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Abstract 

SLAU2 and AUSMPW+, both categorized as AUSM-type Riemann solvers, have been extensively developed in 

gasdynamics. They are based on a splitting of the numerical flux into advected and pressure parts. In this paper, these 

two Riemann solvers have been extended to magnetohydrodynamics (MHD). The SLAU2 Riemann solver has the 

favorable attribute that its dissipation for low-speed flows scales as O(M2), where M is the Mach number. This is the 

physical scaling required for low-speed flows, and the dissipation in SLAU2 for MHD is engineered to have this low 

Mach number scaling. The AUSMPW+, when its pressure flux is replaced with that of SLAU2, has the same low 

Mach number scaling. At higher Mach numbers, however, the pressure-split Riemann solvers were found not to 
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function well for some MHD Riemann problems, despite the fact that they were engineered to have a dissipation that 

scales as O(|M|) for high Mach number flows.  

The HLLI Riemann solver (Dumbser and Balsara 2016) has a dissipation that scales as O(|M|), which makes it 

unsuitable for low Mach number flows. However, it has very favorable performance for higher Mach number MHD 

flows. Since the two families of Riemann solvers both perform very well over a range of intermediate Mach numbers, 

the best way to benefit from the mutually complementary strengths of both these Riemann solvers is to hybridize 

between them. The result is an all-speed Riemann solver for MHD. We, therefore, document hybridized SLAU2-

HLLI and AUSMPW+-HLLI Riemann solvers. The hybrid Riemann solvers suppress the oscillations that appeared 

in single solver solutions, and they also preserve contact discontinuities, as well as Alfvén waves, very well. 

Furthermore, their better resolution at low speeds has been demonstrated. We also present several stringent one-

dimensional test problems. 

Keywords: SLAU2, AUSMPW+, HLLI, MHD, Euler Fluxes 

1. Introduction 

Magnetohydrodynamics (MHD) simulations are crucially important in many areas of science and technology 

such as astrophysics [1, 2, 3], aerospace engineering [4], and nuclear physics [5]. Such simulations are usually 

carried out with finite volume codes, and most such codes rely on higher order Godunov technology. Higher order 

Godunov schemes use a higher order spatial reconstruction, followed by the application of a Riemann solver at 

zone boundaries to achieve the designed higher order spatial accuracy. When conjoined with higher order methods 

for temporal evolution, such schemes provide a uniformly higher order solution method. The Riemann solver is an 

important building block in such methods, and it is our intention in this paper to describe Riemann solvers for MHD 

that operate well at all speeds. 

Riemann solvers for gasdynamics only have to resolve three distinct families of waves in one dimension. For 

high-speed flow, this is usually accomplished with the use of (flux difference splitting) FDS-based Riemann solvers. 

Several Riemann solvers that operate successfully for Euler flow have been presented. These include the exact 

Riemann solver [6, 7], the two-shock approximate Riemann solver [8, 9], the Roe-type Riemann solver [10, 11], 
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the HLL/HLLE/HLLEM Riemann solvers [12, 13, 14], the local Lax-Friedrichs (LLF) Riemann solver [15], and 

the HLLC Riemann solvers [16, 17]. It is also worth mentioning the DOT (Dumbser-Osher-Toro) class of universal 

Riemann solvers [18, 19] and the HLLI Riemann solver [20], which is also universal.  

For MHD, seven waves appear in the Riemann problem which makes the design of the Riemann solver more 

intricate. In other words, the MHD system admits fast, Alfvén, and slow waves in both directions in addition to an 

entropy wave. In MHD, the Roe-type solvers resolve all these waves (7-wave or full-wave) [21-25]. The HLLD 

Riemann solver of Miyoshi and Kusano [26] only resolves the fast, Alfvén, and entropy waves (5-wave). The HLLC 

Riemann solver [16, 27, 28] resolves only the fast waves and the contact discontinuity. Recently Dumbser and 

Balsara [20] presented an HLLI Riemann solver which has the potential to be universal and complete. As applied 

to the MHD system, it can resolve all the waves in the one-dimensional MHD system as long as a complete set of 

eigenvectors is given.  

In gasdynamics, there are many lines of evidence to show that the Roe and HLLC fluxes easily exhibit shock 

anomalous solutions. In such situations, (flux vector splitting) FVS-based methods seem to work much better. Such 

methods split the numerical flux into an advected part and a pressure part. Such FVS-based Riemann solvers for 

gasdynamics include the AUSM (Advection-Upstream-Splitting-Method)-type Riemann solver (except for the first 

AUSM [29]) [30-34] which resolves the sound and entropy waves. There is one overarching reason why FVS-based 

Riemann solvers are very useful. The reason is that the FDS-based methods have the wrong dissipation 

characteristics at low Mach numbers [32-37]. To take the Roe-type Riemann solver as an example, at lower Mach 

numbers, the dissipation continues to scale as O(|M|), where M is the Mach number. However, at low Mach numbers, 

physical arguments show that the dissipation should scale as O(M2)†. It is easy to see that for low Mach numbers, 

say |M| ≤ 0.1, the dissipation of the Roe-type Riemann solver would be excessive, resulting in unphysically 

excessive entropy generation. FVS-based, or pressure-split, Riemann solvers provide more flexibility in their 

design, permitting this favorable Mach number scaling to be achieved at lower Mach numbers. Another line of 

evidence shows that the Roe and HLLC fluxes easily exhibit shock anomalous solutions (specifically, Roe and 

HLLC behave nearly identically [38]), represented by the carbuncle phenomenon [38, 39, 40], against which 

AUSM-type and HLL fluxes are relatively robust. In fact, there is a numerically expressed zone inside the captured 

                                                           
† Remember that the pressure coefficient Cp, being O(1), is written as Cp = 2∆p/(γM2p∞), and hence, ∆p α M2. See Appendix A of 
[55] for more details. 
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shock [34, 39-45] where no mathematical expression is valid. In this zone, full-wave solvers tend to pick unphysical 

waves and augment them—this results in unphysical growth of the carbuncle. In contrast, “less-wave” solvers such 

as AUSM-type or HLL can suppress such unphysical wave growth and propagation on account of their built-in 

dissipation. Therefore, several attempts have been made to use a less-wave solver (e.g., HLL) only at a shock, and 

adopt a full-wave flux (e.g., Roe, HLLC) elsewhere [3, 46]. SLAU2 [34, 38] flux function is one of the AUSM-

type solvers, and designed to add a proper amount of dissipation only to the numerical shock zone. Thus, SLAU2 

is robust against shock instabilities, while capable of resolving gasdynamic contacts or boundary-layers [34] by 

itself. Consequently, it can be a good ingredient of a hybrid solver. This is our primary motivation for extending 

SLAU2 to MHD in this paper. Such an extension would provide the research community with an MHD Riemann 

solver with correct low Mach number scaling. Consequently, the first goal of this paper is to design a SLAU2-

based Riemann solver for MHD. 

While Roe-type or HLL-type solvers are employed in open astrophysical MHD codes (e.g., [47-51]), there are 

a very limited number of AUSM-type flux functions for MHD applications, probably because of their lack of Alfvén 

wave resolution. Only a few FVS-based Riemann solvers for MHD have been presented in the literature. These 

include E-CUSP [52] and AUSMPW+ [53, 54]. While E-CUSP will not accurately capture a stationary contact 

discontinuity in MHD, AUSMPW+ will capture such a discontinuity. Similarly, SLAU2 can also capture such 

discontinuities, and this beneficial feature is demonstrated for MHD in this paper. It is also worth pointing out a 

fine point of difference between SLAU2 and AUSMPW+ in gasdynamic simulations. For gasdynamics, 

AUSMPW+ is only designed to be a Riemann solver for high-speed flows, whereas SLAU2 is designed to be an 

all speed Riemann solver at least in the realm of gasdynamics. Based on extensive testing, we found that within the 

realm of stringent, high-speed MHD test problems, both SLAU2 and AUSMPW+ Riemann solvers showed some 

deficiencies. However, they were able performers for low-speed MHD flows. 

Several pressure-split solvers have already been improved so that they can simultaneously treat low-speed and 

high-speed flows accurately. This is often accomplished by hybridizing a pressure-split scheme at lower Mach 

numbers with a FDS-based Riemann solver at higher Mach numbers. Since FDS-based Riemann solvers can be 

ruggedized for high-Mach number flows, this hybridization offers the best of both worlds—the pressure-split 

Riemann solver gives favorable low Mach number scaling while the FDS-based Riemann solver provides robust 

performance in high Mach number flows. Such hybrid Riemann solvers are available for gasdynamics where they 
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are sometimes called “all-speed schemes (or Riemann solvers)”. In some instances, many user-specified parameters 

(such as “cutoff Mach number” [32, 36]) are required when designing all-speed Riemann solvers. A great deal of 

attention must be paid to the choice of this cutoff Mach number, otherwise the solution can be troublesome [32, 55, 

56]. The dissipation term of the SLAU2 Riemann solver for gasdynamics, however, was designed to be 

automatically scaled to O(M2) at low speeds, and hence, needs no expert care by the user. We, therefore, realize 

that if we can hybridize SLAU2 with a FDS-based Riemann solver, we can also offer the best of both worlds for 

MHD simulations. For our choice of FDS-based Riemann solver, we choose the HLLI Riemann solver [20] because 

it is a complete Riemann solver that resolves all the waves in the MHD system with a minimum of dissipation for 

higher Mach number flows. Consequently, the second goal of this paper is to document a hybrid SLAU2-HLLI 

Riemann solver for MHD. This gives us an all-speed Riemann solver for MHD with favorable low Mach number 

scaling and robust performance at high Mach numbers. In the course of our exploration, we also found that we 

could redesign the AUSMPW+ Riemann solver for MHD so as to endow it with good low Mach number scaling. 

This has enabled us to fulfil the third goal of this paper which is to document a hybrid AUSMPW+-HLLI Riemann 

solver for MHD which also has very desirable all-speed capabilities. 

To anticipate the utility of all speed solvers for MHD, let us briefly consider the MHD flows in the Sun as an 

example. In the solar photosphere, it is not unusual to have convective velocities of ~ 1 km/s with sound speeds of 

~ 7 km/s. However, in the solar corona and in the solar wind, velocities can range from 250 km/s to 750 km/s with 

a sound speed of ~ 100 km/s. A simulation that connects the solar photosphere to the corona would, therefore, have 

to handle a range of Mach numbers that goes from strongly subsonic to very supersonic. The same simulation, with 

the same collocation of variables on the mesh, would have to stably straddle this entire range of Mach numbers. 

This highlights the need for all speed Riemann solvers for MHD flows. Let us now turn attention to the convective 

zone in the Sun. At the base of the solar convective zone, convective speeds can be a few km/sec while the sound 

speed is less than or equal to 200 km/s. In such situations, the anelastic approximation [57, 58, 59] has been shown 

to be deficient [60, 61, 62] because it lacks a proper treatment of the energy equation. Even the co-density 

formulations [63-68] might be deficient in their treatment of energy conservation. In contrast, the full Euler and 

MHD equations are always energy conservative and it may be worthwhile to ask whether the full equation set, 

treated explicitly and coupled with an all-speed Riemann solver, might be up to the task? We are not equipped to 

examine that issue in a computational paper such as this. However, this paper does open the door to a resolution of 
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that question. We point out that in order to examine this issue more thoroughly, we would need a Riemann solver 

that operates with very low computational cost at low Mach numbers. The SLAU2 Riemann solver is one such very 

low-cost Riemann solver; whereas the HLLI Riemann solver relies on a characteristic projection and is, therefore, 

quite computationally costly. For that reason, we design our all-speed Riemann solver in such a way that for flows 

with a Mach number that is less than 0.1, we revert exclusively to a low-cost SLAU2 Riemann solver for MHD. 

We hope that this opens the door to treating solar convection with the fully compressible MHD equations rather 

than cobbled-up equation sets like the anelastic approximation. Furthermore, there are also low Mach flow regions 

in the International Thermonuclear Experimental Reactor (ITER) according to [69, 70]. 

We confine the present work to one dimension (1D) because multi-dimensional treatments of MHD inevitably 

call for a divergence-free constraint on the magnetic field ( ·B = 0) [71-79]. There are several methods to 

guarantee this divergence-free property, and the employed method differs from one literature to another (for 

instance, Han et al. [53] proposed AUSMPW+ for MHD and coupled it with Dedner’s method [73], whereas E-

CUSP for MHD [52] was developed and tested with a constraint transport method by Balsara and Spicer [72]). In 

this work, such influences of the choice of divergence-treatment method is excluded from our 1D MHD discussion 

(the multidimensional performance, such as robustness against the carbuncle phenomenon, is deferred to the future 

work). Nevertheless, as opposed to gasdynamics, the 1D governing equations for MHD contain multidimensional 

components (y and z components of velocity and magnetic field).  

The plan of the paper is as follows. Section 2 describes the governing equations. Section 3 will be dedicated to 

the discretization of the governing equations, particularly to the SLAU2 and the SLAU2-HLLI in MHD 

(AUSMPW+ and AUSMPW+-HLLI in MHD are described in Appendix 1). Numerical examples will support the 

performance of the proposed methods on stringent 1D MHD test problems in Sec. 4. Finally, Section 5 will conclude 

the present work. 

2. Governing Equations 

The governing equations are the compressible MHD equations as follows: 

0=
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

zyxt
HGFQ  (1a) 
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where Q is the vector of conservative variables, ρ is the density, u = (u, v, w)T is velocity, p gas pressure, pT total 

pressure (pT = p + B2/2), B magnetic field [B2 = B·B; B = (Bx, By, Bz)T], E total energy per unit mass [E = (p/ρ)/(γ-

1)+0.5(u2+v2+w2)+0.5B2/ρ], and H total enthalpy [H = E + (p/ρ)]. The working gas is the calorically perfect gas 

with the specific heat ratio γ. The first five equations are the Euler equations, whereas the 6th – 8th equations 

comprise Faraday’s law for MHD, which is a subset of the Maxwell equations. 

In 1D, the third and fourth terms are absent, and the 6th equation is dropped. The divergence-free requirement 

for the magnetic field ( ·B = 0) is automatically satisfied, as long as Bx = const. [52]. Then, Equation (1a) is solved 

with a 1D finite-volume code, and can be written in the delta form as: 

where ∆Qi is change of conservative variables in time, ∆t is the time step, ∆x stands for the width of the cell (which 

is uniform in this study), and Fi±1/2 is the inviscid (Euler) flux through the cell-interface (which separates the cell i 

and its neighbor cell i±1), respectively. Details of the inviscid fluxes are explained below. 

3. SLAU2 and SLAU2-HLLI for MHD 

3.1 SLAU2 for MHD 

Han et al. extended AUSMPW+ [53], one of AUSM-type solvers, and we had first followed their formulation in 

extending SLAU2 to MHD. However, our preliminary numerical tests demonstrated oscillatory solutions in some 

cases. We considered that the primary cause of the oscillations lie in the dissipation term (final term) in the mass flux 

for low speeds, which affects not only the Euler equations (gas flow field) but also the magnetic field governed by the 

Maxwell equations. In fact, the dissipation term having low Mach scaling was originally developed for gas dynamics, 

and there is no reason to employ the same dissipation term for the magnetic field. Thus, the following method can be 

constructed for 1D MHD. Let us begin from the Euler equations part, i.e., the first five components of Eq. (5).  
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where 
2

,,
21

RxLx BB
B

+
=  as in [53]. Note that the fifth line of Eq. (3c) is proportional to B1/2, and hence, it can be 

included in Eq. (3b). For ease of comparison to [53], however, we simply followed their expression here. The mass 

flux is 

where pT is the total pressure (pT = p + B2/2), and 

𝐅𝐅SLAU2(Euler) =
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where c is, in this MHD case, the fast magnetosonic speed, 

and aL/R is the gas speed of sound, 
RL

RLp
a

RL ρ
γ

=2 . 

Then, the pressure flux is: 

for the gasdynamics part (1st – 5th lines of Eq.(1)). On the other hand, the magnetic part, i.e., 7th – 8th lines (we do 

not have to solve the 6th line in 1D), are solved by HLL: 

where SL/R are “signal” speeds traveling in left and right directions, respectively, and û  is the Roe-averaged [10] 

velocity, 

With this simplification of the Faraday’s law treatment, the robustness of SLAU2 is dramatically improved. The key 

idea behind this modification is that we have eliminated the low-Mach-scaled dissipation term from the magnetic part, 

which would have contaminated the magnetic field.  

The idea of separately treating Faraday’s law and the Euler equations is not new. Li [28] employed the HLLC flux 

for the Euler equations while drawing on the HLL flux for the Faraday law, since he found it unstable to use HLLC 

for both the equations. Our proposal here is in the same spirit; where the Euler equations are solved by SLAU2, 

whereas HLL is used for the Faraday part.  

Notice that the extremal left and right speeds in eqn. (5) use the fast speeds. For strongly subsonic flow, this could 
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provide excessive dissipation to the magnetic fields. For low-speed flow situations, we might prefer to use the Alfven 

speeds for the dissipation that is imparted to the magnetic fields. Consequently, if we replace the magnetosonic speed, 

cf, in Eq.(5b), with Alfvén speed, cA, we can take Alfvén waves into account, and enhance the stability at both shocks 

and Alfvén discontinuities, according to our preliminary computations. 

The strong shock is detected by the pressure function borrowed from AUSMPW+ flux function (but with cA-weight 

included) [31, 53], 

where 

Thus, the following new signal speeds are useful in paying attention to both the fast speed and Alfvén speeds. 

which will be substituted for Eq.(5a). The point here is that, when there are no strong shocks in the solution (w ≈ 1), 

the flux (for the magnetic field only) is soon switched from fast-speed-based HLL [Eq.(5b)] to the Alfvén-speed-based 

HLL [Eq.(6)], while SLAU2 for the Euler equation part is unaltered. This version will be simply called “SLAU2” in 

this paper, and will be tested in Section 5. 

We also point out that in the course of development of the present SLAU2 solver, another version is also 

constructed in which the Maxwell equations are simply treated by a standard AUSM manner, i.e., 

where 

are commonly used Mach number function among AUSM-type solvers [30, 31]. This version works just as well as the 

previously proposed version. Consequently, all the numerical results are shown from the previous version of SLAU2. 

𝑆𝑆A,𝑅𝑅 = max�𝑢𝑢� + 𝑐𝑐A,𝑅𝑅,𝑢𝑢𝑅𝑅 + 𝑐𝑐A,𝑅𝑅 , 0�, 𝑆𝑆A,𝐿𝐿 = min�𝑢𝑢� − 𝑐𝑐A,𝐿𝐿,𝑢𝑢𝐿𝐿 − 𝑐𝑐A,𝐿𝐿, 0� 

 

(6) 

𝑤𝑤 = min�
𝑝𝑝T,𝐿𝐿

𝑝𝑝T,𝑅𝑅
,   
𝑝𝑝T,𝑅𝑅

𝑝𝑝T,𝐿𝐿
,   
𝑐𝑐A,𝐿𝐿
2

𝑐𝑐A,𝑅𝑅
2 ,   

𝑐𝑐A,𝑅𝑅
2

𝑐𝑐A,𝐿𝐿
2  �

3

 (7a) 

𝑐𝑐A,𝐿𝐿 𝑅𝑅⁄
2 =

𝐁𝐁𝐿𝐿 𝑅𝑅⁄
2

𝜌𝜌𝐿𝐿 𝑅𝑅⁄
 (7b) 

𝑆𝑆𝑅𝑅,𝑛𝑛𝑛𝑛𝑛𝑛 = max �(1 −𝑤𝑤)𝑆𝑆𝑅𝑅 + 𝑤𝑤𝑆𝑆A,𝑅𝑅, 0� , 𝑆𝑆𝐿𝐿,𝑛𝑛𝑛𝑛𝑛𝑛 = min �(1 − 𝑤𝑤)𝑆𝑆𝐿𝐿 + 𝑤𝑤𝑆𝑆A,𝐿𝐿, 0�
 

(8) 

𝐅𝐅SLAU2(Maxwell) = 𝑐𝑐̅ ∙ (𝑀𝑀+𝚿𝚿Maxwell
+ + 𝑀𝑀−𝚿𝚿Maxwell

− ) + 𝐏𝐏Maxwell (9a) 

𝚿𝚿Maxwell
+ = �𝐵𝐵𝑦𝑦,𝐿𝐿,  𝐵𝐵𝑧𝑧,𝐿𝐿�

𝑇𝑇;   𝚿𝚿Maxwell
− = �𝐵𝐵𝑦𝑦,𝑅𝑅 ,  𝐵𝐵𝑧𝑧,𝑅𝑅�

T

 
(9b) 

𝐏𝐏Maxwell = �
P+ ∙ {−𝑣𝑣L}𝐵𝐵1 2⁄ + P− ∙ {−𝑣𝑣R}𝐵𝐵1 2⁄

P+ ∙ {−𝑤𝑤L}𝐵𝐵1 2⁄ + P− ∙ {−𝑤𝑤R}𝐵𝐵1 2⁄
� (9c) 
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3.2 Hybrid SLAU2-HLLI for MHD 

The HLLI Riemann solver [20] is very briefly reviewed here because such a review makes it easier to explain to 

the reader how the hybridization takes place between SLAU2 and HLLI Riemann solvers. The HLLI flux is given by 

taking the HLL flux and adding an anti-diffusive contribution to it, as shown below 

where the scalar ϕ ∈ [0, 1] is a flattener variable (whose detailed definition is deferred to [80]) which responds to the 

presence of strong shocks (HLL flux for ϕ = 0, while HLLI for ϕ = 1). In principle, the matrices of right and left 

eigenvectors, i.e., ( )*R Q   and ( )*L Q   , can include the entire MHD eigensystem, which yields a complete 

Riemann solver. However, we are usually only interested in improving the contact discontinuity and Alfven waves. 

Consequently. ( )QR*   and ( )QL*   could contain only the linearly degenerate intermediate right and left 

eigenvectors, and ( )QΛΛ ** = is diagonal matrix of eigenvalues, as detailed in [20]. 

Now a low-Mach-number scaling can be introduced into the HLLI Riemann solver, with no additional user-

specified parameters, as shown in [81]. Remember that we have used the following function χ in SLAU2. 

𝑀𝑀+ = �

1
2

(𝑀𝑀𝐿𝐿 + |𝑀𝑀𝐿𝐿|),         if |𝑀𝑀𝐿𝐿| ≥ 1
1
4

(𝑀𝑀𝐿𝐿 + 1)2,              otherwise
   (9d) 

𝑀𝑀− = �
     

1
2

(𝑀𝑀𝑅𝑅 − |𝑀𝑀𝑅𝑅|),         if |𝑀𝑀𝑅𝑅| ≥ 1

−
1
4

(𝑀𝑀𝑅𝑅 − 1)2,              otherwise
   (9e) 

( ) ( ) ( ) ( )( )LR
LR

RL

LR

LRRLRLLR
HLLI SS

SS
SS
SSSS

QQQLQδQR
QQFF

F −
−

−
−

−+−
= ***ϕ  (10a) 

( )
RL SS

+−

−−= **
*

ΛΛIQδ
 

(10b) 

( )*** 2
1 ΛΛΛ ±=±

 
(10c) 

( )RL QQQ +=
2
1

 (10d) 

χ = �1 −𝑀𝑀��2 (4e) 

𝑀𝑀� = min�1.0,   
1
𝑐𝑐̅
�𝐮𝐮𝐿𝐿

2 + 𝐮𝐮𝑅𝑅2

2
� (4f) 

𝐅𝐅HLLI =
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Note that (1-χ) approaches to zero at very low speeds, while it is bounded by unity at supersonic speeds. Furthermore, 

it needs no cutoff or reference Mach number (velocity), in contrast with the typical preconditioning used in all-speed 

HLLC [82] or HLLE [83]. Then, with this (1-χ), the fast and Alfvén speeds are scaled to  

where (1 - χ) ≈ 2M at low speeds. In other words, all the characteristic waves appearing in the Riemann problem are 

all shrunk to (1-χ) times their original value. This reduces the dissipation from the HLLI Riemann solver in the low-

speed limit. 

Keeping this in mind, it is possible to hybridize SLAU2 and HLLI as follows: 

where K = 4.0 is found to be a robust choice (i.e., HLLI is used entirely for M > 0.25), and the cutoff number is 

prescribed as Mco = 0.1 so that this solver turns to a full “SLAU2” for M < 0.1 (where low-speed flow solvers are 

favored, such as in the tachocline in the Sun [61, 84]). This solver is referred to as “SLAU2-HLLI.” Note that χ’ (not 

χ), K, and Mco are introduced only for hybridization purposes, and each of the SLAU2 or HLLI Riemann solvers is 

still parameter-free. Moreover, the same idea will be used in the Appendix 1 to construct the ensuing “hybrid 

AUSMPW+-HLLI Riemann solver”. 

In this solver, HLLI is usually used at shocks, whereas SLAU2 is employed in low-speed portions of the flow, in 

this 1D work. In multi-dimensional flows (not covered here, though), however, this will not be the case: directions 

perpendicular to the uniform flow or flows inside the boundary-layer will more likely adopt SLAU2. Indeed, it is 

reported that solvers sensitive to characteristic speeds are more vulnerable to carbuncle phenomena in gasdynamics 

[39, 40]. To combat this problem, two different solvers are hybridized in the literature, in which one solver is employed 

in the shock-normal direction, and the other in the shock-perpendicular one (e.g., Roe and HLL for MHD in [3, 46], 

HLLC and HLL in [85], E-CUSP and HLL [86]). Thus, in future work, the present hybridization will be extended in 

a multi-dimensional manner against carbuncle phenomena. 

𝑐𝑐𝑓𝑓 → (1 − 𝜒𝜒)𝑐𝑐𝑓𝑓;  𝑐𝑐A → (1 − 𝜒𝜒)𝑐𝑐A (11) 

𝐅𝐅SLAU2−HLLI = 𝜒𝜒′𝐅𝐅SLAU2 + (1 − 𝜒𝜒′)𝐅𝐅HLLI (12a) 

𝜒𝜒′ = �1 −𝑀𝑀′��
2
 (12b) 

𝑀𝑀′� = min�1.0,   max�
𝐾𝐾
𝑐𝑐̅
�𝐮𝐮𝐿𝐿

2 + 𝐮𝐮𝑅𝑅2

2
− Mco,   0�� (12c) 
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4. Numerical Tests 

An extensive series of 1D test cases were conducted (and seven tests are selected here). We selected these tests 

because we found that several unhybridized FVS-split solvers successfully handled some problems but failed 

(diverged, or led to unphysical solution) for the others, as will be demonstrated here. Both the spatial and temporal 

orders of accuracy are two by explicit second order TVD [20]. The Courant number is set to as 0.8, unless mentioned 

otherwise. The computational space of unit length [-0.5, 0.5] is uniformly divided by 400 cells for all the problems. 

Reference solutions are produced by HLL flux on 4,000 cells for the first four cases. Table 1 summarizes Riemann 

problems from sub-Section 4.1 to 4.7. Solutions of only SLAU2 and SLAU2-HLLI will be presented here, and those 

of AUSMPW+-type counterparts will be explained in Appendix 1. For ease of comparison, however, the best solver 

among SLAU2-type and AUSMPW+-type (with its desired condition) in each problem is summarized in Table 2. 

4.1 Brio-Wu shock tube 

This is a widely-used MHD shock tube problem introduced by Brio-Wu [21]. The initial conditions for left (L) and 

right (R) states are 

Problem 1 (Brio-Wu) 

(ρ, u, v, w, p, By, Bz)L = (       1, 0, 0, 0,    1, π4 , 0) for x ≤ 0 

(ρ, u, v, w, p, By, Bz)R = (0.125, 0, 0, 0, 0.1, - π4 , 0) for x > 0 

with Bx = 0.75 π4 , γ = 2.0. Computations are conducted to a final time of t = 0.1. The results of SLAU2 are shown 

in Fig. 1. These results successfully reproduced important physics, such as a (left running) fast rarefaction wave around 

x ≈ 0.1, a slow compound wave (x ≈ -0.05), a contact discontinuity (x ≈ 0.07), a slow shock at x ≈ 0.15, and a fast 

rarefaction wave (x ≈ 0.3 – 0.36), as in the reference solution or literature (e.g., HLLI [20]). For this problem, SLAU2-

HLLI showed indistinguishable results. For that reason, we do not show the results from the other Riemann solvers. 

 

4.2 Ryu-Jones shock tube 

This problem [22] involves all seven waves, and hence, it is considered to be an important benchmark test case. 

Problem 2 (Ryu-Jones) 

(ρ, u, v, w, p, By, Bz)L = (1.08, 1.2, 0.01, 0.5, 0.95, 3.6, 2) for x ≤ 0 

(ρ, u, v, w, p, By, Bz)R = (1,          0,     0,    0,      1,    4, 2) for x > 0 
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with Bx = 2.0, γ = 5/3. The simulations are run to a final time of t = 0.2. The results of SLAU2 are shown in Fig. 2, 

along with those of SLAU2-HLLI. As seen, all the features are again well captured by SLAU2 as in the reference 

solution, with only small wiggles observed (Fig. 2, x ≈ -0.2 – 0). These oscillations, however, do not appear if SLAU2 

is hybridized with HLLI. 

 

4.3 Colliding Flows 

High-speed flows from both sides collide in this problem [88]. 

Problem 3 (Colliding) 

(ρ, u, v, w, p, By, Bz)L = (0.15, 21.55, 1, 1, 0.28, -2, -1) for x ≤ 0 

(ρ, u, v, w, p, By, Bz)R = (0.1, -26.45, 0, 0, 0.1, 2, 1) for x > 0 

with Bx = 0, γ = 5/3. Computations are conducted for t = 0.04. Figure 3 shows the solutions. This is one of the severe 

problems, and SLAU2 exhibits a density overshoot and oscillations after the shock (Fig. 3, x ≈ -0.3), as well as in 

SLAU-HLLI.  

 

4.4 Severe shock tube problem 

In this problem, the following setup is used [88] 

Problem 4 (Severe shock tube) 

(ρ, u, v, w, p, By, Bz)L = (0.8129, 1.801, 0.3672, 0.1836, 0.4809, 1.7856, 0.8928) for x ≤ 0.1 

(ρ, u, v, w, p, By, Bz)R = (1,       -1.7942,          0,           0,      0.1,          2,         1) for x > 0.1 

with Bx = 4, γ = 5/3. Computations are conducted for t = 0.4. The solutions are shown in Figs. 4 (SLAU2 and SLAU2-

HLLI, representing AUSMPW+ and AUSMPW+-HLLI, respectively). The magnetic field, By, is solved well by all 

the four solvers (Fig. 4b). In this severe problem, however, the density has unacceptable oscillations at x ≈ 0.1 – 0.25 

both in SLAU2 (Fig. 4a). On the other hand, the oscillations are indeed suppressed in SLAU2-HLLI (Fig. 4a), 

demonstrating the benefit of the hybridization. 

 

4.5 Contact discontinuity 

This problem deals with a contact discontinuity.  

Problem 5 (Contact Discontinuity) 
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(ρ, u, v, w, p, By, Bz)L = (   1, 0, 0, 0, 1, 0, 0) for x ≤ 0 

(ρ, u, v, w, p, By, Bz)R = (0.1, 0, 0, 0, 1, 0, 0) for x > 0 

with Bx = 1, γ = 1.4. Computations are conducted for t = 0.25. As designed, all the solvers presented here preserve the 

contact discontinuity (Fig. 5), represented by SLAU2. The exact treatment of isolated contact discontinuities is crucial 

for achieving well-balanced schemes, and is analytically proved for SLAU2 in the Appendix 2. 

 

4.6 Alfvén wave discontinuity 

In this problem, the following setup is employed. 

Problem 6 (Alfvén Discontinuity) 

(ρ, u, v, w, p, By, Bz)L = (1/4π, -1, 1, -1, 1, -1, 1) for x ≤ 0 

(ρ, u, v, w, p, By, Bz)R = (1/4π, -1, -1, -1, 1, 1, 1) for x > 0 

with Bx = 1, γ = 1.4. Computations are conducted for t = 0.25. The solutions are shown in Fig. 6. As seen, the SLAU2 

smeared out the stationary Alfvén discontinuity, obviously because of lack of Alfvén wave resolution. The SLAU2-

HLLI, on the other hand, perfectly preserves the sharp jump in magnetic variables. Thus, the importance of hybridizing 

with the HLLI full-wave solver has been confirmed. 

 

4.7 Low-speed wave propagation 

This final test case is not a Riemann problem, but useful in assessing the performance of Riemann solvers at low 

speeds in 1D. Here the initial linear variations for pressure are given by following equations from [89, 90]. 

Problem 7 (Low Speed) 

( )nxppi πε 2sin0=′  
with Bx = 0.001, background pressure p0 and density are 1, background velocity is 0.1. Here one wavelength λ (= 0.05) 

is composed of n = 20 cells, and ε is a small number 0.001, which stands for magnitude of pressure variation from the 

mean value.  

Figure 7 shows the pressure profiles in the first 20 cells at t = 1 of the present problem. As time progresses, the 

wave amplitude is known to decay. SLAU2, nevertheless, attained the highest amplitude (17%), followed by SLAU2-

HLLI (14%). The Roe-type Riemann solver showed the smallest amplitude (11%) which has no low-Mach-scaling, 

for reference. 
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Note that in steady multidimensional problems, these differences will result in huge discrepancies from physically 

valid solutions, as is evident in Appendix 3 or [33, 35] (especially Fig.13 in [33], in which SLAU preserved the initial 

shape of a Rankine vortex very well whereas it had decayed by Roe solution after long time computations). This will 

be thoroughly covered in our next paper. In this 1D context, however, the present problem may be the best way to 

demonstrate the effects of low-speed-scaling introduced in SLAU2 and SLAU2-HLLI, although it is considered a test 

for Euler equations without the magnetic field. 

5. Conclusions 

SLAU2, categorized as an AUSM-type Riemann solver, has been extended to magnetohydrodynamics (MHD). 

SLAU2 is equipped with a proper dissipation term for both high speed and low speed. AUSMPW+, having no such 

term, has also been suitably upgraded by using the dissipation term from SLAU2. Despite their robust performance in 

gasdynamics at super- and hypersonic speeds, these solvers were found not to function well for MHD problems under 

extreme conditions. While the SLAU2 and AUSMPW+ Riemann solvers for MHD were able to solve several typical 

benchmark cases, in a few severe, high Mach tests, they failed to obtain stable solutions.  

The HLLI Riemann solver, on the other hand, was not designed for low Mach number flows. However, it has very 

favorable performance for higher Mach number MHD flows. Since the two families of Riemann solvers both perform 

very well over a range of intermediate Mach numbers, we decided to hybridize between them, to obtain an all-speed 

Riemann solver for MHD. That is, we proposed hybridized SLAU2-HLLI and AUSMPW+-HLLI Riemann solvers. 

The hybrid Riemann solvers suppressed the oscillations that had appeared in single solver solutions, and they also 

preserved contact discontinuities, as well as Alfven waves, very well. Furthermore, their better resolution at low speeds 

has been demonstrated.  

We presented several stringent one-dimensional test problems. The multi-dimensional extension is definitely the 

next step, and will appear as a future work.  
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Appendices 

Appendix 1. AUSMPW+, AUSMPW+-HLLI, AUSMPW+2, and AUSMPW+2-HLLI for MHD 

The AUSMPW+ flux was already extended to MHD by Han et al. [53]. This form, however, turned out to be 

unstable in some numerical tests, as was the case with the original SLAU2. Thus, it is modified as in SLAU2, in which 

the gasdynamic part and magnetic part are handled differently, as follows. The Euler part is 

where 
2

,,
21

RxLx BB
B

+
=  as in [53], and 

The pressure-based weighting functions are given by: 

𝐅𝐅AUSMPW+(Euler) = 𝑀𝑀�𝐿𝐿+𝑐𝑐1 2⁄ 𝚽𝚽𝐿𝐿 + 𝑀𝑀�𝑅𝑅−𝑐𝑐1 2⁄ 𝚽𝚽𝑅𝑅 + P+𝐏𝐏𝐿𝐿 + P−𝐏𝐏𝑅𝑅 +
1
2
�𝐅𝐅 B,𝐿𝐿 + 𝐅𝐅 B,𝑅𝑅� (A.1a) 

𝚽𝚽 = (𝜌𝜌,𝜌𝜌𝜌𝜌,𝜌𝜌𝜌𝜌,𝜌𝜌𝜌𝜌,𝜌𝜌𝜌𝜌 + 𝑝𝑝𝑇𝑇)𝐓𝐓, 𝐅𝐅B = �0,−𝐵𝐵1 2⁄ 𝐵𝐵𝑥𝑥,−𝐵𝐵1 2⁄ 𝐵𝐵𝑦𝑦, −𝐵𝐵1 2⁄ 𝐵𝐵𝑧𝑧, 0�𝐓𝐓

 

(A.1b) 

𝐏𝐏 = �0,𝑝𝑝𝑇𝑇, 0, 0,−𝐵𝐵1 2⁄ (𝐮𝐮 ∙ 𝐁𝐁)�
𝐓𝐓
 

(A.1c) 

for m1/2 = −+ + RL MM ≥ 0,
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where the pressure flux, which was not given in [53] or [54], is assumed as the standard AUSM form as Eqs. (3d) and 

Eqs. (3e) (that drops off higher-order terms): 

and the mass flux switch, again not given in [53] or [54], is assumed as follows (again, dropping off higher-order 

terms): 

where 

that is, the minimum value of the left and the right c (fast magnetosonic speed) is taken.  

The magnetic part is common to SLAU2 for MHD, and hence, omitted. Also, as in SLAU2, another version has 

also been developed which does not use HLL but a simple AUSM-form in the magnetic part, and this works well as 

in the present AUSMPW+. The solutions are not shown. Furthermore, the same idea as in Section 3.2 will lead to 

“AUSMPW+-HLLI.” 

𝑤𝑤 = 1 − min�
𝑝𝑝𝑇𝑇,𝐿𝐿

𝑝𝑝𝑇𝑇,𝑅𝑅
,   
𝑝𝑝𝑇𝑇,𝑅𝑅

𝑝𝑝𝑇𝑇,𝐿𝐿
�
3

 (A.2c) 

𝑓𝑓𝐿𝐿 𝑅𝑅⁄ = ��
𝑝𝑝𝐿𝐿 𝑅𝑅⁄

𝑝𝑝𝑇𝑇,𝑠𝑠
− 1� ,         if 𝑝𝑝𝑇𝑇,𝑠𝑠 ≠ 0

0,                            if 𝑝𝑝𝑇𝑇,𝑠𝑠 = 0
   (A.2d) 

𝑝𝑝𝑇𝑇,𝑠𝑠 = P+𝑝𝑝𝑇𝑇,𝐿𝐿 + P−𝑝𝑝𝑇𝑇,𝑅𝑅 (A.2e) 

P+ = �

1
2
�1 + sign(𝑀𝑀𝐿𝐿)�,         if |𝑀𝑀𝐿𝐿| ≥ 1

1
4

(𝑀𝑀𝐿𝐿 + 1)2(2 −𝑀𝑀𝐿𝐿),   otherwise
   (3d) 

P− = �

1
2
�1 − sign(𝑀𝑀𝑅𝑅)�,         if |𝑀𝑀𝑅𝑅| ≥ 1

1
4

(𝑀𝑀𝑅𝑅 − 1)2(2 + 𝑀𝑀𝑅𝑅),   otherwise
   (3e) 

𝑀𝑀+ = �

1
2

(𝑀𝑀𝐿𝐿 + |𝑀𝑀𝐿𝐿|),         if |𝑀𝑀𝐿𝐿| ≥ 1
1
4

(𝑀𝑀𝐿𝐿 + 1)2,              otherwise
   (9d) 

𝑀𝑀− = �
     

1
2

(𝑀𝑀𝑅𝑅 − |𝑀𝑀𝑅𝑅|),         if |𝑀𝑀𝑅𝑅| ≥ 1

−
1
4

(𝑀𝑀𝑅𝑅 − 1)2,              otherwise
   (9e) 

c
uM

c
uM R

R
L

L == ,  (A.3a) 

( )RfLf ccc ,, ,min=  (A.3b) 
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The selected numerical results are shown in Fig. A1 for Problem 3 (Colliding Flow). In this problem, in contrast 

with SLAU2 and SLAU2-HLLI (Fig. 3), AUSMPW+ produces only small wiggles and very slight undershoot (x ≈ -

0.0) that are similar in AUSMPW+-HLLI (Fig. 8). For this particular high-speed test, AUSMPW+ suppressed wiggles 

in SLAU2 which is designed for both high and low speeds. For the other problems, SLAU2 represents AUSMPW+, 

and SLAU2-HLLI does AUSMPW+-HLLI, respectively, except for Problem 2 (Ryu-Jones shock tube) in which 

SLAU2-HLLI, AUSMPW+, and AUSMPW+-HLLI removed small wiggles seen in SLAU2. 

Furthermore, since AUSMPW+ does not have a low-speed scaling term, we replaced its pressure flux with that of 

the SLAU2, leading to “AUSMPW+2” and “AUSMPW+2-HLLI” as follows 

where 

is borrowed from SLAU2. The rest of the parts are the same with AUSMPW+ or AUSMPW+-HLLI, resulting in 

AUSMPW+2 or AUSMPW+2-HLLI, respectively. We confirmed that in all the previous test cases this change did 

not affect the solutions. Let us mention that another all-speed version of AUSMPW+ is available in [87] for 

gasdynamics.  

Figure 9 shows the pressure profiles in the first 20 cells at t = 1 of the problem. AUSMPW+2 preserved 13% of 

the initial amplitude, followed by AUSMPW+2-HLLI (13%). AUSMPW+ conserved slightly lower amplitude (12%), 

indicating the small but actual effect of the low Mach scaling introduced in AUSMPW+2 and AUSMPW+2-HLLI. In 

this problem, the SLAU2 showed the best performance (17%), and the Roe was the worst (11%). 

 

Appendix 2. Analysis of SLAU2 for MHD 

As conducted in [53], the SLAU2 for MHD behaviors at contact discontinuity and tangential discontinuity are 

compared with analytical solutions. 

𝐅𝐅AUSMPW+2(Euler) = 𝑀𝑀�𝐿𝐿+𝑐𝑐1 2⁄ 𝚽𝚽𝐿𝐿 + 𝑀𝑀�𝑅𝑅−𝑐𝑐1 2⁄ 𝚽𝚽𝑅𝑅 + 𝐏𝐏AUSMPW+2 +
1
2
�𝐅𝐅 B,𝐿𝐿 + 𝐅𝐅 B,𝑅𝑅� (A.4a) 

𝐏𝐏AUSMPW+2 =

⎝

⎜
⎛

0
𝑝𝑝�
0
0

P+ ∙ �−𝑢𝑢𝐿𝐿𝐵𝐵𝑥𝑥,𝐿𝐿 − 𝑣𝑣𝐿𝐿𝐵𝐵𝑦𝑦,𝐿𝐿 − 𝑤𝑤𝐿𝐿𝐵𝐵𝑧𝑧,𝐿𝐿�𝐵𝐵1 2⁄ + P− ∙ �−𝑢𝑢𝑅𝑅𝐵𝐵𝑥𝑥,𝑅𝑅 − 𝑣𝑣𝑅𝑅𝐵𝐵𝑦𝑦,𝑅𝑅 − 𝑤𝑤𝑅𝑅𝐵𝐵𝑧𝑧,𝑅𝑅�𝐵𝐵1 2⁄ ⎠

⎟
⎞

 (A.4b) 

(𝑝𝑝�)AUSMPW+2 = (𝑝𝑝�)SLAU2 =
𝑝𝑝T,𝐿𝐿 + 𝑝𝑝T,𝑅𝑅

2
+

P+ − P−

2
�𝑝𝑝T,𝐿𝐿 − 𝑝𝑝T,𝑅𝑅� + �𝐮𝐮𝐿𝐿

2 + 𝐮𝐮𝑅𝑅2

2
∙ (P+ + P− − 1)𝜌̅𝜌𝑐𝑐̅ (A.4c) 
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1) Contact discontinuity: ρL ≠ ρR, uL = uR = 0, vL = vR, wL = wR, ByL = ByR, BzL = BzR, pL = pR, Bx ≠ 0. Thus, referring 

to Eq.(1b),  

fluxes from left to right cells are, F1,exact = ρLuL = 0; F2,exact = pT - Bx
2;  F3,exact = - Bx By,L; F4,exact = - Bx Bz,L; F5,exact 

= - Bx (vLBy,L + wLBz,L); (F6,exact = 0); F7,exact = - vLBx; F8,exact = - wLBx. 

2) Tangential discontinuity: ρL ≠ ρR, uL = uR = 0, vL ≠ vR, wL ≠ wR, ByL ≠ ByR, BzL ≠ BzR, pT,L = pT,R, Bx = 0. The 

corresponding analytical fluxes are, F1,exact = ρLuL = 0; F2,exact = pT;  F3,exact = 0; F4,exact = 0; F5,exact = 0; (F6,exact = 

0); F7,exact = 0; F8,exact = 0. 

In the SLAU2, 

and 

at both discontinuities. Thus, the SLAU2 solutions are as follows: 

1) Contact discontinuity: 

since P+ = P- = 0.5 at u = 0. 
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(1b) 

(𝑚𝑚)̇ SLAU2 =
1
2
�𝜌𝜌𝐿𝐿(𝑢𝑢𝐿𝐿 + |𝑉𝑉𝑛𝑛� |+) + 𝜌𝜌𝑅𝑅(𝑢𝑢𝑅𝑅 − |𝑉𝑉𝑛𝑛� |−) −

𝜒𝜒
𝑐𝑐̅
�𝑝𝑝T,𝑅𝑅 − 𝑝𝑝T,𝐿𝐿�� = 0 (B.1) 

(𝑝𝑝�)SLAU2 =
𝑝𝑝𝑇𝑇,𝐿𝐿 + 𝑝𝑝𝑇𝑇,𝑅𝑅

2
+

P+ − P−

2
�𝑝𝑝T,𝐿𝐿 − 𝑝𝑝T,𝑅𝑅� + �𝐮𝐮𝐿𝐿

2 + 𝐮𝐮𝑅𝑅2

2
∙ (P+ + P− − 1)𝜌̅𝜌𝑐𝑐̅ = 𝑝𝑝T (B.2) 

F1, SLAU2 = 0 = F1, exact

 
(B.3a) 

𝐹𝐹2,SLAU2 = 𝑝𝑝T − 𝐵𝐵𝑥𝑥2  = 𝐹𝐹2,exact (B.3b) 

𝐹𝐹3,SLAU2 = −𝐵𝐵𝑥𝑥
𝐵𝐵𝑦𝑦,𝐿𝐿 + 𝐵𝐵𝑦𝑦,𝑅𝑅

2
= −𝐵𝐵𝑥𝑥 𝐵𝐵𝑦𝑦,𝐿𝐿 = 𝐹𝐹3,exact (B.3c) 

𝐹𝐹4,SLAU2 = −𝐵𝐵𝑥𝑥
𝐵𝐵𝑧𝑧,𝐿𝐿 + 𝐵𝐵𝑧𝑧,𝑅𝑅

2
= −𝐵𝐵𝑥𝑥 𝐵𝐵𝑧𝑧,𝐿𝐿 = 𝐹𝐹4,exact (B.3d) 

+pT 

+pT 

+pT 
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Thus, the contact discontinuity is preserved by SLAU2. 

2) Tangential discontinuity:  

Similarly, 

Therefore, the tangential discontinuity is also proved to be conserved. 

Appendix 3. Gresho Vortex 

     In order to confirm the efficacy of SLAU2 at a low Mach number, the Gresho vortex [91] is solved using SLAU2 

(a three-wave solver with low-Mach scaling) and Roe (a full-wave solver without low-Mach scaling; as is the case 

also for the HLLI). The problem setup is as follows: a square domain of [0, 1] × [0, 1] is filled with 40 × 40 square 

cells, with the periodic boundary condition. The initial condition depends on the radius r from the vortex center, (xc, 

yc) = (0.5, 0.5), i.e., 𝑟𝑟 = �(𝑥𝑥 − 𝑥𝑥c)2 + (𝑦𝑦 − 𝑦𝑦c)2. 

𝐹𝐹5,SLAU2 = −𝐵𝐵𝑥𝑥
𝑣𝑣𝐿𝐿𝐵𝐵𝑧𝑧,𝐿𝐿 + 𝑤𝑤𝐿𝐿𝐵𝐵𝑧𝑧,𝐿𝐿 + 𝑣𝑣𝑅𝑅𝐵𝐵𝑧𝑧,𝑅𝑅 + 𝑤𝑤𝑅𝑅𝐵𝐵𝑧𝑧,𝑅𝑅

2
= −𝐵𝐵𝑥𝑥 �𝑣𝑣𝐿𝐿𝐵𝐵𝑧𝑧,𝐿𝐿 + 𝑤𝑤𝐿𝐿𝐵𝐵𝑧𝑧,𝐿𝐿� = 𝐹𝐹5,exact (B.3e) 

F7, SLAU2 = -vLBx = F7, exact

 
(B.3f) 

F8, SLAU2 = -wLBx = F8, exact

 
(B.3g) 

F1, SLAU2 = 0 = F1, exact

 
(B.4a) 

F2, SLAU2 = pT  = F2, exact (B.4b) 

F3, SLAU2 = 0 = F3, exact

 
(B.4c) 

F4, SLAU2 = 0 = F4, exact

 
(B.4d) 

F5, SLAU2 = 0 = F5, exact

 
(B.4e) 

F7, SLAU2 = 0 = F7, exact

 
(B.4f) 

F8, SLAU2 = 0 = F8, exact

 
(B.4g) 

0.1=ρ  (C.1a) 

20 M
p

γ
ρ

=
 

(C.1b) 



Prepared for Submission, Jan 20, 2018 
 

22 
 

where M is Mach number, M = 0.01, and γ is the specific heat ratio, γ = 1.4, and uθ is the angular velocity, converted 

to Cartesian velocity components as 

The computations are run for 20,000 steps with ∆t = 1 × 10-4 (CFL ≈ 0.4), i.e., until t = 2. The Mach number contours 

are compared in Fig. 10. The SLAU2 clearly maintains the vortex structure, while it is smeared by the Roe-type 

Riemann solver. 

Note that this problem is 2D gasdynamic. The MHD version of such a problem is left for future work, since 

multidimensional MHD involves divergence-free treatment which is beyond the scope of the present paper. 
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Fig. 1 Problem 1 solutions, SLAU2; (a) density, (b) magnetic field component By. 
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a) Density 

 
 
b)  By 

 

Fig. 2 Problem 2 solutions, SLAU2 and SLAU2-HLLI; (a) density, (b) magnetic field component By. 

  
 

Fig. 3 Problem 3 solutions, density; SLAU2 and SLAU2-HLLI. 
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a) Density 
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Fig. 4 Problem 4 solutions, SLAU2 and SLAU2-HLLI; (a) density, (b) magnetic field component By. 



Prepared for Submission, Jan 20, 2018 
 

32 
 

 

 
Fig. 5 Problem 5 solutions, density; SLAU2. 

 

Fig. 6 Problem 6 solutions, magnetic field component By; SLAU2 and SLAU2-HLLI. 

 

Fig. 7 Problem 7 solutions. 

 

Fig. 8 Problem 3 solutions, density; AUSMPW+ and AUSMPW+-HLLI. 
 

Fig. 9 Problem 7 solutions (including AUSMPW+2 and AUSMPW+2-HLLI). 

a) SLAU2 

 

b) Roe 

 

Fig. 10 Gresho vortex test solutions (Mach number contours, 0 ≤ M ≤ 0.01), (a) SLAU2, (b) Roe. 



Prepared for Submission, Jan 20, 2018 
 

33 
 

Tables 

 
 

 

 

 

 

 

 

 

 

 

Table 1.  Riemann Problems 

Problem ρ u v w p By Bz 

1: Brio-Wu (left) 1 0 0 0 1 π4  0 

(right) 0.125 0 0 0 0.1 - π4  0 

2: Ryu-Jones (left) 1.08 1.2 0.01 0.5 0.95 3.6 2 

(right) 1 0 0 0 1 4 2 

3: Colliding Flows (left) 0.15 21.55 1 1 0.28 -2 -1 

(right) 0.1 -26.45 0 0 0.1 2 1 

4: Severe Shock tube (left) 0.8129 1.801 0.3672 0.1836 0.4809 1.7856 0.8928 

(right) 1 -1.7942 0 0 0.1 2 1 

5: Contact (left) 1 0 0 0 1 0 0 

(right) 0.1 0 0 0 1 0 0 

6: Alfvén Wave (left) 1/4π -1 1 -1 1 -1 1 

(right) 1/4π -1 -1 -1 1 1 1 
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Table 2.  Best Solvers 

Problem Best Solvers (desirable condition for such solvers) 

1: Brio-Wu  SLAU2, SLAU2-HLLI, AUSMPW+, AUSMPW+-HLLI 

2: Ryu-Jones SLAU2-HLLI, AUSMPW+, AUSMPW+-HLLI 

3: Colliding Flows AUSMPW+-HLLI (without low-speed care) 

4: Severe Shock tube SLAU2-HLLI, AUSMPW+-HLLI (with full-wave treatment) 

5: Contact SLAU2, SLAU2-HLLI, AUSMPW+, AUSMPW+-HLLI 

6: Alfvén Wave SLAU2-HLLI, AUSMPW+-HLLI (with full-wave treatment) 

7: Low-speed Propagation SLAU2 (having low-speed care) 
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