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Abstract. We give a new determinant expression for the characteristic poly-
nomial of the bond scattering matrix of a quantum graph G. Also, we give a
decomposition formula for the characteristic polynomial of the bond scattering
matrix of a regular covering of G. Furthermore, we define an L-function of G, and
give a determinant expression of it. As a corollary, we express the characteristic
polynomial of the bond scattering matrix of a regular covering of G by means of
its L-functions. As an application, we introduce three types of quantum graph
walks, and treat their relation.

1. Introduction

A quantum graph identifies edges of an ordinary graph with closed intervals
generating a metric graph, and has an operator acting on functions defined on
the collection of intervals. The review and book on quantum graphs are Exner
and Seba [8], Kuchment [25], Gnutzmann and Smilansky [11], for examples.

One of interest on quantum graphs is the spectral question of quantum graphs.
This is approached through a trace formula. The first graph trace formula was
derived by Roth [29]. Kottos and Smilansy [24] introduced a contour integral
approach to the trace formula starting with a secular equation based on the
scattering matrix of plane-waves on the graph. Solutions of the secular equation
corresponds to the points in the spectrum of the quantum graph.

Trace formulas express spectral functions like the density of states or heat
kernel as sums over periodic orbits on the graph. This fact is related to the
Ihara zeta function. Furthermore, the spectral determinant of the Laplacian
on a quantum graph is closely related to the Thara zeta function of a graph (see
[5,6,13,14]). Smilansky [32] considered spectral zeta functions and trace formulas
for (discrete) Laplacians on ordinary graphs, and expressed some determinant on
the bond scattering matrix of a graph G by using the characteristic polynomial
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of its Laplacian.

As a quantum counterpart of the classical random walk, the quantum walk
has recently attracted much attention for various fields. The review and book on
quantum walks are Ambainis [1], Kempe [19], Kendon [20], Konno [21], Venegas-
Andraca [39], for examples.

In 1988, Gudder defined discrete-time quantum walk on a graph from the
view point of quantum measure introduced as a quantum analogue of probability
measure in his book [12]. The Grover walk on a graph was formulated in [41]. We
can see that there are many applications of the Grover walk to quantum spatial
search algorithms in the review by Ambainis [1], for example. As a generalization
of the Grover walk, Szegedy [37] introduced the Szegedy walk on a graph related
to a transition matrix of a random walk on the same graph.

Recently, the relation between quantum graphs and quantum walks on graphs
are pointed out (see [31,38]). In [31,38], a regular quantum graph is introduced as
a special class of quantum graph, and it is shown that a regular quantum graph
can be interpreted as realizations of quantum walks on graphs. Higuchi, Konno,
Sato and Segawa [16] took notice of the similarity of the structure between the
scattering matrix of a quantum graph and the time evolution of a discrete-time
quantum walk on a graph, and defined a quantum graph walk as a quantum walk
on a graph with the scattering matrix as the time evolution. As a sequential work
of this paper and [16], we show the relationship between a quantum walk and a
scattering amplitude via discrete Laplacian in [17].

Zeta functions of graphs were originally defined for regular graphs by Ihara
[18]. This is the Thara zeta function of a graph. In [18], he showed that their
reciprocals are explicit polynomials. A zeta function of a regular graph G associ-
ated with a unitary representation of the fundamental group of G was developed
by Sunada [35,36]. Hashimoto [15] treated multivariable zeta functions of bipar-
tite graphs. Bass [4] generalized Thara’s result on the zeta function of a regular
graph to an irregular graph and showed that its reciprocal is again a polynomial.
A decomposition formula for the Thara zeta function of a regular covering of a
graph was obtained by Stark and Terras [34], and independently, Mizuno and
Sato [27].

The discrete-time quantum walk on a graph is closely related to the Ihara
zeta function of a graph. Ren et al. [28] found an interesting relation between
the Thara zeta function and the discrete-time quantum walk on a graph, and
showed that the positive support of the transition matrix of the discrete-time
quantum walk is equal to the Perron-Frobenius operator (the edge matrix) re-
lated to the Ihara zeta function. Konno and Sato [22] gave the characteristic
polynomials of the transition matrix of the discrete-time quantum walk and its
positive support, and so obtained the other proofs of the results on spectra for
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them by Emms et al. [7].

In this paper, we present a new determinant expression for the scattering
matrix of a quantum graph. In Section 2, we state a short review on quantum
graphs. We consider the Schrodinger equation and the boundary conditions of
a quantum graph from a view point of arcs (oriented edges) of the graph under
Ref. [16], and present two types of the scattering matrix of a quantum graph. In
Section 3, we treat a quantum walk on a graph, and discuss the relation between
four quantum graph walks induced by a quantum graph. We clarify that these
walks are in spatial and temporal reversal relation. In Section 4, we present a new
determinant expression for the characteristic polynomial of the scattering matrix
of a quantum graph by using the method of Watanabe and Fukumizu [40]. In
Section 5, we give a formulation for the Schrédinger equation and the boundary
conditions of a regular covering of a quantum graph, and propose a type of the
scattering matrix of a quantum graph whose base graph is a regular covering of
a graph. Furthermore, we give a decomposition formula for the characteristic
polynomial of the scattering matrix of a regular covering. In Section 6, we
define an L-function of a graph and give a determinant expression for it. As
a corollary, we express the determinant for the characteristic polynomial of the
scattering matrix of a regular covering as a product of L-functions. In Section
7, we express the above L-function of a graph by using the Euler product.

2. Scattering matrix of a quantum graph

We present a review on a quantum graph.

Graphs treated here are finite. Let G be a connected graph (possibly with
multiple edges and loops) with the set V(G) of vertices and the set E(G) of
unoriented edges. We write uv for an edge joining two vertices u and v. For uv €
E(G), an arc (u,v) is the oriented edge from u to v. Set D(G) = {(u,v), (v,u) |
wv € E(G)}. For e = (u,v) € D(G), u = o(e) is the origin of e and v = t(e) is

the terminus of e. Furthermore, let e™! = (v, u) be the inverse arc of e = (u, v).
Let G be a connected graph with V(G) = {1,...,n} and D(G) = {ey, ..., em,
er’, ..., e l}. Arrange vertices of G as follows: 1 < 2 < --- < n. Furthermore,

let d; = degj,j € V(G). For each edge ij € E(G), let L;; and A;; be the
length and the vector potential of ij, respectively. If ij € E(G), then assign a
variable x in the interval [0, L;;] such that x = 0 and x = L;; corresponds to ¢
and j, respectively, and an intermediate point z of 75 corresponds to the distance
between i and z.
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For e = (i,7) € D(G), set
Le = Lij, A, = { A <
_Azj if ¢ > 7
Note that
Lo=Lo1, Ay1——A,
Let e = (j,1) € D(G). Then the Schrodinger equation for e is given by

(—lj—x A ) W, () = KW, () 1)

under the following three conditions:

1. VU (z) =V (Ly —x);
2. The continuity: V.(0) = ¢; and V.(Lj;) = ¢;
3. The current conservation:

. d
Z' (-l& + Ae) \Ije(ﬂf)
o(e)=j

where (¢1,...,¢,) € C™.
The solution of (1) is given by

- _i>\j¢j,Vj € V(G)7

=0

U, () = (ace ¥ 4 belh®)e 14t § = /1. (2)
By condition 1, we have
= be-retlett+A) gnd b, = q 171 Lelk=Ae), (3)

By condition 2, we have

Qey + be1 = Qey T+ bez == aedj + bedj = (bj’ (4)
where ey, s, .., €4, are arcs emanating from j, and d; = degj. By condition 3,
we have
dj -)\ dj
i
k Ge. — be.) = 1\, =7 e, + be,) 5
TZ;( T r) ]¢] dj Tz; T r ( )
Thus,

4 1— i\ /kd;
gber 1+i);/kd; Z ©)

=1
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By (4), for 1 < p < d;, we have

1 d;
bep = Qe,, = d_ aer + ber -

<

Ep'

<.

r=1

dj

2ik
be: —_566 er» 7
» ;(ikdj—Aj )a (7)

where 0., is the Kronecker delta. By (3) and (7), we have

d

; 2ik .
_ iLe,(k+Ae,) _ E : iLe, (k+Ac,)
e = bE;le ’ " (1kdl i 5f75;71)6 ’ At (8)
where f1,..., fq, are arcs emanating from [.

Now, we introduce the Gnutzmann-Smilansky type of the bond scattering
matrix of a quantum graph. Let

Ce—1 = a, for each e € D(QG).

Then we have

i 2ik 5 iL__1(k—A 1)
c 1= — =0, e °» Pt
et 2 \ikd, — \ frtep St

Thus, for each arc e with o(e) =1,

where

k —0e-17.
Jef( ) lkdl )\l 56 !

The vertex scattering matriz S(k) = (Sef(k))e,ren(c) of G is defined by

0 otherwise.

Sur(h) :{ Ak it (f) = ofe)

Next, the bond propagation matriz T(k) = (Tef(k))e,ren(q) of G is defined by

Tey(k) = { SXP (iLe(k—Ac)) ife=f,

otherwise.
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Then we define the Gnutzmann-Smilansky type of the bond scattering matriz
Ugs(k) = UGS<G, k‘) by

Uas(k) = T(K)S(k). (10)
By (9), we have
UGS(I'C)C = C, (11)
where ¢ = “(c1, ¢a, ..., Com). Then (9) holds if and only if
det(Igm — Ugs(k)) =0.

Now, we introduce another type of the bond scattering matrix of a quantum
graph. By (6),

& 1 4 i)y /kd;
> o = i Zber (12)
By (4), for 1 < p < d;, we have
1
e, = Qj — ep_d—j; Qe, + be,) — be, -
By (12),
d;
> =3 (G 0o ) b (13)
By (3), we have
dj .
a, = > <% . 5€T6p> e—iLer(k—Aer)ae;L (14)

By (8) and (14), we have the following result.

PROPOSITION 1. In a quantum graph G, for an arc e = (j,1) € D(G),

21k . 2ik .
—_é‘ . —lLf(k;—Af) - R _ lLe(k-‘y—Ae)
Zj(ikderAj f>€ ap= T — e ¢ b

o(f)= o(g)=l

On the other hand, for an arc e such that o(e) = j, (13) is changed into

= 2ik AL (btA
n Zt(f)=j (ikdler,\j - 5fe—1> e~ iLskt4s) g,

(15)
= i(f)=i Ugjf) (—k)e st as)g,
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where
() 2ik
oo (=k) = o=
f ikd; + \;
The (e, f)-array of the vertex scattering matrix S(—k) = (Sef(—Fk))e,fen(c) of G
is given by

— ey

Ser(—k) = { ol (k) it H(f) = ofe),

0 otherwise.

Furthermore, the (e, f)-array of the bond propagation matrix
T(—k) = (Tey(=Fk))e,ren(c) of G is given by

oy [ exp (—iLc.(k+ Ae)) ife=f,
Tey(—k) = { 0 otherwise.

Then we define another type of the bond scattering matriz
Uprss(k) = Unkss(G, k) by

Upkss(k) = S(—k)T (k). (16)
By (15), we have
Unrss(k)a = a, (17)
where a = '(ay, ag, . . ., azy). Then (17) holds if and only if

det(Igm — UHKSS(k)) = 0

Now, we state the relation between the Gnutzmann-Smilansky scattering
matrix and another scattering matrix of a quantum graph.

At first, let j € V(G), and ey, ey, ..., ¢4, be arcs emanating from j. Further-
more, let

a; ="(ag,... ,aedj),b]- = t(bel,...,bedj),:vj =uxz(k) = %
Then (7) implies that
bj = (z;Ja, —14,)a;,
where Jg4, is the d; x d; matrix with all one. Thus, putting
Fj=u;d4 — 1,

the above equation is reexpressed by

bj = Fjaj.
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Here
detF; = (djz; — 1)(—=1)% "1 #£0
and
Fil=u;(—k)Jq — 14,
Let

a="'(a;,...,a,),b="by,....b,),F=F,&...0F,.
Then we have
b = Fa and a=F'b. (18)
Next, let the 2m x 2m diagonal matrix R(k) = (R.f(k)) be given by

eilelbtde) if ¢ = f,
Res (k) = { 0 otherwise.
Since a, = b—1etle(b+t4e) we have
a=R(k)Job, (19)

where Jo = (J.y) is given by

eop -1
Jef:{ 1 if f=e",

0 otherwise.
Note that J;* = Jo. By (18) and (19), (8) is rewritten as follows:
a=R(k)JoFa. (20)
Furthermore, by (19),
b = JoR(k) a,
and so, (14) is also rewritten as follows:
a=F'b=F'JR(k)'a (21)

By (20) and (21), we obtain the following equivalent expression to Proposition
1:

a=R(k)JoFa=F'JR(k) 'a.
By the way, it holds that

T(k) = JoR(k)Jo and S(k) = FJ,.
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Thus,
Ugs(k) = T(k)S(k) = JoR(k)JFJ,. (22)
Furthermore, we have
T(—k) = R(k)"" and S(—k) = F1J,.
Thus,
Upiss(k) = S(—k)T(~k) = F~'JoR(k)™". (23)
By (22), (23), we obtain the following result.

PROPOSITION 2. In a quantum graph G,

Ugs(k) = JoUkgs(k)Jo.

3. Quantum graph walks

At first, we state a short review on a discrete-time quantum walk on a graph.

Let G be a graph with n vertices and m edges. For v € V(G), let N*(v) =
{e € D(G) | o(e) = v}. The we consider a quantum walk over D(G). For each
arc ¢ = (u,v) € D(G), the pure state is given by Z. = T, = |e) = |u,v) € C*™
such that {|e) | e € D(G)} is the orthonormal system of the 2m-dimensional
Hilbert space C*". 'H = (*(D(G)) = span{le) | e € D(G)} is called the total
space of a quantum walk on G. Then we have

H = @ H, and H, = span{|e) | e € N (v)}.
veV(Q)
Let (u,v), (w,z) € D(G). Then the transition from (u,v) to (w,x) occurs if
v = w. The state ¢ of a quantum walk on G is defined by

Y = Z acle), a. € C,
e€eD(G)
| = 1. Furthermore, the probability which the walk is at the
%

where > pq) lae
arc e is given by |a,

The time evolution of a quantum walk on G is given by a unitary matrix U.
By the definition of the transition, U = (Uef)e, fe p(c) 1s given as follows so that
U is unitary:

;.. _ | mnonzero complex number if t(e) = o(f) (or t(f) = o(e)),
710 otherwise.
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For an initial state ¢y with ||1g|| = 1, the time evolution is the iteration g —
11 +— ... of U such that

¢; = Uy, j €N,

Now, we explain a quantum walk called coined quantum walks on a graph
G. Set V(G) = {1,...,n}. Then we choose a sequence of unitary operators
{H,};cv(c), where H; is a d;-dimensional operator on H;. Then we present two
types of time evolutions U and U™ of quantum walks, respectively:

U@ =HJ,; UW = JH,

where H = @y ) H;- U@ and UW are called Gudder type and Ambainis
type, respectively. The elements of U@ (or UMW) is nonzero if t(f) = o(e) (or
t(e) = o(f)). The first type determined by U(® is a generalization of Gudder
[12] (1988) of d-dimensional lattice case. The second one U is motivated by
the most popular time evolution for the study of QWs by Ambainis et al [2]
(2001).

Next, we treat a quantum graph walk. Let G be a connected graph with n
vertices 1,...,n, and m edges, and let L : D(G) — Rt and A: D(G) — R be
the length and the vector potential of arcs of G, respectively. Let A : V(G) — C
be the parameters in the boundary condition 3. The quantum graph walk with
parameters (L, A, A) is defined as a quantum walk on G by the Ambainis type
time evolution U with the flip flop Jo and the following local quantum coin
H; = ((Hj)ef)e,ren+(;) at a vertex j € V(G):

2ik . .
(Hj)er = (m - 5ef) elei=4) e f e NT(j).
J J

Note that
U=JH H=H, ¢ ---oH,. (24)

For brevity, this quantum graph walk is denoted by U. By the way, the quantum
coin is reexpressed by

Furthermore, recall that

Using these relation implies

H = J,R(k)J,F. (25)
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By (24) and (25), we have
U = J,T(k)F = R(k)J,F. (26)
By (20), (8) is rewritten as follows:
a = Ua. (27)

Next, we can interpret two scattering matrices Ugg(k), and Upggs(k) which
have discussed in the previous section as two kinds of quantum graph walks in
the following sence. By (22) and (26), we have

Ugs(k) = JoR(E)JFJ, = J,UJ,. (28)
By (23) and (26), we have
Unkss(k) =F 1Rk =01 (29)

By the forms of Ugg(k) and Uy gss(k), Ugs(k) and Ugkss(k) are Gudder type
quantum graph walks. Furthermore, we introduce the third quantum graph walk
of G with the following time evolution:

U =JH " (30)

This is an Ambainis type quantum graph walk.
As a consequence, the following result in relation to the quantum graph and
corresponding four kinds of quantum graph walks holds.

THEOREM 1. In the quantum graph G with parameters (L, A, \), the following
statements are equivalent:

1. The Schridinger equation (1) with the boundary conditions 1,2,3 has a non-
trivial solution {W.}eep(q):

2. The time evolution U of the quantum graph walk has the eigenvalue 1.

3. The time evolution Ugg(k) of the quantum graph walk has the eigenvalue
1.

4. The time evolution Uykgss(k) of the quantum graph walk has the eigenvalue
1.

5. The time evolution U’ of the quantum graph walk has the eigenvalue 1.

Proof. (1) < (2): By Theorem 5 of [16].
(2) & (3): Since Jpa = ¢, (27) and (28) implies that

a—= I~Ja & Jpa= JoﬁJoJoa

& C= Ugs(k)c.
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Figure 1 Spatial and temporal duality relationship of four quantum graph walks:
The solid lines (vertical lines) depict the spatial reversal relationship in that
JoUJ, = Ugs(k) and JgUgkss(k)Jg = U’. The dotted lines (horizontal
lines) express the temporal reversal relationship in that U™ = Ugggs(k)
and ch(k)71 =U'.

(2) < (4): By (29),

a=Ua«s a=U"'a=Uygss(k)a.
(2) < (5): By (30),
a=Ua & a=U'la=H"'Jsa
& Joa=JH 'Jja

& c=Ue.
]

Note that if a = @ is the eigenvector for the eigenvalue 1 of U, then a = @
is the eigenvector for the eigenvalue 1 of Upgss(k), and Jpa is the eigenvector
for the eigenvalue 1 of Ugg(k) and U'.

Finally, we mention a relationship between four quantum graph walks from
view point of spatial and temporal duality relation. See also Fig.1. The quan-
tum graph walks U and U nkss(k) are in a time reversal relation in that Ul =
Uprkss(k). We can see also the same time reversal relation between Ugg(k)
and U’. On the other hand, U and Ugg(k) are in a spatial reversal rela-
tion in that JoUJ, = Ugs(k), that is, the total space of U is descreibed
by @,cv (g span{le)le € N*(v)}, while the total space of U is descreibed by
D.cv () span{le)le € N™(v)}, where N™(v) = {e € D(G)|t(e) = v}. We can see
also the same spatial reversal relation between Uy igs(k) and U'.

4. The characteristic polynomial of a scattering matrix of a quantum
graph

Let G be a connected graph with n vertices and m unoriented edges. Set
V(G) = {1,2,...,n} and D(G) = {er,e;",...,em,e;!}. Furthermore, for j €

m
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V(G) and e € D(G), let
2ik

— e = iL.(k— Ae)).
Tl — and t, = exp (iL¢( )

T =
Furthermore, set

ol = 6l (k), U = U(G) = Ugs(k), T = T(k),S = S(k).

Let an n x n matrix A = A(0?) = A(G,02) = (Guw) be defined by

—2te— if e = (u,v) € D(G),
duv:{ ot W€ (u,v) (G) (%)

0 otherwise.
Let an n x n matrix A = A(0?) = A(G,0?) = (@y,) be defined by

e i Heme00)
Qyy = ete~t

0 otherwise.

(%)

Furthermore, let an n x n diagonal matrix D = D(0?) = D(G, 0?) = (dy,) be
defined by

¥ L

d = o(e)=u o2—tet, 1 -

wv € .
0 otherwise.

Note that t.t.-1 = e?* L e € D(QG).

THEOREM 2. Let G be a connected graph with n vertices and m unoriented
edges. Then

( . eQikLej )

’:]3

det(oIy,, — U) = det(I, — oA + D)

<.
I
—

( . €2ikLej )

’:]3

= det(I, ~ oA +D)]

<.
Il
—_

Proof. The argument is an analogue of the method of Watanabe and Fukumizu
40].

Let D(G) = {e1,...,€m,€ms1, ---,€am} such that e, ; = e; (1 < i < m).
Furthermore, arrange arcs of G as follows:

-1

-1
61,61 ,...,em,em .

Note that the (e, f)-array (U).r of U is given by

(V) = { a0 =) D) = of0)

0 otherwise.
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Let 2m x 2m matrices B = (Bef)e,ren(a) and Jo = (Jef)e, ren(q) be defined
as follows:

B, — { Tyey if t(e) = o(f), 3., = { 1 if f=et,

0 otherwise, 0 otherwise.

Note that tJg = Jo.
Now

'S =B - J,. (31)

Let K = (Key) cen(@)wev(e) be the 2m x n matrix defined as follows:

K. - { 1 ifo(e) =,

0 otherwise.

Furthermore, we define a 2m x n matrix L = (Ley)een(@)wev(c) as follows:

L. — { 1 ift(e) =,

0 otherwise.

Then we have

LX'K = B, (32)
where
T 0
X = ,
0 T

Next, By (31) and (32), we have
det(Iy,, — sU) = det(Iy,, — sTS) = det(Iy,, — sT(‘B — Jy))
= det(Iy,, — sT(KX'L — Jy)) = det (I, + sTJy — sTKX'L)
= det(Iy,, — STKX'L(Iy, + sTJg) 1) det(Iy,, + sTJ).
If A and B are a m x n and n x m matrices, respectively, then we have
det(I,, — AB) = det(I, — BA). (33)
Thus, we have
det(Iy,, — sU) = det(I, — sX'L(Iy,, + sTJo) 'TK) det(Iy, + sTJg).  (34)
Furthermore,

det(I,,, — sU) = det(I,, — s'L(Iy,, + sTJy) ' TKX) det(Ly,, + sTJy).  (35)
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Next, we have

1 st 0
St€;1 1
IZm —+ STJO = 3
1 ste,,
| 0 st -1 1
and so,
det(Iam + sTJo) = [ [(1 - te;t-15%).
j=1
Furthermore, we have
1/y1 _St61 /yl 0
Iy + sTJp) ! = —Stel—l/yl 1/ ,
0
where y; =1 — tejte s2 (1 <j<m).

For an arc (u, ) € D(G),
(X'L(Lam + sTJ0) " TK)wo = Tut o)/ (1 — L) twwS”)-

Furthermore, if u = v, then

Tylele—15

XL (L + $TJ0) ' TK )y =
(XL(To + 5TJo)™ Zl—tt_lsz‘

t(e)=u

Then we have

X'L(Ig 4+ sTJo) 'TK = 1/s% tA(1/s%) — 1/sD(1/5?).
Therefore, by (34), it follows that

det(Iy,, — sU)

= det (T, — sX'L(Tzm + sTJo) "TK) [ (1 — £, ,13

7=1

= det(I, — 1/s *A(1/s%) + D(1/s?) H 1—t5]t6715
7=1

= det(I, — 1/sA(1/s%) + D(1/s?) H 1—756]156_15

Jj=1
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Next, for an arc (u,v) € D(G),
(tL(Igm + STJO)ilTKX)M, = xvt(mu)/(l — t(u’v)t(%u)SQ).

Furthermore, if v = v, then

telto—18
LIy + sTJ) ' TKX )y = Tulele
(LT + sTdo) -2 1—tt, 182

o(e)=u

Then we have
LIy + sTJ) 'TKX = 1/s* 'A(1/5*) — 1/sD(1/s%).
Therefore, by (35), it follows that

det(Iy,, — sU)

= det(I, — s'L(Iy, + sTJo) ' TKX) [J(1 - L. s’

7=1
=det(I, — 1/s "A(1/s*) +D(1/5%) H (1-— te]te_ls
7j=1
= det(I, — 1/sA(1/s%) + D(1/s?) H (1—t.
Now, let s = 1/0. Then we get

1 e 1 - _
det <12m - ;U) = [ = tete ) det <In — oA(0?) + D(O—Q)) .

J=1

Thus,
det(oTym — U) = [ (02 — to,t, 1) det (1n —oA(0?) + E(&)) .
Furthermore, we have
1 e —
det [ Iy, — —U | = 1—t.t det (I, — cA + D(0?)).
et (T = 20) =01~ bt ) det (1, ~ A (0) + Do)
Thus,

det(0Typ — U) = [ [ (0* — L 1) det (I, — oA(0”) +D(0?)).

Jj=1
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5. The characteristic polynomial of a scattering matrix of a regular
covering of a graph

Let G be a connected graph, and let N(v) = {w € V(G) | (v,w) € D(G)}
denote the neighbourhood of a vertex v in G. A graph H is a covering of G with
projection m : H — G if there is a surjection 7 : V(H) — V/(G) such that
Ty o N(v) — N(v) is a bijection for all vertices v € V(G) and v' € 7 (v).
When a finite group II acts on a graph G, the quotient graph G/II is a graph
whose vertices are the IT-orbits on V(G), with two vertices being adjacent in G /11
if and only if some two of their representatives are adjacent in G. A covering
7w H — G is regular if there is a subgroup B of the automorphism group Aut H
of H acting freely on H such that the quotient graph H/B is isomorphic to G.

Let G be a graph and T" a finite group. Then a mapping o : D(G) — T"is an
ordinary voltage assignment if a(v,u) = a(u,v)™! for each (u,v) € D(G). The
pair (G, «) is an ordinary voltage graph. The derived graph G of the ordinary
voltage graph (G, «) is defined as follows: V(G*) = V(G)xI"and ((u, h), (v,k)) €
D(G®) if and only if (u,v) € D(G) and k = ha(u,v). The natural projection
7 : G* — G is defined by 7(u, h) = u. The graph G* is a derived graph covering
of G with voltages in I" or a I"-covering of G. The natural projection m commutes
with the right multiplication action of the a(e),e € D(G) and the left action of
I' on the fibers: g(u,h) = (u,gh),g € I', which is free and transitive. Thus, the
[-covering G is a | I' |-fold regular covering of G with covering transformation
group I'. Furthermore, every regular covering of a graph G is a I'-covering of GG
for some group IT" (see [10]). Figure 2 depicts the derived graph of G' = K3 with
I'=7Z,.

Let G be a connected graph, I" be a finite group and «a : D(G) — I be an
ordinary voltage assignment. In the I'-covering G, set v, = (v, g) and e, = (e, g),
where v € V(G),e € D(G),g € I'. For e = (u,v) € D(G),
from u, and terminates at v (). Note that ;" = (e7")ga(e)-

the arc e, emanates

We consider the Gnutzmann-Smilansky type of the bond scattering matrix of
the regular covering G® of G. Let V(G) = {1,...,n}, D(G) ={e,...,em,e; ",
coeband '={g1 =1,99,...,9,}. Let L: D(G) — R" and A: D(G) —
R be the length and the vector potential of arcs of G. Let the length L :
D(G*) — R+ and the vector potential A : D(G*) — R of arcs of G be given
by

L.,=L.and A,, = A,,e € D(G),g €T.
Let e = (j,I) € D(G). Then we consider the Schrédinger equation for the
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€g = (j97 lga(e))3

d - 2
<—i& + Aeg> U, () = k*¥,,(z)
under the following three conditions:
L ¥, ()= \Degl([:eg —x);

2. The continuity: ¥, (0) = ¢;, and ¥, (L., ) = Dlyer
3. The current conservation:

. d ~ . ) o
S (i +As ) U)o = -0, ¥, € VG,
o(fq)=Jg
where <¢1,17 ey (bn,gp) e Cr,

By the definitions of L and A, the Schrodinger equation for the arc €g
(Jg>lgatey) and the three conditions 1,2,3 are reduced to the following system:

U, () =V, 1 (L. — x);
\I]eg (0) = ijg and \Ileg (Le) = ¢l9a(e);

.d . , o
Z (—l& + Af) \I’fg(ZL’) ‘ =0 = —lAjggbjg,\V’jg S V(G )
o(fg)=Jg

The solution of the Schrodinger equation is given by

\I/eg (x) — (Cegle—ikx + begeikx)e—iAea:’i _J1

Similarly to (9), we have

= D oapetatialy,
t(fn)=ig

where
Ug):i_(g L_(g_l
ol ikdy, — N, 0 ikdy— A, 0P

Then the bond scattering matrix U(G*) = (U (e, fh))eg’fheD(Ga) of G is given
by

U<€g7fh) = { teg(l’o(eg) N 5eg_lfh) if t(fh) = 0(69)7 (36)

0 otherwise,
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where

2ik ile,(k—Ae
xvg:mandteg:e g( 9)

iLe(k—Ae) _ 4

=e o

g9

Now, we assume that
Aj, = Aj forany j € V(G) and g €T (%)

Under this assumption, we have
2ik

= - F.
Ty, T z,, Vv € V(G),Vg €

Then (36) is reduced to

te(@o(e) = 0y1p,) A E(fn) = oey),
U — €g fn g
(eg, fn) { 0 otherwise.
For g € T', let the matrices Ag = AQ(O'Z) = (&&%)) and A, = Ay(0?) = (@¥))
be defined by

2
o 7tete,1

al9) —

uv

{ Sote if e = (u,v) € D(G) and a(e) = g,

0 otherwise,

a(g) —

uv

2
o —tete, 1

—tule _jf ¢ = (u,v) € D(G) and a(e) = g,
0 otherwise.

Furthermore, let U, = (U9 (e, f)) be given by

_ t€<x0(e) - 66*1)‘) if t(f) = 0(6) and Oé(f) =9,
U e. f) = { 0 otherwise.

Let M; & --- @ M, be the block diagonal sum of square matrices My, ..., M.
If M; =M, =--- =M, =M, then we write soM = M; & --- & M,. The
Kronecker product A ® B of matrices A and B is considered as the matrix A
having the element a;; replaced by the matrix a;;B.

THEOREM 3. Let G be a connected graph with n vertices and m unoriented
edges, I be a finite group and o : D(G) — T be an ordinary voltage assign-
ment. Assume that f)eg = L., fleg = A and X\;, = \; for any e € D(G),j €
V(G),g € I'. Set |I'| = p. Furthermore, let py = 1,pa,- -+, px be the irreducible
representations of I', and f; be the degree of p; for each v, where f; = 1.
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If the I'-covering G* of G is connected, then, for the bond scattering matrix
of G%,

det (0T, — U(G*)) = det(oT, — U(G)) [ [ det(oTamy, — Y 'pi(h) @ Uy

=2 hel
k m

= det(I,— cA+ D) H det(L,y, —O’Z pi(h) @ Ap+ 15, @ D)/ H(‘72_ ezikLe].)p_
=2 her =1
~ k ~ m

= det(I,— cA+ D) Hdet(Infi —O’Z pi(h) @ Ap+1;, @ D)% H(Oz_ ezlkLej)p,

<.
Il
-

=2 hel

where D(G) = {ey, e7t, ..., em, €'}, Recall that A and A is defined in (x) and
(%), respectively.

Proof. Let | I' |= p. By Theorem 2, we have

det(0Tamp — U(G*)) = det(I,, — 0A(G*, 0°) + D(G®,0%)) [ [ (6 — te,t )"
j=1
Let D(G) = {e1,...,€m,€mt1,- .., €2y} such that e, ; = e;l(l < j<m),
and let I' = {1 = g1,02,...,9,}. Arrange arcs of G* in p blocks: (e, 1),...,

(€am, 1);(€1,92), -, (€2msG2); -5 (€1,0p)s - - - (€2m, Gp). We consider the matrix
U(G*) under this order. For h € T', the matrix Pj, = (pgl)) is defined as follows:

m_ )1 if g;h = g;,
K 0 otherwise.

Suppose that pg?) =1, ie., g; = gih. Then Uley,, f,,) # 0 if and only if
t(f,g;) = o(e,g;). Furthermore, t(f,g;) = o(e,g;) if and only if (o(e),g;) =
ole,g:) = t(f,9;) = (t(f),g;0(f)). Thus, t(f) = o(e) and a(f) = g; " g
gj_lgjff1 = h~!. Similarly, (f,g;) = (e,9;)"" if and only if f = e~ and a(f) =
h~!. That is, under the assumption of (sxx),

U<6g7fh) _ { te(xo(e) - (56—1f) if t(f) = o(e) and Oz(f) — h_l,

0 otherwise.
Now, by (36),

UG =) PoeaUy=>» PaeU,=> 'P,eU,

hel’ gel gerl

Here, note that P,-1 =P, for each g € T..
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Let p be the right regular representation of I'. Furthermore, let p; = 1, po, ...,
pr be all inequivalent irreducible representations of I', and f; the degree of p; for
each i, where f; = 1. Then we have p(g) = P, for ¢ € I'. Furthermore, there
exists a nonsingular matrix P such that P~ p(g)P = (1)@ fo0p2(9)®- - -® fropr(g)
for each g € I'(see [30]). Thus, we have

Plo(g) P = (1)@ fao'palg) ® - & fro'pilg).
Putting F = ("P ® I, )U(G*)("P~! ® I,), we have

F=Y{()®fro'mlg) @@ fio'mig)} 8 U,

gel
Note that U(G) = 3 o Ug and 1+ f5 +--- + f = p. Therefore it follows that

k
det(0Tym, — U(G*)) = det(oTy, — U(G)) [ [ det(oTamy, — > 'pilg) @ Uy)".

=2 g

Next, let V(G) ={1,...,n}. Arrange vertices of G* in p blocks: (1,1),...,
(n,1); (1,92), ..., (n,92);--.5(1,9p),-- -, (n,g,). We consider the matrix A(G*)
defined in (#x) under this order.

Suppose that p( V=1, ie . g; = gih. Then ((u, ), (v,9;)) € D(G®) if and
only if (u,v) € D(G) and g; = gia(u,v). If g; = gia(u, v), then a(u,v) = g; 'g; =
g; 'gih = h. Thus we have

= Z P,®A,.

hel’

Putting E = (P~ ® I,)A(G*)(P ® I,) with nonsingular matrix P, we have

E=Y {(1)® faop(h)®---® frop(h)} ® Ay

hel’

Note that A(G) =", . Aj,. Therefore it follows that
det(L,, — cA(G*, 0%) + D(G*, %))

k
= det(I, — cA + D) x [ [ det(L.;, =0 Y pi(h) ® A), +1;, @ D).
=2 heT
Hence, it follows that

k
det (0T, — U(G*)) = det(oTa, — U(G)) [ [ det(oTamy, — Y 'pi(h) @ Uy,
=2 h

k m
= det(I,—cA + D) H det(L,y, —O’Z pi(h) @ Ay +1;, @ D) H(02_€2ikLe].)p.
=2 her =1

The third formula of Theorem is obtained similarly to the second one. O
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6. L-functions of graphs

We state a short review for the zeta function of a graph.

A path P of length n in G is a sequence P = (vg, e1,v1, €2,Va, ..., Un_1,€Epn, Vp)
of n + 1 vertices and n arcs such that vy € V(G), v; € V(G), e; € D(G) and
e; = (vi—1,v;) for 1 < i <n. We write P = (ey,...,e,). Set |P| =n, o(P) = vy
and t(P) = v,. Also, P is called an (o(P),t(P))-path. We say that a path
P = (e1,...,e,) has a backtracking if e;;}, = e; for some i. A (v, w)-path is called
a v-cycle (or v-closed path) if v = w. As standard terminologies of graph theory,
a path and a cycle are a diwalk and a closed diwalk, respectively.

We introduce an equivalence relation on the set of cycles. Two cycles C =
(e1,...,en) and Cy = (f1,..., fm) are equivalent if there exists k such that
fj = ejqi for all j. Let [C] be the equivalence class that contains a cycle C. Let
B" be the cycle obtained by going r times around a cycle B. Such a cycle is
called a power of B. A cycle C is reduced if both C'and C? have no backtracking.
Furthermore, a cycle C'is prime if it is not a power of a strictly smaller cycle. Note
that each equivalence class of prime, reduced cycles of a graph G corresponds to
a unique conjugacy class of the fundamental group 7;(G,v) of G at a vertex v
of G.

The Ihara zeta function of a graph G is defined to be a function of u € C
with |u| sufficiently small, by

Z(G.u) = Ze(u) = [[(1—ul) ",

[C]

where [C] runs over all equivalence classes of prime, reduced cycles of G (see

[18]).

THEOREM 4. (Bass) If G is a connected graph, then the reciprocal of the Ihara
zeta function of G is given by

Z(G,u)"' = (1 —u?)" T det(I — uA(G) + uv*(D - 1)),

where v and A(G) are the Betti number and the adjacency matriz of G, re-
spectively, and D = D¢ = (d;;) is the diagonal matriz with d; = degv; where
V(G) =A{vy,...,v,}.

Stark and Terras [33] gave an elementary proof of Theorem 4 and discussed
three different zeta functions of any graph. Other proofs of Bass’ Theorem were
given by Foata and Zeilberger [9] and Kotani and Sunada [23].

Next, let ' be a finite group, a : D(G) — T" an ordinary voltage assignment,
and p a representations of I' with degree d. For a cycle C' = (ey,...,e,) of G,
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the net voltage o(C') of C' is given by a(C) = a(e;)---a(e,). Then the lhara
L-function of a graph G is defined to be a function of u € C with |u| sufficiently
small, by

Z(G,u, p,a) = [ [ det(Ts — p(e(C))ul?) 7,
€]

where [C] runs over all equivalence classes of prime, reduced cycles of G (see
27,34]). If p = 1 is the identity representation of I", then the Thara L-function
of GG is the Thara zeta function of G.

We introduce an L-function on the scattering matrix of a quantum graph. Let
G be a connected graph with n vertices and m unoriented edges, I" be a finite
group and « : D(G) — T be an ordinary voltage assignment. Furthermore, let p
be a unitary representation of I' and d its degree. We generalize the determinant
of the second expression in Theorem 3. The L-function of G associated with p
and « is defined by

Ca(A, L\ p,a, s) = det(Igng — sztp(h) ®U,) ™t
hel’

If p = 1 is the identity representation of I', then the reciprocal of the L-
function of G is a determinant on the bond scattering matrix of G.

A determinant expression for the L-function of G associated with p and « is
given as follows. For 1 <4,j < n, the (¢,7)-block F;; of a dn x dn matrix F is
the submatrix of F consisting of d(i —1)+1,...,dirows and d(j —1)+1,...,dj
columns.

THEOREM 5. Let G be a connected graph with n vertices and m unoriented
edges, I be a finite group and o : D(G) — T be an ordinary voltage assignment.
If p is a representation of I' and d is the degree of p, then the reciprocal of the
L-function of G associated with p and « is

CG(A7 L7 >\7 P, &, 8)_1

= det(Ts— s ) plg) )+ Lo D(s72) [T — e¥Fhe s?)d

gerl

= det(I,g — s " Z p(g) ® Kg(S_Q) +I;®D(s7?))

gel’

.::13

<
Il
—

(1 — e2ikle; g2)d

3

.
Il
—

where D(G) = {e1, e, ..., em, et}

Proof. The argument is an analogue of the method of Watanabe and Fukumizu
40].
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Let D(G) = {e1,. ., €m; €ms1, - --,€am} such that e, = e; (1 < i < m).
Furthermore, arrange arcs of G as follows:
er, efl, ey Gy e;f.

Note that the (e, f)-block (3° . Uy @ 'p(g))es of >- cp Uy @ p(g) is given by

. Eo(a( f))te(To(e) — 01 if t(f) = o(e),
(S0,@n) -~ { el =t 110 =0t

gel ef

For g € T, let the matrix S, = (Sé‘[})) be defined by

S(@::

‘ { To(e) — b1y if t(f) = o(e) and a(f) = g,

0 otherwise.

Then we have

(S v, %) = et (s, '),

gerl’ gerl’

For g € I, two 2m x 2m matrices B, = (Bg))@fep(@ and J, = (J(ef))e,feD(G)
are defined as follows:

g@ _ | e if t(e) = o(f) and a(e) = g,
ef 0 otherwise,

g _ [ 1 if f=e"!and a(e) =g,
¢/ 1 0 otherwise.

Now
'S,=B,—J, for g€eT.
Let K = (Key) cen(@)wev(a) be the 2md x nd matrix defined as follows:

K, — I, ifo(e) =,
0, otherwise.

Furthermore, we define a 2md x nd matrix L = (Ley)een(@)wev(a) as follows:

L, = { Hel) 0=

04 otherwise.

Then we have

LX®L)K=>Y B,®ph) (37)

hel’
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where

B, = ZBQ ® p(9)-

gel
Now, let

Xd:X®Id ande:T®Id.

Then we have

det(Toma — 5 Y 'p(g) ® Uy) = det(Toma — 5 Uy @p(g))

ger gel
= det(Tomg — sTa(Y S, @ 'p(g))
gel
= det(Tyma — sTa(d>_ "By @'p(g) — Y "I, @ p(g)).
ger gel’

Set

J,=> 3,®p(9)-

gerl

Thus, by (37),
det (I — s th(g) ® U,) = det(Igng — sT4(KX4'L —"J,))

gel

= det(Ide + STdth - STdKthL)

= det(Ide — STdKthL(Ide + STdth)_l) det(Ide + STdth).

By (33), we have
det(La — 53 plg) © U,)

gel
= det(Ind — SthL<Igmd + STdth)ileK) det(Ide + STdth).
Furthermore,

det(Typa — s 3 'plg) © U,)

gel
= det(Ind — StL(Ide + STdth)ileKXd) det(Igmd + STdth).

Next, we have

Ide + STdth

Ly ste,"p(afer ")) 0
ster'plaler)) Iy
I, ste, 'p(ale
I 0 sto1'p(afem)) I,

81

(38)

(39)
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and so,

det(Igmd + STd H ej e

Jj=1

Furthermore, we have

1/ 1a —ste,/y1'plaler)) O
(Log + sT'3,) = | —ste/ui'plaler)) 1/l :
0

where y; =1 —t. t,15* (1 < j <m).
J
For an arc (u,v) € D(G),
(Xa'L(Tama + $T4' ) ' TiK)ww = Tyt (wu /(1 — t(u’v)t(vﬁu)sz)tp(a(v, u)).
Furthermore, if u = v, then

Tylele—18

¢ t 1 —
(Xa'L(Ioma + sTa'dp) " TiK)uu = Z 1 —tete- 152

Then we have

X' L(Igma + sTa'J,) ' TK = 1/5> Y "A4(1/5%) @ 'p(g) — 1/sD(1/s%) @ L.

gel

By (38), it follows that

det(Ipmg — s th g)U

gerl

= det(Tg — sX4'L(Tama + sTdq'J,) ' TaK) [ (1 -
7j=1

(1 — ePikle; 52)d

=

= det(La — 1/s ) "Ay(1/5%) @ 'p(9) + D(1/5*) ® 1)

gel

= det(Ly —1/s ) A (1/s*) ® p(9) +D(1/s%) @ L) |

gel

1

(1 eZikLej 82)d

S

1

<.
Il

(1 €2ikLej SQ)d.

3

= det(La — 1/5 Y p(g) ® Ay(1/5%) + I, @ D(1/5%))

gel

.
Il
—

Next, for an arc (u,v) € D(G),

("L(Tgpq + sTdth)’leKXd)uv = Tylpuy/(1 — t(u,v)t(w)sz)tp(&(v, u)).
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Furthermore, if v = v, then

tt—ls
'L(Toma + sT4'T,) ' TKX,) Lu
(‘L(Toma + sTa'J,) " TaKXa), Zl—ttels

Then we have

"L(Lyma + sT4'J,) " TKXy =1/ A, (1/s%) @ 'p(g) — 1/sD(1/s%) ® L.

gel

By (39), it follows that

det(Tpma — 5 Y _'p(g) ® U

ger

= det(Lq — 8'L(Iapa + sT4'J,) T KX,) H

= det(Tg — 1/s Y "A,(1/5) @ 'p(g) + D(1/s%) @ 1) H(1 — ePikle; g2yd
= det(La — 1/5 Y _A,4(1/s%) ® p(g) + D(1/5*) @ L) H(1 e?ikle; g2)d

i E)

= det( nd—l/sZp ® Ay(1/s?) + 1,0 D(1/5%))

gel

(1 €2ikLej 82)d.

.
Il
—_

Thus,

COROLLARY 1. Let G be a connected graph with n vertices and m unoriented
edges, I be a finite group and o : D(G) — I' be an ordinary voltage assignment.
If p 1s a iwrreducible representation of I' and d is the degree of p, then

det(0Tamq — > 'pi(h) @ Up)

hel’

’,:]3

=det(Iy— o p(h)®A) +1,®D)

hell J

( €2ikLej )d

’:]si

=det(Lyy— 0 Y pi(h) @ Ay +1,® D)

hel

( €2ikLej )d’

1

<.
I

where D(G) = {e1,e;, ..., em, et}



84 YU. HIGUCHI, N. KONNO, I. SATO, AND E. SEGAWA

Proof. By Theorem 5, we have

det(oIamg — Z tpi(h) @ Up) = 0™ (A, L\, p,o,0 )7}

hel
=det(L,g — o Zp(g) ® Ay(0?) + 1, @ D(0?)) H(Uz _ kL, ),
gel j=1

]

By Theorem 5, it is also shown that, in Theorem 3, the determinant of the
second expression is equal to that of the third expression.
By Theorem 3 and Corollary 1, the following result holds.

COROLLARY 2. If G is a connected graph with m edges, I" is a finite group and
a: D(G) — T is an ordinary voltage assignment, then we have

det (0T, — U(G*)) = 0™ [ [ CalA LA, p o, 0717452,

p

where p runs over all inequivalent irreducible representations of I' and p =| T'|.

7. The Euler product for the L-function (¢(A, L, A\, p,«, s) of a graph

We present the Euler product for the L-function of a graph introduced in
Section 6.

Foata and Zeilberger [9] gave a new proof of Bass’ Theorem by using the
algebra of Lyndon words. Let X be a finite nonempty set, < a total order in X,
and X* the free monoid generated by X. Then the total order < on X derives
the lexicographic order <* on X*. A Lyndon word in X is defined to a nonempty
word in X* that is prime (not the power " of any other word [ for any r > 2)
and that is also minimal in the class of its cyclic rearrangements under <* (see
[26]). Let L denote the set of all Lyndon words in X.

Foata and Zeilberger [9] gave a short proof of Amitsur’s identity [3].

THEOREM 6. (Amitsur) For square matrices Ay, ..., Ag,

det(I— (Ay + -+ Ay)) = [ [ det(I - Ay),

leL

where the product runs over all Lyndon words in {1,--- [k}, and Ay = Ay, -+ A,

r

forl=1y---1,.
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THEOREM 7. Let G be a connected graph with n vertices and m unoriented
edges, I be a finite group and o : D(G) — T' be an ordinary voltage assign-
ment. For each path P = (eq,...,e,) of G, set a(P) = a(er)---aley). If pis a
representation of I' and d is the degree of p, then

CalA, LA, p,a,s) = [ [ det(Ta = "p(a(C))tcacs ),
(€]

where [C] runs over all equivalence classes of prime cycles of G, and

te =tey -+ te,, 00 = gloten)glolen)) . slole2)) " — (¢ ey, ... ,€p)

eiep epep_1 eger

Proof. At first, let D(G) = {e1,...,€m,€m+1,.-.,€am} and consider the lexico-
graphic order on D(G) x D(G) derived from a total order of D(G): e; < ey <
o+ < egm. If (e;,€;) is the c-th pair under the above order, then we define the
2md x 2md matrix T, = ((T.);s)1<rs<om as follows:

(T),s = tp(a(ej))teiagféfi)) if r =e;,s =e; and o(e;) = t(e;),
. 0 otherwise,

74D — G

IfF =T+ -+ T and k = 4m?, then

F=) U,®'ph)

Let L be the set of all Lyndon words in D(G) x D(G). We can also consider
L as the set of all Lyndon words in {1,...,k}: (e;,e;,) - (e, e;,) corresponds
to mymy - - - my, where (e;,,e;)(1 <7 < s) is the m,-th pair. Theorem 6 implies
that
det(Iypg — sF) = [ [ det(Toma — s1T),
teL

where
T, =T, T
for | =iy ---i,. Note that det(Iug — s!I'T;) is the alternating sum of the diagonal

minors of T;. Thus, we have

det(I — 'p(a(C))tcacs'®) if t is a prime cycle C,

det(T — sIT,) =
et(I—s7T) 1 otherwise,
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where

tc =tey -+ le,, 00 = gloten)glolen)) . glole2)) " — (e ey, ... ep)

elep epep_1 egel

Therefore, it follows that

Ca(A L\ p,a,s) ™t = det(Ippg — s Z 'p(h) ® Up)

her
= det(Iyma — 5 Y _ U @'p(h)) = [[@a = "p((C))tcacs'),
hel’ [C]
where [C] runs over all equivalence classes of prime cycles of G. O

8. Example

We give an example. See also Fig. 2, Let G = K3 be the complete graph with
three vertices vy, vy, v3 and six arcs ey, ey, es, €], 65, e3t, where e; = (vy,vy),
ey = (vg,v3), €3 = (vs,v1). Furthermore, let A, = A for v € V(G), L. = L, A, =
A for any e € D(G). Then we have

2ik
Ty, = ﬁ,tej =exp(iL(k — A)),t,-1 = exp(iL(k+ A)) ( =1,2,3).
1R — J
Set a = 25 ¢ = exp(iL(k — A)) and s = exp(iL(k + A)). Considering U under
the order ey, eg, €3, 7", eyt e3t, we have
[0 0 ta ta—1) 0 0 ]
ta 0 0 0 tla—1) 0
B B 0 ta 0 0 0 tla—1)
U=Uas = s(a—1) 0 0 0 sa 0
0 s(a—1) 0 0 0 sa
i 0 0 s(a—1) sa 0 0o |
and
0 t s
- 2
A-A——% |50+ | D228y
0% — st 0% — st
t s 0

By Theorem 2, we have

b —taoc —sac
det(clg — U) = (6% — st)*det(Is — cA + D) = det | —sac b —tac
—tac —sac b

= b(b* — 3sta®c?) — a’o’(s® + 1°).

where b = 02 + (2a — 1)st.
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Figure 2 Regular covering of G = K3: Figure (a) is the original graph G = K3. We
take I' = Zo = {—1,1}. As an ordinary assignment «, we assign elements of
T to arcs as is depicted by Fig. (b). For example, a(vy,v2) = —1, a(vs, v3) =
1. The definition of the assignment imposes a(va,v1) = —1, a(vs,v2) = 1
since a(v,u) = a(u,v)~! for any (u,v) € D(G). Figure (c) is the derived
graph G®. For example, putting e = (v1,v2) € D(G), then, for £1 € T,
e1 = ((v1,1), (ve,—1)) € D(G*) and e_1 = ((v1, —1), (v2,1)) € D(G*) since
((u,9), (v,h)) € D(G®) if and only if (u,v) € D(G) and h = ga(u,v), in
this case, —1 = a(v1,v2) x 1 and 1 = a(vy,v2) x (—1), respectively.

Next, let ' = Zy = {1,—1} be the cyclic group of order 2, and let « :
D(K3) — Z, be the ordinary voltage assignment such that a(e;) = a(e; ') = —1
and a(ey) = a(ey') = a(es) = a(e;') = 1. The characters of Z, are given as

follows: x;((—1)?) = ((—1)), 0 < 4,5 < 1. Then we have
a 0 0 s a 0 —-s 0
A= — | 0 0 ¢ | A =mG—| =5 0
S I 7% Lo 0 o0

Now, by Theorem 5,

06§K3 (A7 L7 )\7 X1, &, 0-_2)_1

= (0” = st)*det(Is — o > _ x((—1))A(_1 + D)

i=0
b tac  —saoc
= det sao b —tao
—taoc —saoc b

= b(b* — 3sta’c?) + a’c?(s® + t7).
By Corollary 2, it follows that

det(ol, — U(KS)) = det(0’Is — U) g, (A, L, A\, x, a, 07 2) 10"
= {b(b* — 3sta*c?) — a’o®(s® + t*) H{b(b* — 3sta’o?) + a’0?(s* + t°)}
= b*(b* — 3sta’0?)? — a®o(s® + %)%
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