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Abstract. We give a new determinant expression for the characteristic poly-
nomial of the bond scattering matrix of a quantum graph G. Also, we give a
decomposition formula for the characteristic polynomial of the bond scattering
matrix of a regular covering of G. Furthermore, we define an L-function of G, and
give a determinant expression of it. As a corollary, we express the characteristic
polynomial of the bond scattering matrix of a regular covering of G by means of
its L-functions. As an application, we introduce three types of quantum graph
walks, and treat their relation.

1. Introduction

A quantum graph identifies edges of an ordinary graph with closed intervals

generating a metric graph, and has an operator acting on functions defined on

the collection of intervals. The review and book on quantum graphs are Exner

and Šeba [8], Kuchment [25], Gnutzmann and Smilansky [11], for examples.

One of interest on quantum graphs is the spectral question of quantum graphs.

This is approached through a trace formula. The first graph trace formula was

derived by Roth [29]. Kottos and Smilansy [24] introduced a contour integral

approach to the trace formula starting with a secular equation based on the

scattering matrix of plane-waves on the graph. Solutions of the secular equation

corresponds to the points in the spectrum of the quantum graph.

Trace formulas express spectral functions like the density of states or heat

kernel as sums over periodic orbits on the graph. This fact is related to the

Ihara zeta function. Furthermore, the spectral determinant of the Laplacian

on a quantum graph is closely related to the Ihara zeta function of a graph (see

[5,6,13,14]). Smilansky [32] considered spectral zeta functions and trace formulas

for (discrete) Laplacians on ordinary graphs, and expressed some determinant on

the bond scattering matrix of a graph G by using the characteristic polynomial
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of its Laplacian.

As a quantum counterpart of the classical random walk, the quantum walk

has recently attracted much attention for various fields. The review and book on

quantum walks are Ambainis [1], Kempe [19], Kendon [20], Konno [21], Venegas-

Andraca [39], for examples.

In 1988, Gudder defined discrete-time quantum walk on a graph from the

view point of quantum measure introduced as a quantum analogue of probability

measure in his book [12]. The Grover walk on a graph was formulated in [41]. We

can see that there are many applications of the Grover walk to quantum spatial

search algorithms in the review by Ambainis [1], for example. As a generalization

of the Grover walk, Szegedy [37] introduced the Szegedy walk on a graph related

to a transition matrix of a random walk on the same graph.

Recently, the relation between quantum graphs and quantum walks on graphs

are pointed out (see [31,38]). In [31,38], a regular quantum graph is introduced as

a special class of quantum graph, and it is shown that a regular quantum graph

can be interpreted as realizations of quantum walks on graphs. Higuchi, Konno,

Sato and Segawa [16] took notice of the similarity of the structure between the

scattering matrix of a quantum graph and the time evolution of a discrete-time

quantum walk on a graph, and defined a quantum graph walk as a quantum walk

on a graph with the scattering matrix as the time evolution. As a sequential work

of this paper and [16], we show the relationship between a quantum walk and a

scattering amplitude via discrete Laplacian in [17].

Zeta functions of graphs were originally defined for regular graphs by Ihara

[18]. This is the Ihara zeta function of a graph. In [18], he showed that their

reciprocals are explicit polynomials. A zeta function of a regular graph G associ-

ated with a unitary representation of the fundamental group of G was developed

by Sunada [35,36]. Hashimoto [15] treated multivariable zeta functions of bipar-

tite graphs. Bass [4] generalized Ihara’s result on the zeta function of a regular

graph to an irregular graph and showed that its reciprocal is again a polynomial.

A decomposition formula for the Ihara zeta function of a regular covering of a

graph was obtained by Stark and Terras [34], and independently, Mizuno and

Sato [27].

The discrete-time quantum walk on a graph is closely related to the Ihara

zeta function of a graph. Ren et al. [28] found an interesting relation between

the Ihara zeta function and the discrete-time quantum walk on a graph, and

showed that the positive support of the transition matrix of the discrete-time

quantum walk is equal to the Perron-Frobenius operator (the edge matrix) re-

lated to the Ihara zeta function. Konno and Sato [22] gave the characteristic

polynomials of the transition matrix of the discrete-time quantum walk and its

positive support, and so obtained the other proofs of the results on spectra for
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them by Emms et al. [7].

In this paper, we present a new determinant expression for the scattering

matrix of a quantum graph. In Section 2, we state a short review on quantum

graphs. We consider the Schrödinger equation and the boundary conditions of

a quantum graph from a view point of arcs (oriented edges) of the graph under

Ref. [16], and present two types of the scattering matrix of a quantum graph. In

Section 3, we treat a quantum walk on a graph, and discuss the relation between

four quantum graph walks induced by a quantum graph. We clarify that these

walks are in spatial and temporal reversal relation. In Section 4, we present a new

determinant expression for the characteristic polynomial of the scattering matrix

of a quantum graph by using the method of Watanabe and Fukumizu [40]. In

Section 5, we give a formulation for the Schrödinger equation and the boundary

conditions of a regular covering of a quantum graph, and propose a type of the

scattering matrix of a quantum graph whose base graph is a regular covering of

a graph. Furthermore, we give a decomposition formula for the characteristic

polynomial of the scattering matrix of a regular covering. In Section 6, we

define an L-function of a graph and give a determinant expression for it. As

a corollary, we express the determinant for the characteristic polynomial of the

scattering matrix of a regular covering as a product of L-functions. In Section

7, we express the above L-function of a graph by using the Euler product.

2. Scattering matrix of a quantum graph

We present a review on a quantum graph.

Graphs treated here are finite. Let G be a connected graph (possibly with

multiple edges and loops) with the set V (G) of vertices and the set E(G) of

unoriented edges. We write uv for an edge joining two vertices u and v. For uv ∈
E(G), an arc (u, v) is the oriented edge from u to v. Set D(G) = {(u, v), (v, u) |
uv ∈ E(G)}. For e = (u, v) ∈ D(G), u = o(e) is the origin of e and v = t(e) is

the terminus of e. Furthermore, let e−1 = (v, u) be the inverse arc of e = (u, v).

Let G be a connected graph with V (G) = {1, . . . , n} and D(G) = {e1, . . . , em,

e−1
1 , . . . , e−1

m }. Arrange vertices of G as follows: 1 < 2 < · · · < n. Furthermore,

let dj = deg j, j ∈ V (G). For each edge ij ∈ E(G), let Lij and Aij be the

length and the vector potential of ij, respectively. If ij ∈ E(G), then assign a

variable x in the interval [0, Lij] such that x = 0 and x = Lij corresponds to i

and j, respectively, and an intermediate point z of ij corresponds to the distance

between i and z.
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For e = (i, j) ∈ D(G), set

Le = Lij, Ae =

{
Aij if i < j,

−Aij if i > j.

Note that

Le = Le−1 , Ae−1 = −Ae.

Let e = (j, l) ∈ D(G). Then the Schrödinger equation for e is given by(
−i

d

dx
+ Ae

)2

Ψe(x) = k2Ψe(x) (1)

under the following three conditions:

1. Ψe(x) = Ψe−1(Ljl − x);

2. The continuity: Ψe(0) = φj and Ψe(Ljl) = φl;

3. The current conservation:∑
o(e)=j

(
−i

d

dx
+ Ae

)
Ψe(x)

∣∣∣∣
x=0

= −iλjφj,∀j ∈ V (G),

where (φ1, . . . , φn) ∈ Cn.

The solution of (1) is given by

Ψe(x) = (aee
−ikx + bee

ikx)e−iAex, i =
√
−1. (2)

By condition 1, we have

ae = be−1eiLe(k+Ae) and be = ae−1e−iLe(k−Ae). (3)

By condition 2, we have

ae1 + be1 = ae2 + be2 = · · · = aedj
+ bedj

= φj, (4)

where e1, e2, . . . , edj
are arcs emanating from j, and dj = deg j. By condition 3,

we have

k

dj∑
r=1

(aer − ber) = iλjφj =
iλj

dj

dj∑
r=1

(aer + ber). (5)

Thus,

dj∑
r=1

ber =
1 − iλj/kdj

1 + iλj/kdj

dj∑
r=1

aer . (6)
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By (4), for 1 ≤ p ≤ dj, we have

bep = φj − aep =
1

dj

dj∑
r=1

(aer + ber) − aep .

By (6),

bep =

dj∑
r=1

(
2ik

ikdj − λj

− δerep

)
aer , (7)

where δerep is the Kronecker delta. By (3) and (7), we have

aep = be−1
p

eiLep (k+Aep ) =

dl∑
r=1

(
2ik

ikdl − λl

− δfre−1
p

)eiLep (k+Aep )afr , (8)

where f1, . . . , fdl
are arcs emanating from l.

Now, we introduce the Gnutzmann-Smilansky type of the bond scattering

matrix of a quantum graph. Let

ce−1 = ae for each e ∈ D(G).

Then we have

ce−1
p

=

dl∑
r=1

(
2ik

ikdl − λl

− δf−1
r ep

)
e
iL

e−1
p

(k−A
e−1
p

)
cf−1

r
.

Thus, for each arc e with o(e) = l,

ce =
∑

t(f)=l

σ
(l)
ef (k)eiLe(k−Ae)cf , (9)

where

σ
(l)
ef (k) =

2ik

ikdl − λl

− δe−1f .

The vertex scattering matrix S(k) = (Sef (k))e,f∈D(G) of G is defined by

Sef (k) =

{
σ

(t(f))
ef (k) if t(f) = o(e),

0 otherwise.

Next, the bond propagation matrix T(k) = (Tef (k))e,f∈D(G) of G is defined by

Tef (k) =

{
exp (iLe(k − Ae)) if e = f ,

0 otherwise.
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Then we define the Gnutzmann-Smilansky type of the bond scattering matrix

UGS(k) = UGS(G, k) by

UGS(k) = T(k)S(k). (10)

By (9), we have

UGS(k)c = c, (11)

where c = t(c1, c2, . . . , c2m). Then (9) holds if and only if

det(I2m − UGS(k)) = 0.

Now, we introduce another type of the bond scattering matrix of a quantum

graph. By (6),

dj∑
r=1

aer =
1 + iλj/kdj

1 − iλj/kdj

dj∑
r=1

ber . (12)

By (4), for 1 ≤ p ≤ dj, we have

aep = φj − bep =
1

dj

dj∑
r=1

(aer + ber) − bep .

By (12),

aep =

dj∑
r=1

(
2ik

ikdj + λj

− δerep

)
ber . (13)

By (3), we have

aep =

dj∑
r=1

(
2ik

ikdj + λj

− δerep

)
e−iLer (k−Aer )ae−1

r
. (14)

By (8) and (14), we have the following result.

PROPOSITION 1. In a quantum graph G, for an arc e = (j, l) ∈ D(G),∑
o(f)=j

(
2ik

ikdj + λj

− δfe

)
e−iLf (k−Af )af−1=

∑
o(g)=l

(
2ik

ikdl − λl

− δge−1

)
eiLe(k+Ae)ag.

On the other hand, for an arc e such that o(e) = j, (13) is changed into

ae =
∑

t(f)=j

(
2ik

ikdj+λj
− δfe−1

)
e−iLf (k+Af )af

=
∑

t(f)=j σ
(j)
ef (−k)e−iLf (k+Af )af ,

(15)
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where

σ
(j)
ef (−k) =

2ik

ikdj + λj

− δe−1f .

The (e, f)-array of the vertex scattering matrix S(−k) = (Sef (−k))e,f∈D(G) of G

is given by

Sef (−k) =

{
σ

(t(f))
ef (−k) if t(f) = o(e),

0 otherwise.

Furthermore, the (e, f)-array of the bond propagation matrix

T(−k) = (Tef (−k))e,f∈D(G) of G is given by

Tef (−k) =

{
exp (−iLe(k + Ae)) if e = f ,

0 otherwise.

Then we define another type of the bond scattering matrix

UHKSS(k) = UHKSS(G, k) by

UHKSS(k) = S(−k)T(−k). (16)

By (15), we have

UHKSS(k)a = a, (17)

where a = t(a1, a2, . . . , a2m). Then (17) holds if and only if

det(I2m − UHKSS(k)) = 0.

Now, we state the relation between the Gnutzmann-Smilansky scattering

matrix and another scattering matrix of a quantum graph.

At first, let j ∈ V (G), and e1, e2, . . . , edj
be arcs emanating from j. Further-

more, let

aj = t(ae1 , . . . , aedj
),bj = t(be1 , . . . , bedj

), xj = xj(k) =
2ik

ikdj − λj

.

Then (7) implies that

bj = (xjJdj
− Idj

)aj,

where Jdj
is the dj × dj matrix with all one. Thus, putting

Fj = xjJdj
− Idj

.

the above equation is reexpressed by

bj = Fjaj.
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Here

detFj = (djxj − 1)(−1)dj−1 6= 0

and

F−1
j = xj(−k)Jdj

− Idj
.

Let

a = t(a1, . . . , an),b = t(b1, . . . ,bn),F = F1 ⊕ . . . ⊕ Fn.

Then we have

b = Fa and a = F−1b. (18)

Next, let the 2m × 2m diagonal matrix R(k) = (Ref (k)) be given by

Ref (k) =

{
eiLe(k+Ae) if e = f ,

0 otherwise.

Since ae = be−1eiLe(k+Ae), we have

a = R(k)J0b, (19)

where J0 = (Jef ) is given by

Jef =

{
1 if f = e−1,

0 otherwise.

Note that J−1
0 = J0. By (18) and (19), (8) is rewritten as follows:

a = R(k)J0Fa. (20)

Furthermore, by (19),

b = J0R(k)−1a,

and so, (14) is also rewritten as follows:

a = F−1b = F−1J0R(k)−1a. (21)

By (20) and (21), we obtain the following equivalent expression to Proposition

1:

a = R(k)J0Fa = F−1J0R(k)−1a.

By the way, it holds that

T(k) = J0R(k)J0 and S(k) = FJ0.
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Thus,

UGS(k) = T(k)S(k) = J0R(k)J0FJ0. (22)

Furthermore, we have

T(−k) = R(k)−1 and S(−k) = F−1J0.

Thus,

UHKSS(k) = S(−k)T(−k) = F−1J0R(k)−1. (23)

By (22), (23), we obtain the following result.

PROPOSITION 2. In a quantum graph G,

UGS(k) = J0U
−1
HKSS(k)J0.

3. Quantum graph walks

At first, we state a short review on a discrete-time quantum walk on a graph.

Let G be a graph with n vertices and m edges. For v ∈ V (G), let N+(v) =

{e ∈ D(G) | o(e) = v}. The we consider a quantum walk over D(G). For each

arc e = (u, v) ∈ D(G), the pure state is given by ~xe = ~xuv = |e〉 = |u, v〉 ∈ C2m

such that {|e〉 | e ∈ D(G)} is the orthonormal system of the 2m-dimensional

Hilbert space C2m. H = `2(D(G)) = span{|e〉 | e ∈ D(G)} is called the total

space of a quantum walk on G. Then we have

H =
⊕

v∈V (G)

Hv and Hv
∼= span{|e〉 | e ∈ N+(v)}.

Let (u, v), (w, x) ∈ D(G). Then the transition from (u, v) to (w, x) occurs if

v = w. The state ψ of a quantum walk on G is defined by

ψ =
∑

e∈D(G)

αe|e〉, αe ∈ C,

where
∑

e∈D(G) |αe|2 = 1. Furthermore, the probability which the walk is at the

arc e is given by |αe|2.
The time evolution of a quantum walk on G is given by a unitary matrix U.

By the definition of the transition, U = (Uef )e,f∈D(G) is given as follows so that

U is unitary:

Uef =

{
nonzero complex number if t(e) = o(f) (or t(f) = o(e)),

0 otherwise.
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For an initial state ψ0 with ||ψ0|| = 1, the time evolution is the iteration ψ0 7→
ψ1 7→ . . . of U such that

ψj = Ujψ0, j ∈ N.

Now, we explain a quantum walk called coined quantum walks on a graph

G. Set V (G) = {1, . . . , n}. Then we choose a sequence of unitary operators

{Hj}j∈V (G), where Hj is a dj-dimensional operator on Hj. Then we present two

types of time evolutions U(G) and U(A) of quantum walks, respectively:

U(G) = HJ0;U
(A) = J0H,

where H =
⊕

j∈V (G) Hj. U(G) and U(A) are called Gudder type and Ambainis

type, respectively. The elements of U(G)(or U(A)) is nonzero if t(f) = o(e) (or

t(e) = o(f)). The first type determined by U(G) is a generalization of Gudder

[12] (1988) of d-dimensional lattice case. The second one U(A) is motivated by

the most popular time evolution for the study of QWs by Ambainis et al [2]

(2001).

Next, we treat a quantum graph walk. Let G be a connected graph with n

vertices 1, . . . , n, and m edges, and let L : D(G) −→ R+ and A : D(G) −→ R be

the length and the vector potential of arcs of G, respectively. Let λ : V (G) −→ C
be the parameters in the boundary condition 3. The quantum graph walk with

parameters (L,A, λ) is defined as a quantum walk on G by the Ambainis type

time evolution Ũ with the flip flop J0 and the following local quantum coin

Hj = ((Hj)ef )e,f∈N+(j) at a vertex j ∈ V (G):

(Hj)ef =

(
2ik

djik − λj

− δef

)
eiLe(k−Ae), e, f ∈ N+(j).

Note that

Ũ = J0H, H = H1 ⊕ · · · ⊕ Hn. (24)

For brevity, this quantum graph walk is denoted by Ũ. By the way, the quantum

coin is reexpressed by

H = T(k)F.

Furthermore, recall that

T(k) = J0R(k)J0,

Using these relation implies

H = J0R(k)J0F. (25)
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By (24) and (25), we have

Ũ = J0T(k)F = R(k)J0F. (26)

By (20), (8) is rewritten as follows:

a = Ũa. (27)

Next, we can interpret two scattering matrices UGS(k), and UHKSS(k) which

have discussed in the previous section as two kinds of quantum graph walks in

the following sence. By (22) and (26), we have

UGS(k) = J0R(k)J0FJ0 = J0ŨJ0. (28)

By (23) and (26), we have

UHKSS(k) = F−1J0R(k)−1 = Ũ−1. (29)

By the forms of UGS(k) and UHKSS(k), UGS(k) and UHKSS(k) are Gudder type

quantum graph walks. Furthermore, we introduce the third quantum graph walk

of G with the following time evolution:

U′ = J0H
−1. (30)

This is an Ambainis type quantum graph walk.

As a consequence, the following result in relation to the quantum graph and

corresponding four kinds of quantum graph walks holds.

THEOREM 1. In the quantum graph G with parameters (L,A, λ), the following

statements are equivalent:

1. The Schrödinger equation (1) with the boundary conditions 1,2,3 has a non-

trivial solution {Ψe}e∈D(G);

2. The time evolution Ũ of the quantum graph walk has the eigenvalue 1.

3. The time evolution UGS(k) of the quantum graph walk has the eigenvalue

1.

4. The time evolution UHKSS(k) of the quantum graph walk has the eigenvalue

1.

5. The time evolution U′ of the quantum graph walk has the eigenvalue 1.

Proof. (1) ⇔ (2): By Theorem 5 of [16].

(2) ⇔ (3): Since J0a = c, (27) and (28) implies that

a = Ũa ⇔ J0a = J0ŨJ0J0a

⇔ c = UGS(k)c.
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Figure 1 Spatial and temporal duality relationship of four quantum graph walks:
The solid lines (vertical lines) depict the spatial reversal relationship in that
J0ŨJ0 = UGS(k) and J0UHKSS(k)J0 = U′. The dotted lines (horizontal
lines) express the temporal reversal relationship in that Ũ−1 = UHKSS(k)
and UGS(k)−1 = U′.

(2) ⇔ (4): By (29),

a = Ũa ⇔ a = Ũ−1a = UHKSS(k)a.

(2) ⇔ (5): By (30),

a = Ũa ⇔ a = Ũ−1a = H−1J0a

⇔ J0a = J0H
−1J0a

⇔ c = U′c.

Note that if a = Φ is the eigenvector for the eigenvalue 1 of Ũ, then a = Φ

is the eigenvector for the eigenvalue 1 of UHKSS(k), and J0a is the eigenvector

for the eigenvalue 1 of UGS(k) and U′.

Finally, we mention a relationship between four quantum graph walks from

view point of spatial and temporal duality relation. See also Fig.1. The quan-

tum graph walks Ũ and UHKSS(k) are in a time reversal relation in that Ũ−1 =

UHKSS(k). We can see also the same time reversal relation between UGS(k)

and U′. On the other hand, Ũ and UGS(k) are in a spatial reversal rela-

tion in that J0ŨJ0 = UGS(k), that is, the total space of Ũ is descreibed

by
⊕

v∈V (G) span{|e〉|e ∈ N+(v)}, while the total space of Ũ is descreibed by⊕
v∈V (G) span{|e〉|e ∈ N−(v)}, where N−(v) = {e ∈ D(G)|t(e) = v}. We can see

also the same spatial reversal relation between UHKSS(k) and U′.

4. The characteristic polynomial of a scattering matrix of a quantum

graph

Let G be a connected graph with n vertices and m unoriented edges. Set

V (G) = {1, 2, . . . , n} and D(G) = {e1, e
−1
1 , . . . , em, e−1

m }. Furthermore, for j ∈
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V (G) and e ∈ D(G), let

xj =
2ik

ikdj − λj

and te = exp (iLe(k − Ae)).

Furthermore, set

σ
(t(f))
ef = σ

(t(f))
ef (k),U = U(G) = UGS(k),T = T(k),S = S(k).

Let an n × n matrix Ã = Ã(σ2) = Ã(G, σ2) = (ãuv) be defined by

ãuv =

{
xvte

σ2−tete−1
if e = (u, v) ∈ D(G),

0 otherwise.
(∗)

Let an n × n matrix A = A(σ2) = A(G, σ2) = (auv) be defined by

auv =

{
xute

σ2−tete−1
if e = (u, v) ∈ D(G),

0 otherwise.
(∗∗)

Furthermore, let an n × n diagonal matrix D = D(σ2) = D(G, σ2) = (duv) be

defined by

duv =

{ ∑
o(e)=u

xutete−1

σ2−tete−1
if u = v,

0 otherwise.

Note that tete−1 = e2ikLe , e ∈ D(G).

THEOREM 2. Let G be a connected graph with n vertices and m unoriented

edges. Then

det(σI2m − U) = det(In − σÃ + D)
m∏

j=1

(σ2 − e2ikLej )

= det(In − σA + D)
m∏

j=1

(σ2 − e2ikLej ).

Proof. The argument is an analogue of the method of Watanabe and Fukumizu

[40].

Let D(G) = {e1, . . . , em, em+1, . . . , e2m} such that em+i = e−1
i (1 ≤ i ≤ m).

Furthermore, arrange arcs of G as follows:

e1, e
−1
1 , . . . , em, e−1

m .

Note that the (e, f)-array (U)ef of U is given by

(U)ef =

{
te(xo(e) − δe−1f ) if t(f) = o(e),

0 otherwise.
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Let 2m × 2m matrices B = (Bef )e,f∈D(G) and J0 = (Jef )e,f∈D(G) be defined

as follows:

Bef =

{
xt(e) if t(e) = o(f),

0 otherwise,
Jef =

{
1 if f = e−1,

0 otherwise.

Note that tJ0 = J0.

Now

tS = B − J0. (31)

Let K = (Kev) e∈D(G);v∈V (G) be the 2m × n matrix defined as follows:

Kev :=

{
1 if o(e) = v,

0 otherwise.

Furthermore, we define a 2m × n matrix L = (Lev)e∈D(G);v∈V (G) as follows:

Lev :=

{
1 if t(e) = v,

0 otherwise.

Then we have

LXtK = B, (32)

where

X =

 x1 0
. . .

0 xn

 ,

Next, By (31) and (32), we have

det(I2m − sU) = det(I2m − sTS) = det(I2m − sT(tB − J0))

= det(I2m − sT(KXtL − J0)) = det(I2m + sTJ0 − sTKXtL)

= det(I2m − sTKXtL(I2m + sTJ0)
−1) det(I2m + sTJ0).

If A and B are a m × n and n × m matrices, respectively, then we have

det(Im − AB) = det(In − BA). (33)

Thus, we have

det(I2m − sU) = det(In − sXtL(I2m + sTJ0)
−1TK) det(I2m + sTJ0). (34)

Furthermore,

det(I2m − sU) = det(In − stL(I2m + sTJ0)
−1TKX) det(I2m + sTJ0). (35)
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Next, we have

I2m + sTJ0 =


1 ste1 0

ste−1
1

1
. . .

1 stem

0 ste−1
m

1

 ,

and so,

det(I2m + sTJ0) =
m∏

j=1

(1 − tej
te−1

j
s2).

Furthermore, we have

(I2m + sTJ0)
−1 =

 1/y1 −ste1/y1 0

−ste−1
1

/y1 1/y1

0
. . .

 ,

where yj = 1 − tej
te−1

j
s2 (1 ≤ j ≤ m).

For an arc (u, v) ∈ D(G),

(XtL(I2m + sTJ0)
−1TK)uv = xut(v,u)/(1 − t(u,v)t(v,u)s

2).

Furthermore, if u = v, then

(XtL(I2m + sTJ0)
−1TK)uu = −

∑
t(e)=u

xutete−1s

1 − tete−1s2
.

Then we have

XtL(I2m + sTJ0)
−1TK = 1/s2 tÃ(1/s2) − 1/sD(1/s2).

Therefore, by (34), it follows that

det(I2m − sU)

= det(In − sXtL(I2m + sTJ0)
−1TK)

m∏
j=1

(1 − tej
te−1

j
s2)

= det(In − 1/s tÃ(1/s2) + D(1/s2))
m∏

j=1

(1 − tej
te−1

j
s2)

= det(In − 1/sÃ(1/s2) + D(1/s2))
m∏

j=1

(1 − tej
te−1

j
s2).
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Next, for an arc (u, v) ∈ D(G),

(tL(I2m + sTJ0)
−1TKX)uv = xvt(v,u)/(1 − t(u,v)t(v,u)s

2).

Furthermore, if u = v, then

(tL(I2m + sTJ0)
−1TKX)uu = −

∑
o(e)=u

xutete−1s

1 − tete−1s2
.

Then we have

tL(I2m + sTJ0)
−1TKX = 1/s2 tA(1/s2) − 1/sD(1/s2).

Therefore, by (35), it follows that

det(I2m − sU)

= det(In − stL(I2m + sTJ0)
−1TKX)

m∏
j=1

(1 − tej
te−1

j
s2)

= det(In − 1/s tA(1/s2) + D(1/s2))
m∏

j=1

(1 − tej
te−1

j
s2)

= det(In − 1/sA(1/s2) + D(1/s2))
m∏

j=1

(1 − tej
te−1

j
s2).

Now, let s = 1/σ. Then we get

det

(
I2m − 1

σ
U

)
=

m∏
j=1

(1 − tej
te−1

j

1

σ2
) det

(
In − σÃ(σ2) + D(σ2)

)
.

Thus,

det(σI2m − U) =
m∏

j=1

(σ2 − tej
te−1

j
) det

(
In − σÃ(σ2) + D(σ2)

)
.

Furthermore, we have

det

(
I2m − 1

σ
U

)
=

m∏
j=1

(1 − tej
te−1

j

1

σ2
) det

(
In − σA(σ2) + D(σ2)

)
.

Thus,

det(σI2m − U) =
m∏

j=1

(σ2 − tej
te−1

j
) det

(
In − σA(σ2) + D(σ2)

)
.
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5. The characteristic polynomial of a scattering matrix of a regular

covering of a graph

Let G be a connected graph, and let N(v) = {w ∈ V (G) | (v, w) ∈ D(G)}
denote the neighbourhood of a vertex v in G. A graph H is a covering of G with

projection π : H −→ G if there is a surjection π : V (H) −→ V (G) such that

π|N(v′) : N(v′) −→ N(v) is a bijection for all vertices v ∈ V (G) and v′ ∈ π−1(v).

When a finite group Π acts on a graph G, the quotient graph G/Π is a graph

whose vertices are the Π-orbits on V (G), with two vertices being adjacent in G/Π

if and only if some two of their representatives are adjacent in G. A covering

π : H −→ G is regular if there is a subgroup B of the automorphism group Aut H

of H acting freely on H such that the quotient graph H/B is isomorphic to G.

Let G be a graph and Γ a finite group. Then a mapping α : D(G) −→ Γ is an

ordinary voltage assignment if α(v, u) = α(u, v)−1 for each (u, v) ∈ D(G). The

pair (G,α) is an ordinary voltage graph. The derived graph Gα of the ordinary

voltage graph (G,α) is defined as follows: V (Gα) = V (G)×Γ and ((u, h), (v, k)) ∈
D(Gα) if and only if (u, v) ∈ D(G) and k = hα(u, v). The natural projection

π : Gα −→ G is defined by π(u, h) = u. The graph Gα is a derived graph covering

of G with voltages in Γ or a Γ-covering of G. The natural projection π commutes

with the right multiplication action of the α(e), e ∈ D(G) and the left action of

Γ on the fibers: g(u, h) = (u, gh), g ∈ Γ, which is free and transitive. Thus, the

Γ-covering Gα is a | Γ |-fold regular covering of G with covering transformation

group Γ. Furthermore, every regular covering of a graph G is a Γ-covering of G

for some group Γ (see [10]). Figure 2 depicts the derived graph of G = K3 with

Γ = Z2.

Let G be a connected graph, Γ be a finite group and α : D(G) −→ Γ be an

ordinary voltage assignment. In the Γ-covering Gα, set vg = (v, g) and eg = (e, g),

where v ∈ V (G), e ∈ D(G), g ∈ Γ. For e = (u, v) ∈ D(G), the arc eg emanates

from ug and terminates at vgα(e). Note that e−1
g = (e−1)gα(e).

We consider the Gnutzmann-Smilansky type of the bond scattering matrix of

the regular covering Gα of G. Let V (G) = {1, . . . , n}, D(G) = {e1, . . . , em, e−1
1 ,

. . . , e−1
m } and Γ = {g1 = 1, g2, . . . , gp}. Let L : D(G) −→ R+ and A : D(G) −→

R be the length and the vector potential of arcs of G. Let the length L̃ :

D(Gα) −→ R+ and the vector potential Ã : D(Gα) −→ R of arcs of Gα be given

by

L̃eg = Le and Ãeg = Ae, e ∈ D(G), g ∈ Γ.

Let e = (j, l) ∈ D(G). Then we consider the Schrödinger equation for the
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eg = (jg, lgα(e)): (
−i

d

dx
+ Ãeg

)2

Ψeg(x) = k2Ψeg(x)

under the following three conditions:

1. Ψeg(x) = Ψe−1
g

(L̃eg − x);

2. The continuity: Ψeg(0) = φjg and Ψeg(L̃eg) = φlgα(e)
;

3. The current conservation:∑
o(fg)=jg

(
−i

d

dx
+ Ãfg

)
Ψfg(x) | x=0 = −iλjgφjg , ∀jg ∈ V (Gα),

where (φ1,1, . . . , φn,gp) ∈ Cpn.

By the definitions of L̃ and Ã, the Schrödinger equation for the arc eg =

(jg, lgα(e)) and the three conditions 1,2,3 are reduced to the following system:(
−i

d

dx
+ Ae

)2

Ψeg(x) = k2Ψeg(x)

and

1. Ψeg(x) = Ψe−1
g

(Le − x);

2. Ψeg(0) = φjg and Ψeg(Le) = φlgα(e)
;

3. ∑
o(fg)=jg

(
−i

d

dx
+ Af

)
Ψfg(x) | x=0 = −iλjgφjg ,∀jg ∈ V (Gα).

The solution of the Schrödinger equation is given by

Ψeg(x) = (ce−1
g

e−ikx + bege
ikx)e−iAex, i =

√
−1.

Similarly to (9), we have

ceg =
∑

t(fh)=jg

σ
(jg)
egfh

eiL̃eg (k−Ãeg )cfh
,

where

σ
(jg)
egfh

=
2ik

ikdjg − λjg

− δe−1
g fh

=
2ik

ikdj − λjg

− δe−1
g fh

.

Then the bond scattering matrix U(Gα) = (U(eg, fh))eg ,fh∈D(Gα) of Gα is given

by

U(eg, fh) =

{
teg(xo(eg) − δe−1

g fh
) if t(fh) = o(eg),

0 otherwise,
(36)
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where

xvg =
2ik

ikdv − λvg

and teg = eiL̃eg (k−Ãeg ) = eiLe(k−Ae) = te.

Now, we assume that

λjg = λj for any j ∈ V (G) and g ∈ Γ. (∗∗∗)

Under this assumption, we have

xvg =
2ik

ikdv − λv

= xv,∀v ∈ V (G),∀g ∈ Γ.

Then (36) is reduced to

U(eg, fh) =

{
te(xo(e) − δe−1

g fh
) if t(fh) = o(eg),

0 otherwise.

For g ∈ Γ, let the matrices Ãg = Ãg(σ
2) = (ã

(g)
uv ) and Ag = Ag(σ

2) = (a(g)
uv )

be defined by

ã(g)
uv =

{
xvte

σ2−tete−1
if e = (u, v) ∈ D(G) and α(e) = g,

0 otherwise,

a(g)
uv =

{
xute

σ2−tete−1
if e = (u, v) ∈ D(G) and α(e) = g,

0 otherwise.

Furthermore, let Ug = (U (g)(e, f)) be given by

U (g)(e, f) =

{
te(xo(e) − δe−1f ) if t(f) = o(e) and α(f) = g,

0 otherwise.

Let M1 ⊕ · · · ⊕ Ms be the block diagonal sum of square matrices M1, . . . ,Ms.

If M1 = M2 = · · · = Ms = M, then we write s ◦ M = M1 ⊕ · · · ⊕ Ms. The

Kronecker product A ⊗ B of matrices A and B is considered as the matrix A

having the element aij replaced by the matrix aijB.

THEOREM 3. Let G be a connected graph with n vertices and m unoriented

edges, Γ be a finite group and α : D(G) −→ Γ be an ordinary voltage assign-

ment. Assume that L̃eg = Le, Ãeg = Ae and λjg = λj for any e ∈ D(G), j ∈
V (G), g ∈ Γ. Set |Γ| = p. Furthermore, let ρ1 = 1, ρ2, · · · , ρk be the irreducible

representations of Γ, and fi be the degree of ρi for each i, where f1 = 1.
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If the Γ-covering Gα of G is connected, then, for the bond scattering matrix

of Gα,

det(σI2mp − U(Gα)) = det(σI2m − U(G))
k∏

i=2

det(σI2mfi
−

∑
h∈Γ

tρi(h) ⊗ Uh)
fi

= det(In− σA+ D)
k∏

i=2

det(Infi
−σ

∑
h∈Γ

ρi(h) ⊗ Ah+ Ifi
⊗ D)fi

m∏
j=1

(σ2− e2ikLej )p.

= det(In− σÃ+ D)
k∏

i=2

det(Infi
−σ

∑
h∈Γ

ρi(h) ⊗ Ãh+ Ifi
⊗ D)fi

m∏
j=1

(σ2− e2ikLej )p,

where D(G) = {e1, e
−1
1 , . . . , em, e−1

m }. Recall that Ã and A is defined in (∗) and

(∗∗), respectively.

Proof. Let | Γ |= p. By Theorem 2, we have

det(σI2mp − U(Gα)) = det(Inp − σA(Gα, σ2) + D(Gα, σ2))
m∏

j=1

(σ2 − tej
te−1

j
)p.

Let D(G) = {e1, . . . , em, em+1, . . . , e2m} such that em+j = e−1
j (1 ≤ j ≤ m),

and let Γ = {1 = g1, g2, . . . , gp}. Arrange arcs of Gα in p blocks: (e1, 1), . . . ,

(e2m, 1); (e1, g2), . . . , (e2m, g2); . . . ; (e1, gp), . . . , (e2m, gp). We consider the matrix

U(Gα) under this order. For h ∈ Γ, the matrix Ph = (p
(h)
ij ) is defined as follows:

p
(h)
ij =

{
1 if gih = gj,

0 otherwise.

Suppose that p
(h)
ij = 1, i.e., gj = gih. Then U(egi

, fgj
) 6= 0 if and only if

t(f, gj) = o(e, gi). Furthermore, t(f, gj) = o(e, gi) if and only if (o(e), gi) =

o(e, gi) = t(f, gj) = (t(f), gjα(f)). Thus, t(f) = o(e) and α(f) = g−1
j gi =

g−1
j gjh

−1 = h−1. Similarly, (f, gj) = (e, gi)
−1 if and only if f = e−1 and α(f) =

h−1. That is, under the assumption of (∗∗∗),

U(eg, fh) =

{
te(xo(e) − δe−1f ) if t(f) = o(e) and α(f) = h−1,

0 otherwise.

Now, by (36),

U(Gα) =
∑
h∈Γ

Ph ⊗ Uh−1 =
∑
g∈Γ

Pg−1 ⊗ Ug =
∑
g∈Γ

tPg ⊗ Ug.

Here, note that Pg−1 = tPg for each g ∈ Γ.
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Let ρ be the right regular representation of Γ. Furthermore, let ρ1 = 1, ρ2, . . . ,

ρk be all inequivalent irreducible representations of Γ, and fi the degree of ρi for

each i, where f1 = 1. Then we have ρ(g) = Pg for g ∈ Γ. Furthermore, there

exists a nonsingular matrix P such that P−1ρ(g)P = (1)⊕f2◦ρ2(g)⊕· · ·⊕fk◦ρk(g)

for each g ∈ Γ(see [30]). Thus, we have

tPtρ(g)tP−1 = (1) ⊕ f2 ◦ tρ2(g) ⊕ · · · ⊕ fk ◦ tρk(g).

Putting F = (tP ⊗ I2q)U(Gα)(tP−1 ⊗ I2q), we have

F =
∑
g∈Γ

{(1) ⊕ f2 ◦ tρ2(g) ⊕ · · · ⊕ fk ◦ tρk(g)} ⊗ Ug.

Note that U(G) =
∑

g∈Γ Ug and 1 + f 2
2 + · · ·+ f2

k = p. Therefore it follows that

det(σI2mp − U(Gα)) = det(σI2m − U(G))
k∏

i=2

det(σI2mfi
−

∑
g

tρi(g) ⊗ Ug)
fi .

Next, let V (G) = {1, . . . , n}. Arrange vertices of Gα in p blocks: (1, 1), . . . ,

(n, 1); (1, g2), . . . , (n, g2); . . . ; (1, gp), . . . , (n, gp). We consider the matrix A(Gα)

defined in (∗∗) under this order.

Suppose that p
(h)
ij = 1, i.e., gj = gih. Then ((u, gi), (v, gj)) ∈ D(Gα) if and

only if (u, v) ∈ D(G) and gj = giα(u, v). If gj = giα(u, v), then α(u, v) = g−1
i gj =

g−1
i gih = h. Thus we have

A(Gα) =
∑
h∈Γ

Ph ⊗ Ah.

Putting E = (P−1 ⊗ Ip)A(Gα)(P ⊗ Ip) with nonsingular matrix P, we have

E =
∑
h∈Γ

{(1) ⊕ f2 ◦ ρ2(h) ⊕ · · · ⊕ fk ◦ ρk(h)} ⊗ Ah.

Note that A(G) =
∑

h∈Γ Ah. Therefore it follows that

det(Inp − σA(Gα, σ2) + D(Gα, σ2))

= det(In − σA + D) ×
k∏

i=2

det(Infi
− σ

∑
h∈Γ

ρi(h) ⊗ Ah + Ifi
⊗ D)fi .

Hence, it follows that

det(σI2mp − U(Gα)) = det(σI2m − U(G))
k∏

i=2

det(σI2mfi
−

∑
h

tρi(h) ⊗ Uh)
fi

= det(In−σA + D)
k∏

i=2

det(Infi
−σ

∑
h∈Γ

ρi(h) ⊗ Ah + Ifi
⊗ D)fi

m∏
j=1

(σ2−e2ikLej )p.

The third formula of Theorem is obtained similarly to the second one.
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6. L-functions of graphs

We state a short review for the zeta function of a graph.

A path P of length n in G is a sequence P = (v0, e1, v1, e2, v2, . . . , vn−1, en, vn)

of n + 1 vertices and n arcs such that v0 ∈ V (G), vi ∈ V (G), ei ∈ D(G) and

ei = (vi−1, vi) for 1 ≤ i ≤ n. We write P = (e1, . . . , en). Set |P | = n, o(P ) = v0

and t(P ) = vn. Also, P is called an (o(P ), t(P ))-path. We say that a path

P = (e1, . . . , en) has a backtracking if e−1
i+1 = ei for some i. A (v, w)-path is called

a v-cycle (or v-closed path) if v = w. As standard terminologies of graph theory,

a path and a cycle are a diwalk and a closed diwalk, respectively.

We introduce an equivalence relation on the set of cycles. Two cycles C1 =

(e1, . . . , em) and C2 = (f1, . . . , fm) are equivalent if there exists k such that

fj = ej+k for all j. Let [C] be the equivalence class that contains a cycle C. Let

Br be the cycle obtained by going r times around a cycle B. Such a cycle is

called a power of B. A cycle C is reduced if both C and C2 have no backtracking.

Furthermore, a cycle C is prime if it is not a power of a strictly smaller cycle. Note

that each equivalence class of prime, reduced cycles of a graph G corresponds to

a unique conjugacy class of the fundamental group π1(G, v) of G at a vertex v

of G.

The Ihara zeta function of a graph G is defined to be a function of u ∈ C

with |u| sufficiently small, by

Z(G, u) = ZG(u) =
∏
[C]

(1 − u|C|)−1,

where [C] runs over all equivalence classes of prime, reduced cycles of G (see

[18]).

THEOREM 4. (Bass) If G is a connected graph, then the reciprocal of the Ihara

zeta function of G is given by

Z(G, u)−1 = (1 − u2)r−1 det(I − uA(G) + u2(D − I)),

where r and A(G) are the Betti number and the adjacency matrix of G, re-

spectively, and D = DG = (dij) is the diagonal matrix with dii = deg vi where

V (G) = {v1, . . . , vn}.

Stark and Terras [33] gave an elementary proof of Theorem 4 and discussed

three different zeta functions of any graph. Other proofs of Bass’ Theorem were

given by Foata and Zeilberger [9] and Kotani and Sunada [23].

Next, let Γ be a finite group, α : D(G) −→ Γ an ordinary voltage assignment,

and ρ a representations of Γ with degree d. For a cycle C = (e1, . . . , er) of G,
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the net voltage α(C) of C is given by α(C) = α(e1) · · ·α(er). Then the Ihara

L-function of a graph G is defined to be a function of u ∈ C with |u| sufficiently

small, by

Z(G, u, ρ, α) =
∏
[C]

det(Id − ρ(α(C))u|C|)−1,

where [C] runs over all equivalence classes of prime, reduced cycles of G (see

[27,34]). If ρ = 1 is the identity representation of Γ, then the Ihara L-function

of G is the Ihara zeta function of G.

We introduce an L-function on the scattering matrix of a quantum graph. Let

G be a connected graph with n vertices and m unoriented edges, Γ be a finite

group and α : D(G) −→ Γ be an ordinary voltage assignment. Furthermore, let ρ

be a unitary representation of Γ and d its degree. We generalize the determinant

of the second expression in Theorem 3. The L-function of G associated with ρ

and α is defined by

ζG(A,L, λ, ρ, α, s) = det(I2md − s
∑
h∈Γ

tρ(h) ⊗ Uh)
−1.

If ρ = 1 is the identity representation of Γ, then the reciprocal of the L-

function of G is a determinant on the bond scattering matrix of G.

A determinant expression for the L-function of G associated with ρ and α is

given as follows. For 1 ≤ i, j ≤ n, the (i, j)-block Fi,j of a dn × dn matrix F is

the submatrix of F consisting of d(i− 1) + 1, . . . , di rows and d(j − 1) + 1, . . . , dj

columns.

THEOREM 5. Let G be a connected graph with n vertices and m unoriented

edges, Γ be a finite group and α : D(G) −→ Γ be an ordinary voltage assignment.

If ρ is a representation of Γ and d is the degree of ρ, then the reciprocal of the

L-function of G associated with ρ and α is

ζG(A,L, λ, ρ, α, s)−1

= det(Ind − s−1
∑
g∈Γ

ρ(g) ⊗ Ãg(s
−2) + Id ⊗ D(s−2))

m∏
j=1

(1 − e2ikLej s2)d

= det(Ind − s−1
∑
g∈Γ

ρ(g) ⊗ Ag(s
−2) + Id ⊗ D(s−2))

m∏
j=1

(1 − e2ikLej s2)d,

where D(G) = {e1, e
−1
1 , . . . , em, e−1

m }.

Proof. The argument is an analogue of the method of Watanabe and Fukumizu

[40].
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Let D(G) = {e1, . . . , em, em+1, . . . , e2m} such that em+i = e−1
i (1 ≤ i ≤ m).

Furthermore, arrange arcs of G as follows:

e1, e
−1
1 , . . . , em, e−1

m .

Note that the (e, f)-block (
∑

g∈Γ Ug ⊗ tρ(g))ef of
∑

g∈Γ Ug ⊗ tρ(g) is given by(∑
g∈Γ

Ug

⊗
tρ(g)

)
ef

=

{
tρ(α(f))te(xo(e) − δe−1f ) if t(f) = o(e),

0d otherwise.

For g ∈ Γ, let the matrix Sg = (S
(g)
ef ) be defined by

S
(g)
ef =

{
xo(e) − δe−1f if t(f) = o(e) and α(f) = g,

0 otherwise.

Then we have (∑
g∈Γ

Ug ⊗ tρ(g)

)
= (T ⊗ Id)

(∑
g∈Γ

Sg ⊗ tρ(g)

)
.

For g ∈ Γ, two 2m × 2m matrices Bg = (B
(g)
ef )e,f∈D(G) and Jg = (J

(g)
ef )e,f∈D(G)

are defined as follows:

B
(g)
ef =

{
xt(e) if t(e) = o(f) and α(e) = g,

0 otherwise,

J
(g)
ef =

{
1 if f = e−1 and α(e) = g,

0 otherwise.

Now

tSg = Bg − Jg for g ∈ Γ.

Let K = (Kev) e∈D(G);v∈V (G) be the 2md × nd matrix defined as follows:

Kev :=

{
Id if o(e) = v,

0d otherwise.

Furthermore, we define a 2md × nd matrix L = (Lev)e∈D(G);v∈V (G) as follows:

Lev :=

{
ρ(α(e)) if t(e) = v,

0d otherwise.

Then we have

L(X ⊗ Id)
tK =

∑
h∈Γ

Bh ⊗ ρ(h) = Bρ, (37)
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where

Bρ =
∑
g∈Γ

Bg ⊗ ρ(g).

Now, let

Xd = X ⊗ Id and Td = T ⊗ Id.

Then we have

det(I2md − s
∑
g∈Γ

tρ(g) ⊗ Ug) = det(I2md − s
∑
g∈Γ

Ug ⊗ tρ(g))

= det(I2md − sTd(
∑
g∈Γ

Sg ⊗ tρ(g))

= det(I2md − sTd(
∑
g∈Γ

tBg ⊗ tρ(g) −
∑
g∈Γ

tJg ⊗ tρ(g)).

Set

Jρ =
∑
g∈Γ

Jg ⊗ ρ(g).

Thus, by (37),

det(I2md − s
∑
g∈Γ

tρ(g) ⊗ Ug) = det(I2md − sTd(KXd
tL − tJρ))

= det(I2md + sTd
tJρ − sTdKXd

tL)

= det(I2md − sTdKXd
tL(I2md + sTd

tJρ)
−1) det(I2md + sTd

tJρ).

By (33), we have

det(I2md − s
∑
g∈Γ

tρ(g) ⊗ Ug) (38)

= det(Ind − sXd
tL(I2md + sTd

tJρ)
−1TdK) det(I2md + sTd

tJρ).

Furthermore,

det(I2md − s
∑
g∈Γ

tρ(g) ⊗ Ug) (39)

= det(Ind − stL(I2md + sTd
tJρ)

−1TdKXd) det(I2md + sTd
tJρ).

Next, we have

I2md + sTd
tJρ

=


Id ste1

tρ(α(e−1
1 )) 0

ste−1
1

tρ(α(e1)) Id
. . .

Id stem
tρ(α(e−1

m ))

0 ste−1
m

tρ(α(em)) Id

 ,
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and so,

det(I2md + sTd
tJρ) =

m∏
j=1

(1 − tej
te−1

j
s2)d.

Furthermore, we have

(I2md + sTd
tJρ)

−1 =

 1/y1Id −ste1/y1
tρ(α(e−1

1 )) 0

−ste−1
1

/y1
tρ(α(e1)) 1/y1Id

0
. . .

 ,

where yj = 1 − tej
te−1

j
s2 (1 ≤ j ≤ m).

For an arc (u, v) ∈ D(G),

(Xd
tL(I2md + sTd

tJρ)
−1TdK)uv = xut(v,u)/(1 − t(u,v)t(v,u)s

2)tρ(α(v, u)).

Furthermore, if u = v, then

(Xd
tL(I2md + sTd

tJρ)
−1TdK)uu = −

∑
t(e)=u

xutete−1s

1 − tete−1s2
Id.

Then we have

Xd
tL(I2md + sTd

tJρ)
−1TdK = 1/s2

∑
g∈Γ

tÃg(1/s
2) ⊗ tρ(g) − 1/sD(1/s2) ⊗ Id.

By (38), it follows that

det(I2md − s
∑
g∈Γ

tρ(g) ⊗ Ug)

= det(Ind − sXd
tL(I2md + sTd

tJρ)
−1TdK)

m∏
j=1

(1 − tej
te−1

j
s2)d

= det(Ind − 1/s
∑
g∈Γ

tÃg(1/s
2) ⊗ tρ(g) + D(1/s2) ⊗ Id)

m∏
j=1

(1 − e2ikLej s2)d

= det(Ind − 1/s
∑
g∈Γ

Ãg(1/s
2) ⊗ ρ(g) + D(1/s2) ⊗ Id)

m∏
j=1

(1 − e2ikLej s2)d

= det(Ind − 1/s
∑
g∈Γ

ρ(g) ⊗ Ãg(1/s
2) + Id ⊗ D(1/s2))

m∏
j=1

(1 − e2ikLej s2)d.

Next, for an arc (u, v) ∈ D(G),

(tL(I2md + sTd
tJρ)

−1TdKXd)uv = xvt(v,u)/(1 − t(u,v)t(v,u)s
2)tρ(α(v, u)).
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Furthermore, if u = v, then

(tL(I2md + sTd
tJρ)

−1TdKXd)uu = −
∑

o(e)=u

xutete−1s

1 − tete−1s2
Id.

Then we have

tL(I2md + sTd
tJρ)

−1TdKXd = 1/s2
∑
g∈Γ

tAg(1/s
2) ⊗ tρ(g) − 1/sD(1/s2) ⊗ Id.

By (39), it follows that

det(I2md − s
∑
g∈Γ

tρ(g) ⊗ Ug)

= det(Ind − stL(I2md + sTd
tJρ)

−1TdKXd)
m∏

j=1

(1 − tej
te−1

j
s2)d

= det(Ind − 1/s
∑
g∈Γ

tAg(1/s
2) ⊗ tρ(g) + D(1/s2) ⊗ Id)

m∏
j=1

(1 − e2ikLej s2)d

= det(Ind − 1/s
∑
g∈Γ

Ag(1/s
2) ⊗ ρ(g) + D(1/s2) ⊗ Id)

m∏
j=1

(1 − e2ikLej s2)d

= det(Ind − 1/s
∑
g∈Γ

ρ(g) ⊗ Ag(1/s
2) + Id ⊗ D(1/s2))

m∏
j=1

(1 − e2ikLej s2)d.

Thus,

COROLLARY 1. Let G be a connected graph with n vertices and m unoriented

edges, Γ be a finite group and α : D(G) −→ Γ be an ordinary voltage assignment.

If ρ is a irreducible representation of Γ and d is the degree of ρ, then

det(σI2md −
∑
h∈Γ

tρi(h) ⊗ Uh)

= det(Ind − σ
∑
h∈Γ

ρ(h) ⊗ Ah + Id ⊗ D)
m∏

j=1

(σ2 − e2ikLej )d

= det(Ind − σ
∑
h∈Γ

ρi(h) ⊗ Ãh + Id ⊗ D)
m∏

j=1

(σ2 − e2ikLej )d,

where D(G) = {e1, e
−1
1 , . . . , em, e−1

m }.
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Proof. By Theorem 5, we have

det(σI2md −
∑
h∈Γ

tρi(h) ⊗ Uh) = σ2mdζG(A,L, λ, ρ, α, σ−1)−1

= det(Ind − σ
∑
g∈Γ

ρ(g) ⊗ Ãg(σ
2) + Id ⊗ D(σ2))

m∏
j=1

(σ2 − e2ikLej )d.

By Theorem 5, it is also shown that, in Theorem 3, the determinant of the

second expression is equal to that of the third expression.

By Theorem 3 and Corollary 1, the following result holds.

COROLLARY 2. If G is a connected graph with m edges, Γ is a finite group and

α : D(G) −→ Γ is an ordinary voltage assignment, then we have

det(σI2mp − U(Gα)) = σ2mp
∏

ρ

ζG(A,L, λ, ρ, α, σ−1)−deg ρ,

where ρ runs over all inequivalent irreducible representations of Γ and p =| Γ |.

7. The Euler product for the L-function ζG(A,L, λ, ρ, α, s) of a graph

We present the Euler product for the L-function of a graph introduced in

Section 6.

Foata and Zeilberger [9] gave a new proof of Bass’ Theorem by using the

algebra of Lyndon words. Let X be a finite nonempty set, < a total order in X,

and X∗ the free monoid generated by X. Then the total order < on X derives

the lexicographic order <∗ on X∗. A Lyndon word in X is defined to a nonempty

word in X∗ that is prime (not the power lr of any other word l for any r ≥ 2)

and that is also minimal in the class of its cyclic rearrangements under <∗ (see

[26]). Let L denote the set of all Lyndon words in X.

Foata and Zeilberger [9] gave a short proof of Amitsur’s identity [3].

THEOREM 6. (Amitsur) For square matrices A1, . . . ,Ak,

det(I − (A1 + · · · + Ak)) =
∏
l∈L

det(I − Al),

where the product runs over all Lyndon words in {1, · · · , k}, and Al = Ai1 · · ·Air

for l = i1 · · · ir.
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THEOREM 7. Let G be a connected graph with n vertices and m unoriented

edges, Γ be a finite group and α : D(G) −→ Γ be an ordinary voltage assign-

ment. For each path P = (e1, . . . , ep) of G, set α(P ) = α(e1) · · ·α(ep). If ρ is a

representation of Γ and d is the degree of ρ, then

ζG(A,L, λ, ρ, α, s) =
∏
[C]

det(Id − tρ(α(C))tCaCs|C|)−1,

where [C] runs over all equivalence classes of prime cycles of G, and

tC = te1 · · · tep , aC = σ(o(e1))
e1ep

σ(o(ep))
epep−1

· · ·σ(o(e2))
e2e1

, C = (e1, e2, . . . , ep)

Proof. At first, let D(G) = {e1, . . . , em, em+1, . . . , e2m} and consider the lexico-

graphic order on D(G) × D(G) derived from a total order of D(G): e1 < e2 <

· · · < e2m. If (ei, ej) is the c-th pair under the above order, then we define the

2md × 2md matrix Tc = ((Tc)r,s)1≤r,s≤2m as follows:

(Tc)r,s =

{
tρ(α(ej))tei

σ
(o(ei))
eiej if r = ei, s = ej and o(ei) = t(ej),

0 otherwise,

where

σ
(o(e))
ef = xo(e) − δe−1f .

If F = T1 + · · · + Tk and k = 4m2, then

F =
∑
h∈Γ

Uh ⊗ tρ(h).

Let L be the set of all Lyndon words in D(G)×D(G). We can also consider

L as the set of all Lyndon words in {1, . . . , k}: (ei1 , ej1) · · · (eis , ejs) corresponds

to m1m2 · · ·ms, where (eir , ejr)(1 ≤ r ≤ s) is the mr-th pair. Theorem 6 implies

that

det(I2md − sF) =
∏
t∈L

det(I2md − s|l|Tl),

where

Tl = Ti1 · · ·Tir

for l = i1 · · · ir. Note that det(I2md−s|l|Tl) is the alternating sum of the diagonal

minors of Tl. Thus, we have

det(I − s|t|Tt) =

{
det(I − tρ(α(C))tCaCs|C|) if t is a prime cycle C,

1 otherwise,
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where

tC = te1 · · · tep , aC = σ(o(e1))
e1ep

σ(o(ep))
epep−1

· · · σ(o(e2))
e2e1

, C = (e1, e2, . . . , ep)

Therefore, it follows that

ζG(A,L, λ, ρ, α, s)−1 = det(I2md − s
∑
h∈Γ

tρ(h) ⊗ Uh)

= det(I2md − s
∑
h∈Γ

Uh ⊗ tρ(h)) =
∏
[C]

(Id − tρ(α(C))tCaCs|C|),

where [C] runs over all equivalence classes of prime cycles of G.

8. Example

We give an example. See also Fig. 2, Let G = K3 be the complete graph with

three vertices v1, v2, v3 and six arcs e1, e2, e3, e
−1
1 , e−1

2 , e−1
3 , where e1 = (v1, v2),

e2 = (v2, v3), e3 = (v3, v1). Furthermore, let λv = λ for v ∈ V (G), Le = L,Ae =

A for any e ∈ D(G). Then we have

xvj
=

2ik

2ik − λ
, tej

= exp(iL(k − A)), te−1
j

= exp(iL(k + A)) (j = 1, 2, 3).

Set a = 2ik
2ik−λ

, t = exp(iL(k−A)) and s = exp(iL(k +A)). Considering U under

the order e1, e2, e3, e
−1
1 , e−1

2 , e−1
3 , we have

U = UGS =



0 0 ta t(a − 1) 0 0
ta 0 0 0 t(a − 1) 0
0 ta 0 0 0 t(a − 1)

s(a − 1) 0 0 0 sa 0
0 s(a − 1) 0 0 0 sa
0 0 s(a − 1) sa 0 0


and

Ã = A =
a

σ2 − st

 0 t s

s 0 t

t s 0

 ,D =
2ast

σ2 − st
I3.

By Theorem 2, we have

det(σI6 − U) = (σ2 − st)3 det(I3 − σA + D) = det

 b −taσ −saσ

−saσ b −taσ

−taσ −saσ b


= b(b2 − 3sta2σ2) − a3σ3(s3 + t3).

where b = σ2 + (2a − 1)st.
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Figure 2 Regular covering of G = K3: Figure (a) is the original graph G = K3. We
take Γ = Z2 = {−1, 1}. As an ordinary assignment α, we assign elements of
Γ to arcs as is depicted by Fig. (b). For example, α(v1, v2) = −1, α(v2, v3) =
1. The definition of the assignment imposes α(v2, v1) = −1, α(v3, v2) = 1
since α(v, u) = α(u, v)−1 for any (u, v) ∈ D(G). Figure (c) is the derived
graph Gα. For example, putting e = (v1, v2) ∈ D(G), then, for ±1 ∈ Γ,
e1 = ((v1, 1), (v2,−1)) ∈ D(Gα) and e−1 = ((v1,−1), (v2, 1)) ∈ D(Gα) since
((u, g), (v, h)) ∈ D(Gα) if and only if (u, v) ∈ D(G) and h = gα(u, v), in
this case, −1 = α(v1, v2) × 1 and 1 = α(v1, v2) × (−1), respectively.

Next, let Γ = Z2 = {1,−1} be the cyclic group of order 2, and let α :

D(K3) −→ Z2 be the ordinary voltage assignment such that α(e1) = α(e−1
1 ) = −1

and α(e2) = α(e−1
2 ) = α(e3) = α(e−1

3 ) = 1. The characters of Z2 are given as

follows: χi((−1)j) = ((−1)i)j, 0 ≤ i, j ≤ 1. Then we have

A1 =
a

σ2 − st

 0 0 s

0 0 t

t s 0

 ,A−1 =
a

σ2 − st

 0 −s 0

−s 0 0

0 0 0

 .

Now, by Theorem 5,

σ6ζK3(A,L, λ, χ1, α, σ−2)−1

= (σ2 − st)3 det(I3 − σ
1∑

i=0

χ((−1)i)A(−1)i + D)

= det

 b taσ −saσ

saσ b −taσ

−taσ −saσ b


= b(b2 − 3sta2σ2) + a3σ3(s3 + t3).

By Corollary 2, it follows that

det(σI12 − U(Kα
3 )) = det(σ2I6 − U)ζK3(A,L, λ, χ, α, σ−2)−1σ6

= {b(b2 − 3sta2σ2) − a3σ3(s3 + t3)}{b(b2 − 3sta2σ2) + a3σ3(s3 + t3)}
= b2(b2 − 3sta2σ2)2 − a6σ6(s3 + t3)2.
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