axes. These two types of small slip angles were 26° and 13° in 1b, 26° and 14° in 1c, 26° and 13° in 1d, 25° and 13° in 1e. In the 2-D layers of 1f, the molecules were stacked toward the [100] direction with a small slip angle of 26° along the long molecular axis. The molecules aligned along the [311] direction are located in such a position to produce the 2-D staircase arrangement with the small slip angle of 9° along the long molecular axis, while the molecules aligned along the [311] direction did not overlap with each other. These two types of small slip angles between molecules in 1b–1f satisfy one of the geometrical requirements for J-aggregates. Therefore, we considered that the 2-D layers formed in 1b–1f were potential J-aggregate structural units. Our theoretical investigation, based on excitonic interactions, has confirmed that the stacked arrangement in the 2-D layers affects the bathochromic shift observed between the solution and solid state of structures 1b–1f.
In 1b–1f, the 3-D crystal structure is composed of 2-D layers aligned parallel to the short molecular axis. The 3-D crystal structures of 1c, 1e and 1f are shown in Figures 5(b) and 5(c), 6(b) and 6(c), and 7(b) and 7(c), respectively. The interlayer distances between the adjacent 2-D layers of 1b–1f are listed in Table 2. The alkoxy substituents of 1b–1e are located in the interlayer spaces between the adjacent parallel 2-D layers and increase the interlayer separation. Butoxy substituents in 1d decrease the interlayer separation, relative to 1c, because they project out of the π-plane. In contrast, 1e, which has pentoxy substituents, has the largest interlayer separation regardless of the projection of the substituents out of the π-plane. The decyloxy substituents, which are the longest, are arranged parallel to the π-plane and penetrate into the adjacent 2-D layers. Thus, the interlayer distance in 1f is shorter than in 1c–1e. Figure 7(c) shows the 2-D layers formed in 1f.

Figures 5(b), 6(b) and 7(b) show the 2-D layers of 1b–1f viewed along the long molecular axis. The π-π stacked molecules are slipped along the short molecular axis. This slip dislocation is similar to that in decyloxyalted-deA derivative we previously investigated30 and that is shown in Figure 1(d). In the other DEA derivatives, the stacked molecules in the 2-D layers were almost normal to the molecular π-plane,30,35 shown in Figure 1(c). The slip-distortion, important for the formation of J-aggregate-like 2-D arrangements, seen in structures 1b–1f could be due to the presence of terminal dimethyl substituents.

3.2. Geometrical comparison between the molecular arrangements of the DMA and the DEA derivatives

The molecular geometries of 1c–1f were compared with the DEA derivatives, 2c–2f. Both sets contain the same alkoxy substituents allowing us to evaluate the effect of the terminal dimethyl and diethyl substituents on the formation of the J-aggregates-like system. 1a was excluded, as it did not form a 2-D arrangement in the solid state. 1b was excluded because the X-ray crystal structure of the corresponding DEA derivative has not been solved due to the low single crystal quality. 1c–1f, 2c and 2f crystallised in P -1. 2d and 2e crystallised in the monoclinic crystal system; 2d in P2₁/c and 2e in the non-standard P2₁/a setting (Table 1). There are no similarities in the lattice parameters of 1c–1f and 2c–2f. All of the crystal structures were centrosymmetric, and the dye molecules were located on an inversion centre (Z' = 0.5). An almost identical planar π-conjugation was found in the crystal structures of 1c–1f and 2c–2f, as shown in Tables S1 and S2. Therefore, their geometries were compared to this almost identical π-conjugated structure and the molecular axes of 1c–1f and 2c–2f. The geometrical parameters used to evaluate the molecular arrangements of 1c–1f and 2c–2f are shown in Figures 8, 9 and 10. The atomic positions of the carbon atoms depicted as C6, C8, C6’ and C8’ in the ORTEP diagrams, and the centroids of the π-conjugated systems were selected as the measurement standards, as shown in Figure 8. The line connecting the two C-atoms, C6 and C8’, corresponds to the direction of the long molecular axis. The line between C6 and C8 corresponds to the short molecular axis. The crystal structures of 1c–1f and 2c–2f are composed of two types of 2-D molecular arrangements, as shown in Figure 9. The first is
the J-aggregate-like 2-D stacking molecular layer. The second is the 2-D parallel molecular plane, in which the molecules are translated along both the long and short molecular axes. The intermolecular distances and angles between a reference molecule and three different types of neighbouring molecules were measured in each crystal structure (1c–1f and 2c–2f) so as to characterise the 3-D crystal structures including the two types of the 2-D molecular arrangements. The three types of neighbouring molecules correspond to (i) an adjacent π-π stacked molecule, (ii) a molecule aligned along the long molecular axis, and (iii) a molecule aligned along the short molecular axis, with respect to the reference molecule, as shown in Figure 9. The type (i) and (ii) molecules were selected from the same J-aggregate like 2-D layer as the reference molecules, to evaluate the molecular arrangements in the 2-D layers. The type (iii) molecule was chosen from the adjacent 2-D layers to evaluate the structural relationships between the adjacent 2-D layers. The definition of the intermolecular distances and angles between the reference molecule and the three types of the neighbouring molecules is shown in Figure 10. The distance between the π-plane of a reference molecule and that of the adjacent π-π stacked type (i) molecule was measured and denoted as \(r_i \). The intermolecular slip angles along the long molecular axis and the short molecular axis between a reference molecule and the type (i) molecule were estimated and denoted as \(\theta_{i1} \) and \(\theta_{i2} \), respectively. The distance between the centroid of the reference molecule (Ce) and the centroid of molecule (ii) Ceii is denoted \(r_{ii} \). \(\theta_{ii} \) indicates an intermolecular angle between the reference molecule and molecule (ii), which was defined as an angle \(\angle C6r_{r}C6Ce_{ii} \). The intermolecular distance \(r_{iii} \) and angle \(\theta_{iii} \) between a reference molecule and the molecule (iii) were defined as a distance between Ce and Ceiii, and the angle \(\angle C6r_{r}C6Ce_{iii} \), respectively; note that only 2d and 2e have glide plane symmetry between the reference molecule and type (iii) molecule, yet their \(\theta_{iii} \) values do not reflect this. This geometrical feature of the type (iii) molecules of 2d and 2e is intentionally distinguished from that of the other derivatives regardless of their \(\theta_{iii} \) values. The measurements are listed in Table 3.

The relative arrangements of the reference molecules and type (i), (ii) and (iii) molecules in structures 1c–1f and 2c–2f are shown in Figures 11 and 12. Table 3 lists the \(r_i \) and \(\theta_{i1} \) values for 1c–1f and 2c–2f; they are all similar. The \(\theta_{i2} \) value of 1e (80°) was larger than the \(\theta_{i2} \) values of the other derivatives. The \(\theta_{i2} \) values of 1f and 2f (54° and 55°, respectively) were slightly smaller compared to 1c, 1d and 2c–2f (60–67°). The arrangements of the reference molecules and the molecules (i) of 1e, 2f and 1c are shown in Figure 11. 1e, 1f and 2f have larger alkoxy substituents and had different \(\theta_{i2} \) values to 1c, 1d and 2c–2f. This difference indicates that the alkoxy substituents are the cause of the molecular distortion along the short molecular axis in the 1-D π-π stacked motif. However, we could not determine the effect of the terminal dialkyl substituents on the 1-D π-π stacked motif.

The \(\theta_{iii} \) values indicated the effects of the terminal dialkyl substituents on the arrangements of the molecules aligned along the long molecular axes and the short molecular axes of 1c–1f and 2c–2f. The structural relationships between the reference molecules, the molecules (ii) and the molecules (iii) of 1c, 1e, 1f, 2c, 2e and 2f
are described in Figure 12. The θ_{ii} values of 1c–1f and 2f (7–17°) were smaller than those of 2c–2e (28–29°) and the r_{ii} values of 1c–1f and 2f (22.128–33.053 Å) were larger than those of 2c - 2e (20.308–20.481 Å). These can be related to the location of the terminal dialkyl substituents and their effect on the intermolecular space between the reference molecule and type (ii) molecule. The terminal dialkyl substituents of type (ii) molecules in 1c–1f and 2f face those of the reference molecule, as shown in Figures 12(a), (b), (c) and (f). However, in 2c–2e the terminal diethyl substituents of the type (ii) molecules face the alkoxy substituents of the reference molecules. Thus, the θ_{ii} values are larger because the dialkyl substituents occupy the intermolecular space between the reference molecules and type (ii) molecules, which also induced the small r_{ii} values, as shown in Figures 12(d) and (e). The exceptional large r_{ii} value of 1f (33.053 Å) can be attributed to its decyloxy substituents penetrating into the intermolecular space between the reference molecule and type (ii) molecule, as shown in Figure 12(c). The r_{iii} values for 1c–1f (11.021–13.589 Å), which have terminal dimethyl substituents, were smaller compared to 2c–2f (14.347–15.58 Å). The θ_{iii} values of 1c–1f (29–46°) were larger compared to 2c–2e (21°). In 1c–1f, the alkoxy substituents of the type (iii) molecules are located around the terminal dimethyl substituents of the reference molecules in the intermolecular space between molecules aligned along the short molecular axis, as shown in Figures 12(a), (b) and (c). In 2c–2e, the spaces around the terminal amino groups are occupied by the larger diethyl substituents irrespective of the glide plane symmetry of 2d and 2e. The alkoxy substituents of 2c–2e were located in the spaces around the cyano groups of the molecules aligned along the short molecular axes, as shown in Figures 12(d) and (e), this is related to the smaller θ_{iii} values. The decyloxy substituents line up and overlap in 2f leading to a large spacing between adjacent molecules and, consequently, a large θ_{iii} value (88°), as shown in Figure 12(f).

A geometrical comparison of 1c–1f and 2c–2f, and the effects of the terminal dialkyl substituents on the molecular arrangement of the J-aggregate-like dye molecules is summarised in Figure 13. Three types of 1-D $\pi-\pi$ stacking molecular arrangements along the short molecular axes were found in the crystal structures of 1c–1f and 2c–2f, as shown in Figure 13(a), (b) and (c). These three identified types have different intermolecular slip angles. The dialkyl substituents do not affect the molecule dislocation along the short molecular axis that is seen in the 1-D $\pi-\pi$ stacked structures (1c–1f and 2c–2f). The dialkyl substituents of 1c–1f and 2f face each other and align along the long molecular axis. This characteristic feature of J-aggregate-like 2-D arrangements is shown schematically in Figure 13(d) and (e–g). On the other hand, the terminal diethyl substituents of the molecules of 2c–2e face the alkoxy substituents of the neighbouring molecules aligned along the long molecular axes. This induces a larger intermolecular angle between the molecules aligned along the long molecular axes in the J-aggregate-like 2-D layers of 2c–2e, as shown in Figure 13(h). The structural relationships between the adjacent 2-D layers and the features of the 3-D molecular arrangement of 1c–1f and 2c–2f were categorised as shown in Figure 13(i), (j), (k), (l), (m) and (n) according to their r_{iii} and θ_{iii} values. In 1c–1f and 2f the most important factor influencing the molecular distortions along the short molecular axis between the stacked 2-D layers shown in Figure 13(o), (p), (q) and (r) was the location of the terminal dialkyl substituents. Their position affected the intermolecular space between molecules aligned along their long molecular axis. In 2c–2e the diethyl substituents face the alkoxy substituents. The stacking direction was almost normal to the molecular π-planes, as shown in Figure 13(s) and (t).

[Table 3]
3.3. Lattice energy calculations for the DMA and the DEA derivatives

Lattice energy calculations were carried out to interpret the effects of the terminal dimethyl and the diethyl substituents on the molecular arrangements of 1c–1f and 2c–2f from an energetic perspective. The calculations indicate the importance of the strong intermolecular interactions that stabilise the lattice, as listed in Table 4.

The strong contribution to the lattice energy of the π-π stacked molecular pairs (previously described as type (i) molecules) was calculated for all the dye-derivatives. This 1-D π-π stacking arrangement that is observed in 1c–1f and 2c–2f was found to play a significant role in the crystal packing of this dye system, regardless of the different substituents and the slightly different intermolecular slip angles.

For structures 1d–1f and 2f, the third and fourth energetic contributions were calculated for the adjacent molecules that were aligned along the short molecular axes and the molecular stacking directions from the reference molecule. These third and fourth contributors to the lattice energy for 1d–1f and 2f derive from the adjacent 2-D layers, which do not include the reference molecule. On the other hand, the third and the fourth energetic contributors in 1e and 2c–2e were the molecules aligned along the long molecular axes and in the molecular stacking direction from the reference molecules, belonging to the 2-D layer including the reference molecules. In the crystal structures of 2c–2e, the dye molecules are aligned along the long molecular axis and the diethyl substituents face towards the alkoxy substituents of the adjacent molecules. This arrangement of substituents that leads to the large θii values (28–29°) and the small rii values (20.308–20.481 Å) of 2c–2e contributed to the overlap between the molecules aligned along the long molecular axes and that overlap in the molecular stacking direction, as shown in Figure 13(h). This molecular overlap in the crystal structures of 2c–2e caused strong energetic interactions between the molecules belonging to the same 2-D layers. The value of θii in 1c (17°) was smaller than in 2c–2e, but larger than in 1d–1f and 2f. As listed in Table S3, the fifth and sixth energetic contributions in 1c were due to the molecules aligned along the short molecular axis and the molecular stacking direction. The energy gap between the third and fourth contributions and the fifth and sixth contributions in 1c was the smallest (~6.9 kJ·mol⁻¹, 1.4% of the total lattice energy) compared with the energy gaps of 1d–1f and 2c–2f as shown in Table S3. Therefore, 1c could be regarded as a molecule with intermediate energetic properties between 1d–1f, 2f and 2c–2e. The large energy gap between the third and fourth contributions and the fifth and sixth contributions of 2c–2e indicates that the 2-D layers play a significant role in the crystal packing of structures 2c–2e. The lattice energy calculations indicate that the 1-D π-π stacked molecules are important for the formation of the crystal structures of 1c–1f and 2c–2f, irrespective of the different substituents. The crystal packing of 1c–1f and 2c–2f was affected by the location of the dialkyl substituents with respect to the intermolecular space between 1-D π-π stacked molecules. Their location affected the relative arrangement of molecules and, thus, the crystal packing.
4. Conclusions

Five alkoxylated bisazomethine derivatives with dimethyl substituents on the terminal amino groups were found to form crystal structures with characteristic J-aggregate-like 2-D molecular arrangements. In contrast, a phenoxylated derivative with dimethyl substituents formed a herringbone crystal structure that did not include the J-aggregate-like 2-D arrangement. Viewing the 2-D layers of the five derivatives from the direction of the long molecular axes, the molecules forming the 2-D layers were slightly slipped in the direction of the short molecular axes. This molecular dislocation along the short molecular axes in the 2-D layers is similar to that of the reported crystal structures of the decyloxylated bisazomethine derivatives that have diethyl substituents on the terminal amino group. This slipped geometry was different from the structural features of the J-aggregate-like 2-D layers of the other eight alkoxylated bisazomethine derivatives with diethyl substituents.

The geometrical comparisons and lattice energy calculations with respect to the crystal structures of each of the 4 alkoxylated bisazomethine derivatives that have dimethyl and diethyl substituents on the terminal amino groups indicate that the terminal dialkyl substituents did not affect the 1-D arrangements of the π-π stacking molecules in this dye system. However, the terminal dialkyl substituents did affect the arrangement of the molecules aligned along the long molecular axes and the short molecular axes, leading to the different structural features of the J-aggregate like 2-D molecular arrangements and the 3-D crystal structures of the derivatives. This result demonstrates that substitutions at the terminal amino groups can be used to modify the molecular arrangements and can be used in the design of low-dimensional materials that could have applications in optoelectronic devices.

Further investigations, which involve spectroscopic analyses and theoretical calculations, will investigate the electronic properties and further investigate the molecular arrangements in the solid state of this dye system.

Acknowledgement

The authors are grateful to Dr. Hiroyasu Sato (Rigaku) for his kind and expeditious support in the X-ray diffraction re-measurement with its analysis on 1f and the re-refinement on the crystal structures of 1a and 1c.

References

475, 364–367.

49 The energetic functional form for the i-j atom-atom potential in the OPiX code is: \[E(ij, \text{kJ mol}^{-1}) = A \exp(-\frac{BR_{ij}}{q_iq_j/R_{ij}^6} + \frac{C}{R_{ij}}) \], where \(R_{ij} \) is distances between the atomic nuclear positions of atoms \(i \) and \(j \); \(A, B \) and \(C \) are empirical parameters; and \(q_i \) and \(q_j \) are atomic charge parameters located at atomic nuclear positions of atoms \(i \) and \(j \). The total lattice energy is summed pairwise over atoms in the unit cell. The output from the calculations yields the total lattice energy and the energetic contributions of molecular pairs to the total lattice energy.

Figure and Table captions

Figure 1 The features of the reported crystal structures of the DEA derivatives;\(^{31,34}\) (a) chemical structures of the DEA derivatives, (b) the J-aggregate-like 2-D molecular arrangement of the DEA derivatives, the features of the 3-D crystal structures of (c) the octoxylated and (d) the decyloxyalted derivatives, respectively.

Figure 2 Chemical structures of the six DMA derivatives (1a–1f) and the four DEA derivatives (2c–2f).

Figure 3 Molecular geometries (ORTEP) drawn with 30% probability; H atoms are omitted for clarity: (a) 1a, (b) 1c, (c) 1e and (d) 1f.

Figure 4 Crystal structure of 1a: (a) the molecular arrangement in the (400) plane, (b) looking down the [010] direction, and (c) looking down the [001] direction, respectively.
Figure 5 Crystal structure of 1c: (a) the molecular arrangement in the (010) plane, (b) looking down parallel to the (010) plane from the direction of the long molecular axis, and (c) looking down parallel to the (010) plane from the molecular stacking direction, respectively.

Figure 6 Crystal structure of 1e: (a) the molecular arrangement on the (001) plane, (b) looking down in parallel with the (001) plane from the direction of the long molecular axis, and (c) looking down in parallel with the (001) plane from the molecular stacking direction, respectively.

Figure 7 Crystal structure of 1f: (a) the molecular arrangement in the (01-1) plane, (b) looking down parallel to the (01-1) plane from the direction of the long molecular axis, and (c) looking down parallel to the (01-1) plane from the molecular stacking direction, respectively.

Figure 8 The geometrical points on the π-conjugated system for the evaluation of the molecular arrangements of 1c–1f and 2c–2f: (a) the positions of the carbon atoms, C6, C8, C6i and C8i, depicted by ORTEP drawing, (b) the geometrical standards on the π-conjugated system drawn by Mercury 3.1, respectively.

Figure 9 The features of the molecular arrangement of 1c–1f and 2c–2f and the three types of the neighbouring molecules selected for the geometrical measurements; the red-coloured molecule is a reference molecule, (i) the blue-coloured molecule is an adjacent π-π stacking molecule, (ii) the green-coloured molecule is a molecule aligned along the long molecular axis, and (iii) the yellow-coloured molecule is a molecule aligned along the short molecular axis, respectively.

Figure 10 The definition of the distances and angles between a reference molecule and the three types of the neighbouring molecules: (a) the definition of the distances and angles between a reference molecule and a type (i) molecule, (b) the definition of the distances and angles between a reference molecule and the type (ii) and type (iii) molecules, respectively.

Figure 11 The 1-D π–π stacking molecular arrangements of: (a) 1, (b) 2f and (c) 1c, respectively.

Figure 12 The arrangements of the molecules aligned along the long molecular axis (ii) and the short molecular axis (iii) in: (a) 1c, (b) 1e, (c) 1f, (d) 2c, (e) 2e and (f) 2f, respectively.

Figure 13 The structural features of the molecular arrangements of 1c–1f and 2c–2f. The features of the 1-D stacking molecular arrangements of: (a) 1e, (b) 1f and 2f, and (c) 1c, 1d and 2c–2e. The features of the J-aggregate like 2-D molecular arrangements of: (d) 1e, (e) 1f, (f) 2f, (g) 1c and 1d, and (h) 2c–2e. The features of the 3-D molecular arrangements of: (i) 1e, (j) 1f, (k) 2f, (l) 1c and 1d, (m) 2c, and (n) 2d and 2e. The 3-D crystal structures of (o) 1e, (p) 1f, (q) 2f, (r) 1c, (s) 2c and (t) 2d.

Table 1 Crystallographic and structural refinement data of 1a - 1f and 2c - 2f.

Table 2 Interlayer distances between the adjacent 2-D layers in 1a–1f.

Table 3 The results of the geometrical analysis.

Table 4 Results of the lattice energy calculations on 1c–1f and 2c–2f.
Figure 1

Figure 2

1a: R^1 = CH_3, R^2 = C_6H_{13},
1b: R^1 = C_6H_4, R^2 = CH_3,
1c: R^1 = CH_3, R^2 = C_6H_{15},
1d: R^1 = C_6H_4, R^2 = C_6H_{13},
1e: R^1 = CH_3, R^2 = C_6H_{11},
1f: R^1 = CH_3, R^2 = C_{10}H_{21},
2a: R^1 = C_{10}H_{20}, R^2 = C_5H_{11},
2b: R^1 = C_{10}H_{20}, R^2 = C_7H_{13},
2c: R^1 = C_6H_{13}, R^2 = C_6H_7,
2d: R^1 = C_6H_{13}, R^2 = C_6H_9,
2e: R^1 = C_6H_{13}, R^2 = C_{10}H_{21},
2f: R^1 = C_6H_{13}, R^2 = C_{10}H_{21},
Figure 3

(a)

(b)

(c)

(d)

Figure 4

(a)

(b)

(c)
Figure 10

(i)

The long molecular axis

\[r_i \]

\[\theta_i \]

(ii)

The short molecular axis

(r)

Figure 11

(a)

(b)

(c)
Figure 12
Figure 13
Table 1

<table>
<thead>
<tr>
<th>Crystal data</th>
<th>1a</th>
<th>1b</th>
<th>1c</th>
<th>1d</th>
<th>1e</th>
<th>1f</th>
<th>2e<sup>a</sup></th>
<th>2d<sup>f</sup></th>
<th>2e<sup>c</sup></th>
<th>2f<sup>f</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal size/mm</td>
<td>0.30, 0.04, 0.04, 0.15, 0.10, 0.08</td>
<td>0.20, 0.04, 0.04, 0.10, 0.08, 0.06</td>
<td>0.60, 0.08, 0.08</td>
<td>0.40, 0.08, 0.04</td>
<td>0.15, 0.10, 0.08</td>
<td>0.30, 0.10, 0.02</td>
<td>0.20, 0.10, 0.04</td>
<td>0.50, 0.10, 0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical formula</td>
<td>C<sub>3</sub>H<sub>3</sub>N<sub>6</sub>O<sub>2</sub></td>
<td>C<sub>3</sub>H<sub>3</sub>N<sub>6</sub>O<sub>2</sub></td>
<td>C<sub>3</sub>H<sub>3</sub>N<sub>6</sub>O<sub>2</sub></td>
<td>C<sub>3</sub>H<sub>3</sub>N<sub>6</sub>O<sub>2</sub></td>
<td>C<sub>3</sub>H<sub>3</sub>N<sub>6</sub>O<sub>2</sub></td>
<td>C<sub>3</sub>H<sub>3</sub>N<sub>6</sub>O<sub>2</sub></td>
<td>C<sub>3</sub>H<sub>3</sub>N<sub>6</sub>O<sub>2</sub></td>
<td>C<sub>3</sub>H<sub>3</sub>N<sub>6</sub>O<sub>2</sub></td>
<td>C<sub>3</sub>H<sub>3</sub>N<sub>6</sub>O<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Formula weight/g mol<sup>-1</sup></td>
<td>554.65</td>
<td>430.51</td>
<td>486.62</td>
<td>514.67</td>
<td>542.72</td>
<td>682.99</td>
<td>542.72</td>
<td>570.78</td>
<td>598.83</td>
<td>739.1</td>
</tr>
<tr>
<td>Temperature/ K</td>
<td>296</td>
<td>296</td>
<td>296</td>
<td>296</td>
<td>296</td>
<td>93</td>
<td>296.1</td>
<td>296.1</td>
<td>296.1</td>
<td>296.1</td>
</tr>
<tr>
<td>Crystal system</td>
<td>monoclinic</td>
<td>triclinic</td>
<td>triclinic</td>
<td>triclinic</td>
<td>triclinic</td>
<td>monoclinic</td>
<td>monoclinic</td>
<td>monoclinic</td>
<td>triclinic</td>
<td></td>
</tr>
<tr>
<td>Space group</td>
<td>C2/c</td>
<td>P1-1</td>
<td>P1-1</td>
<td>P1-1</td>
<td>P1-1</td>
<td>P1-1</td>
<td>P1-1</td>
<td>P21/c</td>
<td>P21/a</td>
<td></td>
</tr>
<tr>
<td>a/A</td>
<td>17.6278(7)</td>
<td>7.47796(15)</td>
<td>8.7038(4)</td>
<td>8.5720(2)</td>
<td>8.4017(2)</td>
<td>9.1509(5)</td>
<td>8.4866(4)</td>
<td>8.7216(6)</td>
<td>12.4218(4)</td>
<td></td>
</tr>
<tr>
<td>b/A</td>
<td>8.6461(4)</td>
<td>8.79150(16)</td>
<td>9.2191(5)</td>
<td>9.4914(3)</td>
<td>10.0488(2)</td>
<td>10.9509(5)</td>
<td>8.8466(4)</td>
<td>22.7216(6)</td>
<td>23.4817(7)</td>
<td></td>
</tr>
<tr>
<td>α/°</td>
<td>90</td>
<td>90.00729(18)</td>
<td>90.00729(18)</td>
<td>90.00729(18)</td>
<td>90.00729(18)</td>
<td>90.00729(18)</td>
<td>90.00729(18)</td>
<td>90.00729(18)</td>
<td>90.00729(18)</td>
<td></td>
</tr>
<tr>
<td>β/°</td>
<td>105.829(19)</td>
<td>72.0277(10)</td>
<td>110.343(3)</td>
<td>98.1633(14)</td>
<td>102.0454(13)</td>
<td>93.0884(4)</td>
<td>70.2422(4)</td>
<td>81.663(3)</td>
<td>94.5512(2)</td>
<td></td>
</tr>
<tr>
<td>γ/°</td>
<td>90</td>
<td>80.1605(10)</td>
<td>97.368(3)</td>
<td>102.7069(14)</td>
<td>108.3491(12)</td>
<td>112.605(4)</td>
<td>83.791(3)</td>
<td>90.00729(18)</td>
<td>76.962(2)</td>
<td></td>
</tr>
<tr>
<td>V/Å³</td>
<td>3089.9(2)</td>
<td>577.71(2)</td>
<td>681.26(6)</td>
<td>735.064(4)</td>
<td>779.60(4)</td>
<td>100.74(9)</td>
<td>766.77(6)</td>
<td>1649.5(8)</td>
<td>1747.66(9)</td>
<td>1141.29(6)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D<sub>c</sub>/g cm<sup>-3</sup></td>
<td>1.192</td>
<td>1.237</td>
<td>1.186</td>
<td>1.163</td>
<td>1.156</td>
<td>1.132</td>
<td>1.175</td>
<td>1.149</td>
<td>1.138</td>
<td>1.075</td>
</tr>
<tr>
<td>μ/mm<sup>-1</sup></td>
<td>0.612</td>
<td>0.662</td>
<td>0.615</td>
<td>0.595</td>
<td>0.584</td>
<td>0.546</td>
<td>0.594</td>
<td>0.574</td>
<td>0.563</td>
<td>0.511</td>
</tr>
<tr>
<td>F (000)</td>
<td>1168</td>
<td>228</td>
<td>260</td>
<td>276</td>
<td>292</td>
<td>372</td>
<td>292</td>
<td>616</td>
<td>648</td>
<td>404</td>
</tr>
<tr>
<td>T<sub>min</sub></td>
<td>0.752</td>
<td>0.801</td>
<td>0.547</td>
<td>0.840</td>
<td>0.674</td>
<td>0.420</td>
<td>0.776</td>
<td>0.569</td>
<td>0.762</td>
<td>0.747</td>
</tr>
<tr>
<td>T<sub>max</sub></td>
<td>0.976</td>
<td>0.948</td>
<td>0.976</td>
<td>0.965</td>
<td>0.954</td>
<td>0.995</td>
<td>0.954</td>
<td>0.989</td>
<td>0.956</td>
<td>0.950</td>
</tr>
<tr>
<td>No. of reflection measured</td>
<td>13570</td>
<td>5395</td>
<td>6311</td>
<td>7020</td>
<td>7416</td>
<td>14895</td>
<td>7142</td>
<td>11646</td>
<td>16246</td>
<td>10198</td>
</tr>
<tr>
<td>No. of unique reflections</td>
<td>2553</td>
<td>1973</td>
<td>2333</td>
<td>2516</td>
<td>2671</td>
<td>4000</td>
<td>2639</td>
<td>2798</td>
<td>3053</td>
<td>3896</td>
</tr>
<tr>
<td>No. of parameters</td>
<td>192</td>
<td>145</td>
<td>166</td>
<td>172</td>
<td>181</td>
<td>229</td>
<td>181</td>
<td>213</td>
<td>224</td>
<td>279</td>
</tr>
<tr>
<td>θ<sub>max</sub>/°</td>
<td>64.996</td>
<td>68.25</td>
<td>68.231</td>
<td>68.16</td>
<td>68.21</td>
<td>75.42</td>
<td>68.19</td>
<td>68.23</td>
<td>68.20</td>
<td>68.16</td>
</tr>
<tr>
<td>R1, wR<sub>1</sub></td>
<td>0.1116, 0.2090</td>
<td>0.0565, 0.1959</td>
<td>0.0587, 0.3459</td>
<td>0.0619, 0.2556</td>
<td>0.0566, 0.1945</td>
<td>0.0652, 0.1656</td>
<td>0.0762, 0.2816</td>
<td>0.0527, 0.1197</td>
<td>0.0527, 0.0794</td>
<td>0.0693, 0.0932</td>
</tr>
<tr>
<td>GOF</td>
<td>1.212</td>
<td>1.061</td>
<td>0.879</td>
<td>1.134</td>
<td>1.110</td>
<td>1.036</td>
<td>1.201</td>
<td>1.175</td>
<td>1.214</td>
<td>1.383</td>
</tr>
<tr>
<td>Δρ<sub>max</sub>, Δρ<sub>min</sub>/e Å<sup>-3</sup></td>
<td>0.20, -0.21</td>
<td>0.19, -0.24</td>
<td>0.24, -0.22</td>
<td>0.36, -0.21</td>
<td>0.21, -0.23</td>
<td>0.20, -0.26</td>
<td>0.36, -0.30</td>
<td>0.65, -0.72</td>
<td>0.25, -0.24</td>
<td>0.34, -0.46</td>
</tr>
</tbody>
</table>

^a CSD code of 2e, 2e and 2f are UXIBEJ, UXIBIN and UXICAG, respectively. ^b Crystal structure of 2d have been reported previously. ^c
Table 2

<table>
<thead>
<tr>
<th>1a</th>
<th>1b</th>
<th>1c</th>
<th>1d</th>
<th>1e</th>
<th>1f</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The interlayer distances between the adjacent 2-D layers/ Å

- 6.17 8.56 8.28 10.00 8.11

Table 3

<table>
<thead>
<tr>
<th>1c</th>
<th>1d</th>
<th>1e</th>
<th>1f</th>
<th>2c<sup>a</sup></th>
<th>2d<sup>a</sup></th>
<th>2e<sup>a</sup></th>
<th>2f<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(i)</td>
<td>(ii)</td>
<td>(iii)</td>
<td>(i)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>r<sub>i</sub>/ Å</td>
<td>r<sub>ii</sub>/ Å</td>
<td>r<sub>iii</sub>/ Å</td>
<td>r<sub>i</sub>/ Å</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.39</td>
<td>22.95(1)</td>
<td>11.021(9)</td>
<td>22.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.44</td>
<td>24.357(5)</td>
<td>12.671(5)</td>
<td>24.357</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.40</td>
<td>22.128(4)</td>
<td>13.589(3)</td>
<td>22.128</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.29</td>
<td>33.053(3)</td>
<td>11.032(2)</td>
<td>33.053</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.53</td>
<td>20.308(6)</td>
<td>14.347(6)</td>
<td>20.308</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.52</td>
<td>20.31(1)</td>
<td>15.23<sup>c</sup></td>
<td>20.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.64</td>
<td>20.481(3)</td>
<td>15.58<sup>c</sup></td>
<td>20.481</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.42</td>
<td>22.558(3)</td>
<td>14.501(2)</td>
<td>22.558</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>θ<sub>i1</sub>/ °</td>
<td>θ<sub>ii</sub>/ °</td>
<td>θ<sub>iii</sub>/ °</td>
<td>θ<sub>i1</sub>/ °</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>17</td>
<td>36</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>15</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>7</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>16</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>28</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>28</td>
<td>21<sup>c</sup></td>
<td>21<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>29</td>
<td>21<sup>c</sup></td>
<td>21<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td>10</td>
<td>88</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>θ<sub>i2</sub>/ °</td>
<td>θ<sub>ii</sub>/ °</td>
<td>θ<sub>iii</sub>/ °</td>
<td>θ<sub>i2</sub>/ °</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>17</td>
<td>36</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67</td>
<td>15</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>7</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
<td>16</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td>28</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>63</td>
<td>28</td>
<td>21<sup>c</sup></td>
<td>21<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>63</td>
<td>29</td>
<td>21<sup>c</sup></td>
<td>21<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54</td>
<td>10</td>
<td>88</td>
<td>10</td>
</tr>
</tbody>
</table>

^a The crystal structures of 2c - 2f have been reported previously. 30,35 ^b 2d and 2e have glide plane symmetry between the reference molecules and the molecules (iii).

Table 4

<table>
<thead>
<tr>
<th>Total lattice energy/ kJ mol<sup>-1</sup></th>
<th>Contribution of molecular pairs to the total lattice energies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1<sup>st</sup> and 2<sup>nd</sup> contributions/ kJ mol<sup>-1</sup> (ratio, ADC)</td>
</tr>
</tbody>
</table>

1c	-508.0	-115.1	(22.7%, 45501 and 65501)	-47.2	(9.3%, 45601 and 65401)
1d	-528.2	-118.7	(22.5%, 45501 and 65501)	-50.2	(9.5%, 44501 and 66501)
1e	-537.3	-127.4	(23.7%, 45501 and 65501)	-49.5	(9.2%, 45401 and 65601)
1f	-706.9	-116.3	(16.5%, 45501 and 65501)	-64.7	(9.2%, 54501 and 56501)
2c^a	-574.4	-120.0	(20.9%, 54501 and 56501)	-86.5	(15.1%, 44501 and 66501)
2d	-592.9	-123.3	(20.8%, 45501 and 65501)	-85.9	(14.5%, 45401 and 65601)
2e^a	-596.4	-116.9	(19.6%, 55401 and 55601)	-88.6	(14.9%, 45601 and 65401)
2f^a	-724.1	-140.4	(19.4%, 45501 and 65501)	-62.6	(8.6%, 46401 and 64601)

^a The results of the lattice energy calculations of 2c, 2e and 2f have been reported previously. 30